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States, 2Department of Microbiology, Immunology and Cancer Biology, University of Virginia, 
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Zika virus (ZIKV) is a neurotropic pathogen linked to neuropathogenesis in adults, 
causing conditions such as Guillain-Barré syndrome (GBS) and fatal encephalitis. 
Intracranial injection of virus in immunocompromised mice have shown 
neuroinflammation and subsequent brain damage. However, the mechanisms 
underlying ZIKV-induced neuroinflammation in immunocompetent adult mice via 
peripheral infection remain unclear. To investigate this, we utilized a murine model 
of ZIKV infection via footpad injection. Our findings reveal that acute ZIKV infection 
at  4  days  post-infection  (4  dpi)  induces  significant apoptosis and 
neuroinflammation in the adult brain, persisting up to 28 dpi. Notably, ZIKV 
infection triggers apoptosis in the hippocampus and cortex—key regions involved 
in memory—and induces early immune cell infiltration. Additionally, microglial 
activation occurs following infection at 7 dpi, with viral RNA detected in the brain. 
Bulk RNA sequencing of the hippocampus at 28 dpi further reveals the activation of 
inflammatory pathways, underscoring the prolonged neuroinflammatory response 
in the infected brain. Microglial activation is likely driven by infiltrating monocytes, as 
inhibiting monocyte recruitment reduced the expression of microglial activation 
genes. These results suggest that targeting monocyte-induced inflammatory 
mediators could be potential therapeutic interventions for ZIKV. 
KEYWORDS 
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1 Introduction 

Zika virus (ZIKV) is a single-stranded positive RNA virus belonging to the Flaviviridae 
family. ZIKV is primarily transmitted through the bite of a mosquito, though sexual and 
vertical transmission can also occur (1, 2). Global travel and climate change have expanded 
the populations of human carriers and the geographical range of mosquito vectors to 
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transmit the virus (3). Of particular concern is ZIKV, which has 
shown an increased infection rate from 1998-2018, with Brazil 
having reported 440,000-1,300,000 suspected cases in 2015. While 
ZIKV  infection in pregnancy  is  well-known for  causing
microcephaly in the fetal brain, adults infected with ZIKV had 
detectable viral RNA in the brains and impaired cognitive function 
(4, 5). ZIKV infection in adults has been associated with severe 
neurological outcomes, including acute encephalitis, Guillain-Barré 

syndrome (an autoimmune neuropathy causing weakness, 
paralysis, or even death), and long-term cognitive impairments 
(6, 7). Around 20% of symptomatic adults report rash, fever, 
conjunctivitis, and headache (8). Approximately 0.3% of ZIKV-
infected individuals develop neurological sequelae, with 75% of 
these cases resulting in GBS (9, 10). In rare but concerning cases, 
ZIKV has been linked to acute encephalitis and long-term cognitive 
decline (4, 5, 11–13). Some studies have further explored 
connections between viral infections and neurodegeneration; for 
example, ZIKV exposure in vitro has been shown to increase 
amyloid-b production, and ZIKV-infected brain organoids exhibit 
Alzheimer ’s-like pathology, including elevated Ab and  
phosphorylated tau (14–18). 

Microglia, the brain’s resident macrophages, are central to 
clearing extracellular debris and releasing pro-inflammatory 
cytokines and neurotoxins (19, 20). Pathogenic microglia can 
exacerbate brain injury by inducing pro-inflammatory A1
astrocytes (21). Microglial-derived neurotoxins can be packaged 
into  exosomes  and  released  into  the  CNS,  amplifying  
neuroinflammation (22), and tau-laden exosomes from microglia 
contribute to Alzheimer’s disease pathogenesis (23). ZIKV infection 
has been shown to activate microglia in both immunocompromised 
mouse models and intracerebroventricular (ICV) injection studies 
(24). Furthermore, microglia can communicate with astrocytes and 
prolong immune activation, disrupting the BBB (51). However, the 
role of microglia in immunocompetent models via peripheral 
infection remains understudied. Monocytes, derived from bone 
marrow, infiltrate the brain following infection and may 
exacerbate neurological damage. ZIKV-infected monocytes exhibit 
enhanced transmigration across the blood-brain barrier (BBB), 
upregulate adhesion genes, and release exosomes containing 
infectious viral particles (24–28). These findings underscore the 
importance of investigating ZIKV’s effects on monocyte-microglia 
interactions to better understand and mitigate virus-induced 
neuroinflammation and cognitive dysfunction. 

To better understand ZIKV neuropathogenesis and assess 
potential therapies, it is crucial to establish an animal model that 
mirrors human disease. Intracerebral ZIKV inoculation in 
immunocompetent adult mice demonstrates CNS infection and 
damage (29). In this model, antiviral responses are driven by 
microglia, infiltrating monocytes, and macrophages, suggesting that 
innate and adaptive immunities play a key role in ZIKV-associated 
encephalitis. Another widely used model, Ifnar1 knockout mice in a 
C57BL/6 genetic background, lacks type-I IFNa/IFNb responses and 
shows heightened susceptibility to viral replication and neurological 
damage (30). However, due to their compromised immune systems, 
these mice are not ideal for testing antiviral agents targeting innate 
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immunity. To address this, a murine model was developed using 
wild-type C57BL/6 mice, with transient inhibition of type I IFN 
signaling through anti-IFNR antibody injection one day before ZIKV 
infection. This model is susceptible to infection and develops severe 
neuropathological changes, making it valuable for studying ZIKV 
neuropathogenesis (31, 32). 

