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Background: Tumor-associated macrophages (TAMs) influence the tumor

microenvironment and can contribute to tumor progression. They can polarize

into M1 (classically activated) or M2 (alternatively activated) phenotype, which

exhibit divergent functional characteristics. The comparison of TAMs between

primary breast cancer (BC) and corresponding brain metastases (BMs) remains

insufficiently explored and is the focus of this study.

Methods: This study aimed to compare the infiltration of TAMs and PD-L1

expression in primary breast cancer and their brain metastases, by analyzing 27

paired samples and 26 additional brain metastases. Immunohistochemical

staining was performed for the following markers: CD68, CD86 (M1), CD163

(M2), and PD-L1.

Results: CD68 showed significantly higher expression levels in brain metastases

compared to the corresponding primary breast cancers. In contrast, the

expression of CD86 and CD163 showed comparable results between the

primary tumors and their brain metastatic counterparts. Macrophages were

consistently found to be more frequently present in the tumor stroma

compared to the tumor nest. Survival analysis of the primary revealed that high

expression of CD163 was associated with a recurrence-free survival. (RFS).

Conversely, high expression of CD86 in brain metastases was associated with

longer overall survival. Low expression of CD68 and CD163 in brain metastases

correlated with the presence of meningeal carcinomatosis. The expression of

PD-L1 in the primary tumor did not necessarily reflect the status of PD-L1 in the

corresponding brain metastases.
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Conclusions:Overall, this study highlights the complex influence of TAMs on the

course of primary breast cancers and their brain metastases. The discordant

expression of the immune checkpoint molecule PD-L1 underscores the

importance of evaluating the PD-L1 status in cerebral metastases to guide

potential immunotherapeutic approaches.
KEYWORDS
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1 Introduction

Breast cancer has become the most commonly diagnosed

malignancy worldwide, with a recorded incidence of 2.26 million

cases in 2020 (1). With almost 700.000 deaths, breast cancer is the

leading cause of cancer-related mortality among the female

population globally (1, 2). Brain metastases are a common

complication of advanced malignancies and represent the most

prevalent form of intracranial tumors (3). Due to the high incidence

of breast cancer, it is the second most common malignancy

responsible for brain metastases after lung cancer (4). The

prognosis for breast cancer patients with brain metastases is

generally poor, with a median overall survival of 7.9 months (5).

TAMs play a central role in shaping the tumor microenvironment

during tumor progression. They exhibit a remarkable degree of

plasticity, polarizing into M1 or M2 phenotypes based on

environmental signals. M1 macrophages are pro-inflammatory,

producing IL-6, IL-12, and reactive oxygen species to activate

immune responses. In contrast, M2 macrophages promote tissue

healing, angiogenesis, and immunosuppression, secreting IL-10 and

TGF-b. M1 macrophages are characterized by high iNOS activity,

while M2 macrophages regulate arginine metabolism (6). They are

recruited through the action of various chemotactic factors such as

macrophage colony-stimulating factor (M-CSF) and monocyte

chemoattractant protein-1 (MCP-1/CCL-2) and comprise up to

50% of the total tumor mass (7–9). TAMs not only play an essential

role in the early stages of metastasis through the degradation of the

basal membrane by matrix metalloproteinases (MMPs) (10). TAMs

are also involved in promoting the “angiogenic switch” through the

release of Vascular Endothelial Growth Factor (VEGF), leading tumor

transition from limited blood supply to active angiogenesis (11).

Overall, TAMs produce a variety of immunomodulatory cytokines

such as IL-4, IL-10, and TGF-b, which induce an anti-inflammatory

immune response and thereby suppress cytotoxic reactions (6). In this

context their role in PD-1 (Programmed Cell Death Protein 1) and

PD-L1 (Programmed Death-Ligand-1) interaction as a central

mechanism of immune homeostasis is remarkable (12–15). While

the blockade of this axis has revolutionized cancer immunotherapy,

resistance to PD-1/PD-L1 inhibitors remains a significant challenge

(16). TAMs provide various mechanisms to promote and develop this
02
resistance and expression of PD-L1 on TAMs themselves, rather than

on tumor cells, seems of central relevance. This highlights the

importance of targeting TAMs in overcoming resistance to PD-1/

PD-L1 blockade (16, 17). Several clinical and epidemiological studies

have identified a strong correlation between TAM infiltration, poor

prognosis, and reduced survival in different cancer types. The majority

of these studies analyzed general macrophage populations without

taking into consideration the distinct subpopulations of macrophages

and their divergent functional roles (18, 19). High levels of M2

macrophages have been linked to decreased overall survival, disease-

free survival, and recurrence-free survival in breast cancer (20). Other

studies have shown that M1 macrophages exert anti-tumor effects in

breast cancer (21).

