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New insights on potency assays
from recent advances and
discoveries in CAR T-cell therapy
Lipei Shao, Yanyan Zheng, Robert P. Somerville,
David F. Stroncek* and Ping Jin*

Center for Cellular Engineering, Clinical Center, National Institutes of Health, Bethesda,
MD, United States
This review explores recent advances in the characteristics and manufacturing of

CAR T-cell products. Traditional potency assays have been designed based on

well-established CAR T-cell functionalities. However, the advent of innovative

tools and methodologies has revealed a broader spectrum of important CAR T-

cell characteristics that correlate with function. Furthermore, as manufacturing

strategies continue to evolve, conventional potency assays may no longer fully

capture the complexity of these products. Therefore, it is essential to examine

these emerging characteristics and manufacturing approaches and consider the

development of tai lored potency assays to ensure products are

fully characterized.
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1 Introduction

Chimeric antigen receptor (CAR) T-cells demonstrate promising clinical outcomes (1–

7), as the indications for the use of these therapies are growing there is a need to develop

appropriate and robust potency assays that can accurately assess their therapeutic potential.

Potency assays are generally designed to measure the biological activities of CAR T-cells

based on their mechanism of action (MoA) (8, 9). The MoA of CAR T-cells is a

multifaceted process that underlies their therapeutic effects on target cells. CAR T-cells

are designed to express chimeric antigen receptors that specifically recognize and bind to

antigens on the surface of target cells (1–4, 10–14). Upon antigen recognition, CAR T-cells

become activated, initiating a cascade of cellular responses that ultimately lead to the

destruction of target cells (15). Beyond their immediate cytotoxic functions, their viability

and in vivo expansion and persistence are critical for sustained therapeutic effect (15–17).

Understanding the key components of MoA is essential for developing potency assays

that accurately reflect the functional capabilities of CAR T-cells and ideally, these will

correlate with clinical outcomes. The potency of the FDA-approved CAR T-cell products is

primarily assessed by measuring the release of IFN-g in response to target cells, along with
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other factors, such as cell viability, and product-specific attributes,

such as the expression of the specific target CAR (8, 9).

Over the past decade, advances in CAR T-cell research have led

to the identification of new cellular characteristics associated with

clinical responses and innovative manufacturing procedures have

been developed to enhance these characteristics, driven by emerging

tools and methodologies. These advances raise concerns that

conventional potency assays may not fully capture the complexity

of manufactured products. Given these developments, it is crucial to

comprehensively review recent progress in the design and

production of CAR T-cells and explore the need for tailored

potency assays that fully define manufactured products.
2 Advances in CAR T-cell product
profiling

Evaluating CAR T-cell potency requires a comprehensive

matrix of assays that fully profile the key activities and

characteristics of the cells (Figure 1). Over the past decade,

advanced multi-omics approaches, including genomics,

epigenomics, transcriptomics, proteomics, and metabolomics at

both bulk and single-cell resolution, have significantly enhanced

our understanding of CAR T-cell function at the molecular level

(Table 1). In this section, we review these advancements and

highlight key insights that may guide the development of next-

generation potency assays (Figure 2).
2.1 Genomic profiles in CAR T-cell
products

In recent years, the genomic profiling of CAR T-cell products has

primarily focused on vector copy number (VCN) (9, 18, 19), and vector

integration sites (8, 20, 21). Additionally, immunogenomic analyses,

such as bulk and single-cell T cell receptor (TCR) sequencing (TCR-

seq), have been applied to assess the TCR repertoire in CAR T-cells

(22–25). For FDA-approved CAR T-cell products, VCN quantification

is a mandatory component of lot-release testing, with droplet digital

PCR (ddPCR) being widely used as a routine safety assay to measure

VCN in most quality control (QC) laboratories (8, 9). Here, we focus

on recent advancements in vector integration and TCR

repertoire profiling.

On November 28, 2023, the U.S. FDA announced an

investigation into cases of secondary malignancies in patients who

received CAR T-cell therapy (20). The potential risk for secondary

malignancies caused by insertional mutagenesis has long been a

concern in CAR T-cell therapy, as viral vector transduction is

required for CAR expression. However, the exact nature and

frequency of genotoxicity risk associated with retroviral or

lentiviral insertion remains unclear and deserves thorough

investigation and transparency. Recent large-cohort follow-up

studies report the incidence of secondary malignancies after CAR

infusion ranging from 2-16% (26–31). Insertional mutagenesis

occurs when viral vector integrates into a gene associated with
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cancer development, inadvertently activating an oncogene or

inactivating a tumor suppressor gene and potentially leading to

oncogenesis. Beyond this risk, vector integration has, in certain

circumstances, been associated with a selective growth advantage,

resulting in clonal CAR T-cell expansion, dominance, and

persistence (32–34).

Research by Carl June’s team revealed that the integration

events at the TET2 gene enhanced CAR T-cell potency (32).