In this report, we investigated how ZIKV affects the 
immunocompetent adult brain by using a transiently inhibited 
IFNAR mouse model. We found that during acute infection, 
ZIKV infection induces robust expression of inflammatory genes, 
such as IL-6, TNFa, and IL-1b in the brain. Notably, infected mice 
exhibited prolonged neuroinflammation and sustained microglial 
activation. Inhibition of monocyte recruitment attenuated 
microglial activation markers, implicating infiltrating monocytes 
as key drivers of neuroinflammatory microglial responses. These 
findings suggest that ZIKV-infected monocytes contribute to CNS 
injury through microglial activation. The understanding of ZIKV-
associated CNS damage will help for the development of targeted 
therapies to prevent long-term neurological damage in adults. 
2 Materials and methods 

2.1 Virus 

The Uganda isolate (strain MR766) of zika virus was obtained 
from Dr. Michael Gale. For making new viral stocks, Vero cells were 
cultured and infected with an MOI of 0.05 of ZIKV. 10 mL of serum 
free media (DMEM) was added for 4 hours while shaking, followed 
by adding 20mL of 10% FBS-containing media. Cells were then 
harvested and stored in -80C after successful viral replication at 3–5 
days post infection. Plaque assays were performed to quantify 
infectious virus titers. Serial 10-fold dilutions of thawed viral 
stocks were prepared in serum-free DMEM, beginning with a 
1:10 dilution (50 mL virus into 450 mL medium) and proceeding 
to 10-8. Vero cell monolayers were washed with serum-free media 
and infected with 200 mL of each dilution in duplicates. Plates were 
incubated at 37°C for 2 hours, with gentle swirling every 15 minutes 
to promote viral infection. Following incubation, cells were washed 
three times with serum-free media to remove unbound virus. An 
overlay medium containing either 1% agarose or 0.3–0.6% Avicel in 
DMEM (supplemented with 10% FBS and NaHCO3) was applied 
gently (4 mL/well). Plates were incubated for 5 days. After 
incubation, cells were fixed in 10% formaldehyde in PBS and 
stained with 0.1% crystal violet. Plaques were counted in wells 
containing 5–100 plaques, and titers were calculated as PFU/mL 
using the formula: Plaques/(dilution factor * volume added)= pfu/ 
mL. Multiple dilutions were used to determine titer accuracy, and 
the assay was repeated for reproducibility. 
2.2 Real-time quantitative PCR 

For RNA isolation, Trizol was used following the Trizol induced 
RNA isolation protocol (Invitrogen). Following RNA isolation, the 
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https://doi.org/10.3389/fimmu.2025.1597776
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Garcia Diaz et al. 10.3389/fimmu.2025.1597776 
RNA was resuspended in nuclease free water and the quality/ 
concentration of the RNA was assessed by nano-drop 2000 
spectrophotometer (Thermo Scientific). For brain tissue, 1500ng of 
RNA was used for cDNA. cDNA synthesis was done using High-

capacity RNA-tocDNA kit (Applied Biosystems). Real-time PCR was 
performed on a StepOnePlus system (Applied Biosystems). Primers 
were used for target gene quantification using SYBR green master mix 
(Applied Biosystems). Target gene expressions were determined 
using comparative cycle threshold (DDCT) technique and results 
normalized to HPRT. Please see Table 1 for primer sequences. 
2.3 Mice, microscopy 

The mouse experiments were approved by the University of 
Virginia Animal Care and Use Committee (ACUC). This study was 
conducted under approved bioethics protocols, including IBC 
protocol #077–99 for biological agents. Further all animal 
procedures were approved by the Institutional Animal Care and 
Use Committee (IACUC) under protocol number 2720-10-22. 
CX3CR1-GFP and CCR2-CreER;R26R-EGFP (Ai6) mice were 
kindly provided by Dr. Chia-Yi Kuan’s lab, UVA professor. Mice 
were injected with IFNAR via IP injection (2mg/mL, 200uL 
injected) one day prior to footpad injection of ZIKV (10^4/10^5/ 
10^6, 50uL). RS-102895 from SIGMA, a CCR2 inhibitor, was 
Frontiers in Immunology 03 
administered via IP injection at 1 hpi and at 24 hpi. Mice were 
euthanized using 60uL of Avertin (10 g of 2,2,2-tribromoethyl 
alcohol with 10 ml of tert-amyl alcohol to make 100% Avertin, 
freshly diluted to 2.5% in saline before each use) via IP injection to 
avoid brain injury that other methods may impose. Decapitation 
was performed to ensure death as a secondary confirmation 
method, along with the removal of the brain tissue for studies. 
Following euthanizing, mouse blood was collected, and perfusion 
was performed using 1XPBS. Tissue was then harvested and stored 
in appropriate medium for downstream applications. 

For microscopy, harvested brains were kept in 4% PFA overnight 
and then placed in 30% Sucrose, before being frozen in OCT. Brain 
was sliced, and slices were placed on a histological slide and stored 
until staining. Tissue staining was performed following a modified 
STAR protocols 100499, Sep 17, 2021. Primary antibodies used were 
SALL1 (eBioscience), and GFAP (sc33673), and secondary antibodies 
used were AF647 (Invitrogen). UVA microscopy core Leica Thunder 
widefield microscope was utilized for data acquisition. Exposure, gain 
and intensity were kept the same for all samples to ensure rigor. 
Additionally, images were captured on the same day for fair 
comparisons. Images were captured at various resolutions 40x and 
100x. Analysis of images was performed using IMARIS 10.2.0 
software version. Using IMARIS software identical region areas and 
analysis parameters were applied across all images to ensure 
consistency. Cells were counted in IMARIS using the spots feature 
with their representative intensities being measured through spots. 
This work used the Leica thunder TIRF widefield imaging 
microscope in the Molecular Imaging Core Facility which is 
supported by the University of Virginia School of Medicine, 
Research Resource Identifiers (RRID): SCR_025472. 
2.4 IHC 