While the influence of TAMs in primary tumors has been

previously investigated, the comparison of TAM infiltration and

PD-L1 expression in primary breast cancers and their

corresponding brain metastases remains widely unexplored (22).

In this study, we evaluated the distinct macrophage subpopulations

in 27 paired samples of primary breast cancer and their

corresponding brain metastases, as well as an additional 26 brain

metastases. This was done using CD68 (M1 +M2), CD86 (M1), and

CD163 (M2) as markers, along with pro- and anti-inflammatory

surface markers, on consecutive histological slides. The purpose of

this study was to answer the following questions: (1) are there

differences in the expression of the markers between primary

tumors and brain metastases? (2) are there differences in

expression between the tumor nest and the tumor stroma? (3) do

the subtypes of the primary tumor differ in their expression of the

markers? (4) how do the markers correlate with clinical parameters?

(5) what is the prognostic value of the markers for patient

survival outcomes?
2 Materials and methods

2.1 Study subjects

The study analyzed 27 paired samples of primary breast tumors

and brain metastases, as well as an additional 26 brain metastasis

samples. Due to the limited availability of tissue samples in some
frontiersin.org
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cases and the presence of extensive necrotic areas, it was not

possible to assess every marker for both the tumor nest and

tumor stroma for all patients while adhering to the strict

protocol. Consequently, the sample size may vary depending on

the statistical test. All patients were treated at the Department of

Neurosurgery, University Hospital Magdeburg between 2008 and

2021. None of the patients in this cohort received immunotherapy

with either Atezolizumab or Pembrolizumab prior to the diagnosis

and treatment of cerebral metastases. The ethics committee of Otto

von Guericke University Magdeburg approved the study (No. 146/

2019) and waived the requirement for written informed consent.

The key clinical characteristics of the patients with primary breast

tumors and brain metastases are summarized in Tables 1 and

2, respectively.
2.2 Immunohistochemical staining

The expression of the markers was evaluated in FFPE

(formalin-fixed paraffin-embedded) tissues, which were Since

the immunotherapeutic agent atezolizumab was first approved

for the treatment of patients with metastatic, triple-negative

and PD-L1-positive breast cancer in 2019, no patient received

immunotherapy prior to the diagnosis and treatment of cerebral

metastasis.processed into tissue microarrays (TMAs) according to

the standard method established in our laboratory (23, 24). The

samples were stained with the following primary antibodies: CD68

(Dako, KP1), CD86 (Cell Signaling, E2G8P), CD163 (Biolegend,

QA19A16) and PD-L1 (Dako, 22C3). After staining, the samples
Frontiers in Immunology 03
were digitalized with an Aperio VERSA high-resolution whole slide

scanner and analyzed with the Aperio ImageScope V12.1.0.5029

software (both from Leica Biosystems, Nussloch, Germany). Cells

stained with the indicated antibody were calculated per hot-spot

region, with three fields per section evaluated at 200× magnification.
2.3 Macrophage quantification

Despite strict adherence to the protocols, variability in staining

intensity was observed across the samples. To account for this, an

Immunoreactive Score (IRS) was used to quantify CD68, CD163,

and CD86. This modified IRS approach involves the assessment of

both staining intensity and the distribution of positive cells within

the tissue samples (25, 26). Briefly, the Immunoreactive Score (IRS)

was calculated as SI (staining intensity) × PP (percentage of positive

cells). SI was assigned as follows: 1 = weak, 2 = moderate, 3 = strong

(Figure 1). PP was defined as: 1 = 0–10%, 2 = 10–25%, 3 = 26–40%,

4 = >40%. Patients were then dichotomized into two groups based

on the median IRS score of CD68, CD86, and CD163 expression:

high expression group (> median score) and low expression group

(≤ median score). Authors Y.N.Z. and K-P.S. performed blinded

histological scoring independently.
2.4 PD-L1 quantification

The evaluation of PD-L1 expression was carried out by an

experienced pathologist B.H. In clinical practice, the following three
TABLE 1 Clinical characteristics of patients with primary breast cancer included in this study.