Similarly, an NCI research group identified clonal expansion of

CAR T-cells harboring lentivector integration in the CBL gene

following CAR T-cell therapy (33). Christopher et al. demonstrated

that both the number and genomic loci of integration events

correlate with clinical outcome in CD19 CAR T-cell products

(35). Their study found that genes with integration sites enriched

in responders were commonly involved in cell-signaling and

chromatin modification pathways, suggesting that insertional

mutagenesis in these genes promoted therapeutic T-cell

proliferation. However, the consequences of viral vector

integration into these reported genes have not been consistently

reproducible (32). A study on the clonal dynamics of CAR T-cells

over time found that not all T-cells with TET2 integration exhibit

expansion, either during CAR T-cell production or after infusion

(34). These findings underscore the importance of monitoring

vector integration sites with potency assays in order to address

safety and efficacy concerns. Our team and other research groups

have developed robust pipelines for detecting viral insertion events

(21, 36–40). The Bushman lab initially applied the Illumina

sequencing method to investigate viral integration events in

cellular products and developed the INSPIIRED pipeline (36),

which enables measurement of integration events at bulk-cell

resolution. Furthermore, Wenliang Wang and colleagues

developed the EpiVIA pipeline, which enables detection of

integration sites at the single-cell level (39). These advancements

have significantly improved the feasibility of detecting integration

events and facilitate their incorporation into mechanistic and safety

evaluations. However, in contrast to vector copy number (VCN),

which has a defined regulatory cutoff, integration site analysis

currently lacks standardized criteria for determining which

insertion events are definitively oncogenic and should be excluded

from infusion products. Even in the case of well-characterized

oncogenes such as TP53, additional mutations are often required

to drive malignant transformation, as demonstrated by Perica et al.

(41). As such, integration site analysis is presently better suited for

informational purposes rather than serving as a standalone lot-

release assay.

Another critical genomic feature is the TCR repertoire, which has

been increasingly recognized as a crucial factor influencing the

treatment efficacy in immunotherapies (42–45). While CAR T-cell

therapy primarily relies on the target CAR expression, endogenous

TCR diversity, characterized by oligoclonality and polyclonality, within

the infusion products may also contribute to treatment outcomes.

Recent studies have characterized the kinetic profiling of different TCR

clonotypes throughout the CAR T-cell treatment process (25, 46, 47),

demonstrating the cytotoxic and proliferative features of highly

expanded CAR T-cell clonotypes in patients. Paired single-cell RNA
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analysis and TCR repertoire profiling allow for the identification of

individual CAR T-cells with distinct transcriptional phenotypes (48,

49), enabling the use of TCR clonotypes as surrogate for the expansion

and persistence of functional T-cell states. Qing et al. applied this paired

single-cell approach to 24 infusion products and found products

associated with poor clinical responses exhibited moderately reduced

TCR clonotypic diversity and showed exhaustion signatures (50).

gd T-cells present another potentially advantageous subset in

the infusion products. While the majority of CAR T-cell infusion

products consist of ab T-cells, gd CAR T-cells have demonstrated

resistance to exhaustion, exhibiting lower levels of TIM3 and PD1

expression following activation (51, 52). A longitudinal analysis of

CD19 CAR T-cell therapy in a chronic lymphocytic leukemia

patient who achieved a durable complete response revealed the

expansion of a gd CAR T-cell population, accounting for up to 33%

of all CAR+ cells three months post-infusion (47). Our previous

work also suggests that gd T cell in CAR T-cell products may

enhance cytotoxicity and be associated with favorable clinical

responses (53). Collectively, these findings highlight the

importance of TCR repertoire assessment in determining the

potency of CAR T-cell infusion products.
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2.2 Epigenomic profiles in CAR T-cell
products

Preclinical and clinical trial data highlight the critical role of

CAR T-cell differentiation states in determining therapeutic efficacy

(54–56). CAR T-cell differentiation states refer to the developmental

stages that T cells progress through, such as naïve, stem-cell like

memory, central memory, effector memory, and terminally

differentiated effector cells (57). These states are characterized by

distinct gene expression profiles, functional properties, and

persistence potential (58). T-cell differentiation is epigenetically

programmed and maintained in progeny cells through chromatin

states and DNA methylation (59). Insights from epigenomics

studies have expanded our understanding of factors influencing

CAR T-cell potential beyond transcriptomic profiling alone (60–

70). Carlos et al. analyzed DNA methylation profiles in 114 CD19

CAR T-cell products and identified 18 distinct epigenetic loci

associated with complete response (CR), event-free survival (EFS),

and overall survival (OS) post-infusion. Using these CR-associated

sites, they developed and validated an epigenetic signature, termed

the EPICART signature, across different cohorts, demonstrating its
FIGURE 1

Current potency assays for CAR T-cell products. Key functional assays used to evaluate CAR T-cell potency, categorized into three main
aspects.Upper panel (left): Evaluation of immediate effector function, by measuring cytotoxicity, cytokine release (e.g., IFN-g, TNF-a, IL-2), and
degranulation (e.g., LAMP1 expression). Upper panel (right): Evaluation of viability and expansion by assessing cell proliferation and viability. Bottom
panel: Evaluation of persistence by analyzing CAR T-cell phenotypes, performing in vivo tracking, and assessing CAR transgene expression at pre-
infusion and post-infusion.
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potential as a predictor of CAR T-cell efficacy (62). Caitlin and