Mouse brains were harvested and stored in 10% Formalin for 48 
hours before being transferred to cassettes in 70% ETOH. Brains were 
submitted to UVA Research Histology Core for paraffin embedding 
and H&E/Oil red staining. For tissues used in H&E analysis H&E 
staining and paraffin slides, work was done in the Research Histology 
Core Facility which is supported by the University of Virginia School 
of Medicine, Research Resource Identifiers (RRID): SCR_025470. 
TUNEL assay was performed using the ab206386 TUNEL Assay kit 
HRP-DAB following manufactures instructions. TUNEL-positive 
cells were manually counted in a defined region of interest (ROI) 
in the hippocampus/cortex. 
2.5 Flow cytometry 

Bone marrow immune cells were isolated from mouse femurs and 
1mL of RBC buffer was added to cell pellet to remove red blood cells. 
After centrifugation, cells were washed with 1X PBS and then 
resuspended in FC buffer. Brain immune cells were isolated using a 
digestion buffer consisting of: Papain at 0.1 mg/mL, DNase I 1ug/mL, 
and 1X HBSS without Ca++ and Mg++. Briefly, after brain tissue was 
TABLE 1 Primer sequences: List of primers used for RT-qPCR with the 
corresponding forward and reverse sequences. 

Gene Forward sequence Reverse sequence 

HPRT GTGTTCTAGTCCTGTGGCCA TCAAAAGTCTGGGGACGC 
AG 

NS5 AARTACACATACCARAACA 
AAGTGGT 

TCCRCTCCCYCTYTGGTCT 
TG 

PRM TTGGTCATGATACTGCTGA 
TTGC 

CCCTCCACGAAGTCTCTAT 
TGC 

IL6 GAGGATACCACTCCCAACA 
GACC 

AAGTGCATCATCGTTGTTC 
ATACA 

TNFa GGTGCCTATGTCTCAGCC 
TCTT 

GCCATAGAACTGATGAGAG 
GGAG 

IL1b CTTTCGACAGTGAGGAGAA 
TGAC 

CAAGACATAGGTAGCTGCC 
ACAG 

APOE CTGACAGGATGCCTAGCCG CGCAGGTAATCCCAGAAGC 

CD86 TGTTTCCGTGGAGACGCAAG TTGAGCCTTTGTAAATGGG 
CA 

CH25H CTGCCTGCTGCTCTTCGACA CCGACAGCCAGATGTTAAT 
CA 

CX3CR1 ACCGGTACCTTGCCATCGT ACACCGTGCTGCACTGTCC 

P2RY12 TTTCAGATCCGCAGTAAA 
TCCAA 

GGCTCCCAGTTTAGCATC 
ACTA 

RIG-I GAGAGTCACGGGACCCACT CGGTCTTAGCATCTCCAA 
CG 

ISG15 CTGAAGAAGCAGATTGCC 
CAGAAG 

CGCTGCAGTTCTGTACCA 
CTAGC 
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isolated from mice, they were placed in 1X PBS to wash as the next 
tissues were isolated. Following the end of the harvest, brains were 
transferred to a small cell culture dish where they were cut in half, and 
one section was used for PCR/IHC, and the other to continue flow 
analysis. The one hemisphere for flow  was minced to around small  
<1mm pieces and 1mL of the digestion buffer was added. The minced 
brains were then transferred to a 15mL tube where 6mL of digestion 
buffer was added. Brains were then placed in 37°C for 30 minutes with 
gentle agitation throughout. Following incubation, brains were filtered 
through a 100um filter  and rinsed with sample preparation  medium  
consisting of 1X HBSS without Ca++ and Mg++ and 10% FBS. Brains 
were centrifuged at 1350rpm for 10 minutes and 30% Percoll was 
added to the cell pellet. Centrifugation again at 700g for 10 minutes 
with the brake off resulted in a cell pellet. The isolated immune cells 
were washed with 1X PBS and then resuspended in FC buffer for flow 
analysis. Antibodies used for staining were eBioscience F4/80-FITC, 
BD pharmigen CD11B-perCP-Cy5.5, Invitrogen CD45-APC, 
Invitrogen LY6G-PE, eBiosceince, and Invitrogen live/dead fixable 
violet dead cell stain. Results from experiment were analyzed 
using FlowJo. 
2.6 Bulk sequencing 

Mice were harvested and the hippocampus was quickly isolated 
and stored in RNAlater before processing. RNA was isolated from 
the tissue as mentioned previously and library preparation was 
conducted by the UVA genome analysis and technology core. Data 
analysis was conducted in Rstudio using Deseq2 and GO 
enrichment analysis to search for gene pathways. Library 
preparation and sequencing was done by the University of 
Virginia School of Medicine Genome Analysis and Technology 
Core, RRID: SCR_018883. 
2.7 Luminex analysis 

Mouse BMDMs were cultured and infected with MR766 for 
24hr. Supernatant was obtained and stored at -80°C until used for 
assay. Protein from cells were isolated using Cell Lysis Buffer II 
(Invitrogen) supplemented with 1mM PMSF and Protease Inhibitor 
Cocktail (Thermofisher), according to the manual instructions. 
Protein concentrations were determined through use of Pierce 
BCA kit (Thermofisher) and concentrations were diluted to 0.5 
mg/mL using 1X PBS. Mouse 32 Plex Luminex assay was run by 
UVA’s Flow Cytometry Core Facility. 
2.8 ELISA 