TNBC HR+/HER2- HER2+

Number % Number % Number %

Total 9 100 9 100 9 100

Age

≤ 50 3 33,3 3 33,3 4 44,4

≥ 50 6 66,7 6 66,7 5 55,6

Tumor size

T1 & T2 4 44,4 5 55,6 7 77,8

T3 & T4 5 55,6 3 33,3 1 11,1

n.d. 0 0,0 1 11,1 1 11,1

Node status

N0 3 33,3 1 11,1 4 44,4

N+ 6 66,7 8 88,9 5 55,6

Metastasic status

M0 6 66,7 5 55,6 6 66,7

M+ 3 33,3 4 44,4 3 33,3

(Continued)
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scores have become established: Tumor Proportion Score (TPS),

Immune Cell Score (IC), and Combined Positive Score (CPS) (27).

In line with the KEYNOTE-522 approval study for the antibody

Pembrolizumab for the treatment of TNBC, the CPS was used. We

decided to use a cut-off value of 1 to better understand the impact of

PD-L1 on survival times and correlations with clinical

characteristics (28). This method considers the expression in both

tumor and immune cells. When counting positive cells, only those

with membrane-bound expression were included.
2.5 Statistical analysis

Statistical analysis was performed using the software program R

(version 4.3.0) in combination with RStudio (version 2023.06.01).

Kaplan-Meier curves were generated using GraphPad Prism 10.
Frontiers in Immunology 04
Differences in marker expression between tumor nest and tumor

stroma and between primary tumors and brain metastases were

analyzed using the Wilcoxon test. Survival curves were constructed

using the Kaplan-Meier method, and statistical significance was

assessed by univariate analysis using the log-rank test. Clinical

associations were assessed using Fisher’s exact test. The statistical

significance was set at p ≤ 0.05.
3 Results

3.1 Comparison of TAM distribution
between the tumor nest and tumor stroma

The expression patterns of CD68, CD86, and CD163 were first

analyzed to assess differences between the tumor nest and tumor
TABLE 1 Continued

TNBC HR+/HER2- HER2+

Number % Number % Number %

Grading

G1 0 0.0 0 0,0 0 0,0

G2 2 22,2 7 77,8 4 44,4

G3 7 77,8 2 22,2 5 55,6

Histology

Non Special Type 7 77,8 6 66,7 8 88,9

Lobular carcinoma 1 11,1 3 33,3 0 0,0

Other 1 11,1 0 0,0 1 11,1

Ki-67

≤ 25% 3 33,3 5 55,6 3 33,3

≥ 25% 6 66,7 4 44,4 6 66,6

BRCA1

Positive 1 11,1 0 0,0 1 11,1

Negative 8 88,9 9 100 8 88,9

nCTX

Yes 4 44,4 2 22,2 4 44,4

No 5 55,6 7 77,8 5 55,6

Surgery

Lumpectomy 4 44,4 3 33,1 5 55,6

Mastectomy 3 33,3 5 55,6 4 44,4

No surgery 2 22,2 1 11,1 0 0,0

RTX

Yes 7 77,8 8 88,9 8 88,9

No 2 22,2 1 11,1 1 11,1
Patients were divided into the common subgroups, triple negative breast cancer (TNBC), HR+/HER2- and HER2+. HR, hormone receptors; HER2, human epidermal growth factor receptor;
BRCA1, Breast cancer Gene 1; nCTX, neoadjuvant chemotherapy; RTX, radiotherapy; n.d., not determinable.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1598293
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zimmer et al. 10.3389/fimmu.2025.1598293
stroma. This analysis was conducted on the overall cohort, followed

by subgroup analyses of triple-negative, HR+/HER2-, and HER2+

tumors. Statistical significance was assessed using Wilcoxon tests,

and the results are presented in Table 3. The Wilcoxon test revealed

a significant difference in the expression of the markers CD68,

CD86, and CD163 between the tumor nest and tumor stroma in

both the primary tumor and brain metastases across the overall

cohort (p < 0.0001). For CD68 expression in primary tumors, a

significant difference between the tumor nest and tumor stroma was

observed exclusively in HER2+ tumors (p = 0.008). For CD86,

significant differences were found in the triple-negative (p = 0.016)

and HER2+ (p = 0.016) subgroups of the primary tumor. CD163

showed a significant difference in all subgroups of the

primary tumors.
3.2 Comparison of TAMs between primary
breast cancer and brain metastases