colleagues performed a longitudinal DNA methylation assessment

of CD8+ CD19 CAR T-cells from patients with B-cell acute

lymphoblastic leukemia (B-ALL), revealing DNA methylation

programs linked to a decline in CD19 CAR T-cell memory

potential and the establishment of an exhaustion trajectory (63).

These findings that have also been reported by others (64–66).

Epigenetic modulation has also been explored as a method to

enhance CAR T-cell functionality. Yao et al. found CAR T-cells

treated with low-dose decitabine (DAC, a de novo DNA

methylation inhibitor) maintained higher memory-associated and

lower exhaustion-associated gene expression profiles (64). Brooke

and colleagues found that deleting de novo DNA methyltransferase

3 alpha (DNMT3A) in CAR T-cells prevented exhaustion and

enhanced antitumor activity (65).

Beyond DNA methylation, histone modifications have been

implicated in CAR T-cell function. Research has identified distinct

histone markers that distinguish CD8+ T-cell subsets within CAR

T-cell products (61). In preclinical investigations, Michel Sadelain’s

group demonstrated that disrupting SUV39H1-mediated H3K9

methylation enhances the functional persistence of CD28-based

CAR T-cells (67). Similarly, Mackall and colleagues restored

functionality in exhausted CAR T-cells through epigenetic

remodeling (68). Collectively, these findings underscore the
Frontiers in Immunology 04
importance of epigenomic profiling in understanding and

optimizing CAR T-cell functionality. Beyond assessing product

characteristics, epigenomic insights could inform potency assay

development, guiding strategies to refine CAR T-cell

manufacturing and enhance therapeutic efficacy. In the future,

QC laboratories should consider implementing sequencing-based

DNA methylation panels as potency assays, provided they can be

robustly correlated with functional outputs. Alternatively, a single

PCR-based assay targeting key epigenetic loci, such as those from

the EPICART signature (62), could offer a more cost-effective and

accessible option for routine potency testing.
2.3 Transcriptomics profiles in CAR T-cell
products

Transcriptomics is a widely applied tool for analyzing gene

expression (71–73), including in CAR T-cell products (5, 74–77).

Both bulk and single-cell RNA sequencing (scRNA-seq) have

emerged as powerful techniques for deciphering the molecular

mechanisms governing CAR T-cell functionality, persistence,

dysfunction, and therapeutic efficacy (50, 54, 78–82). To date,

findings from transcriptomic profiling can be summarized into

several key aspects.
TABLE 1 Representative multi-omics profiling approaches applied in the CAR T-cell products.

Type Method Purpose

Genomics Stage DNA-seq Vector integration sites detection (21, 36–40)

Bulk TCR-seq T-cell receptor repertoire/diversity/clonality (24, 25, 42–50)

Single-cell DNA-seq Check the vector integration sites at single-cell resolution (39)

Epigenomics ATAC-seq Characterization of chromatin accessibility across whole genome (94, 95)

scATAC-seq Characterization of chromatin accessibility across whole genome at single-cell level (70, 94)

ChIP-seq Identification of specific transcriptional factor binding sites across whole genome

DNase-seq Identification of regulatory regions of the genome

Methyl-seq Check the DNA methylation condition across whole genome (59, 62, 63)

Transcriptomics Bulk RNA-seq Analyzing the expression of transcripts across bulk cells (5, 75, 76, 78, 94, 95)

Single-cell RNA-seq Measuring the expression of transcripts in individual cells (22, 50, 78, 81, 82, 85, 94, 95, 101)

Single-cell V(D)J RNA-seq Simultaneously analyzing gene expression and TCR repertoire (24, 48–50)

Proteomics CyTOF Simultaneously measuring multiple protein markers (102, 108, 111)

IMC/MIBI-TOF Enable highly multiplexed spatial imaging of cells

Mass Cytometry Analyzing co-regulation and crosstalk between cellular programs (105, 106, 109)

Metabolomics Seahorse XF Analyzer Measuring real-time cellular metabolism (mitochondrial respiration and glycolysis) (75, 94, 95, 114,
116, 124)

LC-MS/MS Identification and quantification of metabolites, proteins, and lipids in the supernatant (110, 114)

Met-Flow Analyze single-cell metabolism by combining flow cytometry with metabolic probes
ATAC-seq, Assay for Transposase Accessible Chromatin using Sequencing.
CYTOF, Cytometry by Time-of-Flight.
MIBI-TOF, Multiplexed lon Beam Imaging by Time-of-Flight.
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2.3.1 Distinct expression patterns correlate with
clinical outcomes