ELISAs were performed according to Biolegends ELISA 
protocol for mouse IL1b. BMDM supernatants were used in 
assessing protein amounts. Briefly, ELISA plates were coated with 
100uL of IL1b capture antibody overnight at 4C and after washing 
the plates assay diluent provided was used for the blocking step. 
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Next after washing, the samples and standards were added for 2 
hours at RT. Detection antibody was then added for an hour 
followed by Avidin-HRP for 30 minutes at RT. Lastly, TMB 
substrate solution incubation in the dark for 15 minutes was 
performed before adding the stop solution and reading the wells. 
Protein amounts were assessed using an absorbance reader at 
450nm within 15minutes. 
2.9 Statistics 

GraphPad Prism version 9 was used for conducting statistical 
analysis of data obtained throughout the experiments. Unpaired t-
tests were conducted and values of p < 0.05 were regarded as 
statistically significant. Statistical tests were performed for controls 
vs treated groups. Data represents the mean ± SD with ∗ p < 0.0332, 
∗∗ p < 0.0021, and ∗∗∗ p < 0.0002, ∗∗∗∗ p < 0.0001. 
3 Results 

3.1 Acute ZIKV infection induces cell 
apoptosis in the hippocampus and cortex 
of the adult brain leading to chronic 
neurological deficits 

C57BL/6 adult mice were infected with ZIKV (MR766 strain; 10^6 
PFU) via footpad injection to assess the impact of ZIKV on 
neuropathogenesis in the adult brain. One day before infection, 
IFNAR antibody, an IFN-A receptor antagonist, was administered to 
enable efficient viral infection, as ZIKV NS5 protein cannot effectively 
inhibit STAT2 in mice (33). Brain tissues were collected from 
uninfected (UI) and infected mice at 4-, 7-, and 28-days post-
infection (dpi) (Figure 1A). As ZIKV targets memory-related regions, 
particularly the hippocampus and cortex, histological analysis focused 
on these areas. H&E staining revealed a reduction in the length of the 
dentate gyrus blade in the hippocampus at 4 dpi, returning to near 
baseline by 7 and 28 dpi (Figures 1B, C). Additionally, the hippocampal 
area expanded at 28 dpi, and notable immune cell infiltration was 
observed in the cortex (Figures 1B, C). 

Furthermore, immune cell infiltration was observed in the corpus 
callosum at 4 dpi (Figure 1D). To determine if this immune response 
was linked to neuronal cell death, we performed a TUNEL assay at 
multiple time points. At 4 dpi, TUNEL-positive cells were detected in 
both the hippocampus and cortex (Figure 1E), indicating apoptosis in 
these memory-related regions. No TUNEL-positive cells were 
observed at later time points (Supplementary Figure 1C), 
suggesting a subsidence of apoptosis over time. However, other 
forms of cell death may contribute to chronic brain damage. 
Additionally, because astrocytes are key modulators for the BBB, 
we wanted to briefly identify any changes in these cell types for our 
mice (21). Astrocyte marker GFAP was reduced in the corpus 
callosum of the ZIKV-infected mice (Figure 1F). These findings 
demonstrate acute and chronic brain pathology in adult 
immunocompetent mouse models following ZIKV infection. 
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3.2 ZIKV RNA and inflammatory genes are 
detectable in the brain during acute 
infection 

To assess ZIKV presence and the inflammatory response, we 
performed RT-qPCR  for ZIKV RNA  and inflammatory gene 
markers. High levels of ZIKV RNA (NS5, PRM) were detected in 
the spleen at 4 dpi, with a decline over time (Figures 2A, B), 
Frontiers in Immunology 05 
confirming viral infection in adult mice. In contrast, ZIKV RNA 
was only detectable in the brain at 7 dpi (Figures 2C, D), despite the 
observed pathology at 4 dpi (Figure 1B). We then analyzed the 
expression of RIG-I and ISG15, genes induced by viral RNA as 
pathogen-associated molecular patterns (PAMPs). Notably, RIG-I 
and ISG15 expression were elevated at 4 dpi and 7 dpi, suggesting 
viral RNA presence on day 4, despite being below the RT-qPCR 
detection threshold (Figures 2E, F). 
FIGURE 1 

Hippocampal area altered by ZIKV followed by cell death in the adult hippocampus and cortex. (A) C57BL/6 mice were injected with 10^6 PFU of 
ZIKV via footpad and brains were harvested at 0, 4, 7 and 28 dpi. (B) C57BL/6 mice H&E data images in hippocampus (5x) and cortex (10x). 
(C) C57BL/6 mice H&E data dentate gyrus (DG) blade length quantification, H&E hippocampus area measurement and H&E cortex positive cell count 
detection, n=3-4. (D) Corpus callosum H&E with quantification (10x, 20x). (E) TUNEL images of mouse hippocampus and cortex 15x. Followed by 
quantification. TUNEL-positive cells were manually counted in a defined region of interest (ROI) in the hippocampus/cortex. (F) 40X 
immunofluorescence of GFAP in corpus callosum for UI and D28. N=3-4. Data represents the mean ± SD ∗p < 0.0332. The experiment was 
independently repeated twice with similar results; representative data are shown. 
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Additionally, proinflammatory cytokine genes, IL1b and TNFa, 
were elevated at 7 dpi, and IL6 was upregulated on 4 dpi, in brain 
tissue (Figures 2G–I). IL6 and TNFa gene levels remained elevated in 
the hippocampus at 4, 7, and 28 dpi (Supplementary Figures 1A, B). 
These results indicate that viral RNA, rather than viral replication 
alone, triggers PAMP signaling and the innate immune response, 
contributing to neuroinflammation and potential CNS damage. 
Frontiers in Immunology 06
3.3 Increased expression of microglial 
inflammatory genes and microglial 
activation following ZIKV infection 

Disease-associated microglia (DAMs) are prominent in Alzheimer’s 
disease (AD) and play a role in exacerbating brain pathology (23, 30). To 
determine if DAMs are involved in ZIKV-related brain damage, mice 
FIGURE 2 