Next, we compared the expression of 27 primary breast cancers

and their paired brain metastases for CD68, CD163 and CD86.
Frontiers in Immunology 05
Statistical significance was determined using Wilcoxon tests, with

the results presented in Table 4. CD68 expression was significantly

higher in the tumor stroma of metastases compared to the

corresponding primary tumors (p = 0.011), with this difference

primarily driven by HR+/HER2- tumors (p = 0.016). Additionally,

subgroup analysis revealed a significantly higher CD86 expression

in the tumor nests of metastases from HR+/HER2- tumors (p =

0.031). As noted in Section 2.1, the tumor stroma could not be

evaluated in all samples.
3.3 Comparison of PD-L1 expression
between primary breast cancer and brain
metastases

For PD-L1 status, we found that the status of the primary tumor

does not necessarily predict the status of the brain metastasis

(Figure 2). Overall, PD-L1 expression was observed in 40.7% of

the primary BCs and in 33.3% of their corresponding BMs (CPS >

1). Discordant PD-L1 expression was noted in 7 out of 27 cases

(25.9%): 4 cases showed positive expression in the primary tumor
TABLE 2 Clinical characteristics of the patients with brain metastases included in this study.

TNBC HR+/HER2- HER2+

Number % Number % Number %

Total 15 100 19 100 19 100

Age

≤ 50 3 20 5 26,3 4 21,0

≥ 50 12 80 14 73,7 15 79,0

Brain metastasis

Synchronus 2 13,3 2 10,5 0 0,0

Metachronus 13 86,7 17 89,5 19 100

Number of BM

Solitary 10 66,7 8 42,1 11 57,9

Multiple 5 33,3 10 52,6 8 42,1

n.d. 1 5,3

Dexamethason treatment

Yes 8 53,3 8 42,1 6 31,6

No 7 46,7 11 57,9 12 63,2

n.d. 1 5,3

Meningeal carcinomatosis

Yes 2 13,3 3 15,8 3 15,8

No 13 86,7 16 84,2 16 84,2

Relaps/New BM

Yes 4 26,7 4 21,1 5 26,3

No 11 73,3 15 78,9 14 73,7
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but negative expression in the corresponding brain metastasis, while

3 cases exhibited no PD-L1 expression in the primary tumor but

positive expression in the brain metastasis. Closer analysis revealed

that positive PD-L1 expression was particularly associated with the

triple-negative and HER2+ subgroups. In the HR+/HER2- group,

PD-L1 expression was positive in only one case. However, the

corresponding brain metastasis showed a negative PD-L1 status.

When examining all 53 brain metastases, positive PD-L1 expression

was detected in 22 samples. Subgroup analysis showed the following

positive expression rates: TNBC (66,66%), HR+/HER2- (21,05%),

and HER2+ (42,10%)

A regression analysis was subsequently performed to assess the

impact of PD-L1 expression in the primary tumor on the status of

brain metastasis. The CPS in the primary tumor was considered the

independent variable (x), and the CPS in the metastasis was

considered the dependent variable (y). Initially, the entire cohort

was analyzed, followed by subgroup analyses, with the results

presented in Figure 3.

The coefficient of determination (R²) for the entire cohort

indicates that approximately 39% of the variation in the CPS of

the metastasis can be explained by the variation in the CPS of the
Frontiers in Immunology 06
primary tumor (Figure 3A). This suggests that the regression line

does not fully account for all fluctuations in the CPS of the

metastasis, and the CPS in the metastasis is not necessarily

determined by the CPS of the primary tumor. The significance

level (p < 0.001) indicates that the relationship between the CPS in

the primary tumor and the metastasis is statistically significant.