Studies have reported that CD19 CAR T-cells from complete

responders are enriched in memory-related gene signatures,

including IL-6/STAT3 signatures, whereas CAR T-cells from non-
Frontiers in Immunology 05
responders exhibit upregulated programs associated with effector

differentiation, exhaustion and apoptosis (50, 82–84), which

correlates with FACS data concerning CAR-T subsets. Additionally,

CD19 CAR T-cells from CR patients demonstrate significantly higher

expression of genes involved in glycolysis (82, 85). Preclinical studies
FIGURE 2

Advances in CAR T-cell analysis. Upper panel. Overview of CAR T-cell product manufacturing, from apheresis collection to infusion of the final CAR
T-cell product. Middle panel. Characterization of CAR T-cell profiles at multiple molecular levels, including genomics (vector copy number,
integration events, TCR repertoire), epigenomics (DNA methylation, histone modifications, chromatin accessibility), transcriptomics (expression
patterns, transcriptional regulation, T-cell subsets), proteomics (protein expression, T-cell differentiation states), and metabolomics (energy
metabolism, metabolic enzymes, intermediates). Bottom panel. Potency assay considerations, including customized panel-based assays (e.g.,
cytokine profiling, T-cell activation), next-generation sequencing-based approaches (e.g., single-cell RNA-seq, ATAC-seq, TCR-seq), and metabolic
assessment methods (e.g., glycolytic activity, mitochondrial fitness).
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further suggest that increased glycolytic activity in CAR T-cells is

linked to enhanced potency, which may contribute to favorable

efficacy (86, 87).

2.3.2 Key transcriptional factors and regulons are
associated with CAR T-cell function

Transcription factors (TFs) serve as master regulators of T-cell

differentiation, expansion, fitness, and anti-tumor activity (88–90).

Transcriptomic studies have identified several key TFs and associated

regulons that play crucial roles in shaping CAR T-cell functionality (54,

91–96). One of the most well-characterized TFs in CAR T-cell biology

is TCF7 and its regulatory network, the TCF7 regulon, which serves as a

master regulator of T-cell memory. High TCF7 expression has been

linked to enhanced persistence and long-term efficacy in CAR T-cell

therapy by maintaining a less-differentiated, stem-like phenotype

associated with sustained antitumor activity (54, 93, 97). Another

critical transcriptional network is FOXO1 and its regulon (94, 95),

which has been identified as a key enhancer of CAR T-cell function

that boosts stemness, metabolic fitness, and antitumor activity.

Additionally, AP-1 family members play a significant role in

modulating CAR T-cell exhaustion (98–100). BATF and IRF4

cooperate to counter exhaustion in CAR T-cells (98), while c-Jun

overexpression has been shown to induce resistance to exhaustion,

thereby improving CAR T-cell functionality (99).

2.3.3 Subsets of CAR T-cell populations are
associated with clinical outcomes and long-term
event-free survival

The advancement of single-cell RNA sequencing (scRNA-seq)

has significantly enhanced our ability to uncovered previously

unappreciated T-cell subsets in CAR T-cell infusion products,

enabling the identification of minor yet functionally distinct CAR

T-cell populations associated with clinical efficacy, highlighting

their potential as biomarkers for potency assessment (22, 78, 81,

85). Less differentiated populations of CD8⁺ CAR T-cells, such as

those with stem-like memory T-cell (Tscm) and central memory T-

cell (Tcm) phenotypes, are associated with superior expansion,

sustained tumor clearance, and prolonged EFS (50, 82, 101).

Emerging evidence suggests that a subset of cytotoxic CD4⁺ T cells

in both infusion products and post-infusion samples, characterized by

high expression of cytotoxic markers (PRF1, GZMK, GZMB, NKG7,

and GNLY), correlates with clinical response (47, 50, 82, 102). Deng

et al. found this subtype to be enriched in products with partial

response (PR) and progressive disease (PD) (50). Maus’s team also

reported CD4+NKG7+ cells were more prominent in non-responders

(82). Moreover, Melenhorst and colleagues observed that in two

patients who experienced decade-long remissions, cytotoxic CD4+ T-

cells dominated the persistent population 5 to 10 years post-infusion

(47). Regulatory T-cells (Tregs), expressing FOXP3, IKZF2, and

CTLA4, have been observed in commercial CAR T-cell products

and are suspected to contribute to CAR T-cell therapeutic resistance

(82, 85, 102). Studies by Nicholas and colleagues and Good and

colleagues found CAR-Treg cells were more frequent in non-

responders and may contribute to relapse in vivo (82, 102). Bai and

colleagues studied CD19 CAR T-cell infusion products from 82
Frontiers in Immunology 06
pediatric patients with B-ALL using scRNA-seq and CITE-seq. They

found that Th2 function deficiency was associated with CD19-positive

relapse, whereas Th2 functionality correlated with ultra-long-term

event-free survival (EFS > 96 months) (79, 101, 103). A unique

subset of CD8+ CAR T-cells termed CD8-fit T-cells, characterized by

enhanced migration capacity, serial killing ability, and balanced

mitochondrial and lysosomal volumes, has been identified (104).

