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Background: Immune checkpoint inhibitors (ICIs) have revolutionized cancer

immunotherapy, but many patients develop resistance. While the

immunosuppressive effects of ultraviolet (UV) light are well-documented, its link

to ICI resistance remains unclear.

Methods: We analyzed publicly available single-cell RNA sequencing (scRNA-

seq) datasets from ICI-treated patients to explore the relationship between UV

response (UVR) and treatment outcomes. A novel UVR gene signature (UVR.Sig)

was established using 34 scRNA-seq datasets and validated in The Cancer

Genome Atlas (TCGA) pan-cancer cohorts and 10 ICI cohorts. Key genes

(Hub-UVR.Sig) were identified via six machine learning algorithms, and breast

cancer (BRCA) subtypes were classified through consensus clustering. Biological

effects of Hub-UVR.Sig genes were confirmed in vitro.

Results: UVR.Sig was associated with ICI resistance and correlated with inhibitory

immune cell infiltration and pro-tumor pathways in pan-cancer data. The

UVR.Sig-based model achieved good predictive performance for ICI outcomes

(AUC = 0.727). In BRCA, Hub-UVR.Sig stratified patients into two subtypes, with

high Hub-UVR.Sig expression linked to stronger immune evasion and lower

immunogenicity. ENO2 and ATP6V1F were highly expressed in BRCA tissues, and

ENO2 was correlated with worse prognosis in BRCA patients. Knockdown of

ENO2 reduced cell proliferation and invasion.

Conclusion: We reveal for the first time that UVR is strongly associated with ICI

resistance. The UVR.Sig feature offers the potential to identify patients who

respond to immunotherapy and to tailor BRCA treatment strategies.
KEYWORDS

ultraviolet light, immune checkpoint inhibitor, single-cell sequencing, bulk-RNA seq,
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1 Introduction

Significant progress has been made in understanding the critical

role of immune checkpoint inhibitors (ICIs) in regulating the

activity of tumor-infiltrating T cells, leading to a revolutionary

shift in cancer immunotherapy (1, 2). Immunotherapeutic

modalities including ICIs, vaccination and passive cell transfer

have been extensively studied in the clinical setting of breast

cancer (BRCA), particularly in patients with triple negative breast

cancer (TNBC) (3). However, only a small subset of patients

benefited from immunotherapy, with the majority experiencing

either primary or acquired resistance (4–7). Therefore, identifying

appropriate biomarkers for ICI therapy sensitivity is crucial for

optimizing treatment options and improving patient outcomes.

Ultraviolet (UV) light at wavelengths ranging from 10 to 380

nm is a form of electromagnetic radiation. The process by which

cells or organisms undergo changes in their activity or state (such as

movement, secretion, enzyme production, and gene expression) in

response to UV exposure is the UV response (UVR). Although the

immunosuppressive effects of UVR have been well established,

direct evidence linking UVR to immunotherapy response remains

unavailable. Early studies have demonstrated that chronic UV

exposure modulates immune and antigenic responses, influencing

the carcinogenic process in the skin (8). This discovery spurred

further investigations into the mechanisms underlying UVR-

induced immunosuppression. Subsequent research revealed that

UV-induced DNA damage, reactive oxygen species generation,

Treg induction, and the release of immunosuppressive cytokines,

such as IL-10, are closely associated with UVR-mediated

immunosuppression (9, 10). Recent studies have suggested that

UVR promotes immunosuppression by regulating the expression of

immune checkpoints. UV exposure activates the IRF3 and NF-kB
pathways via HMGB1, leading to the upregulation of PD-L1

expression and reduction in tumor cell sensitivity to CD8+ T cell-

mediated cytotoxicity (11). Although Carlos et al. identified a UVR-

related gene signature that underscores the association between

UVR and inhibitory immune cells, including immature dendritic

cells, plasmacytoid dendritic cells, and M2 macrophages, within the

immunosuppressive microenvironment of uveal melanoma (12),

there is still a substantial gap in the literature regarding

the role of UVR-related genes in tumors and their impact on

immunotherapy outcomes.

The single-cell RNA sequencing (scRNA-Seq) technique

enables the dissection of complex interactions between tumor

cells and immune cells at the single-cell level, facilitating a better

understanding of the dynamic mechanisms underlying tumor-

immune interactions (13–16). This study combines scRNA-seq

technology with comprehensive bioinformatics analysis with the

aim of constructing a predictive model of ICI efficacy based on the

expression profiles of UVR-associated genes, laying the groundwork

for improved stratification and personalized treatment of tumor

patients. In addition, this study bridges a significant gap in our

understanding of the role of UVR-associated genes in BRCA.
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2 Methods and materials

2.1 Identification of UVR-related genes

UVR-related genes were collected from the Molecular

Signatures Database (MSigDB) (17). A search using the keyword

“UV Response” in MSigDB yielded 191 genes included in the

HALLMARK_UV_RESPONSE dataset (The complete gene list

was provided in Supplementary Table S1).
2.2 Pan-cancer transcriptomic dataset and
processing

The pan-cancer transcriptomic dataset from The Cancer

Genome Atlas (TCGA) was obtained from the UCSC Xena

platform (https://xenabrowser.net) (18) to investigate the

potential association between UVR-related genes and immune

suppression across 30 cancer types. To avoid interference from

the dominant effects of immune cells, three cancer types primarily

composed of immune cells were excluded: acute myeloid leukemia,

diffuse large B-cell lymphoma, and thymoma. Additionally, tumor

mutational burden (TMB) and microsatellite instability (MSI) data

were obtained from the cBioPortal database (19) for subsequent

analysis. Relevant clinical and pathological information for the 30

cancer types were downloaded using the R package TCGAbiolink

(20). Patients included in the analysis met the following criteria:

availability of mRNA expression and clinical data, completion of

standard diagnosis and treatment, and a survival time longer

than 30 d.
2.3 Acquisition and processing of ICI-
related datasets

To investigate the relationship between UVR-related genes and

immunotherapy, the R package GEOquery (21) was used to

download two scRNA-seq datasets with well-defined efficacy for

tumor immunotherapy from the GEO database. The Gene Set

Variation Analysis (GSVA) R package (22) was employed to

assess the enrichment scores of UVR-related genes in these

datasets and explore their association with ICI efficacy. These two

datasets were the skin cutaneous melanoma (SKCM, GSE115978)

(23) and the basal cell carcinoma (BCC, GSE123813) datasets (24).

After quality control (QC), the SKCM dataset GSE115978 included

32 patients, comprising 15 non-responders (NRs) who did not

benefit from immunotherapy, 16 treatment-naïve patients (TN)

who did not undergo immunotherapy, and 1 responder who

responded to treatment.

Ten bulk RNA-seq datasets related to ICI treatment were

systematically collected. These datasets included five SKCM

datasets [Hugo 2016 (25), Liu 2019 (26), Gide 2019 (27),Riaz

2017 (28) and Van 2015 (29)], two urothelial carcinoma (UC)
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datasets [Mariathasan 2018 (30) and Synder 2017 (31)], one GBM

dataset [Zhao 2019 (32)], one renal cell carcinoma (RCC) dataset

[Braun 2020 (33)], and one gastric cancer (GC) dataset [Kim 2018

(34)]. The Hugo 2016 SKCM dataset consisted of 27 preprocessed

tumor samples from 26 patients, while the GBM dataset included 34

preprocessed tumor samples from 17 patients. For both datasets,

one tumor sample per patient was randomly selected for analysis.
2.4 Collection of published signatures for
comparison

Six pan-cancer signatures [INFG.Sig (35), T.Cell. Infamed.Sig

(35), PDL1.Sig (36), LRRC15.CAF.Sig (37), NLRP3.Sig (38) and

cytotoxic.Sig (39)] were gathered along with four SKCM-specific

signatures [CRMA.Sig (40), IPRES.Sig (25), IMS.Sig (41) and

TRS.Sig (42)]. The codes and algorithms for these 10 signatures

were obtained from their original studies, such as single-sample

gene set enrichment analysis (ssGSEA) for NLRP3.Sig and cancer

classification for ImmuneCell.Sig.
2.5 Collection and processing of scRNA-
seq data

We collected 34 scRNA-seq datasets containing stromal or

immune cells from the TISCH database (43), comprising 345

patients and 663,760 cells across 17 cancer types. These cancer

types included BCC, BRCA, multiple myeloma (MM),

neuroendocrine tumor (NET), non-small cell lung cancer

(NSCLC), ovarian serous cystadenocarcinoma (OV), pancreatic

adenocarcinoma (PAAD), SKCM, stomach adenocarcinoma

(STAD), uveal melanoma (UVM), cholangiocarcinoma (CHOL),

colorectal cancer (CRC), GBM, head and neck cancer (HNSC), liver

hepatocellular cancer (LIHC), medulloblastoma (MB), and Merkel

cell carcinoma (MCC).

