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Background: Immune checkpoint inhibitors (ICls) have revolutionized cancer
immunotherapy, but many patients develop resistance. While the
immunosuppressive effects of ultraviolet (UV) light are well-documented, its link
to IClI resistance remains unclear.

Methods: We analyzed publicly available single-cell RNA sequencing (scRNA-
seq) datasets from ICl-treated patients to explore the relationship between UV
response (UVR) and treatment outcomes. A novel UVR gene signature (UVR.Sig)
was established using 34 scRNA-seq datasets and validated in The Cancer
Genome Atlas (TCGA) pan-cancer cohorts and 10 ICl cohorts. Key genes
(Hub-UVR.Sig) were identified via six machine learning algorithms, and breast
cancer (BRCA) subtypes were classified through consensus clustering. Biological
effects of Hub-UVR.Sig genes were confirmed in vitro.

Results: UVR.Sig was associated with ICl resistance and correlated with inhibitory
immune cell infiltration and pro-tumor pathways in pan-cancer data. The
UVR.Sig-based model achieved good predictive performance for ICl outcomes
(AUC = 0.727). In BRCA, Hub-UVRSig stratified patients into two subtypes, with
high Hub-UVR.Sig expression linked to stronger immune evasion and lower
immunogenicity. ENO2 and ATP6V1F were highly expressed in BRCA tissues, and
ENO2 was correlated with worse prognosis in BRCA patients. Knockdown of
ENO?2 reduced cell proliferation and invasion.

Conclusion: We reveal for the first time that UVR is strongly associated with ICI
resistance. The UVR.Sig feature offers the potential to identify patients who
respond to immunotherapy and to tailor BRCA treatment strategies.
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1 Introduction

Significant progress has been made in understanding the critical
role of immune checkpoint inhibitors (ICIs) in regulating the
activity of tumor-infiltrating T cells, leading to a revolutionary
shift in cancer immunotherapy (1, 2). Immunotherapeutic
modalities including ICIs, vaccination and passive cell transfer
have been extensively studied in the clinical setting of breast
cancer (BRCA), particularly in patients with triple negative breast
cancer (TNBC) (3). However, only a small subset of patients
benefited from immunotherapy, with the majority experiencing
either primary or acquired resistance (4-7). Therefore, identifying
appropriate biomarkers for ICI therapy sensitivity is crucial for
optimizing treatment options and improving patient outcomes.

Ultraviolet (UV) light at wavelengths ranging from 10 to 380
nm is a form of electromagnetic radiation. The process by which
cells or organisms undergo changes in their activity or state (such as
movement, secretion, enzyme production, and gene expression) in
response to UV exposure is the UV response (UVR). Although the
immunosuppressive effects of UVR have been well established,
direct evidence linking UVR to immunotherapy response remains
unavailable. Early studies have demonstrated that chronic UV
exposure modulates immune and antigenic responses, influencing
the carcinogenic process in the skin (8). This discovery spurred
further investigations into the mechanisms underlying UVR-
induced immunosuppression. Subsequent research revealed that
UV-induced DNA damage, reactive oxygen species generation,
Treg induction, and the release of immunosuppressive cytokines,
such as IL-10, are closely associated with UVR-mediated
immunosuppression (9, 10). Recent studies have suggested that
UVR promotes immunosuppression by regulating the expression of
immune checkpoints. UV exposure activates the IRF3 and NF-xB
pathways via HMGBI, leading to the upregulation of PD-LI
expression and reduction in tumor cell sensitivity to CD8+ T cell-
mediated cytotoxicity (11). Although Carlos et al. identified a UVR-
related gene signature that underscores the association between
UVR and inhibitory immune cells, including immature dendritic
cells, plasmacytoid dendritic cells, and M2 macrophages, within the
immunosuppressive microenvironment of uveal melanoma (12),
there is still a substantial gap in the literature regarding
the role of UVR-related genes in tumors and their impact on
immunotherapy outcomes.

The single-cell RNA sequencing (scRNA-Seq) technique
enables the dissection of complex interactions between tumor
cells and immune cells at the single-cell level, facilitating a better
understanding of the dynamic mechanisms underlying tumor-
immune interactions (13-16). This study combines scRNA-seq
technology with comprehensive bioinformatics analysis with the
aim of constructing a predictive model of ICI efficacy based on the
expression profiles of UVR-associated genes, laying the groundwork
for improved stratification and personalized treatment of tumor
patients. In addition, this study bridges a significant gap in our
understanding of the role of UVR-associated genes in BRCA.
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2 Methods and materials
2.1 Identification of UVR-related genes

UVR-related genes were collected from the Molecular
Signatures Database (MSigDB) (17). A search using the keyword
“UV Response” in MSigDB yielded 191 genes included in the
HALLMARK_UV_RESPONSE dataset (The complete gene list
was provided in Supplementary Table S1).

2.2 Pan-cancer transcriptomic dataset and
processing

The pan-cancer transcriptomic dataset from The Cancer
Genome Atlas (TCGA) was obtained from the UCSC Xena
platform (https://xenabrowser.net) (18) to investigate the
potential association between UVR-related genes and immune
suppression across 30 cancer types. To avoid interference from
the dominant effects of immune cells, three cancer types primarily
composed of immune cells were excluded: acute myeloid leukemia,
diftuse large B-cell lymphoma, and thymoma. Additionally, tumor
mutational burden (TMB) and microsatellite instability (MSI) data
were obtained from the cBioPortal database (19) for subsequent
analysis. Relevant clinical and pathological information for the 30
cancer types were downloaded using the R package TCGAbiolink
(20). Patients included in the analysis met the following criteria:
availability of mRNA expression and clinical data, completion of
standard diagnosis and treatment, and a survival time longer
than 30 d.

2.3 Acquisition and processing of ICI-
related datasets

To investigate the relationship between UVR-related genes and
immunotherapy, the R package GEOquery (21) was used to
download two scRNA-seq datasets with well-defined efficacy for
tumor immunotherapy from the GEO database. The Gene Set
Variation Analysis (GSVA) R package (22) was employed to
assess the enrichment scores of UVR-related genes in these
datasets and explore their association with ICI efficacy. These two
datasets were the skin cutaneous melanoma (SKCM, GSE115978)
(23) and the basal cell carcinoma (BCC, GSE123813) datasets (24).
After quality control (QC), the SKCM dataset GSE115978 included
32 patients, comprising 15 non-responders (NRs) who did not
benefit from immunotherapy, 16 treatment-naive patients (TN)
who did not undergo immunotherapy, and 1 responder who
responded to treatment.