Infusion products with a higher proportion of CD8-fit T-cells

correlated with favorable outcomes and long-term persistence in

patients (104). Developing strategies to enrich CAR T-cell products

with CD8-fit T-cells may significantly enhance clinical efficacy.

Additionally, a double-negative T-cell phenotype was recently

reported as a unique subset in infusion products that is associate

with long-lived CAR T-cells (47, 78). Collectively, there is a need to

develop manufacturing processes that select for desired CAR T-cell

phenotypes and to establish potency assays that characterize gene

expression patterns associated with positive clinical outcomes. These

assays should be designed to provide actionable results in a timely

manner, ensuring they effectively capture the unique characteristics of

CAR T-cells and their therapeutic potential.
2.4 Proteomics profiles in CAR T-cell
products

Advancements in proteomics profiling of CAR T-cell products

have been driven primarily by mass cytometry, enabling the

simultaneous characterization of intracellular signaling, activation,

proliferation, cytokine production, and phenotype within a single

assay (81, 105–111). Several studies have focused on deciphering

CAR T-cell mechanisms of action using mass cytometry.

Goldberg and colleagues developed an integrative mass

cytometry panel to analyze trafficking and functional protein

expression in CD19 CAR T-cells (109), identifying upregulation

of activation markers (CD27, GZMB, CD69 and CD25),

proliferation marker (Ki-67), and glycolysis markers (Glut1, and

LDHA) in infusion products compared to baseline leukapheresis T-

cells (81, 109). Salter and colleagues used mass spectrometry (MS)-

based proteomics to reveal CAR T-cell activation pathways,

including MAPKs (110). Hegde et al. using cytometry by time-of-

flight (CyTOF) in HER-2 CAR T-cells, found lower frequencies of

CD8+ T cells expressing PD-1+TIM-3+, PD-1+LAG-3+ or PD-

1+CD39+ in patients achieving CR, while higher and more

variable levels were observed in those with SD and PD (108).

Additionally, single-cell CyTOF analysis of day 7 circulating CAR

T-cells in axi-cel-treated (a commercial CAR T-cell product)

patients with large B-cell lymphoma identified three metaclusters

associated with long-term clinical response (102).
2.5 Metabolomics profiles in CAR T-cell
products

Unlike previous omics approaches, metabolomics focuses on

cellular metabolism, including energy metabolism (glycolysis,
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oxidative phosphorylation, fatty acid oxidation, etc.), mitochondrial

metabolism (biogenesis, fitness, ROS production, etc.), and the

analysis of other metabolites. Recently, increasing attention has

been given to metabolomics profiling of CAR T-cell products,

which has provided crucial insights into how metabolic fitness

influences persistence, cytotoxicity, and how this correlates

with overall therapeutic efficacy (80, 86, 112–115). Oxidative

phosphorylation (OXPHOS) is the predominant metabolic

program in memory T-cells, while aerobic glycolysis characterizes

effector T-cells (116, 117). Kawalekar and colleagues demonstrated

that CAR T-cells with a CD28z costimulatory domain primarily rely

on aerobic glycolysis, whereas those with BBz preferentially utilize

fatty acid oxidation (FAO), contributing to their enhanced

persistence and central memory differentiation (118). Additionally,

Cappabianca and colleagues found that metabolic priming by

reducing aerobic glycolysis and increasing bound NAD(P)H

activity was associated with lower cytokine production, including

IFN-g, IL-2, IL-17, and TGF-b, while promoting central memory CAR

T-cell expansion and persistence in GD2 CAR T-cells (119).

As for the metabolites, Paul Renauer and colleagues identified

ADA and PDK1 as key metabolic regulators that enhance CAR19 T-

cell cytolysis against leukemia cells (120). ADA (adenosine

deaminase) catalyzes the conversion of adenosine to inosine

within the purine metabolism pathway, and inosine has been

reported to induce stemness features in CAR T-cells, enhancing

their potency (121). Additionally, Ye and colleagues screened 27

differentially abundant metabolites in CD22 CAR T-cells with

varying efficacy, identifying proline metabolism as the most

significant contributor to CAR T-cell function (112). These

findings suggest that detecting inosine or other metabolites in

CAR T-cell supernatants could serve as a novel potency assay.