The integration and analysis of scRNA-seq data were performed

using the Seurat v4.0.6 R package (44), with doublet QC conducted

using the R package Scrublet v0.2 (45). During QC, cells with fewer

than 300 detected genes and those with mitochondrial gene reads

exceeding 20% of the total reads were excluded. Data normalization

and standardization were performed using principal component

analysis (PCA) (46), and batch effects across samples were corrected

using the Harmony R package (47).
2.6 Generation of UVR.Sig

A UVR gene signature (UVR.Sig) was generated by calculating

the enrichment scores of UVR-related genes across various scRNA-

seq datasets using the GSVA R package. Spearman’s correlation

analysis was conducted between the expression levels and

enrichment scores of UVR-related genes, marking the positively

correlated genes (Spearman r > 0.3 and p < 0.05) as Gx. The

“FindMarkers” function was used to identify differentially expressed
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genes (DEGs) in malignant tumor cells from each scRNA-seq

dataset, where genes with |logFC| ≥ 0.30 and FDR (q value) < 1e-

05 were considered upregulated DEGs in malignant tumor cells and

labeled as Gy. To obtain the upregulated tumor-specific DEGs that

were positively correlated with UVR, the intersection of Gx and Gy

was considered for each dataset to generate the gene set, Gn. Finally,

the Gn genes from all datasets were combined and deduplicated to

form the UVR.Sig.
2.7 Gene Ontology and Kyoto
Encyclopedia of Genes and Genomes
pathway enrichment analysis

GO (48) analysis is commonly used for functional enrichment

studies, encompassing biological processes (BP), cellular

component (CC), and molecular function (MF). KEGG (49) is a

widely used database that provides information on genomes,

biological pathways, diseases, and drugs. GO and KEGG

enrichment analyses were performed on the UVR.Sig using the

ClusterProfiler R package (50). The selection criteria for significant

enrichment were set to adj.p < 0.05 and FDR (q value) < 0.25, with

p-values adjusted using the Benjamini–Hochberg method.
2.8 Immune-related analysis of UVR.Sig

To further evaluate the immune relevance of UVR.Sig, the

UVR.Sig scores were first calculated across 30 cancer types from

TCGA pan-cancer transcriptome dataset using the GSVA R package.

A correlation analysis was performed between the UVR.Sig scores and

75 published immune-related genes (51), and the results were

visualized using correlation circle plots. Next, based on the

abundance of immune cells, the tumor immune microenvironment

was determined across different cancer types. Immune infiltration

analysis was conducted using Microenvironment Cell Populations

Counter (MCPcounter) (52), which calculated absolute abundance

scores for eight immune cells and two stromal cell types from the gene

expression matrix. These cells include T cells, CD8+ T cells, cytotoxic

lymphocytes, natural killer (NK) cells, B lymphocytes, monocytes,

myeloid dendritic cells, neutrophils, endothelial cells, and fibroblasts.

The results were visualized by generating a correlation heatmap using

the “MCPcounter” function from the IOBR R package (53). Finally, all

pathways were obtained from the HALLMARK gene set using the

MSigDB database, the correlation between UVR.Sig and each pathway

was calculated, and the results were visualized using a bubble plot.
2.9 Clinical efficacy evaluation

The primary clinical outcomes included objective response rate

(ORR) and overall survival (OS). For all datasets, except Hugo 2016,

the ORR was assessed using Response Evaluation Criteria in Solid

Tumors (RECIST) version 1.1 (54). The Hugo 2016 dataset utilized

immune-related RECIST to evaluate ORR. Based on their response
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status, the participants were categorized into two groups:

responders, which included patients with complete response or

partial response, and NRs, which included patients with stable or

progressive disease.
2.10 Construction of the ICI efficacy
prediction model

First, the five ICI RNA-seq datasets with the largest patient samples

were combined to form a new, large dataset (n = 772), including RCC

(n = 181), UC (n = 348), and SKCM (n = 243) datasets. The five ICI

RNA-seq datasets were Braun 2020 RCC, Mariathasan 2018 UC, Liu

2019 SKCM, Gide 2019 SKCM, and Riaz 2017 SKCM. The ComBat

method was used to eliminate batch effects among different datasets.

The merged dataset was randomly divided into two sets: a training

(80%, n = 618) and validation (20%, n = 154) set. The remaining five

ICI RNA-seq datasets were used as independent testing sets (n = 149):

Zhao 2019 GBM, Snyder 2017 UC, Van Allen 2015 SKCM, Kim 2018

GC, and Hugo 2016 SKCM datasets.

Next, the immune response prediction models were trained using

UVR.Sig and a training set using seven common machine learning

(ML) algorithms. The seven ML algorithms were: Naive Bayes,

Random Forest (RF), Support Vector Machine, AdaBoost

Classification Trees, Boosted Logistic Regressions, k-Nearest

Neighbors, and the Cancerclass algorithms. For each ML algorithm

with parameters, except Cancerclass, hyperparameter tuning was

performed using five-fold cross-validation to optimize the model

performance. To ensure robustness, the optimization process was

repeated 10 times with different random seeds for each resampling.

For the parameter-free cancer-class algorithm, the entire training set

was directly used to train the model. Subsequently, the area under the

curve (AUC) values of the seven models in the validation set were

compared to identify the most effective ML algorithm for the final

UVR-related ICI efficacy predictionmodel. An AUC > 0.5 indicated a

positive association between molecular expression and event

occurrence, and the closer the AUC was to 1, the better the

diagnostic performance. Specifically, an AUC between 0.5 and 0.7

suggests low accuracy, between 0.7 and 0.9 indicates moderate

accuracy, and above 0.9 indicates high accuracy.

To further compare the predictive performance of UVR.Sig, its

AUC values were evaluated against six previously published ICI

response signature-related gene sets (PDL1.Sig, LRRC15.CAF.Sig,

INFG.Sig, T.cell.infamed.Sig, NLRP3.Sig, and Cytotoxic.Sig) across

the training, validation, and five independent test sets. We showed

AUC from the training, validation, and three best-performing

independent test sets (Synder 2017 UC, Kim 2018 GC, and Hugo

2016 SKCM).
2.11 Collection and processing of CRISPR
datasets

To identify the potential therapeutic targets for UVR.Sig, data from

seven published CRISPR/Cas9 screening studies that assessed the effects
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of individual gene knockouts on tumor immunity were gathered. These

studies included Freeman 2019 (55), Kearney 2018 (56), Manguso 2017

(57), Pan 2018 (58), Patel 2017 (59), Vredevoogd 2019 (60) and Lawson

2020 (61). Based on the model cell lines and the applied treatment

conditions, data from the seven CRISPR studies were divided into 17

datasets. CRISPR analysis included cell lines from SKCM, GBM, CRC,

and RCC. These data were used to identify genes that were highly likely

to regulate lymphocytes and affect ICI response across various datasets.

CRISPR screening was performed by performing whole-

genome CRISPR-Cas9 knockouts in various cancer cell lines.

Screening was performed in two environments: in vitro, where

different cancer cell lines were cultured with and without cytotoxic

T lymphocytes (CTLs), and in vivo, where different cancer cell lines

were implanted in immunodeficient or immunocompetent mice.

Following these treatments, RNA-seq was performed to evaluate the

abundance of the corresponding gene-specific single guide RNA

(sgRNA). To measure the impact of gene knockouts on CTLs

pressure or anti-tumor immunity, the logFC values between

different groups of cell lines were calculated. Normalized z-scores

were computed from the logFC values to eliminate batch effects and

allow for comparisons across different CRISPR datasets. Lower z-

scores indicated a better immune response after gene knockout.

Genes were ranked based on the average z-scores from the 17

datasets, with lower z-scores indicating a higher ranking. Genes

with the lowest z-scores were considered potential immune

resistance genes.

Additionally, to further assess the predictive value of UVR.Sig, it

was compared with previously identified signatures used to predict

ICI response, including five pan-cancer signatures (INFG. Sig,

T.cell.infamed.Sig, PDL1.Sig, LRRC15.CAF.Sig, Cytotoxic.Sig) and

four SKCM-specific features (CRMA.Sig, IPRES.Sig, IMS.Sig,

and TRS.Sig).
2.12 Construction of prognostic risk
models using ML algorithms

To explore the relationship between UVR.Sig and the prognosis

of patients with cancer, a prognostic risk model of UVR.Sig was

constructed using six ML algorithms: Bagged Trees, Bayesian,

Learning Vector Quantization (LQV), Wrapper (Boruta), Least

Absolute Shrinkage and Selection Operator (LASSO), and RF.

Finally, the results of the different algorithms were compared.

Genes that appeared in at least four ML algorithms were selected

as Hub-UVR.Sig. Kaplan–Meier (KM) analysis was conducted

using the R package survival (62), and KM curves for both the

training and validation cohorts were generated based on risk scores

to compare OS differences between the high- and low-risk groups.
2.13 Panoramic analysis of Hub-UVR.Sig

The Hub-UVR.Sig enrichment scores were calculated using the

ssGSEA algorithm from the R package GSVA based on TCGA pan-

cancer transcriptomic dataset. This analysis aimed to explore the
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correlation between Hub-UVR.Sig and immune cell infiltration

abundance across 30 different cancer types. Subsequently, the

relationship between Hub-UVR.Sig and MSI was investigated.

Finally, to evaluate the prognostic significance of Hub-UVR.Sig in

patients with cancer, the correlation between OS and Hub-UVR.Sig

was analyzed across various cancer types and KM curves were

constructed. Based on the results of the correlation and KM

analyses, we focused on specific cancer types.
2.14 Construction and correlation analysis
of BRCA subtypes

Consensus Clustering (63) is a resampling-based algorithm

used to determine subgroup membership and validate clustering

accuracy. Through multiple iterations on the subsamples of the

dataset, this method introduces sampling variability, offering

stability and metrics for selecting the optimal clustering

parameters. Using the consensus clustering method from the R

package ConsensusClusterPlus (64),different subtypes of BRCA

were identified based on Hub-UVR.Sig. During this process, the

number of clusters was set between two and six, with 1000

resampling iterations, extracting 80% of the total samples each

time (clusterAlg = KM, distance = Euclidean).