Ten bulk RNA-seq datasets related to ICI treatment were
systematically collected. These datasets included five SKCM
datasets [Hugo 2016 (25), Liu 2019 (26), Gide 2019 (27),Riaz
2017 (28) and Van 2015 (29)], two urothelial carcinoma (UC)
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datasets [Mariathasan 2018 (30) and Synder 2017 (31)], one GBM
dataset [Zhao 2019 (32)], one renal cell carcinoma (RCC) dataset
[Braun 2020 (33)], and one gastric cancer (GC) dataset [Kim 2018
(34)]. The Hugo 2016 SKCM dataset consisted of 27 preprocessed
tumor samples from 26 patients, while the GBM dataset included 34
preprocessed tumor samples from 17 patients. For both datasets,
one tumor sample per patient was randomly selected for analysis.

2.4 Collection of published signatures for
comparison

Six pan-cancer signatures [INFG.Sig (35), T.Cell. Infamed.Sig
(35), PDLLSig (36), LRRC15.CAF.Sig (37), NLRP3.Sig (38) and
cytotoxic.Sig (39)] were gathered along with four SKCM-specific
signatures [CRMA.Sig (40), IPRES.Sig (25), IMS.Sig (41) and
TRS.Sig (42)]. The codes and algorithms for these 10 signatures
were obtained from their original studies, such as single-sample
gene set enrichment analysis (ssGSEA) for NLRP3.Sig and cancer
classification for ImmuneCell.Sig.

2.5 Collection and processing of scRNA-
seq data

We collected 34 scRNA-seq datasets containing stromal or
immune cells from the TISCH database (43), comprising 345
patients and 663,760 cells across 17 cancer types. These cancer
types included BCC, BRCA, multiple myeloma (MM),
neuroendocrine tumor (NET), non-small cell lung cancer
(NSCLC), ovarian serous cystadenocarcinoma (OV), pancreatic
adenocarcinoma (PAAD), SKCM, stomach adenocarcinoma
(STAD), uveal melanoma (UVM), cholangiocarcinoma (CHOL),
colorectal cancer (CRC), GBM, head and neck cancer (HNSC), liver
hepatocellular cancer (LIHC), medulloblastoma (MB), and Merkel
cell carcinoma (MCC).

The integration and analysis of scRNA-seq data were performed
using the Seurat v4.0.6 R package (44), with doublet QC conducted
using the R package Scrublet v0.2 (45). During QC, cells with fewer
than 300 detected genes and those with mitochondrial gene reads
exceeding 20% of the total reads were excluded. Data normalization
and standardization were performed using principal component
analysis (PCA) (46), and batch effects across samples were corrected
using the Harmony R package (47).

2.6 Generation of UVR.Sig

A UVR gene signature (UVR.Sig) was generated by calculating
the enrichment scores of UVR-related genes across various sScRNA-
seq datasets using the GSVA R package. Spearman’s correlation
analysis was conducted between the expression levels and
enrichment scores of UVR-related genes, marking the positively
correlated genes (Spearman r > 0.3 and p < 0.05) as Gx. The
“FindMarkers” function was used to identify differentially expressed
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genes (DEGs) in malignant tumor cells from each scRNA-seq
dataset, where genes with [logFC| > 0.30 and FDR (q value) < le-
05 were considered upregulated DEGs in malignant tumor cells and
labeled as Gy. To obtain the upregulated tumor-specific DEGs that
were positively correlated with UVR, the intersection of Gx and Gy
was considered for each dataset to generate the gene set, Gn. Finally,
the Gn genes from all datasets were combined and deduplicated to
form the UVR.Sig.

2.7 Gene Ontology and Kyoto
Encyclopedia of Genes and Genomes
pathway enrichment analysis

GO (48) analysis is commonly used for functional enrichment
studies, encompassing biological processes (BP), cellular
component (CC), and molecular function (MF). KEGG (49) is a
widely used database that provides information on genomes,
biological pathways, diseases, and drugs. GO and KEGG
enrichment analyses were performed on the UVR.Sig using the
ClusterProfiler R package (50). The selection criteria for significant
enrichment were set to adj.p < 0.05 and FDR (q value) < 0.25, with
p-values adjusted using the Benjamini-Hochberg method.

2.8 Immune-related analysis of UVR.Sig

To further evaluate the immune relevance of UVR.Sig, the
UVRSig scores were first calculated across 30 cancer types from
TCGA pan-cancer transcriptome dataset using the GSVA R package.
A correlation analysis was performed between the UVR.Sig scores and
75 published immune-related genes (51), and the results were
visualized using correlation circle plots. Next, based on the
abundance of immune cells, the tumor immune microenvironment
was determined across different cancer types. Immune infiltration
analysis was conducted using Microenvironment Cell Populations
Counter (MCPcounter) (52), which calculated absolute abundance
scores for eight immune cells and two stromal cell types from the gene
expression matrix. These cells include T cells, CD8+ T cells, cytotoxic
lymphocytes, natural killer (NK) cells, B lymphocytes, monocytes,
myeloid dendritic cells, neutrophils, endothelial cells, and fibroblasts.
The results were visualized by generating a correlation heatmap using
the “MCPcounter” function from the IOBR R package (53). Finally, all
pathways were obtained from the HALLMARK gene set using the
MSigDB database, the correlation between UVR.Sig and each pathway
was calculated, and the results were visualized using a bubble plot.

2.9 Clinical efficacy evaluation

The primary clinical outcomes included objective response rate
(ORR) and overall survival (OS). For all datasets, except Hugo 2016,
the ORR was assessed using Response Evaluation Criteria in Solid
Tumors (RECIST) version 1.1 (54). The Hugo 2016 dataset utilized
immune-related RECIST to evaluate ORR. Based on their response
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status, the participants were categorized into two groups:
responders, which included patients with complete response or
partial response, and NRs, which included patients with stable or
progressive disease.

2.10 Construction of the ICI efficacy
prediction model

First, the five ICI RNA-seq datasets with the largest patient samples
were combined to form a new, large dataset (n = 772), including RCC
(n =181), UC (n = 348), and SKCM (n = 243) datasets. The five ICI
RNA-seq datasets were Braun 2020 RCC, Mariathasan 2018 UC, Liu
2019 SKCM, Gide 2019 SKCM, and Riaz 2017 SKCM. The ComBat
method was used to eliminate batch effects among different datasets.
The merged dataset was randomly divided into two sets: a training
(80%, n = 618) and validation (20%, n = 154) set. The remaining five
ICI RNA-seq datasets were used as independent testing sets (n = 149):
Zhao 2019 GBM, Snyder 2017 UC, Van Allen 2015 SKCM, Kim 2018
GC, and Hugo 2016 SKCM datasets.