Mitochondrial properties have also been investigated in CAR T-

cell products beyond energy metabolism. CAR T-cells from patients

with a complete response exhibited increased mitochondrial biomass

and volume compared to non-responders, correlating positively with

expansion and persistence (104, 122). This enhanced persistence may

be attributed to reserved bioenergetic potential, also known as spare

respiratory capacity (SRC), which enables CAR T-cells to meet

metabolic demand upon activation (112, 123). Additionally,

mitochondrial quantities, ATP content, and the NADH/NAD ratio

were found to be higher in Tscm, which are associated with superior

efficacy compared to effector memory (Tem) and central memory

(Tcm) T-cells (124). Overall, glycolysis, OXPHOS activity,

metabolites in supernatant and mitochondrial indices could serve

as potential markers for potency assay development.
2.6 Insights on developing potency assays

As CAR T-cell therapies advance, potency assays must evolve to

accurately assess the complex characteristics of these cellular

products. Insights from multi- omics approaches emphasize the

need for more refined potency assays that effectively capture CAR

T-cells efficacy and functionality (Figure 2). While further

mechanistic studies are required to establish correlations between
Frontiers in Immunology 07
specific certain characteristics with a functional output, such as

epigenomic profiles to IFN-g secretion or cytotoxicity, it remains

valuable to broadly explore CAR T-cell characteristics for their

potential for potency assay development. Some of these

characteristics require several days to complete which may

prevent them from being used for potency assessment at this

time. However, the field is progressing rapidly and if a specific

profile is found to be useful for assessing CAR T-cell potency,

alternative platforms that allow for more rapid testing will likely be

developed. Here, we summarize key considerations for optimizing

potency assays based on recent advancements.

2.6.1 Adoption of customized panels in potency
assay development

The implementation of customized panels for assessing key

functional attributes, including gene expression (CAR T-cell

stemness panel, CAR T-cell exhaustion panel, CAR T-cell

persistence panel, etc.), DNA methylation [EPICART signature

(62)], cytokine secretion (cytotoxic cytokines, Th2-skewed

cytokines), surface marker expression (activation panel,

exhaustion panel, stemness panel, etc.), and metabolite profiling,

offers a promising approach for potency evaluation. Platforms like

NanoString nCounter provide a rapid and robust solution for gene

expression analysis using predefined panels. For cytokine detection,

commercial panels from Bio-Rad, ProteinSimple, and MSD (Meso

Scale Discovery) offer efficient and time-saving options.

Additionally, surface marker detection has become more

streamlined with high-throughput technologies such as flow

cytometry, CyTOF, and Cytek platforms. Metabolite analysis can

be performed using both targeted and untargeted panels available

from providers like Metabolon Inc.

2.6.2 Routine genomic CAR T-cell evaluation
NGS-based methods provide a powerful approach to evaluating

CAR T-cells, enabling comprehensive analysis from vector

integration sites to TCR repertoire, as well as from bulk and

single-cell gene expression to chromatin accessibility. Integrating

vector integration sites (Targeted DNA-seq) and TCR repertoire

profiling (bulk TCR-seq and scTCR-seq) with gene expression data

(RNA-seq, scRNA-seq, CITE-seq, etc.) allows for tracking clonal

expansion and composition in CAR T-cells. Additionally, assessing

histone modifications (ChIP-seq, CUT&Run-seq, etc.) and

chromatin accessibility (ATAC-seq, DNase-seq, scATAC-seq, etc.)

could be incorporated into QC pipelines to provide additional

potency metrics. However, given the time-consuming nature of

these methods, they may not be suitable for use as a “Lot-releasing

assay”. However, the data could be used to engineer new

manufacturing processes to enhance the desired characteristics

identified by these assays.

2.6.3 Routine monitoring of CAR T-cell
metabolism

Metabolic fitness plays a critical role in CAR T-cell persistence

and function, highlighting the need to integrate metabolic

assessments into potency assays. Developing assays that evaluate
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glycolysis and OXPHOS activity in CAR T-cells, particularly before

and after antigen stimulation in vitro, should be considered. The

Seahorse XF Analyzer from Agilent provides a robust and efficient

platform for real-time monitoring of these metabolic activities,

offering insights into energy metabolism, mitochondrial function,

and overall, CAR T-cell fitness. Routine metabolic monitoring

could enhance CAR T-cell product characterization and

contribute to guiding the development manufacturing of

processes that produce products with the desired phenotypes.
3 Consideration in potency assays for
unconventional CAR T-cells