To obtain Tumor Immune Dysfunction and Exclusion (TIDE)

scores for different subtypes of BRCA, the TIDE algorithm (65, 66) was

applied to the expressionmatrix of BRCA samples. Differences in TIDE

scores were calculated, and differences in MSI and TMB scores were

assessed among BRCA subtypes using the Wilcoxon rank-sum test.
2.15 Somatic mutation analysis of BRCA
subtypes

The “Masked Somatic Mutation” data from TCGA website was

selected as the somatic mutation data for BRCA samples and

preprocessed using VarScan software. The R package maftools

(67) was used to visualize the somatic mutation landscape in the

different BRCA subtypes.
2.16 Immune infiltration analysis of BRCA
subtypes

CIBERSORT (68), utilizing linear support vector regression, was

applied to deconvolute the transcriptome expression matrix and

estimate the composition and abundance of immune cells in

mixed-cell populations. By employing the CIBERSORT algorithm

with the LM22 signature gene matrix and filtering the data with

immune cell enrichment scores greater than zero, a detailed immune

cell infiltration matrix was obtained. The R package ggplot2 was used

to create grouped comparison plots to illustrate the differences in

immune cell expression among different BRCA subtypes.

Additionally, the R package pheatmap was used to generate

heatmaps displaying the correlation analysis results between the
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immune cells and Hub-UVR.Sig across BRCA subtypes. Finally,

the correlation between Hub-UVR.Sig and immune cells (p < 0.05)

were selected, and correlation scatter plots for the top two positive

and top two negative correlations were plotted.
2.17 Cell culture, transfection and infection

The human BRCA cell lines MDA-MB-231 and BT549 were

purchased from ATCC. Cells were cultured in high-glucose DMEM

(Procell, Wuhan, China) supplemented with 10% fetal bovine

serum (FBS) (Gibco, USA) and 100 U/mL penicillin/streptomycin

(Procell, Wuhan, China) in a sterile incubator at 37 °C with 5%

CO2. Tumor cells were seeded into 6-well plates and incubated

overnight before transfection with small interfering RNA (siRNA).

According to the manufacturer’s protocol, siRNA and negative

control (siNC) were transfected into tumor cells using Lipo2000

reagent (Invitrogen, USA). The synthetic sequences for siRNA

targeting ENO2 were as follows:
siENO2–1 forward: 5`- GCAACUGUCUGCUGCUCAAGG -3`

siENO2–1 reverse: 5`- UUGAGCAGCAGACAGUUGCAG -3`

siENO2–2 forward: 5`- CGAUGUGUCUGUAUUUCAUGU -3`

siENO2–2 reverse: 5`- AUGAAAUACAGACACAUCGUU -3`

siNC forward: 5`- UUCUCCGAACGUGUCACGUTT -3`

siNC reverse: 5`- ACGUGACACGUUCGGAGAATT -3`
2.18 RNA isolation and quantitative real-
time RT-PCR

Breast tumors and corresponding paracancerous tissues were

collected from six patients from the Department of Breast Surgery at

the Second Xiangya Hospital of Central South University. This study

was approved by the Ethics Committee of the Second Xiangya

Hospital of Central South University (Ethical approval number:

K005), and all participants provided written informed consent.

Total RNA was extracted from the cells using RNAex Pro reagent

(AG21101, Hunan, China) according to the instructions. The

concentration and quality of RNA were detected using a

spectrophotometer. Reverse transcription was performed using Evo

M-MLV kit (AG11705, Hunan, China) according to the instructions.

qPCR was performed using 2X Universal SYBR Green Fast qPCR

Mix (RK21203, Wuhan, China) and Gentier 96E/96R real-time PCR

system (Tianlong, Shanxi, China) (each sample was performed in

triplicate). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

was used as an internal reference gene, and the relative expression

level was calculated by the 2^-DDCt method, and three replicates

were tested for each sample. The primers were:
GAPDH forward primer:5′- TGACCTGCCGTCTAGAAAA
ACCT -3′
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Fron
GAPDH reverse primer:5′- GCTGTTGAAGTCAGAGGAGA
CCA -3′
ENO2 forward primer:5′- TGCCTGGTCCAAGTTCAC

AGC -3′
ENO2 reverse primer:5′- CACTGCCCGCTCAATACGTT -3′
2.19 Cell function experiment

The proliferative capacity of tumor cells was assessed using

CCK-8 assay. Migration, invasive capacity of tumor cells was

assessed by wound healing and Matrigel-coated transwell,

respectively. In the CCK-8 experiments, cells were seeded into 96-

well plates at a density of 1.5 × 10³ cells per well, and cell

pfroliferation was evaluated daily for 4 consecutive days using the

Cell Counting Kit-8 (NCM Biotech, Suzhou, China). Optical

density (OD) was measured at 450 nm. In wound healing assays,

cells were seeded in 6-well plates at a density of 4 × 10^5 per well

and grown to confluence. After removal of unadhered cells by

washing with phosphate-buffered saline (PBS), a sterile 20 mL
pipette tip was used to create a scratch wound in each well.

Images were taken in the same area at 0 h and 48 h, respectively,

and the distance of wound closure was measured to show cell

migration ability. As for Matrigel-coated transwell, cells (1 × 10^4)

were seeded in serum-free medium in 8 mm (Corning Incorporated,

3464, USA) upper chambers coated with Matrigel (Yeason,

40183ES08, Shanghai, China) and lower chambers with medium

containing 20% FBS. After 24 hours of incubation, the cells were

fixed with formaldehyde. Unattached cells in the upper chamber

were carefully wiped away, and cells attached to the membrane were

stained and counted with crystal violet.
2.20 Statistical analysis

All data processing and analyses in this study were conducted

using R software (Version 4.2.0) except for the cell experiments.

Continuous variables are presented as mean ± standard deviation.

Comparisons between the two groups were performed using the

Wilcoxon rank-sum test. Unless otherwise specified, correlations

between different molecules were calculated using Spearman

correlation analysis. Statistical analyses of cellular experiments

were performed using GraphPad Prism 9. Data are expressed as

mean ± SD of at least three independent experiments. Statistical

significance was analyzed by Student’s t-test (two-tailed). p-values

less than 0.05 were considered statistically significant.
3 Results

3.1 Flow chart

The flow of this study is shown in Figure 1.
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3.2 Negative correlation between UVR-
related genes and ICI efficacy

The results from both datasets indicated a significant

enrichment of UVR-related genes in malignant tumor cells

(Figures 2A–C). In the SKCM dataset (GSE115978), the UVR

scores of the immunotherapy-effective group (R) were

significantly lower than those of the immunotherapy-ineffective

group (NR) (p < 0.001) and treatment-naïve group (TN) (p <

0.001). Furthermore, the UVR scores of the NR group were

significantly lower than those of the TN group (p < 0.001;

Figure 2D). Similarly, in the BCC dataset (GSE123813), the UVR

scores of the R group were significantly lower than those of the NR

group (p < 0.001; Figure 2D). These findings suggest a negative

correlation between UVR-related genes and ICI efficacy.
3.3 Screening and enrichment analysis of
UVR-related genes

Through the analysis of the aforementioned two datasets, a

significant association was identified between UVR-related genes

and ICI resistance. Consequently, we hypothesized that the

expression levels of UVR-related genes in patients could

potentially predict the effectiveness of immunotherapy. We

obtained 38 up-regulated tumor-specific DEGs in 34 scRNA-Seq

datasets that were positively associated with UVR: ATF3, BTG3,

FOS, FOSB, JUNB, NFKBIA, NR4A1, RHOB, SOD2, EPCAM, GGH,

IGFBP2, CXCL2, BTG1, DNAJA1, DNAJB1, ALDOA, AP2S1,

CDKN1C, ENO2, FEN1, HSPA2, OLFM1, PPIF, BTG2, ICAM1,

SQSTM1, AMD1, ATP6V1F, BSG, CNP, CREG1, CYB5R1, MMP14,

PPT1, RPN1, SELENOW, STIP1 (Figure 3A).

To analyze the BP, MF, and CC, and pathways associated with

UVR.Sig, GO and KEGG enrichment analyses were performed, with

detailed results provided in Supplementary Table S2. The analyses

revealed that UVR.Sig was primarily enriched in the following

biological processes: response to temperature stimuli, mechanical

stimuli, cold, and metal ions; and skeletal muscle cell differentiation.

In terms of CC, UVR.Sig was enriched in melanosomes, pigment

granules, sperm heads, transcription regulator complexes, and

membrane rafts. MF analysis indicated that UVR.Sig was involved

in heat shock protein binding, ATPase activator activity, chaperone

binding, glycolipid binding, and unfolded protein binding.