Next, the immune response prediction models were trained using
UVRSig and a training set using seven common machine learning
(ML) algorithms. The seven ML algorithms were: Naive Bayes,
Random Forest (RF), Support Vector Machine, AdaBoost
Classification Trees, Boosted Logistic Regressions, k-Nearest
Neighbors, and the Cancerclass algorithms. For each ML algorithm
with parameters, except Cancerclass, hyperparameter tuning was
performed using five-fold cross-validation to optimize the model
performance. To ensure robustness, the optimization process was
repeated 10 times with different random seeds for each resampling.
For the parameter-free cancer-class algorithm, the entire training set
was directly used to train the model. Subsequently, the area under the
curve (AUC) values of the seven models in the validation set were
compared to identify the most effective ML algorithm for the final
UVR-related ICI efficacy prediction model. An AUC > 0.5 indicated a
positive association between molecular expression and event
occurrence, and the closer the AUC was to 1, the better the
diagnostic performance. Specifically, an AUC between 0.5 and 0.7
suggests low accuracy, between 0.7 and 0.9 indicates moderate
accuracy, and above 0.9 indicates high accuracy.

To further compare the predictive performance of UVR Sig, its
AUC values were evaluated against six previously published ICI
response signature-related gene sets (PDL1.Sig, LRRC15.CAF.Sig,
INFG.Sig, T.cell.infamed.Sig, NLRP3.Sig, and Cytotoxic.Sig) across
the training, validation, and five independent test sets. We showed
AUC from the training, validation, and three best-performing
independent test sets (Synder 2017 UC, Kim 2018 GC, and Hugo
2016 SKCM).

2.11 Collection and processing of CRISPR
datasets

To identify the potential therapeutic targets for UVR.Sig, data from
seven published CRISPR/Cas9 screening studies that assessed the effects
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of individual gene knockouts on tumor immunity were gathered. These
studies included Freeman 2019 (55), Kearney 2018 (56), Manguso 2017
(57), Pan 2018 (58), Patel 2017 (59), Vredevoogd 2019 (60) and Lawson
2020 (61). Based on the model cell lines and the applied treatment
conditions, data from the seven CRISPR studies were divided into 17
datasets. CRISPR analysis included cell lines from SKCM, GBM, CRC,
and RCC. These data were used to identify genes that were highly likely
to regulate lymphocytes and affect ICI response across various datasets.

CRISPR screening was performed by performing whole-
genome CRISPR-Cas9 knockouts in various cancer cell lines.
Screening was performed in two environments: in vitro, where
different cancer cell lines were cultured with and without cytotoxic
T lymphocytes (CTLs), and in vivo, where different cancer cell lines
were implanted in immunodeficient or immunocompetent mice.
Following these treatments, RNA-seq was performed to evaluate the
abundance of the corresponding gene-specific single guide RNA
(sgRNA). To measure the impact of gene knockouts on CTLs
pressure or anti-tumor immunity, the logFC values between
different groups of cell lines were calculated. Normalized z-scores
were computed from the logFC values to eliminate batch eftects and
allow for comparisons across different CRISPR datasets. Lower z-
scores indicated a better immune response after gene knockout.
Genes were ranked based on the average z-scores from the 17
datasets, with lower z-scores indicating a higher ranking. Genes
with the lowest z-scores were considered potential immune
resistance genes.

Additionally, to further assess the predictive value of UVR.Sig, it
was compared with previously identified signatures used to predict
ICI response, including five pan-cancer signatures (INFG. Sig,
T.cell.infamed.Sig, PDL1.Sig, LRRC15.CAF.Sig, Cytotoxic.Sig) and
four SKCM-specific features (CRMA.Sig, IPRES.Sig, IMS.Sig,
and TRS.Sig).

2.12 Construction of prognostic risk
models using ML algorithms

To explore the relationship between UVR.Sig and the prognosis
of patients with cancer, a prognostic risk model of UVR.Sig was
constructed using six ML algorithms: Bagged Trees, Bayesian,
Learning Vector Quantization (LQV), Wrapper (Boruta), Least
Absolute Shrinkage and Selection Operator (LASSO), and RF.
Finally, the results of the different algorithms were compared.
Genes that appeared in at least four ML algorithms were selected
as Hub-UVR.Sig. Kaplan-Meier (KM) analysis was conducted
using the R package survival (62), and KM curves for both the
training and validation cohorts were generated based on risk scores
to compare OS differences between the high- and low-risk groups.

2.13 Panoramic analysis of Hub-UVR.Sig
The Hub-UVR Sig enrichment scores were calculated using the

ssGSEA algorithm from the R package GSVA based on TCGA pan-
cancer transcriptomic dataset. This analysis aimed to explore the
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correlation between Hub-UVR.Sig and immune cell infiltration
abundance across 30 different cancer types. Subsequently, the
relationship between Hub-UVR.Sig and MSI was investigated.
Finally, to evaluate the prognostic significance of Hub-UVR.Sig in
patients with cancer, the correlation between OS and Hub-UVR.Sig
was analyzed across various cancer types and KM curves were
constructed. Based on the results of the correlation and KM
analyses, we focused on specific cancer types.

2.14 Construction and correlation analysis
of BRCA subtypes

Consensus Clustering (63) is a resampling-based algorithm
used to determine subgroup membership and validate clustering
accuracy. Through multiple iterations on the subsamples of the
dataset, this method introduces sampling variability, offering
stability and metrics for selecting the optimal clustering
parameters. Using the consensus clustering method from the R
package ConsensusClusterPlus (64),different subtypes of BRCA
were identified based on Hub-UVR.Sig. During this process, the
number of clusters was set between two and six, with 1000
resampling iterations, extracting 80% of the total samples each
time (clusterAlg = KM, distance = Euclidean).

To obtain Tumor Immune Dysfunction and Exclusion (TIDE)
scores for different subtypes of BRCA, the TIDE algorithm (65, 66) was
applied to the expression matrix of BRCA samples. Differences in TIDE
scores were calculated, and differences in MSI and TMB scores were
assessed among BRCA subtypes using the Wilcoxon rank-sum test.

2.15 Somatic mutation analysis of BRCA
subtypes

The “Masked Somatic Mutation” data from TCGA website was
selected as the somatic mutation data for BRCA samples and
preprocessed using VarScan software. The R package maftools
(67) was used to visualize the somatic mutation landscape in the
different BRCA subtypes.

2.16 Immune infiltration analysis of BRCA
subtypes

CIBERSORT (68), utilizing linear support vector regression, was
applied to deconvolute the transcriptome expression matrix and
estimate the composition and abundance of immune cells in
mixed-cell populations. By employing the CIBERSORT algorithm
with the LM22 signature gene matrix and filtering the data with
immune cell enrichment scores greater than zero, a detailed immune
cell infiltration matrix was obtained. The R package ggplot2 was used
to create grouped comparison plots to illustrate the differences in
immune cell expression among different BRCA subtypes.
Additionally, the R package pheatmap was used to generate
heatmaps displaying the correlation analysis results between the
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immune cells and Hub-UVR.Sig across BRCA subtypes. Finally,
the correlation between Hub-UVR.Sig and immune cells (p < 0.05)
were selected, and correlation scatter plots for the top two positive
and top two negative correlations were plotted.