Real-world experiences with CAR T-cell therapies have

highlighted the limitations of conventional manufacturing

processes, which are often low-throughput, resource-intensive, and

time-consuming (125–127). Traditionally, following apheresis, cells

undergo activation, ex vivo modification, expansion, and rigorous

quality control testing before infusion. Aiming to overcome these

manufacturing challenges, in recent years, several unconventional

manufacturing procedures have emerged, including non-viral CAR

T-cell generation (128–131), in vivo CAR T-cell manufacturing (132–

137), and rapid manufacturing protocols (138, 139). While these

approaches offer advantages in efficiency, they also introduce new

complexities for potency assays. In this section, we summarize recent

advancements in CAR T-cell manufacturing and discuss key

considerations for evaluating the potency of these unconventional

CAR T-cells (Figure 3).
3.1 Non-viral CAR T-cells

The emergence of non-viral gene delivery methods (e.g.,

transposon systems, CRISPR-mediated knock-in) has provided

alternative strategies for generating CAR T-cells without the need

for viral vectors (140–142). These methods generally exhibit lower

transduction efficiency than viral vector methods due to reduced

knock-in rates, leading to a smaller proportion of CAR-expressing

cells (140). In transposon-based systems (Sleeping beauty and

PiggyBac), VCN varies widely due to uncontrolled transgene

integration, resulting in heterogenous CAR expression across

cells. Unlike viral vector-based CAR T-cells (VCN: 1–2 copies/

cell), transposon-based CAR T-cells can exhibit 0-10+ copies/cell

(18, 19, 130, 143, 144), raising concerns regarding product

consistency and regulatory compliance. Given the FDA’s

recommendation that the VCN should remain <5 copies/genome

in infusion products (8), potency assays for transposon-based CAR

T-cells must account for VCN thresholds to ensure safety and

efficacy. For CRISPR-mediated CAR knock-in, off-target genome

edits remain a significant concern, potentially affecting T-cell

function and stability. Therefore, potency assays for these CAR T-

cells should include whole-genome sequencing (WGS) (131, 145,

146) or GUIDE-seq (147, 148) to accurately identify and

characterize these off-target sites.
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3.2 In-vivo manufactured CAR T-cells

In vivo CAR T-cell generation eliminates the need for ex vivo

expansion, shifting potency assessment from traditional pre-

infusion characterization to real-time in vivo monitoring (149–

151). In this instance, the viral vector itself is the primary product,

making vector characterization an essential component of potency

assay assessment. Conventional potency assays, such as those

measuring transduction efficiency, cytotoxicity, and cytokine

secretion in vitro, are no longer applicable. Future efforts in vitro

potency analysis should focus on linking the characteristics of viral

vectors and their functional outputs.
3.3 Ultra-rapid manufactured CAR T-cells

Ultra-rapid CAR T-cell manufacturing (3 days or less) (138,

152–154) significantly shortens the ex vivo expansion phase,

introducing unique challenges for potency assessment. With some

protocols completing the process in as little as 24 hours, the limited

cell yield poses a challenge for conducting potency assays.

Additionally, it remains uncertain whether these cells achieve

sufficient CAR expression and vector copy number to be reliably

detected by flow cytometry and ddPCR. Moreover, the shortened

manufacturing time may result in a higher proportion of less-

differentiated and less cytotoxic T-cells (153, 155), potentially

biasing cytotoxicity potency assays for these CAR T-cells.
4 Summary

Ensuring the quality, consistency, and therapeutic efficacy of CAR

T-cell products requires robust potency assays. Traditional potency

assessments have been well-established for conventional CAR T-cell

products. These assays focus on key parameters such as transduction

efficiency, cytokine secretion, cytotoxicity. However, as CAR T-cell

therapies continue to evolve, the emergence of new characteristics and

manufacturing platforms necessitates a reassessment of current

potency assays to ensure they remain accurate and relevant.

A critical aspect of potency assessment is the ability to

accurately measure CAR T-cell functionality. While current in

vitro assays provide valuable insights into cytotoxic activity and

cytokine production, they may not fully capture the breadth of

relevant cellular profiles. Additional profiles, such as vector

integration events, T-cell differentiation state, and metabolic

profiles, should also be considered when evaluating CAR T-cell

potency. Advanced analytical techniques, including single-cell

transcriptomics, high-dimensional flow cytometry, and metabolic

analysis, offer more precise assessments of CAR T-cell function.

These approaches help elucidate the complex interplay between

CAR T-cell phenotype, functionality, and clinical outcomes,

forming the foundation for developing robust potency assays.

The emergence of unconventional CAR T-cell manufacturing

strategies, including non-viral gene delivery, in vivo CAR T-cell

generation, and ultra-rapid manufacturing protocols, introduces
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new considerations for potency assessments. Non-viral CAR T-cells,

while eliminating the need for viral vectors, exhibit greater variability

in vector copy number and transgene integration, requiring refined

potency assays to ensure product safety and efficacy. In vivo

generated CAR T-cells shift potency evaluation from pre-infusion

characterization to real-time in vivo monitoring, requiring novel

biomarkers and functional assays to track their expansion and

persistence post infusion. Ultra-rapid manufacturing, which

significantly shortens ex vivo expansion time, poses challenges in

achieving sufficient CAR expression and cell yield for traditional

potency assays, necessitating innovative assay adaptations.

Additionally, the development and usage of “off-the-shelf”

allogeneic CAR T-cell products (129, 156, 157) introduces unique

challenges related to donor suitability and ethical oversight. The

application of genomic assays in this context may uncover clinically

significant genomic lesions in donor cells, raising concerns about how

to manage such findings in a way that ensures donor well-being while

maintaining product quality. These evolving platforms highlight the

need for a flexible and ethically informed potency assessment

framework that can adapt to the changing landscape of CAR T-

cell therapy.