Furthermore, UVR.Sig was significantly enriched in pathways

related to TNF signaling, osteoclast differentiation, lipid and

atherosclerosis, RNA degradation, and rheumatoid arthritis

signaling pathways. The results of the GO and KEGG enrichment

analyses were visualized using bar charts (Figure 3B).
3.4 Immune correlation analysis of UVR.Sig

The correlation between UVR.Sig and the 75 immune-related

genes was analyzed. The results indicated (Figure 4A) that UVR.Sig
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was significantly and positively correlated with most immune genes,

suggesting its potential key role in the regulation of immune

responses. Subsequently, the infiltration of immune cells across

various cancers was assessed, which revealed that the degree of

immune cell infiltration associated with UVR.Sig varies among

different cancer types (Figure 4B). Specifically, in SKCM, HNSC,

and mesothelioma (MESO), the UVR.Sig showed a predominantly

negative correlation with immune cell infiltration, whereas a

positive correlation was observed for CHOL, lower grade glioma

(LGG), and kidney chromophobe (KICH). Finally, we examined the

relationship between the UVR.Sig and HALLMARK pathways to

explore whether immunosuppressive biological functions were

upregulated in tumors with high UVR. Sig expression. The results

indicated significant enrichment of pathways, such as angiogenesis,
Frontiers in Immunology 07
epithelial-mesenchymal transition (EMT), Hedgehog signaling, IL-

2-STAT signaling, IL-6-JAK-STAT signaling, and inflammatory

response in tumors with high UVR.Sig expression (Figure 4C).

These findings suggest that UVR.Sig regulates immunosuppressive

functions within the TME, thereby promoting tumor aggressiveness

and resistance.
3.5 Construction of immune efficacy
prediction model

To investigate the relationship between UVR.Sig and the

efficacy of ICIs, we collected 10 RNA-Seq datasets with clearly

defined efficacy of immunotherapy, along with their clinical
FIGURE 1

Flow chart for the comprehensive analysis of an ultraviolet response signature (UVR.Sig).
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FIGURE 2

Negative association between UVR-related genes and ICI efficacy in GSE115978 (SKCM) and GSE123813 (BCC). (A) Distribution of different cell types
within the samples. (B) Enrichment scores of UVR-related genes in the samples, with deep red indicating higher scores and deep blue indicating
lower scores. (C) Differences in UVR scores among various cell types. (D) Relationship between immunotherapy efficacy and UVR scores. SKCM, skin
cutaneous melanoma; TN, treatment-naive; NR, non-responders; R, responders; ICI, immune checkpoint inhibitor; BCC, basal cell carcinoma.
***indicates a p value < 0.001, denoting highly statistically significant results.
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information. All cohorts were divided into a training set (n=618), a

validation set (n=154), and five independent testing sets (n=149).

First, we constructed immune efficacy prediction models using 7

ML algorithms in the training set, performing 10 rounds of 5-fold

cross-validation for parameter optimization. Subsequently, by

comparing the AUC values of the 7 models in the validation set,

we identified the best-performing model. The results indicated that
Frontiers in Immunology 09
the model constructed using the Cancerclass algorithm

outperformed the others, achieving the highest AUC value of

0.727, and was selected as the UVR.Sig model (Figures 5A, B).

Then, we compared the predictive capability of UVR.Sig with 6

other signatures (INFG.Sig, T.cell.infamed.Sig, PDL1.Sig,

LRRC15.CAF.Sig, NLRP3.Sig, and Cytotoxic.Sig) across the

training, validation, and testing sets. The results demonstrated
FIGURE 3

Development and description of UVR.Sig. (A) Venn diagram illustrating the intersection of genes positively correlated with UVR enrichment scores
across various scRNA-seq datasets and DEGs upregulated in malignant tumor cells. Different colors represent distinct cancer types. (B) Bar chart
depicting the results of GO and KEGG enrichment analyses for UVR.Sig, categorized into BP, CC, MF, and KEGG. The x-axis represents the GO
terms. The selection criteria for GO and KEGG enrichment analyses were adjusted p-value (adj.p) < 0.05 and FDR value (q-value) < 0.25, with p-value
adjustments performed using the Benjamini–Hochberg (BH) method. BP, biological process; CC, cellular component; DEG, differentially expressed
gene; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; MF, molecular function; scRNA-seq, single-cell RNA sequencing;
UVR, ultraviolet response; UVR.Sig, ultraviolet response signature.
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that UVR.Sig exhibited the best predictive performance in the

training set, validation set, and Hugo 2016 SKCM, Snyder 2017

UC, and Kim 2018 GC of the testing sets (Figure 5C). In contrast,

most previously published signatures only achieved high stability in

one or two datasets, while their performance in other external

cohorts was considerably unsatisfactory, likely due to poor

generalizability. This underscores the potential of UVR.Sig as a

pan-cancer predictive model for ICI response. Finally, the heatmap

(Figure 5D) shows the performance of individual signatures in

predicting ICI efficacy across different datasets, further confirming

the stability of UVR.Sig.
Frontiers in Immunology 10
3.6 CRISPR analysis of UVR.Sig

Gene-knockout immune response data were systematically

collected from seven CRISPR datasets and further categorized

into 17 distinct datasets based on the model cells and treatment

conditions utilized in each cohort. The 17 CRISPR datasets

contained 22,505 genes. Initially, the genes were ranked according

to their average Z-scores, with the top-ranking genes identified as

potential immune resistance genes, indicating that their knockouts

may enhance anti-tumor immunity. Conversely, genes that ranked

lower were classified as immune sensitive, which may inhibit the
FIGURE 4

Immune resistance analysis of UVR.Sig. (A) Correlation circle diagram between UVR.Sig and immune-related genes. (B) Correlation point diagram of
UVR.Sig with immune cell infiltration across different cancer types. (C) Correlation dot plot of UVR.Sig with HALLMARK pathways across different
cancer types. Red indicates positive correlation and blue indicates negative correlation. UVR.Sig, ultraviolet response signature.
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biological functions of anti-tumor immunity upon knockout

(Figure 6A). Specifically, the top 1%, 2%, and 3% corresponded to

225, 450, and 675 genes, respectively. Subsequently, the percentage

of UVR.Sig among the top genes was compared to that of nine other

ICI response signatures (INFG.Sig, T.cell.infamed.Sig, PDL1.Sig,

LRRC15.CAF.Sig, Cytotoxic.Sig, CRMA.Sig, IPRES.Sig, IMS.Sig,

and TRS.Sig). The results indicated that UVR.Sig occupied a

higher percentage of the top genes than the other signatures

(Figure 6B). Notably, among the top 20% of genes, six genes from

the UVR.Sig were identified: DNAJA1, STIP1, JUNB, EPCAM,

OLFM1, and NR4A1. Validation of the ICI resistance

characteristics of these six UVR.Sig genes across 17 CRISPR

datasets demonstrated their potential as predictive targets for

immunotherapy (Figure 6C).
3.7 ML-based selection of Hub-UVR.Sig

To further refine the UVR.Sig, six ML algorithms were

calculated to analyze the relationship between UVR.Sig and ICI

efficacy based on the training set: theWrapper (Boruta) (Figure 7A),
Frontiers in Immunology 11
Bayesian (Figure 7B), Bagged Trees (Figure 7C), RF (Figure 7D),

LASSO (Figure 7E), and LQV (Figure 7F). The intersection of

results from different ML algorithms was obtained (Figure 7G),

selecting genes that appeared in at least four ML algorithms as Hub-

UVR.Sig, including ATF3, ATP6V1F, BTG1, BTG3, ENO2, FOS,

and ICAM1.

To assess the prognostic value of Hub-UVR.Sig, a multivariate

Cox regression analysis was performed on the training and

validation sets. Risk score was calculated for each sample based

on the coefficients of the Cox regression model, and samples were

classified into high- and low-risk groups using the “surv_categorize”

function, according to the optimal cutoff-value. Risk factor plots

were used to visualize the relationships among samples

(Figures 8A, C), and Kaplan–Meier curve analysis was performed

to evaluate the OS (Figures 8B, D). The results showed that the low-

risk group had significantly better OS in both the training and

validation sets compared with the high-risk group (log-rank p <

0.01). Finally, the chromosomal locations of the seven Hub-

UVR.Sig genes were analyzed using the RCircos R package, and a

chromosome location map was generated (Figure 8E). The map

revealed that BTG1 and ENO2 were located on chromosome 12.
FIGURE 5

Prediction of immunotherapy outcomes and AUC of UVR.Sig. (A) Performance of predictive models for immunotherapy efficacy constructed using
seven ML algorithms. (B) ROC curve of the prediction model constructed by the Cancerclass algorithm. (C) Circle plot comparing the performance
of UVR.Sig and other signatures in the training, validation, and testing sets (Hugo 2016 SKCM, Synder 2017 UC, Kim 2018 GC). (D) Heatmap
comparing the predictive value of UVR.Sig and other signatures. Mean AUC represents the average AUC value. AUC, area under the curve; ML,
machine learning; UVR.Sig, ultraviolet response signature.
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3.8 Panoramic analysis of Hub-UVR.Sig

The enrichment scores of Hub-UVR.Sig in the TCGA dataset of

30 different cancer types were evaluated using ssGSEA (Figure 9A).

The correlation between Hub-UVR.Sig and immune cell infiltration

was examined in various cancer types. Hub-UVR.Sig showed a

significant positive correlation with infiltration of activated

dendritic cells, resting dendritic cells, M1 macrophages, M2

macrophages, activated mast cells, and neutrophils. Conversely, it

exhibited a significant negative correlation with the infiltration of

resting mast cells and naïve CD4+ T cells (Figure 9B).

Next, the correlation between Hub-UVR.Sig and MSI was

assessed across the 30 cancer types. Hub-UVR.Sig showed the

strongest positive correlation with MSI in BRCA and COAD and

the strongest negative correlation with ESCA (Figure 9C).

Furthermore, the relationship between the expression levels of

Hub-UVR.Sig and MSI was determined in different cancer types.