2.17 Cell culture, transfection and infection

The human BRCA cell lines MDA-MB-231 and BT549 were
purchased from ATCC. Cells were cultured in high-glucose DMEM
(Procell, Wuhan, China) supplemented with 10% fetal bovine
serum (FBS) (Gibco, USA) and 100 U/mL penicillin/streptomycin
(Procell, Wuhan, China) in a sterile incubator at 37 °C with 5%
CO2. Tumor cells were seeded into 6-well plates and incubated
overnight before transfection with small interfering RNA (siRNA).
According to the manufacturer’s protocol, siRNA and negative
control (siNC) were transfected into tumor cells using Lipo2000
reagent (Invitrogen, USA). The synthetic sequences for siRNA
targeting ENO2 were as follows:

siENO2-1 forward: 5'- GCAACUGUCUGCUGCUCAAGG -3'
siENO2-1 reverse: 5'- UUGAGCAGCAGACAGUUGCAG -3°
siIENO2-2 forward: 5'- CGAUGUGUCUGUAUUUCAUGU -3
siENO2-2 reverse: 5°- AUGAAAUACAGACACAUCGUU -3°
siNC forward: 5'- UUCUCCGAACGUGUCACGUTT -3
siNC reverse: 5'- ACGUGACACGUUCGGAGAATT -3*

2.18 RNA isolation and quantitative real-
time RT-PCR

Breast tumors and corresponding paracancerous tissues were
collected from six patients from the Department of Breast Surgery at
the Second Xiangya Hospital of Central South University. This study
was approved by the Ethics Committee of the Second Xiangya
Hospital of Central South University (Ethical approval number:
K005), and all participants provided written informed consent.
Total RNA was extracted from the cells using RNAex Pro reagent
(AG21101, Hunan, China) according to the instructions. The
concentration and quality of RNA were detected using a
spectrophotometer. Reverse transcription was performed using Evo
M-MLYV kit (AG11705, Hunan, China) according to the instructions.
qPCR was performed using 2X Universal SYBR Green Fast qPCR
Mix (RK21203, Wuhan, China) and Gentier 96E/96R real-time PCR
system (Tianlong, Shanxi, China) (each sample was performed in
triplicate). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
was used as an internal reference gene, and the relative expression
level was calculated by the 2A-AACt method, and three replicates
were tested for each sample. The primers were:

GAPDH forward primer:5- TGACCTGCCGTCTAGAAAA
ACCT -3’
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GAPDH reverse primer:5'- GCTGTTGAAGTCAGAGGAGA
CCA -3’
ENO2 forward primer:5'- TGCCTGGTCCAAGTTCAC
AGC -3’
ENO?2 reverse primer:5’- CACTGCCCGCTCAATACGTT -3’

2.19 Cell function experiment

The proliferative capacity of tumor cells was assessed using
CCK-8 assay. Migration, invasive capacity of tumor cells was
assessed by wound healing and Matrigel-coated transwell,
respectively. In the CCK-8 experiments, cells were seeded into 96-
well plates at a density of 1.5 x 10* cells per well, and cell
pfroliferation was evaluated daily for 4 consecutive days using the
Cell Counting Kit-8 (NCM Biotech, Suzhou, China). Optical
density (OD) was measured at 450 nm. In wound healing assays,
cells were seeded in 6-well plates at a density of 4 x 10A° per well
and grown to confluence. After removal of unadhered cells by
washing with phosphate-buffered saline (PBS), a sterile 20 uL
pipette tip was used to create a scratch wound in each well.
Images were taken in the same area at 0 h and 48 h, respectively,
and the distance of wound closure was measured to show cell
migration ability. As for Matrigel-coated transwell, cells (1 x 10/4)
were seeded in serum-free medium in 8 um (Corning Incorporated,
3464, USA) upper chambers coated with Matrigel (Yeason,
40183ES08, Shanghai, China) and lower chambers with medium
containing 20% FBS. After 24 hours of incubation, the cells were
fixed with formaldehyde. Unattached cells in the upper chamber
were carefully wiped away, and cells attached to the membrane were
stained and counted with crystal violet.

2.20 Statistical analysis

All data processing and analyses in this study were conducted
using R software (Version 4.2.0) except for the cell experiments.
Continuous variables are presented as mean * standard deviation.
Comparisons between the two groups were performed using the
Wilcoxon rank-sum test. Unless otherwise specified, correlations
between different molecules were calculated using Spearman
correlation analysis. Statistical analyses of cellular experiments
were performed using GraphPad Prism 9. Data are expressed as
mean + SD of at least three independent experiments. Statistical
significance was analyzed by Student’s t-test (two-tailed). p-values
less than 0.05 were considered statistically significant.

3 Results
3.1 Flow chart

The flow of this study is shown in Figure 1.
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3.2 Negative correlation between UVR-
related genes and ICI efficacy

The results from both datasets indicated a significant
enrichment of UVR-related genes in malignant tumor cells
(Figures 2A-C). In the SKCM dataset (GSE115978), the UVR
scores of the immunotherapy-effective group (R) were
significantly lower than those of the immunotherapy-ineffective
group (NR) (p < 0.001) and treatment-naive group (TN) (p <
0.001). Furthermore, the UVR scores of the NR group were
significantly lower than those of the TN group (p < 0.001;
Figure 2D). Similarly, in the BCC dataset (GSE123813), the UVR
scores of the R group were significantly lower than those of the NR
group (p < 0.001; Figure 2D). These findings suggest a negative
correlation between UVR-related genes and ICI efficacy.

3.3 Screening and enrichment analysis of
UVR-related genes

Through the analysis of the aforementioned two datasets, a
significant association was identified between UVR-related genes
and ICI resistance. Consequently, we hypothesized that the
expression levels of UVR-related genes in patients could
potentially predict the effectiveness of immunotherapy. We
obtained 38 up-regulated tumor-specific DEGs in 34 scRNA-Seq
datasets that were positively associated with UVR: ATF3, BTG3,
FOS, FOSB, JUNB, NFKBIA, NR4A1, RHOB, SOD2, EPCAM, GGH,
IGFBP2, CXCL2, BTGI, DNAJAI, DNAJB1, ALDOA, AP2S],
CDKNIC, ENO2, FEN1, HSPA2, OLFM1, PPIF, BTG2, ICAM]I,
SQSTM1, AMDI, ATP6VI1F, BSG, CNP, CREG1, CYB5R1, MMP14,
PPTI, RPN, SELENOW, STIPI (Figure 3A).

To analyze the BP, MF, and CC, and pathways associated with
UVRSig, GO and KEGG enrichment analyses were performed, with
detailed results provided in Supplementary Table S2. The analyses
revealed that UVR.Sig was primarily enriched in the following
biological processes: response to temperature stimuli, mechanical
stimuli, cold, and metal ions; and skeletal muscle cell differentiation.
In terms of CC, UVR.Sig was enriched in melanosomes, pigment
granules, sperm heads, transcription regulator complexes, and
membrane rafts. MF analysis indicated that UVR.Sig was involved
in heat shock protein binding, ATPase activator activity, chaperone
binding, glycolipid binding, and unfolded protein binding.
Furthermore, UVR.Sig was significantly enriched in pathways
related to TNF signaling, osteoclast differentiation, lipid and
atherosclerosis, RNA degradation, and rheumatoid arthritis
signaling pathways. The results of the GO and KEGG enrichment
analyses were visualized using bar charts (Figure 3B).