Inflammation observed in ZIKV infected adult brain. (A, B) RT-qPCR of ZIKV NS5, PrM in C57BL/6 mice spleens. (C–I) RT-qPCR of ZIKV NS5, PrM, 
RIG-I, ISG15, TNFa, IL1B and IL6 and in mouse brain for UI, D4, D7 and D28. N=3-8. Data represents the mean ± SD ∗p < 0.0332, ∗∗p < 0.0021, and 
∗∗∗∗p < 0.0001. The experiment was independently repeated twice with similar results; representative data are shown. 
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were infected with varying doses of ZIKV (uninfected, 10^4, 10^5, and 
10^6 PFU). Brain tissues were then harvested at 4 dpi for DAMs gene 
analysis. Notably, microglial activation markers such as APOE and 
TREM2, associated with DAMs, increased with higher viral doses 
(Figures 3A, B). Inflammatory markers CH25H and CD86 also 
peaked at 10^6 PFU, indicating a dose-dependent inflammatory 
response (Figures 3C, D). CH25H, an enzyme that converts 
cholesterol to 25-HC, is known to trigger proinflammatory cytokine 
production (20). Our prior studies showed CH25H upregulation in 
microglia following ZIKV infection (34). Of note, lower viral doses 
showed similar trends without statistical significance. 

We next assessed microglial morphology in CX3CR1-GFP 
reporter mice (Figure 4A). Widefield fluorescence microscopy was 
utilized to localize specific brain regions before examining areas of 
interest. At 7 dpi, ZIKV-infected mice exhibited altered microglial 
morphology, indicative of an activated, stressed state (Figure 4B) 
(19). The extended microglia morphology suggests activation, likely 
in response to viral PAMPs or signals from infiltrating cells 
(Figure 4B). The expression of sall1 confirms that CX3CR1-GFP 
mice are labeling microglia, as sall1 is a common microglial marker 
(35). Additionally the lack of sall1 on some CX3CR1-GFP cells 
suggests a downregulation of the homeostatic marker for microglia, 
further indicating microglial activation (Figure 4C) (35). 
Frontiers in Immunology 07 
Moreover, RT-qPCR of brain tissue showed elevated CD86, 
CX3CR1, and  CH25H expression in infected mice at 7 dpi compared 
to controls, consistent with microglial activation (Figure 4D). Notably, 
in Alzheimer’s, CH25H inhibition reduces neurodegeneration and 
neuroinflammation, particularly in the hippocampus (PS19 mice) 
(36). Given CH25H’s role in lipid metabolism, we examined lipid 
deposits in ZIKV-infected brains. Oil-Red staining revealed lipid 
accumulation in the hippocampus of infected mice at 7 dpi 
(Supplementary Figure 2), indicating dysregulated lipid metabolism. 
These findings suggest that activated microglia may contribute to 
neuroinflammation through the production of neurotoxins, and 
targeting this inflammation could present therapeutic opportunities. 
3.4 Transcriptomic analysis reveals distinct 
gene expression patterns in acute versus 
chronic ZIKV infection, with chronic 
inflammation persisting in the 
hippocampus 

To investigate ZIKV-induced chronic pathology, we conducted 
bulk RNA sequencing on mouse hippocampus samples, comparing 
infected mice at 4 and 28 dpi to uninfected controls (Figure 5A). 
FIGURE 3 

10^6 PFU viral dose results in pronounced microglial activation. (A–D) RT-qPCR of APOE, TREM2, CH25H and CD86 expression with varying doses 
of ZIKV (UI, 10^4,10^5,10^6) for 4dpi. N=3-5. Data represents the mean ± SD ∗p < 0.0332. The experiment was independently repeated twice with 
similar results; representative data are shown. 
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We identified genes upregulated and downregulated at both time 
points relative to uninfected controls (Supplementary Figure 3A). 
While the profiles at 4 and 28 dpi differed, 151 genes were 
upregulated, and 138 were downregulated in acute and chronic 
Frontiers in Immunology 08
stages of infection. At 4 dpi, genes such as Stat1, Ifitm3, and Isg1, 
primarily involved in IFN signaling, were upregulated, whereas at 
28 dpi, genes like Cd8a, Ms4a4b, H2-Q6, which are associated with 
T cell responses were notably elevated (Figures 5B, C). Among the 
FIGURE 4 

ZIKV results in activated microglia with a change in morphology. (A) CX3CR1-GFP mice were injected with ZIKV at 10^6 PFU via footpad, brains were 
harvested at 0 and 7dpi. (B) 100X immunofluorescence imaging of mouse cortex staining for DAPI and CX3CR1. (C) 100X immunofluorescence of 
mouse cortex to assess microglial morphology using sall1 and CX3CR1-GFP. (D) PCR data for CD86, CX3CR1 and CH25H genes, N=3. Data represents 
the mean ± SD ∗p < 0.0332,  ∗∗p < 0.0021. The experiment was independently repeated twice with similar results; representative data are shown. 
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top 10 genes shared between both time points, upregulated 
pathways included IFN signaling and pathogen recognition with 
higher fold observed at 4 dpi compared to 28 dpi, while 
downregulated genes were predominantly related to cellular stress 
responses, showing a similar level of reduction at both time points 
(Supplementary Figures 3B, C). This downregulation may reflect 
the immune system’s attempt to control inflammation, which could 
otherwise exacerbate pathology. 