The results revealed that ICAM1 exhibited the strongest negative
Frontiers in Immunology 12
correlation with MSI in CHOL, whereas ENO2 showed the

strongest positive correlation with MSI in COAD (Figure 9D).

Finally, the prognostic ability of Hub-UVR.Sig was analyzed

across 30 different cancer types in TCGA cohort. The results of

multivariate Cox regression and survival analyses indicated that in

BRCA, patients with high-risk scores had significantly worse OS

than those with low-risk scores (p < 0.01; Figure 9E), suggesting that

UVR.Sig may serve as a potential marker for poor prognosis in

patients with BRCA.
3.9 Construction and correlation analysis
of BRCA subtypes

Given the excellent predictive capability of Hub-UVR.Sig for

OS in patients with BRCA, we focused our investigation on its

relationship with BRCA. Based on the Hub-UVR.Sig expression

levels in TCGA-BRCA samples, a consistency clustering analysis
FIGURE 6

CRISPR analysis of UVR.Sig. (A) Gene ranking based on z-scores across 17 CRISPR datasets. Green indicates genes with immune resistance
characteristics, where knockout enhances anti-tumor immune function; yellow indicates immune-sensitive genes, where knockout suppresses anti-
tumor immunity; white represents missing values for genes in the core data. (B) Radar plot comparing the percentage of top-ranking genes from
UVR.Sig and nine other signatures. (C) Heatmap visualization of the z-scores for six UVR.Sig genes across 17 CRISPR datasets. UVR.Sig, ultraviolet
response signature.
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FIGURE 7

ML and Hub-UVR.Sig analysis. (A) Graph of wrapper (Boruta) algorithm prognostic risk model of UVR.Sig. (B) Bayesian algorithm prognostic risk model
map of UVR.Sig. (C) Bagged Trees algorithm prognostic risk model diagram of UVR.Sig. (D) Random Forest algorithm prognostic risk model map of
UVR.Sig. (E) LASSO prognostic risk model map of UVR.Sig. (F) Learning vector quantification prognostic risk model plot of UVR.Sig. (G) Intersection
plot of results from six different ML algorithms. ML, machine learning; UVR.Sig, ultraviolet response signature.
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was performed using the R package ConsensusClusterPlus,

ultimately identifying two subtypes: BRCA subtypes A (Cluster 1)

and B (Cluster 2) (Figures 10A, B). Subtype A comprised 591

samples, whereas subtype B comprised 484 samples. The PCA

results revealed significant differences between the two subtypes

(Figure 10C). Further analysis of TIDE (Figure 10D), TMB

(Figure 10E), and MSI scores (Figure 10F) in the different BRCA

subtypes indicated that there were statistically significant differences

in TIDE and TMB scores for the different subtypes, with subtype A
Frontiers in Immunology 14
showing higher TIDE scores and lower TMB scores compared with

subtype B (p < 0.05).
3.10 Somatic mutation analysis of BRCA
subtypes

Subsequently, the mutation frequencies were analyzed in the

different BRCA subtypes. The results indicated that the TP53 gene
FIGURE 8

Hub-UVR.Sig and Kaplan–Meier curve analysis. (A) Risk factor plot of the Hub-UVR.Sig associated with patient prognosis in the training set.
(B) Kaplan–Meier curve for high-risk and low-risk patients in the training set. (C) Risk factor map of the Hub-UVR.Sig and the prognosis of patients
with cancer in the validation set. (D) Kaplan–Meier curve for high-risk and low-risk patients in the validation set. (E) Chromosomal mapping of the
Hub-UVR.Sig. Blue represents the low-risk group, while yellow represents the high-risk group. UVR.Sig, ultraviolet response signature.
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FIGURE 9

Landscape analysis of Hub-UVR.Sig. (A) Scores of the Hub-UVR.Sig across different cancer types. (B) Correlation between Hub-UVR.Sig and the
abundance of immune cell infiltration in various cancer types. (C) Correlation between Hub-UVR.Sig and MSI across 30 cancer types. (D) Relationship
between the expression levels of Hub-UVR.Sig and MSI in 30 different cancer types. (E) Kaplan–Meier curves of the risk scores of the Hub-UVR.Sig
and OS in BRCA. The absolute value of the correlation coefficient (r value) is interpreted as follows: values below 0.3 indicate weak or no correlation,
values between 0.3 and 0.5 indicate weak correlation, values between 0.5 and 0.8 indicate moderate correlation, and values above 0.8 indicate
strong correlation. Red indicates positive correlation, while blue indicates negative correlation. Blue represents the low-risk score group, while yellow
represents the high-risk score group. BRCA, breast cancer; MSI, microsatellite instability; OS, overall survival; UVR.Sig, ultraviolet response signature.
*p<0.05, **p < 0.01.
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exhibited the highest mutation frequency in subtype A, reaching

37%, while in subtype B, the PIK3CA gene had the highest mutation

frequency at 40% (Figure 11A). Furthermore, the biological and

functional changes induced by mutations were assessed in different

subtypes. In subtype A, mutations primarily affected the functions

of the TGF-b and PI3K signaling pathways (Figure 11B). In

contrast, in subtype B, the mutations mainly affected the RTK-

RAS and PI3K signaling pathways (Figure 11C).

Finally, based on mutation data and the Drug–Gene Interaction

database (DGIdb), we explored the gene druggability and drug–

gene interactions in patients from different subtypes. As shown in

Figures 11D, E, in subtype A (Cluster 1), the predicted drugs were

potentially targeted at CLINICALLY ACTIONABLE genes

including ARID1A, CDH1, GATA3, KMT2C, and MAP3K1; In

subtype B (Cluster 2), the predicted drugs were mainly associated

with the DRUGGABLE GENOME, involving CDH1, DMD, DST,

HMCN1, and MAP3K1.
3.11 Immune analysis of BRCA subtypes

The differences in immune cell infiltration were examined

across BRCA subtypes. Using the CIBERSORT algorithm, the

correlation between 22 immune cell types was assessed within

various subtypes and a bar chart illustrating the proportion of

immune cells in each BRCA subtype was generated (Figure 12A).

The results indicated that the enrichment scores for all 22 immune
Frontiers in Immunology 16
cell types were greater than zero. A grouped comparison chart

(Figure 12B) was used to highlight the differences in immune cell

infiltration abundance among BRCA subtypes. Thirteen immune

cell types displayed statistically significant differences in expression

levels across subtypes (p < 0.05), including naïve B cells, plasma

cells, CD8+ T cells, naïve CD4+ T cells, resting memory CD4+ T

cells, follicular helper T cells, Tregs, monocytes, M1 macrophages,

M2 macrophages, resting dendritic cells, activated mast cells, and

neutrophils. Figure 12C presents a heatmap of the infiltration

abundance of various immune cells across different BRCA subtypes.

Finally, the correlation between Hub-UVR.Sig and various immune

cell infiltrations in BRCA samples were analyzed, focusing on the two

pairs with the highest positive and negative correlations (Figures 12D–

G). The results indicated a positive correlation between ICAM1 and M1

macrophage infiltration scores (r = 0.36; Figure 12D). Additionally,

BTG1 was positively correlated with resting memory CD4+ T cell

infiltration scores (r = 0.24) (Figure 12E). Conversely, ICAM1

exhibited a negative correlation with plasma cell infiltration scores (r =

-0.24; Figure 12F), while BTG3 demonstrated a negative correlation with

resting mast cell infiltration scores (r = -0.23; Figure 12G).
3.12 Expression and function of Hub-
UVR.Sig in BRCA

We examined the mRNA expression levels of Hub-UVR.Sig

genes in tumor tissues and paired adjacent normal tissues from six
FIGURE 10

Consensus cluster analysis. (A) Consensus cluster analysis results for BRCA samples. (B) Consistency cumulative distribution function plot from the
consensus clustering analysis. (C) PCA plot of two BRCA subtypes. (D–F) Comparison of TIDE (D), MSI (E), and TMB (F) across different BRCA
subtypes. Pink represents subtype A (Cluster 1), while green represents subtype B (Cluster 2). BRCA, breast cancer; MSI, microsatellite instability; PCA,
principal component analysis; TIDE, Tumor Immune Dysfunction and Exclusion; TMB, tumor mutational burden.
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breast cancer patients. The results demonstrated that ENO2 and

ATP6V1F were significantly upregulated in tumor tissues

(Figure 13A). Further analysis of TCGA database revealed that

ENO2 expression was markedly higher in breast cancer tissues

compared to normal breast tissues (Figure 13B). Kaplan-Meier

Plotter database (69) indicated that high ENO2 expression was

significantly associated with worse OS in breast cancer patients

(HR = 1.27, 95% CI = 1.05-1.55, Figure 13C).

To investigate the biological functions of ENO2, we conducted

experiments using TNBC cell lines MDA-MB-231 and BT549. RT-

qPCR confirmed that ENO2-specific siRNA effectively knocked

down its expression (Figure 13D). CCK8 assays demonstrated

that silencing ENO2 reduced the proliferative capacity of tumor

cells (Figure 13E). Furthermore, ENO2 knockdown inhibited both
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the migration and invasion abilities of the cells (Figures 13F, G).