3.4 Immune correlation analysis of UVR.Sig

The correlation between UVR.Sig and the 75 immune-related
genes was analyzed. The results indicated (Figure 4A) that UVR.Sig
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Flow chart for the comprehensive analysis of an ultraviolet response signature (UVR.Sig).

was significantly and positively correlated with most immune genes,
suggesting its potential key role in the regulation of immune
responses. Subsequently, the infiltration of immune cells across
various cancers was assessed, which revealed that the degree of
immune cell infiltration associated with UVR.Sig varies among
different cancer types (Figure 4B). Specifically, in SKCM, HNSC,
and mesothelioma (MESO), the UVR.Sig showed a predominantly
negative correlation with immune cell infiltration, whereas a
positive correlation was observed for CHOL, lower grade glioma
(LGG), and kidney chromophobe (KICH). Finally, we examined the
relationship between the UVR.Sig and HALLMARK pathways to
explore whether immunosuppressive biological functions were
upregulated in tumors with high UVR. Sig expression. The results
indicated significant enrichment of pathways, such as angiogenesis,
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epithelial-mesenchymal transition (EMT), Hedgehog signaling, IL-
2-STAT signaling, IL-6-JAK-STAT signaling, and inflammatory
response in tumors with high UVR.Sig expression (Figure 4C).
These findings suggest that UVR.Sig regulates immunosuppressive
functions within the TME, thereby promoting tumor aggressiveness
and resistance.

3.5 Construction of immune efficacy
prediction model

To investigate the relationship between UVR.Sig and the
efficacy of ICIs, we collected 10 RNA-Seq datasets with clearly
defined efficacy of immunotherapy, along with their clinical
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***indicates a p value < 0.001, denoting highly statistically significant results.
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UVR, ultraviolet response; UVR.Sig, ultraviolet response signature.

information. All cohorts were divided into a training set (n=618), a
validation set (n=154), and five independent testing sets (n=149).
First, we constructed immune efficacy prediction models using 7
ML algorithms in the training set, performing 10 rounds of 5-fold
cross-validation for parameter optimization. Subsequently, by
comparing the AUC values of the 7 models in the validation set,
we identified the best-performing model. The results indicated that
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the model constructed using the Cancerclass algorithm
outperformed the others, achieving the highest AUC value of
0.727, and was selected as the UVR.Sig model (Figures 5A, B).
Then, we compared the predictive capability of UVR.Sig with 6
other signatures (INFG.Sig, T.cell.infamed.Sig, PDL1.Sig,
LRRC15.CAF.Sig, NLRP3.Sig, and Cytotoxic.Sig) across the
training, validation, and testing sets. The results demonstrated
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UVR.Sig with immune cell infiltration across different cancer types. (C) Correlation dot plot of UVR.Sig with HALLMARK pathways across different
cancer types. Red indicates positive correlation and blue indicates negative correlation. UVR.Sig, ultraviolet response signature.

that UVRSig exhibited the best predictive performance in the
training set, validation set, and Hugo 2016 SKCM, Snyder 2017
UC, and Kim 2018 GC of the testing sets (Figure 5C). In contrast,
most previously published signatures only achieved high stability in
one or two datasets, while their performance in other external
cohorts was considerably unsatisfactory, likely due to poor
generalizability. This underscores the potential of UVRSig as a
pan-cancer predictive model for ICI response. Finally, the heatmap
(Figure 5D) shows the performance of individual signatures in
predicting ICI efficacy across different datasets, further confirming
the stability of UVR.Sig.
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3.6 CRISPR analysis of UVR.Sig

Gene-knockout immune response data were systematically
collected from seven CRISPR datasets and further categorized
into 17 distinct datasets based on the model cells and treatment
conditions utilized in each cohort. The 17 CRISPR datasets
contained 22,505 genes. Initially, the genes were ranked according
to their average Z-scores, with the top-ranking genes identified as
potential immune resistance genes, indicating that their knockouts
may enhance anti-tumor immunity. Conversely, genes that ranked
lower were classified as immune sensitive, which may inhibit the
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biological functions of anti-tumor immunity upon knockout
(Figure 6A). Specifically, the top 1%, 2%, and 3% corresponded to
225, 450, and 675 genes, respectively. Subsequently, the percentage
of UVR.Sig among the top genes was compared to that of nine other
ICI response signatures (INFG.Sig, T.cell.infamed.Sig, PDL1.Sig,
LRRC15.CAF.Sig, Cytotoxic.Sig, CRMA.Sig, IPRES.Sig, IMS.Sig,
and TRS.Sig). The results indicated that UVR.Sig occupied a
higher percentage of the top genes than the other signatures
(Figure 6B). Notably, among the top 20% of genes, six genes from
the UVR.Sig were identified: DNAJAI, STIP1, JUNB, EPCAM,
OLFM1, and NR4Al. Validation of the ICI resistance
characteristics of these six UVR.Sig genes across 17 CRISPR
datasets demonstrated their potential as predictive targets for
immunotherapy (Figure 6C).

3.7 ML-based selection of Hub-UVR.Sig

To further refine the UVR.Sig, six ML algorithms were
calculated to analyze the relationship between UVR.Sig and ICI
efficacy based on the training set: the Wrapper (Boruta) (Figure 7A),
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Bayesian (Figure 7B), Bagged Trees (Figure 7C), RF (Figure 7D),
LASSO (Figure 7E), and LQV (Figure 7F). The intersection of
results from different ML algorithms was obtained (Figure 7G),
selecting genes that appeared in at least four ML algorithms as Hub-
UVRSig, including ATF3, ATP6VIF, BTGI, BTG3, ENO2, FOS,
and ICAMI.

To assess the prognostic value of Hub-UVR.Sig, a multivariate
Cox regression analysis was performed on the training and
validation sets. Risk score was calculated for each sample based
on the coefficients of the Cox regression model, and samples were
classified into high- and low-risk groups using the “surv_categorize”
function, according to the optimal cutoff-value. Risk factor plots
were used to visualize the relationships among samples
(Figures 8A, C), and Kaplan-Meier curve analysis was performed
to evaluate the OS (Figures 8B, D). The results showed that the low-
risk group had significantly better OS in both the training and
validation sets compared with the high-risk group (log-rank p <
0.01). Finally, the chromosomal locations of the seven Hub-
UVR.Sig genes were analyzed using the RCircos R package, and a
chromosome location map was generated (Figure 8E). The map
revealed that BTG1 and ENO2 were located on chromosome 12.
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3.8 Panoramic analysis of Hub-UVR.Sig

The enrichment scores of Hub-UVR.Sig in the TCGA dataset of
30 different cancer types were evaluated using ssGSEA (Figure 9A).
The correlation between Hub-UVR Sig and immune cell infiltration
was examined in various cancer types. Hub-UVR.Sig showed a
significant positive correlation with infiltration of activated
dendritic cells, resting dendritic cells, M1 macrophages, M2
macrophages, activated mast cells, and neutrophils. Conversely, it
exhibited a significant negative correlation with the infiltration of
resting mast cells and naive CD4+ T cells (Figure 9B).