Furthermore, the regulatory landscape for CAR T-cell potency

testing continues to evolve. Regulatory agencies emphasize the

importance of comprehensive characterization to ensure safety and

efficacy while allowing for flexibility in adapting potency assays to
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emerging technologies. Establishing standardized potency criteria for

diverse profiles and various CAR T-cell platforms will be essential for

streamlining clinical translation and regulatory approval processes.

In addition to assessing the final CAR T-cell products, some

omics methods can also be applied to the starting leukapheresis

material (158). This upstream application is particularly valuable

given the growing recognition that the functional fitness of the

starting T-cell population strongly influences the quality and

potency of the final CAR T-cell product. For example, profiling

metabolic or protein expression signatures in pre-manufacture T

cells may help predict manufacturing outcomes or therapeutic

efficacy. Leveraging such assays early in the process could enable

better donor or patient stratification, identification of optimal

manufacturing candidates, and potentially guide pre-conditioning

strategies to enhance T-cell fitness. Incorporating these omics

approaches at the leukapheresis stage may therefore offer

significant advantages for improving both the consistency and

clinical performance of CAR T-cell therapies.

In conclusion, the rapid advancements in CAR T-cell therapy

demand continuous refinement of potency assays to align with

newly discovered characteristics and evolving manufacturing

technologies. A multi-faceted approach that integrates traditional

functional assays with cutting-edge analytical techniques will be

crucial for accurately assessing CAR T-cell potency. By addressing

these challenges, researchers and manufacturers can enhance the
FIGURE 3

Advances in CAR T-cell manufacturing. Upper panel. Conventional CAR T-cell manufacturing involves the collection of T-cells from patients,
activation, and viral transduction to introduce the CAR construct. The transduced CAR T-cells undergo ex vivo expansion, followed by quality
control assessment before infusion into patients. Middle panel. Unconventional CAR T-cell manufacturing includes non-viral approaches, such as
transposon-transposase systems, CRISPR knock-in, and lipid nanoparticle (LNP)-mediated delivery, as alternative strategies for CAR gene insertion.
These non-viral methods follow a similar workflow of activation, transduction, expansion, and quality control before infusion. Bottom panel (left). In
vivo CAR T-cell manufacturing eliminates the need for ex vivo manipulation by directly infusing viral vectors into the patient, allowing in vivo
transduction and CAR T-cell generation within the body. Bottom panel (right). Ultra-rapid CAR T-cell manufacturing (~24 hours) aims to accelerate
the process by minimizing ex vivo expansion steps, allowing rapid viral transduction and direct infusion into patients.
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development of next-generation CAR T-cell therapies, ultimately

improving patient outcomes in hematologic malignancies and

solid tumors.
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96. Seo H, Chen J, González-Avalos E, Samaniego-Castruita D, Das A, Wang YH,
et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors
to impose CD8(+) T cell exhaustion. Proc Natl Acad Sci U.S.A. (2019) 116:12410–5.
doi: 10.1073/pnas.1905675116

97. Jiang Z, Chu Y-Y, Lee H-H, Hung M-C, Yang L, Lin C. Abstract 33: Revitalizing
CAR-T cells for TNBC: Targeting phosphorylation of TCF7 to overcome T cell
exhaustion. Cancer Res. (2024) 84:33–3. doi: 10.1158/1538-7445.AM2024-33
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CAR T-cells Chimeric Antigen Receptor T-cells
Frontiers in Immunol
MoA Mechanism of Action
FDA Food and Drug Administration
NCI National Cancer Institute
VCN Vector Copy Number
ddPCR Droplet Digital PCR
QC Quality Control
CLL Chronic Lymphoblastic Leukemia
ALL Acute lymphoblastic Leukemia
LBCL Large B-Cell Lymphoma
CR Complete Response
PR Partial Response
SD Stable Disease
PD Progressive Disease
EFS Event-Free Survival
OS Overall Survival
RNA-seq RNA Sequencing
TCR-seq T-cell Receptor Sequencing
ogy 14
scRNA-seq Single-cell RNA-Sequencing
CITE-seq Cellular Indexing of Transcriptomes and Epitopes Sequencing
ATAC-seq Assays for Transposase-Accessible Chromatin with Sequencing
ChIP-seq Chromatin Immunoprecipitation Sequencing
DNase-seq DNase I Hypersensitive Sites Sequencing
CUT&Run-seq Cleavage Under Targets and Release Using Nuclease Sequencing
Tn Naïve T cells
Teff Effector T cells
Tscm Stem-like Memory T Cells
Tcm Central Memory T Cells
Tem Effector Memory T Cells
CyTOF Cytometry by Time of Flight
MS Mass Spectrometry
MC Mass Cytometry
OXPHOS Oxidative Phosphorylation
FAO Fatty Acid Oxidation
SRC Spare Respiratory Capacity
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