Immune infiltration analysis based on the Timer database (70)

showed that ENO2 expression levels were negatively correlated with

the infiltration of CD8+ T cells, naive B cells, activated NK cells, and

M1 macrophages (Figure 13H). Analysis of two GEO datasets

(GSE268752 and GSE229422) demonstrated that ENO2

expression was significantly elevated in ICI-treated mice with

BRCA compared to control groups (Figure 13I).
4 Discussion

In this study, we employed the GSVA method to evaluate UVR

enrichment scores in malignant cells and found a negative
FIGURE 11

SNP analysis. (A) Mutation landscape of BRCA subtype A and subtype (B) Each color represents a different type of mutation, with the vertical axis
listing the genes with the highest mutation frequencies, including TP53, PIK3CA, TTN, CDH1, GATA3, and MUC16. (B, C) Biological function analysis
of mutations affecting patients in subtype A (B) and B (C). The vertical axis lists various signaling pathways, with the horizontal axis indicating the
proportion of samples and pathways affected. (D, E) Classification of potentially druggable genes in subtype A (D) and B (E). Each classification
includes the top five genes in parentheses, and the horizontal axis indicates the number of genes within each druggable gene classification. BRCA,
breast cancer.
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correlation between UVR scores and ICI responses in two scRNA-

seq cohorts (SKCM and BCC). Based on these findings, we

hypothesized that this negative correlation may be a common

phenomenon across various cancer types. To test this hypothesis,

we conducted a large-scale comprehensive analysis, identifying a set

of genes, termed UVR.Sig, that were highly expressed in malignant

cells and significantly positively correlated with UVR scores in 34

scRNA-seq datasets. Rigorous validation of UVR.Sig demonstrated

that it outperformed multiple previously used models in predicting

ICI responses across bulk RNA-seq independent immunotherapy

cohorts. Moreover, the Hub-UVR.Sig, further refined through
Frontiers in Immunology 18
multiple machine learning methods, showed strong prognostic

value for ICI-treated patients, especially in BRCA patients. Based

on Hub-UVR.Sig, two distinct BRCA subtypes were identified, each

exhibiting unique molecular mutation profiles and immune

characteristics, providing a critical foundation for the

development of personalized treatment strategies. Finally, by

analyzing clinical tissue samples from BRCA patients, we found

that ENO2 and ATP6V1F, two genes from the Hub-UVR.Sig, were

highly expressed in tumor tissues. High ENO2 expression was

associated with worse OS in BRCA patients and negatively

correlated with the infiltration of cytotoxic immune cells.
FIGURE 12

Immune analysis by CIBERSORT algorithm. (A) Bar chart showing the proportion of immune cells in different BRCA subtypes. (B) Comparison of
immune cell infiltration abundance across BRCA subtypes. (C) Heatmap illustrating the abundance of various immune cell infiltrations in different
BRCA subtypes. (D–G) Scatter plots displaying the highest positive and negative correlations between Hub-UVR.Sig and immune cell infiltrations.
BRCA, breast cancer; UVR.Sig, ultraviolet response signature. *p<0.05, **p < 0.01, ***p < 0.001, ns: not significant.
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Moreover, knockdown of ENO2 significantly suppressed the

proliferation, migration, and invasion of TNBC cells.

UV light has been shown to alter the expression of cytokines,

chemokines, and cell surface receptors in cells (71–73), thereby

modulating various interactions between tumors and the immune

system. These interactions may result in either immune activation

or immune suppression. For example, UV light can stimulate BRCA

cells to secrete pro-inflammatory chemokines, leading to the

recruitment of antitumor effector T cells (73). In a CT26 colon

cancer mouse model, a single high-dose radiation exposure induced

a durable complete remission mediated by CD8+ T cell infiltration

(74). Conversely, studies have also shown that UV exposure can

cause a variety of DNA lesions—including strand breaks, base

damage, and cross-linking—which subsequently induce apoptosis

in radiation-sensitive tissues such as lymphocytes and result in

systemic immunosuppression (75, 76). Furthermore, tumor-

associated macrophages exposed to radiation express higher levels
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of iNOS, arginase-I, and COX-2, thereby promoting tumor growth

(77). Therefore, UVR may affect the immune microenvironment in

a complex manner, and elucidating the molecular mechanisms by

which UV light influences tumor biology is of critical importance.

Our study showed that UVR.Sig, consisting of 38 genes, was

mainly enriched in the TNF signaling pathway. In the TME,

activated immune cells, such as macrophages and T lymphocytes,

fibroblasts, and cancer cells secrete large amounts of TNF-a. This
cytokine accumulates within the tumor, triggering and maintaining

inflammatory responses that promote tumor growth and

progression (78, 79). The TNF-a receptor, TNFR2, is highly

expressed in several tumor types, including BRCA, cutaneous T-

cell lymphoma, and colorectal cancer (80–82). Overexpression of

TNFR2 not only enhances tumor cell resistance to apoptosis, but

also inhibits anti-tumor immune responses, thereby facilitating

immune evasion (83). Further analysis revealed that UVR.Sig was

positively correlated with pathways, such as EMT, hypoxia, IL-6-
FIGURE 13

Expression and function of Hub-UVR.Sig in BRCA. (A) Hub-UVR.Sig mRNA expression levels in cancer tissues and corresponding paracancerous
tissues of six BRCA patients. (B) Expression of ENO2 in BRCA tissues and normal tissues. (C) ENO2 was associated with worse OS in BRCA patient.
(D) Knockdown of ENO2 in TNBC cells. (E) Knockdown of ENO2 reduced proliferation of TNBC cells. (F, G) Knockdown of ENO2 decreased
migration (F) and invasion (G) of TNBC cells. (H) Relationship between ENO2 expression and immune infiltrating cells in BRCA. (I) Expression of
ENO2 increased in mice after treatment with ICIs. BRCA, breast cancer; TNBC, triple-negative breast cancer; UVR.Sig, ultraviolet response signature;
*p<0.05, **p < 0.01 ***p < 0.001 and ****p<0.0001. Error bars indicate SD. All results were representative of or combined from at least three
independent experiments. ns: not significant.
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JAK-STAT3, and inflammatory responses. Hypoxia is a hallmark of

the TME (84), that suppresses the activity of T and NK cells,

enhances Treg function, and upregulates the expression of immune

checkpoint molecules, such as PD-L1 (85, 86). Additionally, STAT3

activation not only upregulates PD-L1 expression (87), but is also

associated with the expansion and functional enhancement of

various immunosuppressive cells, which secrete factors, such as

IL-10, that inhibit effector T cell activity, thereby weakening anti-

tumor immune responses (88, 89). Collectively, the association

between UVR.Sig and these pathways suggested its potential role

in promoting immunosuppression, immune evasion, and the

deterioration of the TME.

UVR.Sig was negatively correlated with CD8+ T cells, NK cells,

CTLs, and B cells in almost all tumor types, while showing a positive

correlation with neutrophils, endothelial cells, and fibroblasts. As

key CTLs, CD8+ T and NK cells play critical roles in the immune

system by directly killing infected or cancerous cells, thus protecting

the body from pathogens and tumors (90–94). Similarly, B cells in

the TME recognize tumor-specific antigens and produce antibodies

that neutralize tumor cells, thereby preventing their growth and

spread of tumor cells, which is closely related to improving the

effectiveness of immunotherapy (95, 96). In contrast, a high

infiltration of neutrophils, endothelial cells, and fibroblasts in the

TME typically indicates immunosuppression (97–102). Tumors

with high UVR.Sig exhibited pronounced immunosuppressive

characteristics, making them less responsive to ICI therapy. This

highlights the potential of UVR.Sig as a valuable predictive marker

of immunotherapy response.

Using the optimal Cancerclass algorithm, UVR.Sig was identified

as a novel signature that effectively predicted ICI response across

various cancer types, including RCC, UC, SKCM, GC, and GBM. To

validate its predictive power, UVR.Sig was systematically compared

with six widely used pan-cancer signatures. The results demonstrated

that UVR.Sig exhibited superior performance (AUC = 0.727) and

consistently outperformed other pan-cancer signatures across

multiple cancer types and independent cohorts, likely due to its

stronger generalizability. In addition, compared with other

molecular markers, UVR.Sig may provide a more comprehensive

reflection of the overall immune status of the tumor

microenvironment. In contrast, PD-L1 primarily reflects surface

molecule expression, TMB indicates mutation burden, and MSI

reflects genomic stability (103); these markers do not fully capture

the complexity of immune cells and signaling pathways within the

microenvironment. Therefore, UVR.Sig could represent a

complementary tool with potential clinical value in assessing the

immunological landscape.

Given the outstanding predictive ability of UVR.Sig for

immunotherapy outcomes, the CRISPR dataset was used to identify

potential drug targets. This strategy not only revealed novel therapeutic

targets but also supported personalized medicine, enabling more

precise treatments to enhance efficacy. Based on the correlation

between genes and immune response, the genes were ranked and

UVR.Sig genes closely associated with immune resistance, including

DNAJA1, STIP1, JUNB, EPCAM, OLFM1, andNR4A1, were identified.

DNAJA1, a member of the heat shock protein 40 (Hsp40) family, plays
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a critical role in regulating B cell function by enhancing the expression

and activity of activation-induced cytidine deaminase in mice (104).

Additionally, DNAJA1 prevents proteasomal degradation of unfolded

mutant p53, thereby promoting tumor metastasis (105). JunB, a

member of the activator protein 1 (AP-1) transcription factor family,

regulates Treg differentiation, and promotes CD25 expression and IL-2

production (106, 107). JunB plays a pivotal role in immunosuppression

and may be a critical factor in predicting adverse reactions to

immunotherapy (108). EpCAM, a marker of circulating tumor and

cancer stem cells, is expressed in various cancer types (109, 110). It

inhibits the activity of CD8+ T cells and upregulates PD-L1 expression,

making it a potential immunotherapy target in cancers such as BRCA,

COAD, and oral squamous cell carcinoma (111–113). In conclusion,

these genes represent potential therapeutic targets across various cancer

types, and further investigation of these core UVR.Sig genes will

contribute to the development of more effective combination

strategies for immunotherapy.