Next, the correlation between Hub-UVR.Sig and MSI was
assessed across the 30 cancer types. Hub-UVR.Sig showed the
strongest positive correlation with MSI in BRCA and COAD and
the strongest negative correlation with ESCA (Figure 9C).
Furthermore, the relationship between the expression levels of
Hub-UVR.Sig and MSI was determined in different cancer types.
The results revealed that ICAMI exhibited the strongest negative
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correlation with MSI in CHOL, whereas ENO2 showed the
strongest positive correlation with MSI in COAD (Figure 9D).

Finally, the prognostic ability of Hub-UVR.Sig was analyzed
across 30 different cancer types in TCGA cohort. The results of
multivariate Cox regression and survival analyses indicated that in
BRCA, patients with high-risk scores had significantly worse OS
than those with low-risk scores (p < 0.01; Figure 9E), suggesting that
UVR.Sig may serve as a potential marker for poor prognosis in
patients with BRCA.

3.9 Construction and correlation analysis
of BRCA subtypes

Given the excellent predictive capability of Hub-UVR.Sig for
OS in patients with BRCA, we focused our investigation on its
relationship with BRCA. Based on the Hub-UVR.Sig expression
levels in TCGA-BRCA samples, a consistency clustering analysis
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Hub-UVR.Sig and Kaplan—Meier curve analysis. (A) Risk factor plot of the Hub-UVR.Sig associated with patient prognosis in the training set.
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was performed using the R package ConsensusClusterPlus,
ultimately identifying two subtypes: BRCA subtypes A (Cluster 1)
and B (Cluster 2) (Figures 10A, B). Subtype A comprised 591
samples, whereas subtype B comprised 484 samples. The PCA
results revealed significant differences between the two subtypes
(Figure 10C). Further analysis of TIDE (Figure 10D), TMB
(Figure 10E), and MSI scores (Figure 10F) in the different BRCA
subtypes indicated that there were statistically significant differences
in TIDE and TMB scores for the different subtypes, with subtype A
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showing higher TIDE scores and lower TMB scores compared with
subtype B (p < 0.05).

3.10 Somatic mutation analysis of BRCA
subtypes

Subsequently, the mutation frequencies were analyzed in the
different BRCA subtypes. The results indicated that the TP53 gene
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abundance of immune cell infiltration in various cancer types. (C) Correlation between Hub-UVR.Sig and MSI across 30 cancer types. (D) Relationship
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values between 0.3 and 0.5 indicate weak correlation, values between 0.5 and 0.8 indicate moderate correlation, and values above 0.8 indicate
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exhibited the highest mutation frequency in subtype A, reaching
37%, while in subtype B, the PIK3CA gene had the highest mutation
frequency at 40% (Figure 11A). Furthermore, the biological and
functional changes induced by mutations were assessed in different
subtypes. In subtype A, mutations primarily affected the functions
of the TGF-B and PI3K signaling pathways (Figure 11B). In
contrast, in subtype B, the mutations mainly affected the RTK-
RAS and PI3K signaling pathways (Figure 11C).

Finally, based on mutation data and the Drug-Gene Interaction
database (DGIdb), we explored the gene druggability and drug-
gene interactions in patients from different subtypes. As shown in
Figures 11D, E, in subtype A (Cluster 1), the predicted drugs were
potentially targeted at CLINICALLY ACTIONABLE genes
including ARIDIA, CDHI1, GATA3, KMT2C, and MAP3K1; In
subtype B (Cluster 2), the predicted drugs were mainly associated
with the DRUGGABLE GENOME, involving CDH1, DMD, DST,
HMCNI1, and MAP3KI.

3.11 Immune analysis of BRCA subtypes

The differences in immune cell infiltration were examined
across BRCA subtypes. Using the CIBERSORT algorithm, the
correlation between 22 immune cell types was assessed within
various subtypes and a bar chart illustrating the proportion of
immune cells in each BRCA subtype was generated (Figure 12A).
The results indicated that the enrichment scores for all 22 immune
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cell types were greater than zero. A grouped comparison chart
(Figure 12B) was used to highlight the differences in immune cell
infiltration abundance among BRCA subtypes. Thirteen immune
cell types displayed statistically significant differences in expression
levels across subtypes (p < 0.05), including naive B cells, plasma
cells, CD8+ T cells, naive CD4+ T cells, resting memory CD4+ T
cells, follicular helper T cells, Tregs, monocytes, M1 macrophages,
M2 macrophages, resting dendritic cells, activated mast cells, and
neutrophils. Figure 12C presents a heatmap of the infiltration
abundance of various immune cells across different BRCA subtypes.

Finally, the correlation between Hub-UVRSig and various immune
cell infiltrations in BRCA samples were analyzed, focusing on the two
pairs with the highest positive and negative correlations (Figures 12D-
G). The results indicated a positive correlation between ICAMI and M1
macrophage infiltration scores (r = 0.36; Figure 12D). Additionally,
BTG1 was positively correlated with resting memory CD4+ T cell
infiltration scores (r = 0.24) (Figure 12E). Conversely, ICAM1
exhibited a negative correlation with plasma cell infiltration scores (r =
-0.24; Figure 12F), while BTG3 demonstrated a negative correlation with
resting mast cell infiltration scores (r = -0.23; Figure 12G).

3.12 Expression and function of Hub-
UVR.Sig in BRCA

We examined the mRNA expression levels of Hub-UVR.Sig
genes in tumor tissues and paired adjacent normal tissues from six
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breast cancer patients. The results demonstrated that ENO2 and
ATP6VIF were significantly upregulated in tumor tissues
(Figure 13A). Further analysis of TCGA database revealed that
ENO2 expression was markedly higher in breast cancer tissues
compared to normal breast tissues (Figure 13B). Kaplan-Meier
Plotter database (69) indicated that high ENO2 expression was
significantly associated with worse OS in breast cancer patients
(HR = 1.27, 95% CI = 1.05-1.55, Figure 13C).