When examining the subgroups separately, it becomes apparent

that this correlation is primarily observed in the PD-L1 expression

of TNBC (R² = 0.73; p = 0.003) and HER2/neu+ tumors (R² = 0.03;

p = 0.675) (Figures 3B–D). PD-L1 expression is generally scarcely

observed in Luminal HER2/neu- type patients, which is why no

calculation could be performed (Figure 3C).
3.4 Impact of TAMs and PD-L1 on
recurrence-free survival (primary-BM)

Next, we analyzed the impact of CD68, CD163, CD86, and PD-

L1 expression on recurrence-free survival (RFS), defined as the time

between the initial diagnosis of the primary breast tumor and

cerebral progression. Expression levels of the markers were
FIGURE 1

Staining intensity. Representative micrographs showing weak (1 point), medium (2 points) and strong (3 points) expression of (A) CD68, (B) CD163,
(C) CD86. The IRS was subsequently calculated according to the formula: SI (staining intensity) × PP (percentage of positive cells).
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dichotomized into “low” and “high” groups using the median-split

method. Kaplan-Meier survival curves were then generated for each

marker, and univariate survival analyses were performed using the

log-rank test (Figure 4). We found that the high expression of

CD163-positive macrophages in the tumor stroma, was associated

with an earlier occurrence of brain metastases (p = 0.015,

Figure 4D). For the remaining markers, no significant impact on

recurrence-free survival was observed.
Frontiers in Immunology 07
3.5 Impact of TAMs and PD-L1 on overall
survival (primary-death)

Subsequently, we evaluated the impact of CD68, CD163, CD86,

and PD-L1 expression in primary tumor tissues on overall survival,

defined as the time from the initial breast cancer diagnosis to death.

The methodology applied adhered to the approach outlined in

Section 3.4. No significant association was observed between CD68,
TABLE 3 Results of the Wilcoxon test for expression differences between TN and TS in primary breast cancer (BC) and brain metastases
(BM) respectively.

BC BM

n Median p n Median p

TN TS TN TS

CD68 Total 26 2 4 < 0.0001 44 3 8 < 0.0001

TNBC 9 2 4 0.125 12 4 9 0.008

HR+/HER2 - 8 2 4 0.094 15 2 8 0.0001

HER2 + 9 2 4 0.008 17 3 6 < 0.0001

CD163 Total 26 2 6 < 0.0001 44 2 6 < 0.0001

TNBC 9 2 4 0.016 12 2 8 0.001

HR+/HER2 - 8 1 2 0.016 15 1 4 0.0001

HER2 + 9 2 6 0.004 17 2 6 < 0.0001

CD86 Total 26 1 4 < 0.0001 44 2 6 < 0.0001

TNBC 9 1 4 0.016 12 1 6 0.002

HR+/HER2 - 8 1 2 0.125 15 2 4 0.033

HER2 + 9 2 4 0.016 17 2 6 < 0.0001
TN, tumor nest; TS, tumor stroma.
TABLE 4 Results of the Wilcoxon test for the expression differences between TN and TS. Comparison of BC and BM.

TN TS

n Median p n Median p

BC BM BC BM

CD68 Total 27 2 3 0.094 21 4 6 0.011

TNBC 9 2 4 0.344 7 6 9 0.25

HR+/HER2 - 9 2 2 0.281 5 6 6 0.75

HER2 + 9 2 3 0.375 9 4 6 0.016

CD163 Total 27 2 2 0.548 21 6 6 0.576

TNBC 9 2 2 1 7 6 9 0.75

HR+/HER2 - 9 1 1 0.375 5 3 6 0.75

HER2 + 9 2 2 0.688 9 6 6 0.844

CD86 Total 27 1 2 0.104 21 4 6 0.377

TNBC 9 1 2 0.375 7 6 5 0.625

HR+/HER2 - 9 1 3 0.031 5 3 4 0.5

HER2 + 9 2 2 0.797 9 4 8 0.5
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CD163, CD86, and PD-L1 expression in the tumor nest or tumor

stroma and patients´ overall survival (Figure 5).
3.6 Impact of TAMs and PD-L1 on brain
metastasis survival (BM-death)