Gene ontology (GO) enrichment analysis confirmed these 
findings, revealing upregulation of viral response genes and 
continued activation of IFN signaling at 4 and 28 dpi 
(Figures 5D, E). IFN signaling is critical for viral clearance, and 
prior studies have highlighted its importance in ZIKV infection in 
adult brains (6). At 4 dpi, the immune system was actively engaged 
in the hippocampus, with heightened viral response genes 
(Figure 5D). By D28, the viral response persisted, with increased 
expression of genes involved in cytotoxicity, indicating sustained 
immune activation (Figure 5E). Chronic inflammation was evident, 
with inflammatory pathways still upregulated 4 weeks post-
infection. Notably, the “regulation of mononuclear cell 
proliferation” pathway was upregulated, suggesting infiltrating 
immune cells, such as monocytes, may contribute to observed 
pathology. In contrast, apoptotic cell clearance pathways were 
downregulated at 4 dpi, potentially exacerbating inflammation in 
the upregulated gene sets (Supplementary Figure 3D). At 28 dpi, 
extracellular matrix (ECM)-related genes were similarly 
downregulated, a change that may hinder cell repair and 
proliferation (Supplementary Figure 3E), consistent with previous 
studies linking ECM alterations to impaired neuronal regeneration 
after viral infections (37). 

We then extracted genes from GO categories and compared 
these results with RT-qPCR and histology data with fold-change 
values between infected and uninfected groups visualized in a 
heatmap (Figure 5F). Notably, apoptotic processes were 
upregulated in both acute (4 dpi) and chronic (28 dpi) infection-
though more pronounced at 4 dpi. In contrast, lipid catabolism was 
downregulated in both phases, which is significant as brain lipid 
alterations are implicated in neurodegenerative diseases like 
Alzheimer’s. Moreover, Tau and amyloid-beta (Ab) genes were 
downregulated at both time points, suggesting potential memory-

related deficits in the mice, as these proteins are critical in 
Alzheimer’s pathology. 

Interestingly, neurotransmission genes were upregulated at 28 
dpi, indicating that neurons may initially attempt to recover from 
infection but ultimately succumb to chronic inflammation, possibly 
contributing to neurocognitive dysfunction. Additionally, 
microglial cell proliferation was upregulated at 4 dpi, while their 
activation was more pronounced at 28 dpi, suggesting that 
microglia play a central role in driving chronic inflammation in 
the hippocampus (Figures 5F, G). This comprehensive analysis 
underscores the long-lasting effects of ZIKV infection in the 
hippocampus, revealing both acute and chronic immune 
responses that likely contribute to persistent neuroinflammation 
and potential cognitive deficits. 
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3.5 Monocyte infiltration into brain tissue 
was detectable at 7 days after ZIKV 
infection 

Although high amounts of pathogens like ZIKV are not present 
in the adult brain, they can still trigger inflammation potentially 
through peripheral effects or blood-brain barrier (BBB) disruption, 
enabling immune cells to enter the CNS (32). Monocytes have been 
shown to infiltrate the brain in immunocompromised mouse 
models, and clinical studies have reported similar infiltration of 
mononuclear cells in adults (12, 38). To investigate the role of 
monocyte infiltration in ZIKV-induced neuroinflammation and 
CNS damage, we examined monocyte migration into the brain 
following infection. 

To track monocyte-derived cells, we used CCR2-creER-R26R
EGFP (Ai6) mice, which express EGFP in monocytes and their 
progeny, even after CCR2 is downregulated in the brain (39). This 
allows us to trace the migration of these cells despite changes in their 
surface markers. Mice were treated with tamoxifen (5 mg/40 g body 
weight) for 3 days, followed by IFNAR antibody administration one 
day before ZIKV footpad infection. At 7 dpi, mice were sacrificed, 
and cells isolated from brain tissue were analyzed by flow cytometry 
to track monocyte-derived cells (Figure 6A). In parallel we harvested 
bone marrow to assess potential monocyte migration to the brain by 
quantifying changes in monocyte-derived cell populations. Flow 
cytometry of bone marrow revealed a significant reduction in 
CCR2-EGFP+ monocyte-derived cells (Figure 6B), suggesting 
migration of these cells to the brain or cell death due to viral 
infection. A concurrent decrease in CD68+ monocytes supported 
the idea of monocyte migration or cell loss (Figure 6B). 

In the brain, flow cytometry revealed an increased myeloid cell 
population (CD45+ CD11B+) at 7 dpi, indicating immune cell 
infiltration (Figure 6C). Further gating analysis showed an increase 
in microglia, suggesting microglial activation (34). Importantly, we 
detected an increase in CCR2-EGFP+ monocyte-derived cells and 
CCR2-EGFP- macrophages. (Figure 6C). Immunofluorescence of 
these same mice confirmed monocyte-derived cells near the choroid 
plexus at 7 dpi (Figures 6D, E). Overall, these findings demonstrate 
significant monocyte infiltration and microglial activation in the 
brain by 7 dpi, suggesting a role for infiltrating monocytes in 
driving neuroinflammation. 
3.6 ZIKV infection drives proinflammatory 
monocytes and CCR2 inhibition mitigates 
neuroinflammation 

To assess ZIKV’s ability to drive monocyte inflammatory 
responses, we measured IL1b production in bone marrow-derived 
macrophages (BMDMs) following infection. BMDMs support ZIKV 
replication (Figure 7A), and exhibit increased IL1b RNA and protein 
levels post-infection (Figures 7B, C). IL1b production, induced by 
ZIKV, is linked to neuronal cell death  (40). Cytokine/chemokine array 
analysis revealed that BMDMs secrete various cytokines and 
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chemokines, including MCP-1, which are involved in monocyte 
recruitment (Figure 7D). These findings  suggest that ZIKV  infection  
promotes inflammatory factor release, triggering monocyte 
infiltration which may contribute to in vivo neuroinflammation. 
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To explore the role of monocytes in neuroinflammation and CNS 
damage, we administered the CCR2 inhibitor RS-102895. CCR2 
mediates monocyte chemotaxis toward inflammation sites and acts 
as a receptor for MCP-1 (CCL2) (41). Mice were treated with 10 mg/kg 
FIGURE 5 