To enhance the prognostic efficacy of UVR.Sig, ML algorithms

were employed to identify seven hub genes, termed as Hub-UVR.Sig,

including ATF3, ATP6V1F, BTG1, BTG3, ENO2, FOS, and ICAM1.

FOS and JUNB can be directly regulated by p53—p53 binds to the

response elements in the promoter region of FOS and promotes its

expression. FOS then forms a heterodimer with JUNB, which activates

the transcription of downstream immunosuppression-related genes

(114). This mechanism may, at least in part, explain the

immunosuppressive effect of Hub-UVR.Sig. We observed that Hub-

UVR.Sig was positively correlated with activated mast cells and

negatively correlated with resting mast cells. Although mast cells are

traditionally linked to allergic responses, recent studies have shown

that activated mast cells play a critical role in tumor progression and

are often associated with poor prognosis (115–117). The mechanisms

involved include immune suppression, angiogenesis promotion, and

extracellular matrix degradation (118, 119). This suggests that Hub-

UVR.Sig may also be involved in the regulation of inflammatory and

immune responses by affecting mast cell activation. Risk scores

generated based on UVR.Sig are effective in identifying patients with

BRCA, and patients with higher risk scores typically exhibit worse OS.

This led us to shift our focus to BRCA to further explore the potential

value of Hub-UVR.Sig in this context.

Using consensus clustering analysis, two BRCA subtypes that

exhibited significant differences in their molecular mutation

characteristics and immune infiltration profiles were identified.

Subtype A (Cluster 1) had a high mutation frequency in TP53

(37%), whereas Subtype B (Cluster 2) had a high mutation

frequency in PIK3CA (40%). TP53 mutations are the most

common in BRCA, occurring in 30–35% of all BRCA cases and

approximately 80% of triple-negative breast cancer cases (120, 121).

Strong evidence has linked TP53 mutations to poor disease-free

survival and OS in BRCA (122). PIK3CA mutations are present in

25–46% of BRCA cases and are associated with chemotherapy

resistance, poor prognosis, and reduced OS (123). Additionally,

Subtype A has a high TIDE score and low TMB score, suggesting a

strong immune escape potential and low immunogenicity, potentially

leading to a poor response to immunotherapy (65, 124). It should be

noted that the consensus clustering in this study was performed at the
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molecular level and does not fully correspond to pathological BRCA

subtypes. Cluster 1 and Cluster 2 were identified through a systematic

molecular-level exploration of Hub-UVR.Sig using consensus

clustering, whereas pathological classification is mainly based on

tumor morphology and conventional biomarkers. Our study

therefore represents an initial exploration, and future work will aim

to integrate molecular and pathological features to achieve a more

comprehensive breast cancer classification.

Finally, we validated the expression of the Hub-UVR.Sig genes

in BRCA patients and found that ENO2 and ATP6V1F were highly

expressed in tumor tissues. ENO2, a glycolytic enzyme, has been

reported to promote stem-like properties, tumorigenesis, and

metastatic progression in BRCA cells by activating the glycolytic

pathway (125, 126). Consistently, knockdown of ENO2 in TNBC

cells resulted in a significant reduction in tumor cell proliferation,

migration, and invasion. Moreover, high ENO2 expression was

negatively correlated with the infiltration of cytotoxic immune cells

and was upregulated following anti-PD-L1 treatment, suggesting

that ENO2 may contribute to adaptive ICI resistance.

This study has several limitations. First, the currently available

immunotherapy cohorts (GC, SKCM, RCC, UC, and GBM) offer

limited tumor type coverage, which may affect the generalizability of

our findings. Further validation of UVR.Sig in other cancer types

lacking immunotherapy data is warranted, and its broader

application across pan-cancer contexts requires support from

additional clinical cohorts to ensure robustness and universality.

Nevertheless, our immune correlation analysis of UVR.Sig across

30 cancer types in the TCGA partially compensates for this

limitation. Second, our study primarily focused on the association

between gene expression and response to ICIs, while other key

prognostic factors—such as genomic mutations, DNA methylation,

histone modifications, and non-coding RNAs—were not considered.

The heterogeneity among datasets may also introduce batch effects.

Given the robust predictive performance of Hub-UVR.Sig for ICIs

response and its prognostic value in BRCA, future studies should

prioritize validation using real-world clinical data from BRCA

patients, including the prospective collection of clinicopathological

information and integration of additional variables that may

influence tumor prognosis. We are also aware of the importance of

in vitro experiments. In the future, we will add functional data

verification of Hub-UVR.Sig genes such as ATP6V1F, ICAM1 and

BTG family members to further support their biological and clinical

relevance and improve the completeness and credibility of this article.
5 Conclusion

To our knowledge, this is the first study to reveal a strong

association between UVR mechanisms and ICIs resistance in

cancer. Through pan-cancer single-cell transcriptomic analysis,

we developed a UVR-related gene signature (UVR.Sig) that

outperformed existing biomarkers in predicting ICIs response and

showed significant prognostic value in breast cancer. While our

findings offer a promising tool for refining immunotherapy patient

selection, further validation in additional tumor types and
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incorporation of other prognostic factors are needed to

strengthen its clinical applicability.
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Visualizing and interpreting cancer genomics data via the Xena platform. Nat
Biotechnol. (2020) 38:675–8. doi: 10.1038/s41587-020-0546-8
19. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative
analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci
Signal. (2013) 6:pl1. doi: 10.1126/scisignal.2004088

20. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al.
TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data.
Nucleic Acids Res. (2016) 44:e71–e. doi: 10.1093/nar/gkv1507

21. Davis SMP. GEOquery: a bridge between the gene expression omnibus (GEO) and
bioConductor. Bioinformatics. (2007) 23:1846–7. doi: 10.1093/bioinformatics/btm254

22. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for
microarray and RNA-seq data. BMC Bioinf. (2013) 14:1–15. doi: 10.1186/1471-2105-
14-7

23. Jerby-Arnon L, Shah P, Cuoco MS, Rodman C, Su MJ, Melms JC, et al. A cancer
cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell.
(2018) 175:984–97.e24. doi: 10.1016/j.cell.2018.09.006

24. Yost KE, Satpathy AT, Wells DK, Qi Y, Wang C, Kageyama R, et al. Clonal
replacement of tumor-specific T cells following PD-1 blockade. Nat Med. (2019)
25:1251–9. doi: 10.1038/s41591-019-0522-3

25. Hugo W, Zaretsky J, Sun L, Song C, Moreno B, Hu-Lieskovan S, et al. Genomic
and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma.
Cell. (2016) 168(3)35–44. doi: 10.1016/j.cell.2016.02.065

26. Liu DV, Schilling B, Liu D, Sucker A, SChadendorf D. Integrative molecular and
clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic
melanoma. Nat Med. (2019) 25:1916–27. doi: 10.1038/s41591-019-0654-5

27. Gide TN, Quek C, Menzies AM, Tasker AT, Shang P, Holst J, et al. Distinct
immune cell populations define response to anti-PD-1 monotherapy and anti-PD-1/
anti-CTLA-4 combined therapy. Cancer Cell. (2019) 35:238–55.e6. doi: 10.1016/
j.ccell.2019.01.003

28. Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ, Sims JS, et al. Tumor and
microenvironment evolution during immunotherapy with nivolumab. Cell. (2017)
4:934–49. doi: 10.1016/j.cell.2017.09.028

29. Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, et al.
Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science.
(2015) 350:207–11. doi: 10.1126/science.aad0095

30. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFb
attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells.
Nature. (2018) 554:544–8. doi: 10.1038/nature25501

31. Alexandra S, Tavi N, Funt SA, Arun A, Jacqueline BN, Hellmann MD, et al.
Contribution of systemic and somatic factors to clinical response and resistance to PD-L1
blockade in urothelial cancer: An exploratory multi-omic analysis. PloS Med. (2017) 14:
e1002309. doi: 10.1371/journal.pmed.1002309

32. Zhao J, Chen AX, Gartrell RD, Silverman AM, Aparicio L, Chu T, et al. Immune
and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat
Med. (2019) 25:462–9. doi: 10.1038/s41591-019-0349-y

33. Braun DA, Hou Y, Bakouny Z, Ficial M, Angelo MS, Forman J, et al. Interplay of
somatic alterations and immune infiltration modulates response to PD-1 blockade in
advanced clear cell renal cell carcinoma. Nat Med. (2020) 6:909–18. doi: 10.1038/
s41591-020-0839-y

34. Kim ST, Cristescu R, Bass AJ, Kim KM, Odegaard JI, Kim K, et al. Comprehensive
molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric
cancer. Nat Med. (2018) 24:1449–58. doi: 10.1038/s41591-018-0101-z

35. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, et al.
IFN-g-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest.
(2017) 127:2930–40. doi: 10.1172/JCI91190
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1598070/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1598070/full#supplementary-material
https://doi.org/10.1186/s12943-023-01850-7
https://doi.org/10.1016/j.semcancer.2022.03.020
https://doi.org/10.1186/s12943-023-01805-y
https://doi.org/10.1038/s43018-023-00679-9
https://doi.org/10.1038/bjc.2017.434
https://doi.org/10.1016/j.canlet.2022.216038
https://doi.org/10.1016/j.canlet.2022.216038
https://doi.org/10.3389/fphar.2023.1285343
https://doi.org/10.1073/pnas.74.4.1688
https://doi.org/10.1016/j.mrfmmm.2004.06.059
https://doi.org/10.1016/j.mrfmmm.2004.06.059
https://doi.org/10.1016/j.ejcb.2010.09.011
https://doi.org/10.1158/0008-5472.CAN-18-3134
https://doi.org/10.1158/0008-5472.CAN-18-3134
https://doi.org/10.3390/biom13071148
https://doi.org/10.3390/biom13071148
https://doi.org/10.1002/advs.202401061
https://doi.org/10.1016/j.xcrm.2024.101399
https://doi.org/10.1016/j.xcrm.2024.101399
https://doi.org/10.1111/cpr.v57.11
https://doi.org/10.1007/s13238-021-00868-1
https://doi.org/10.1093/bioinformatics/btr260
https://doi.org/10.1038/s41587-020-0546-8
https://doi.org/10.1126/scisignal.2004088
https://doi.org/10.1093/nar/gkv1507
https://doi.org/10.1093/bioinformatics/btm254
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1016/j.cell.2018.09.006
https://doi.org/10.1038/s41591-019-0522-3
https://doi.org/10.1016/j.cell.2016.02.065
https://doi.org/10.1038/s41591-019-0654-5
https://doi.org/10.1016/j.ccell.2019.01.003
https://doi.org/10.1016/j.ccell.2019.01.003
https://doi.org/10.1016/j.cell.2017.09.028
https://doi.org/10.1126/science.aad0095
https://doi.org/10.1038/nature25501
https://doi.org/10.1371/journal.pmed.1002309
https://doi.org/10.1038/s41591-019-0349-y
https://doi.org/10.1038/s41591-020-0839-y
https://doi.org/10.1038/s41591-020-0839-y
https://doi.org/10.1038/s41591-018-0101-z
https://doi.org/10.1172/JCI91190
https://doi.org/10.3389/fimmu.2025.1598070
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2025.1598070
36. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF,
et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. New Engl
J Med. (2012) 366:2443–54. doi: 10.1056/NEJMoa1200690

37. Dominguez CX, Müller S, Keerthivasan S, Koeppen H, Hung J, Gierke S, et al.
Single-cell RNA sequencing reveals stromal evolution into LRRC15(+) myofibroblasts
as a determinant of patient response to cancer immunotherapy. Cancer Discov. (2020)
10:232–53. doi: 10.1158/2159-8290.CD-19-0644

38. Ju M, Bi J, Wei Q, Jiang L, Guan Q, Zhang M, et al. Pan-cancer analysis of
NLRP3 inflammasome with potential implications in prognosis and immunotherapy in
human cancer. Briefings Bioinf. (2021) 22:bbaa345. doi: 10.1093/bib/bbaa345

39. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic
properties of tumors associated with local immune cytolytic activity. Cell. (2015)
160:48–61. doi: 10.1016/j.cell.2014.12.033

40. Shukla SA, Bachireddy P, Schilling B, Galonska C, Zhan Q, Bango C, et al.
Cancer-germline antigen expression discriminates clinical outcome to CTLA-4
blockade. Cell. (2018) 173:624–33.e8. doi: 10.1016/j.cell.2018.03.026

41. Cui C, Xu C, Yang W, Chi Z, Sheng X, Si L, et al. Ratio of the interferon-g
signature to the immunosuppression signature predicts anti-PD-1 therapy response in
melanoma. NPJ Genom Med. (2021) 6:7. doi: 10.1038/s41525-021-00169-w

42. Yan M, Hu J, Ping Y, Xu L, Liao G, Jiang Z, et al. Single-cell transcriptomic
analysis reveals a tumor-reactive T cell signature associated with clinical outcome and
immunotherapy response in melanoma. Front Immunol. (2021) 12:758288.
doi: 10.3389/fimmu.2021.758288

43. Sun D, Wang J, Han Y, Dong X, Ge J, Zheng R, et al. TISCH: a comprehensive
web resource enabling interactive single-cell transcriptome visualization of tumor
microenvironment. Nucleic Acids Res. (2021) 49:D1420–d30. doi: 10.1093/nar/
gkaa1020

44. Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, et al.
Integrated analysis of multimodal single-cell data. Cell. (2021) 184:3573–87.e29.
doi: 10.1016/j.cell.2021.04.048

45. Wolock SL, Lopez R, Klein AM. Scrublet: computational identification of cell
doublets in single-cell transcriptomic data. Cell Syst. (2019) 8:281–91.e9. doi: 10.1016/
j.cels.2018.11.005

46. Ben Salem K, Ben Abdelaziz A. Principal component analysis (PCA). Tunis Med.
(2021) 99:383–9.

47. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast,
sensitive and accurate integration of single-cell data with Harmony. Nat Methods.
(2019) 16:1289–96. doi: 10.1038/s41592-019-0619-0

48. Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER version 14:
more genomes, a new PANTHER GO-slim and improvements in enrichment analysis
tools. Nucleic Acids Res. (2019) 47:D419–D26. doi: 10.1093/nar/gky1038

49. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic
Acids Res. (2000) 28:27–30. doi: 10.1093/nar/28.1.27

50. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing
biological themes among gene clusters. Omics. (2012) 16:284–7. doi: 10.1089/
omi.2011.0118

51. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Yang T-HO, et al. The
immune landscape of cancer. Immunity. (2018) 48:812–30. e14. doi: 10.1016/
j.immuni.2018.03.023

52. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al.
Estimating the population abundance of tissue-infiltrating immune and stromal cell
populations using gene expression. Genome Biol. (2016) 17:218. doi: 10.1186/s13059-
016-1070-5

53. Zeng D, Ye Z, Shen R, Yu G, Wu J, Xiong Y, et al. IOBR: multi-omics immuno-
oncology biological research to decode tumor microenvironment and signatures. Front
Immunol. (2021) 12:687975. doi: 10.3389/fimmu.2021.687975

54. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al.
New response evaluation criteria in solid tumours: revised RECIST guideline (version
1.1). Eur J Cancer. (2009) 45:228–47. doi: 10.1016/j.ejca.2008.10.026

55. Freeman AJ, Vervoort SJ, Ramsbottom KM, Kelly MJ, Michie J, Pijpers L, et al.
Natural killer cells suppress T cell-associated tumor immune evasion. Cell Rep. (2019)
28:2784–94.e5. doi: 10.1016/j.celrep.2019.08.017

56. Kearney CJ, Vervoort SJ, Hogg SJ, Ramsbottom KM, Freeman AJ, Lalaoui N,
et al. Tumor immune evasion arises through loss of TNF sensitivity. Sci Immunol.
(2018) 3:eaar3451. doi: 10.1126/sciimmunol.aar3451

57. Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB, Miller BC, et al. In
vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature.
(2017) 547:413–8. doi: 10.1038/nature23270

58. Pan D, Kobayashi A, Jiang P, Ferrari de Andrade L, Tay RE, Luoma AM, et al. A
major chromatin regulator determines resistance of tumor cells to T cell-mediated
killing. Science. (2018) 359:770–5. doi: 10.1126/science.aao1710

59. Patel SJ, Sanjana NE, Kishton RJ, Eidizadeh A, Vodnala SK, Cam M, et al.
Identification of essential genes for cancer immunotherapy. Nature. (2017) 548:537–42.
doi: 10.1038/nature23477

60. Vredevoogd DW, Kuilman T, Ligtenberg MA, Boshuizen J, Stecker KE, de Bruijn
B, et al. Augmenting immunotherapy impact by lowering tumor TNF cytotoxicity
threshold. Cell. (2019) 178:585–99.e15. doi: 10.1016/j.cell.2019.06.014
Frontiers in Immunology 23
61. Lawson KA, Sousa CM, Zhang X, Kim E, Akthar R, Caumanns JJ, et al.
Functional genomic landscape of cancer-intrinsic evasion of killing by T cells.
Nature. (2020) 586:120–6. doi: 10.1038/s41586-020-2746-2

62. Rich JT, Neely JG, Paniello RC, Voelker CC, Nussenbaum B, Wang EW. A
practical guide to understanding Kaplan-Meier curves. Otolaryngol Head Neck Surg.
(2010) 143:331–6. doi: 10.1016/j.otohns.2010.05.007

63. Lock EF, Dunson DB. Bayesian consensus clustering. Bioinformatics. (2013)
29:2610–6. doi: 10.1093/bioinformatics/btt425

64. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with
confidence assessments and item tracking. Bioinformatics. (2010) 26:1572–3.
doi: 10.1093/bioinformatics/btq170

65. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunction
and exclusion predict cancer immunotherapy response. Nat Med. (2018) 24:1550–8.
doi: 10.1038/s41591-018-0136-1

66. Fu J, Li K, Zhang W, Wan C, Zhang J, Jiang P, et al. Large-scale public data reuse
to model immunotherapy response and resistance. Genome Med. (2020) 12:21.
doi: 10.1186/s13073-020-0721-z

67. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and
comprehensive analysis of somatic variants in cancer. Genome Res. (2018) 28:1747–56.
doi: 10.1101/gr.239244.118

68. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods. (2015)
12:453–7. doi: 10.1038/nmeth.3337
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