We investigated the impact of CD68, CD163, CD86, and PD-L1

expression in brain metastasis tissues on the interval between the

initial diagnosis of brain metastases and death. This interval is a key

clinical parameter, providing insights into metastasis-specific

survival, disease progression, and therapeutic efficacy. The

methodology followed the procedures outlined in Sections 3.4 and

3.5 (Figure 6). Our analysis revealed a significantly longer brain

metastasis survival (BMS) in patients with high CD86 expression in

the tumor nest of brain metastases, showing a 63.6% increase in

median survival (p = 0.036, Figure 6E). In contrast, CD86

expression in the tumor stroma had no measurable impact on

this interval. Additionally, no significant association was found
Frontiers in Immunology 08
between CD68, CD163, or PD-L1 expression in either the tumor

nest or tumor stroma and BMS.
3.7 TAMs/PD-L1 and clinicopathological
features of primary breast cancer

Next, we investigated the association between CD68, CD163,

CD86, and PD-L1 expression and the clinicopathological features of

primary breast tumors (Supplementary Tables 1A-D). Fisher’s exact

test was performed to analyze the following characteristics: TNM

stage, grading, hormone receptor status, HER2 status, and the

impact of neoadjuvant chemotherapy. A significant association

was found between high CD163 expression in the tumor stroma

of the primary tumor and positive hormone receptor status (p =

0.038, Supplementary Table 1B). Additionally, high CD86

expression in the tumor nest was associated with high-grade

tumors (p = 0.018, Supplementary Table 1C), while no significant

associations were observed for CD68 and PD-L1.
FIGURE 2

Sankey diagram of PD-L1 expression in primary breast cancer and their brain metastases The flow of PD-L1 expression status (positive or negative)
across different stages and subtypes of breast cancer progression: from primary tumors to subtypes in both primary tumors and brain metastases,
culminating in the PD-L1 expression status in brain metastases.
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3.8 TAMs/PD-L1 and clinicopathological
features of brain metastases

Finally, we analyzed the association between CD68, CD163,

CD86, and PD-L1 expression and the clinicopathological features of

brain metastases (Supplementary Tables 2A-D). Using Fisher’s

exact test, we examined the following characteristics: meningeal

carcinomatosis, dexamethasone treatment, number of brain

metastases (solitary vs. multiple), presentation (synchronous vs.

metachronous), and cerebral relapse. We found a significant

association between low CD68 expression in the tumor nest of

brain metastases and the occurrence of meningeal carcinomatosis

(p = 0.016, Supplementary Table 2A). Similarly, polarization

analysis revealed a significant association between low CD163

expression in the tumor nest of brain metastases and the presence

of meningeal carcinomatosis (p = 0.04, Supplementary Table 2B).

No significant associations were observed for CD86 and PD-L1.
Frontiers in Immunology 09
4 Discussion

4.1 TAMs and PD-L1 expression in primary
breast cancer and paired brain metastases

The brain has long been considered immune-privileged due to

the blood-brain barrier (BBB). However, recent research suggests

that the brain is not immune-privileged but rather immunologically

unique, particularly following the discovery of functional lymphatic

vessels within the central nervous system. Especially in brain

tumors, immune cell infiltration is a common phenomenon (29).

Following damage to the BBB, peripheral monocytes can

significantly contribute to the macrophage pool within the central

nervous system (30, 31). Bowman et al. demonstrated that, in

addition to microglia, infiltrating bone marrow-derived

macrophages are present in cerebral metastases (32). We likewise

found a broad infiltration of CD68 expressing cells in the tumor
FIGURE 3

Correlation of PD-L1 expression between primary breast cancer and brain metastasis. The graphs show scatter plots and corresponding regression
lines to illustrate a linear relationship. (A) represents the correlation for the entire cohort. (B–D) show the subgroups: HER2 +, HR+/HER2 -, and
Triple-negative. The strength of the correlation is represented by the coefficient of determination (R²), which is displayed along with the p-value and
sample size (n) in the upper left corner of the plots.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1598293
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zimmer et al. 10.3389/fimmu.2025.1598293
stroma in the overall cohort, with significantly higher levels in

metastases compared to corresponding primary tumors. This

difference was particularly pronounced in HER2-positive tumors.