Bulk sequencing of mouse hippocampus shows chronic pathology. (A) Mice hippocampal sections were harvested and sequenced. (B, C) Volcano 
plot showing the top three upregulated and downregulated genes for D4 vs. UI. (C) shows D28 vs UI volcano plot for the top three upregulated and 
downregulated genes. Red indicates upregulated with a positive log2fold change value (>1) and blue indicates downregulated with a negative 
log2fold change value (<1). Grey is non-significant genes. (D) Gene expression differences comparing D4 to UI visualizing the top most upregulated 
genes in the D4 group. (E) Gene expression differences comparing D28 to UI visualizing the top most upregulated genes in the D28 group. 
(F) Heatmap representing fold changes of GO pathways of D4 vs UI and D28 vs UI mouse hippocampi. Blue=downregulated and Red=upregulated. 
N=3 per condition (G) Specific genes in microglial activation involved in immune response pathway that are altered. 
frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1597776
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Garcia Diaz et al. 10.3389/fimmu.2025.1597776 
of CCR2 inhibitor one hour and 24 hours after ZIKV infection, 
followed by brain harvesting 48 hours post-infection (Figure 8A). 
Flow cytometry analysis showed a significant reduction in overall 
immune cell counts in ZIKV-infected mice treated with the CCR2 
inhibitor, confirming the effective inhibition of monocyte recruitment 
(Figures 8B, C). Notably, microglial cell counts remained unchanged, 
indicating that the inhibitor did not affect microglia (Figure 8D). 
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We observed a reduction in neuroinflammation in the CCR2 
inhibitor-treated mice by decreased expression of IL1b, CH25H, 
and CD86 in the brain. Additionally, CX3CR1 expression, a 
microglial activation marker, was decreased, suggesting reduced 
microglial activation (42, 43). The upregulation of P2RY12, 
associated with anti-inflammatory microglia, further supports this 
finding (44). Lastly, TREM2, a known DAM marker, was reduced, 
FIGURE 6 

Infiltrating monocytes seen in ZIKV mice brains at 7dpi. (A) CCR2-CreER;R26R-EGFP (Ai6) mice were given tamoxifen for 3 days before infected with 
ZIKV and harvested. (B) Quantification of flow data for Bone marrow cells (CCR2-EGFP+, CCR2-EGFP+ CD68+) (C) Quantification of flow data for 
Brain cells (CD11B+CD45+, CD45int CD11B+ (Microglia), CCR2-EGFP+, CCR2-EGFP-). (D, E) Immunofluorescence of CCR2-CreER-R26R-EGFP 
mice for EGFP and sall1 expression in choroid plexus region with quantification. N=3-4. Data represents the mean ± SD ∗p < 0.0332, ∗∗p < 0.0021, 
and ∗∗∗p < 0.0002. 
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indicating a decrease in disease-associated microglia. The increase 
in IL6 observed in the CCR2 inhibitor-treated group could 
indicate a compensatory mechanism to ameliorate virus induced 
pathology (Figures 8E–L). The combined decrease in CX3CR1, 
increase in P2RY12, and reduction in TREM2 suggests that CCR2 
inhibition attenuates neuroinflammation by modulating microglial 
gene expression. 
4 Discussion 

In this report, we demonstrate that ZIKV infection induces 
neuroinflammation in the adult brain, characterized by microglial 
activation and monocyte cell infiltration. A recent study found 
that immunocompromised mice with intracerebral ZIKV 
infection show activated microglia and altered transcriptomic 
profiles in the cerebral cortex (30). However, this study is 
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limited due to the unnatural mode of infection as well as the 
deficiency of host immunity. Using a model combining transient 
IFNAR blockade with footpad ZIKV infection, our study better 
mimics natural infection and pathogenesis in adults. Unlike 
intracerebral injection or immunodeficient models, this 
approach did not result in mouse mortality, suggesting less 
aggressive neuroinvasion. Despite low viral burden in the brain 
parenchyma, we observed infiltrating monocytes and activated 
microglia, as seen through altered microglial morphology, 
increased microglial cell counts, and elevated expression of 
microglial inflammatory genes in ZIKV-infected brains one-
week post-infection. Additionally, some microglia in CX3CR1
GFP mice did not express sall1, suggesting microglial activation as 
sall1 downregulation is associated with this process (35). 
Understanding these key factors driving brain pathology is 
crucial for developing therapeutic strategies for ZIKV-associated 
neurological deficits. 
FIGURE 7 

BMDMs infected by ZIKV and lead to the release of inflammatory cytokines (A, B) RT-qPCR for ZIKV RNA, and IL-1b mRNA. (C) ELISA for IL1B secretion. 
(D) Mouse 32 Plex Luminex assay was run by the UVA Flow Cytometry Core Facility. Data represents the mean ± SD ∗p < 0.0332,  ∗∗p < 0.0021, and 
∗∗∗p < 0.0002,  ∗∗∗∗p < 0.0001. The experiment was independently repeated twice with similar results; representative data are shown. 
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Our studies show elevated IL1b and TNFa gene expression up 
to day 7, likely driven by ZIKV infection and apoptosis in brain 
tissue. In vitro studies on ZIKV-infected mouse BMDMs revealed 
increased IL1b, linked to inflammatory cell death (6). Notably, 
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neuroinflammation was observed on day 4, even in the absence of 
ZIKV RNA. Interestingly, the RNA sensor RIG-I was upregulated 
on days 4 and 7 (Figure 2), suggesting persistent immune activation. 
Although viral RNA was undetectable in the brain at later 
FIGURE 8 