To investigate the biological functions of ENO2, we conducted
experiments using TNBC cell lines MDA-MB-231 and BT549. RT-
qPCR confirmed that ENO2-specific siRNA effectively knocked
down its expression (Figure 13D). CCKS8 assays demonstrated
that silencing ENO2 reduced the proliferative capacity of tumor
cells (Figure 13E). Furthermore, ENO2 knockdown inhibited both
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the migration and invasion abilities of the cells (Figures 13F, G).
Immune infiltration analysis based on the Timer database (70)
showed that ENO2 expression levels were negatively correlated with
the infiltration of CD8+ T cells, naive B cells, activated NK cells, and
MI macrophages (Figure 13H). Analysis of two GEO datasets
(GSE268752 and GSE229422) demonstrated that ENO2
expression was significantly elevated in ICI-treated mice with
BRCA compared to control groups (Figure 13I).

4 Discussion

In this study, we employed the GSVA method to evaluate UVR
enrichment scores in malignant cells and found a negative
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FIGURE 12

Immune analysis by CIBERSORT algorithm. (A) Bar chart showing the proportion of immune cells in different BRCA subtypes. (B) Comparison of
immune cell infiltration abundance across BRCA subtypes. (C) Heatmap illustrating the abundance of various immune cell infiltrations in different
BRCA subtypes. (D—G) Scatter plots displaying the highest positive and negative correlations between Hub-UVR.Sig and immune cell infiltrations.
BRCA, breast cancer; UVR.Sig, ultraviolet response signature. *p<0.05, **p < 0.01, ***p < 0.001, ns: not significant.

correlation between UVR scores and ICI responses in two scRNA-
seq cohorts (SKCM and BCC). Based on these findings, we
hypothesized that this negative correlation may be a common
phenomenon across various cancer types. To test this hypothesis,
we conducted a large-scale comprehensive analysis, identifying a set
of genes, termed UVR.Sig, that were highly expressed in malignant
cells and significantly positively correlated with UVR scores in 34
scRNA-seq datasets. Rigorous validation of UVR.Sig demonstrated
that it outperformed multiple previously used models in predicting
ICI responses across bulk RNA-seq independent immunotherapy
cohorts. Moreover, the Hub-UVR.Sig, further refined through
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multiple machine learning methods, showed strong prognostic
value for ICI-treated patients, especially in BRCA patients. Based
on Hub-UVR.Sig, two distinct BRCA subtypes were identified, each
exhibiting unique molecular mutation profiles and immune
characteristics, providing a critical foundation for the
development of personalized treatment strategies. Finally, by
analyzing clinical tissue samples from BRCA patients, we found
that ENO2 and ATP6V1F, two genes from the Hub-UVR Sig, were
highly expressed in tumor tissues. High ENO2 expression was
associated with worse OS in BRCA patients and negatively
correlated with the infiltration of cytotoxic immune cells.
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Moreover, knockdown of ENO2 significantly suppressed the
proliferation, migration, and invasion of TNBC cells.

UV light has been shown to alter the expression of cytokines,
chemokines, and cell surface receptors in cells (71-73), thereby
modulating various interactions between tumors and the immune
system. These interactions may result in either immune activation
or immune suppression. For example, UV light can stimulate BRCA
cells to secrete pro-inflammatory chemokines, leading to the
recruitment of antitumor effector T cells (73). In a CT26 colon
cancer mouse model, a single high-dose radiation exposure induced
a durable complete remission mediated by CD8" T cell infiltration
(74). Conversely, studies have also shown that UV exposure can
cause a variety of DNA lesions—including strand breaks, base
damage, and cross-linking—which subsequently induce apoptosis
in radiation-sensitive tissues such as lymphocytes and result in
systemic immunosuppression (75, 76). Furthermore, tumor-
associated macrophages exposed to radiation express higher levels
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of iINOS, arginase-I, and COX-2, thereby promoting tumor growth
(77). Therefore, UVR may affect the immune microenvironment in
a complex manner, and elucidating the molecular mechanisms by
which UV light influences tumor biology is of critical importance.

Our study showed that UVR.Sig, consisting of 38 genes, was
mainly enriched in the TNF signaling pathway. In the TME,
activated immune cells, such as macrophages and T lymphocytes,
fibroblasts, and cancer cells secrete large amounts of TNF-o. This
cytokine accumulates within the tumor, triggering and maintaining
inflammatory responses that promote tumor growth and
progression (78, 79). The TNF-o receptor, TNFR2, is highly
expressed in several tumor types, including BRCA, cutaneous T-
cell lymphoma, and colorectal cancer (80-82). Overexpression of
TNFR2 not only enhances tumor cell resistance to apoptosis, but
also inhibits anti-tumor immune responses, thereby facilitating
immune evasion (83). Further analysis revealed that UVR.Sig was
positively correlated with pathways, such as EMT, hypoxia, IL-6-
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JAK-STATS3, and inflammatory responses. Hypoxia is a hallmark of
the TME (84), that suppresses the activity of T and NK cells,
enhances Treg function, and upregulates the expression of immune
checkpoint molecules, such as PD-L1 (85, 86). Additionally, STAT3
activation not only upregulates PD-L1 expression (87), but is also
associated with the expansion and functional enhancement of
various immunosuppressive cells, which secrete factors, such as
IL-10, that inhibit effector T cell activity, thereby weakening anti-
tumor immune responses (88, 89). Collectively, the association
between UVR.Sig and these pathways suggested its potential role
in promoting immunosuppression, immune evasion, and the
deterioration of the TME.

UVR.Sig was negatively correlated with CD8+ T cells, NK cells,
CTLs, and B cells in almost all tumor types, while showing a positive
correlation with neutrophils, endothelial cells, and fibroblasts. As
key CTLs, CD8+ T and NK cells play critical roles in the immune
system by directly killing infected or cancerous cells, thus protecting
the body from pathogens and tumors (90-94). Similarly, B cells in
the TME recognize tumor-specific antigens and produce antibodies
that neutralize tumor cells, thereby preventing their growth and
spread of tumor cells, which is closely related to improving the
effectiveness of immunotherapy (95, 96). In contrast, a high
infiltration of neutrophils, endothelial cells, and fibroblasts in the
TME typically indicates immunosuppression (97-102). Tumors
with high UVR.Sig exhibited pronounced immunosuppressive
characteristics, making them less responsive to ICI therapy. This
highlights the potential of UVR.Sig as a valuable predictive marker
of immunotherapy response.

Using the optimal Cancerclass algorithm, UVR.Sig was identified
as a novel signature that effectively predicted ICI response across
various cancer types, including RCC, UC, SKCM, GC, and GBM. To
validate its predictive power, UVR.Sig was systematically compared
with six widely used pan-cancer signatures. The results demonstrated
that UVRSig exhibited superior performance (AUC = 0.727) and
consistently outperformed other pan-cancer signatures across
multiple cancer types and independent cohorts, likely due to its
stronger generalizability. In addition, compared with other
molecular markers, UVR.Sig may provide a more comprehensive
reflection of the overall immune status of the tumor
microenvironment. In contrast, PD-L1 primarily reflects surface
molecule expression, TMB indicates mutation burden, and MSI
reflects genomic stability (103); these markers do not fully capture
the complexity of immune cells and signaling pathways within the
microenvironment. Therefore, UVR.Sig could represent a
complementary tool with potential clinical value in assessing the
immunological landscape.