Monocyte inhibition ameliorates ZIKV neuroinflammation. (A) C57BL/6 mice were injected with ZIKV then CCR2 inhibitor at 1 hpi and 24hpi before 
harvesting at 2 dpi. (B) FACs of total immune cell and microglia. (C) FACs quantification of cell counts and microglia (D). (E–L) RT-qPCR of half brain regions 
for IL1B, IL6, CH25H, CD86, CX3CR1, P2RY12, TREM2 and APOE. N=3-5. Data represents the mean ± SD ∗p < 0.0332, ∗∗p < 0.0021, and ∗∗∗p < 0.0002. 
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t imepoints,  spleen  analysis  may  clarify  the  sustained  
neuroinflammation observed at day 28. As demonstrated in 
studies of SARS-CoV and TBEV (45, 46), peripheral infection, 
such as in the spleen, could indirectly drive neuroinflammation. 
Further investigation with more sensitive assays will clarify whether 
residual viral RNA or peripheral immune signals drive 
inflammatory response in the brain, along with luminex or ELISA 
studies in brain tissue to validate our findings. 

Bulk sequencing revealed upregulation of apoptosis, chronic 
inflammation, and mononuclear cell infiltration in the 
hippocampus (Figure 5), a key region involved in memory 
formation (47). If brain inflammation is not treated ongoing 
inflammation can lead to encephalitis associated with a mortality 
rate of 5.6–5.8% and altered mental status (48). Prolonged 
inflammatory activation was seen in our mouse model, along with 
microglial activation being upregulated during chronic infection. 
ZIKV has been linked to cognitive deficits and altered mental status 
in humans; this underlying pathology may, in part, stem from 
neuroinflammation. The sustained increase in IFN-related genes in 
our sequencing data suggests that our transient blockade of IFN 
signaling is indeed temporary, supporting its critical role in viral 
response. The upregulation of CH25H gene, involved in cholesterol 
synthesis, was observed in ZIKV-infected brain. Additionally, lipid 
deposits were observed in the brain following ZIKV infection. These 
findings suggest the need for future investigations into lipid 
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accumulation in ZIKV-associated cognitive dysfunction, given the 
role of lipids in Alzheimer’s disease progression (49). 

Notably, monocyte recruitment was increased during ZIKV 
infection, and appeared to drive inflammatory responses in the 
brain (25). Blocking monocyte infiltration reduced the expression of 
microglial activation genes. This is consistent with findings from 
other neurotropic viruses that infiltrating monocytes play a role in 
exacerbating neuroinflammation and activating microglia (25, 50). 
Notably, inflammation and cell death occurred even when viral 
RNA was undetectable, implicating blood–brain barrier (BBB) 
disruption. Reduced astrocyte numbers and downregulation of 
ECM-related genes in the hippocampus suggest BBB compromise 
at 28 dpi, potentially facilitating monocyte entry. Future studies 
using BBB permeability assays are necessary to confirm this. 
Monocyte infiltration, coupled with microglial expansion 
(Figure 6) and supported by inhibitor studies (Figure 8), 
implicates monocytes as key drivers of neuroinflammation. Cells 
co-stained for sall1 and CCR2-EGFP (Figure 6D, arrow) may 
indicate monocyte-to-microglia transition, though further 
validation is needed. Prolonged CCR2 inhibition studies could 
help define its role in sustaining inflammation and microglial 
activation during chronic ZIKV infection. 

In conclusion, ZIKV infection in immunocompetent adult mice 
resulted in brain inflammation, marked by monocyte infiltration 
and microglia activation. These microglia are likely activated by 
 FIGURE 9

Infiltrating monocytes heighten brain neuroinflammation by activating microglia following ZIKV. Monocytes infiltrate brain parenchyma after zika 
virus infection in the immunocompetent adult brain. Microglia become activated following zika virus infection and inflammation persists up to D28. 
The inhibition of monocytes reduces neuroinflammation in the immunocompetent adult brain. 
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infiltrating monocytes during infection, with brain pathology 
persisting 28 days post-infection (Figure 9). Our findings advance 
the understanding of ZIKV-driven CNS inflammation and its 
potential long-term neurological impact. 
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SUPPLEMENTARY FIGURE 1 

Inflammation seen in hippocampus following ZIKV infection. (A, B) IL6 and 
TNFa RNA detection via RT-qPCR in brain regions. (C) TUNEL assay for D7 and 
D28 for hippocampus and cortex. UI, uninfected; BrS, brain Stem; CX, cortex; 
CB, cerebellum; H, hippocampus. Data represents the mean ± SD 
∗p < 0.0332, ∗∗p < 0.0021. 

SUPPLEMENTARY FIGURE 2 

Lipid detection observed at 7dpi. (A) Oil red staining of brain tissue with 
quantification (B). Data represents the mean ± SD ∗p < 0.0332. 

SUPPLEMENTARY FIGURE 3 

Bulk sequencing reveals diverse transcriptomic profile with chronic effects. 
(A): Left Venn diagram depicts the counts of upregulated genes in D4 and 
D28 compared to UI that have a p value < 0.05 and a log2foldchange >0. 
Right Venn diagram shows downregulated genes in D4 and D28 compared to 
UI that have a p value < 0.05 and a log2foldchange < 0. (B, C) Top 10 genes 
found to be upregulated/downregulated in both D4 and D28 groups, with a p 
value < 0.05. (n=3). (D) Gene expression differences comparing D4 to UI 
visualizing the top most downregulated genes in the D4 group. (E) Gene 
expression differences comparing D28 to UI visualizing the top most 
downregulated genes in the D28 group. 

SUPPLEMENTARY FIGURE 4 

Gating strategy for CCR2-creER-R26R EGFP (Ai6) mice for brain (A) and bone 
marrow (B). 
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