Given the outstanding predictive ability of UVR.Sig for
immunotherapy outcomes, the CRISPR dataset was used to identify
potential drug targets. This strategy not only revealed novel therapeutic
targets but also supported personalized medicine, enabling more
precise treatments to enhance efficacy. Based on the correlation
between genes and immune response, the genes were ranked and
UVRSig genes closely associated with immune resistance, including
DNAJAI, STIP1, JUNB, EPCAM, OLFM]I, and NR4A 1, were identified.
DNAJA1, a member of the heat shock protein 40 (Hsp40) family, plays
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a critical role in regulating B cell function by enhancing the expression
and activity of activation-induced cytidine deaminase in mice (104).
Additionally, DNAJA1 prevents proteasomal degradation of unfolded
mutant p53, thereby promoting tumor metastasis (105). JunB, a
member of the activator protein 1 (AP-1) transcription factor family,
regulates Treg differentiation, and promotes CD25 expression and IL-2
production (106, 107). JunB plays a pivotal role in immunosuppression
and may be a critical factor in predicting adverse reactions to
immunotherapy (108). EpCAM, a marker of circulating tumor and
cancer stem cells, is expressed in various cancer types (109, 110). It
inhibits the activity of CD8+ T cells and upregulates PD-L1 expression,
making it a potential immunotherapy target in cancers such as BRCA,
COAD, and oral squamous cell carcinoma (111-113). In conclusion,
these genes represent potential therapeutic targets across various cancer
types, and further investigation of these core UVR.Sig genes will
contribute to the development of more effective combination
strategies for immunotherapy.

To enhance the prognostic efficacy of UVR.Sig, ML algorithms
were employed to identify seven hub genes, termed as Hub-UVR Sig,
including ATF3, ATP6VIF, BTG1, BTG3, ENO2, FOS, and ICAM]I.
FOS and JUNB can be directly regulated by p53—p53 binds to the
response elements in the promoter region of FOS and promotes its
expression. FOS then forms a heterodimer with JUNB, which activates
the transcription of downstream immunosuppression-related genes
(114). This mechanism may, at least in part, explain the
immunosuppressive effect of Hub-UVR.Sig. We observed that Hub-
UVRSig was positively correlated with activated mast cells and
negatively correlated with resting mast cells. Although mast cells are
traditionally linked to allergic responses, recent studies have shown
that activated mast cells play a critical role in tumor progression and
are often associated with poor prognosis (115-117). The mechanisms
involved include immune suppression, angiogenesis promotion, and
extracellular matrix degradation (118, 119). This suggests that Hub-
UVR Sig may also be involved in the regulation of inflammatory and
immune responses by affecting mast cell activation. Risk scores
generated based on UVR Sig are effective in identifying patients with
BRCA, and patients with higher risk scores typically exhibit worse OS.
This led us to shift our focus to BRCA to further explore the potential
value of Hub-UVR Sig in this context.

Using consensus clustering analysis, two BRCA subtypes that
exhibited significant differences in their molecular mutation
characteristics and immune infiltration profiles were identified.
Subtype A (Cluster 1) had a high mutation frequency in TP53
(37%), whereas Subtype B (Cluster 2) had a high mutation
frequency in PIK3CA (40%). TP53 mutations are the most
common in BRCA, occurring in 30-35% of all BRCA cases and
approximately 80% of triple-negative breast cancer cases (120, 121).
Strong evidence has linked TP53 mutations to poor disease-free
survival and OS in BRCA (122). PIK3CA mutations are present in
25-46% of BRCA cases and are associated with chemotherapy
resistance, poor prognosis, and reduced OS (123). Additionally,
Subtype A has a high TIDE score and low TMB score, suggesting a
strong immune escape potential and low immunogenicity, potentially
leading to a poor response to immunotherapy (65, 124). It should be
noted that the consensus clustering in this study was performed at the
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molecular level and does not fully correspond to pathological BRCA
subtypes. Cluster 1 and Cluster 2 were identified through a systematic
molecular-level exploration of Hub-UVR.Sig using consensus
clustering, whereas pathological classification is mainly based on
tumor morphology and conventional biomarkers. Our study
therefore represents an initial exploration, and future work will aim
to integrate molecular and pathological features to achieve a more
comprehensive breast cancer classification.

Finally, we validated the expression of the Hub-UVR.Sig genes
in BRCA patients and found that ENO2 and ATP6V1F were highly
expressed in tumor tissues. ENO2, a glycolytic enzyme, has been
reported to promote stem-like properties, tumorigenesis, and
metastatic progression in BRCA cells by activating the glycolytic
pathway (125, 126). Consistently, knockdown of ENO2 in TNBC
cells resulted in a significant reduction in tumor cell proliferation,
migration, and invasion. Moreover, high ENO2 expression was
negatively correlated with the infiltration of cytotoxic immune cells
and was upregulated following anti-PD-L1 treatment, suggesting
that ENO2 may contribute to adaptive ICI resistance.

This study has several limitations. First, the currently available
immunotherapy cohorts (GC, SKCM, RCC, UC, and GBM) offer
limited tumor type coverage, which may affect the generalizability of
our findings. Further validation of UVR.Sig in other cancer types
lacking immunotherapy data is warranted, and its broader
application across pan-cancer contexts requires support from
additional clinical cohorts to ensure robustness and universality.
Nevertheless, our immune correlation analysis of UVR.Sig across
30 cancer types in the TCGA partially compensates for this
limitation. Second, our study primarily focused on the association
between gene expression and response to ICIs, while other key
prognostic factors—such as genomic mutations, DNA methylation,
histone modifications, and non-coding RNAs—were not considered.
The heterogeneity among datasets may also introduce batch effects.
Given the robust predictive performance of Hub-UVR.Sig for ICIs
response and its prognostic value in BRCA, future studies should
prioritize validation using real-world clinical data from BRCA
patients, including the prospective collection of clinicopathological
information and integration of additional variables that may
influence tumor prognosis. We are also aware of the importance of
in vitro experiments. In the future, we will add functional data
verification of Hub-UVR.Sig genes such as ATP6V1F, ICAMI1 and
BTG family members to further support their biological and clinical
relevance and improve the completeness and credibility of this article.

5 Conclusion

To our knowledge, this is the first study to reveal a strong
association between UVR mechanisms and ICIs resistance in
cancer. Through pan-cancer single-cell transcriptomic analysis,
we developed a UVR-related gene signature (UVR.Sig) that
outperformed existing biomarkers in predicting ICIs response and
showed significant prognostic value in breast cancer. While our
findings offer a promising tool for refining immunotherapy patient
selection, further validation in additional tumor types and

Frontiers in Immunology

21

10.3389/fimmu.2025.1598070

incorporation of other prognostic factors are needed to
strengthen its clinical applicability.
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