Further subgroup analysis revealed higher CD86 expression in the

cerebral metastases of HR+/HER2- tumors. In contrast, we found
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no disparities in the expression of the markers CD68, CD163, and

CD86 within the tumor nest across the entire cohort. These results

emphasize the need to differentiate between individual tumor

regions and cell polarization. According to this work, several

studies have shown that tumor-associated macrophages are
FIGURE 4

Marker expression and the recurrence-free survival of breast cancer patients – univariate analysis. (A–G) The expression levels of the markers were
dichotomized into ‘low’ and ‘high’ according to the median-split method. Kaplan-Meier curves were generated for the 150-months recurrence-free
survival and statistical analysis was performed with the log-rank test. The p-values are indicated in the lower- left corner of each plot. Sample sizes
are indicated in the upper-right corner of each plot. TN, tumor nest; TS, tumor stroma.
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present in both the tumor nest and the tumor stroma (20, 33). The

findings of Mahmoud et al. demonstrate that the majority of TAMs

are located in the stroma, a conclusion that aligns with the results of

our study (20). We only identified one study by Liu and co-workers

investigating the expression differences of macrophage markers
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between primary tumors and brain metastases. The analysis

included 17 paired samples of non-small cell lung carcinomas

and brain metastases as well as 45 unpaired brain metastases. No

significant differences in the expression of CD68 and CD163 were

found. Their macrophage quantification differed from our
FIGURE 5

Marker expression and overall survival of breast cancer patients – univariate analysis. (A–G) The expression levels of the markers were dichotomized
into ‘low’ and ‘high’ according to the median-split method. Kaplan-Meier curves were generated for overall survival and statistical analysis was
performed with the log-rank test. The p-values are indicated in the lower- left corner of each plot. Sample sizes are indicated in the upper-right
corner of each plot. TN, tumor nest; TS, tumor stroma.
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approach, as they did not distinguish between the tumor nest and

stroma, which needs to be emphasized. In addition, the examined

primary tumors differ from each other (34).

Of utmost relevance, the PD-L1 status of the primary tumor did

not necessarily predict the status of its brain metastases in our
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cohort (Figure 2). So far, PD-L1 expression is not routinely assessed

in neuropathological diagnostics for brain metastases of breast

cancer and this prompts further inquiry into the potential value

of routine PD-L1 testing in brain metastases. Similar discordant

PD-L1 expression patterns between breast tumors and brain
FIGURE 6

Marker expression and brain metastasis survival (BM – Death) – univariate analysis. (A–G) The expression levels of the markers were dichotomized
into ‘low’ and ‘high’ according to the median-split method. Kaplan-Meier curves were generated for overall survival and statistical analysis was
performed with the log-rank test. The p-values are indicated in the lower- left corner of each plot. Sample sizes are indicated in the upper-right
corner of each plot. TN, tumor nest; TS, tumor stroma.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1598293
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zimmer et al. 10.3389/fimmu.2025.1598293
metastases were reported recently (35). Until know, there is an

absence of a non-invasive method capable of predicting the

response of brain metastases to immunotherapy. In 2023,

Brastianos et al. conducted the first study evaluating the response

of brain metastases to pembrolizumab, regardless of their

underlying PD-L1 status. Patients were grouped by tumor type,

with the largest cohort consisting of breast cancer patients (n = 35).

The primary endpoints included complete response, partial

response, and stable disease. The analysis revealed that 42.1% of

patients exhibited a positive response to the therapy, with a

response rate of 37.0% observed among breast cancer patients.

Of particular interest is the observation that no significant

disparities were detected among the various breast cancer

subtypes. However, only 8.8% of the total cohort achieved

complete or partial remission (36). Tiezzi et al. proposed CD86 as

a potential prognostic marker for predicting the efficacy of

immunotherapy in breast cancer, particularly in triple-negative

subtypes (37). While immunotherapy has demonstrated efficacy

in treating brain metastases across various tumor types, not all

patients respond to this treatment. Consequently, further research is

imperative to elucidate the underlying mechanisms and enhance

the predictive capacity of therapeutic interventions (36).
4.2 Impact of TAMs and PD-L1 in primary
tumor and brain metastases on survival

Shorter survival times such as OS and BMS or RFS are often

associated with aggressive tumor biology and rapid disease

progression. In the present study, a significant correlation was

found between a high expression of CD163 in the primary tumor

stroma and a shorter RFS (Figure 4D). Consistent with our findings,

a high incidence of CD163-positive macrophages in breast cancer

was associated with earlier progression in several studies (22, 38). In

contrast to the results of Tiainen et al., we did not find an impact of

CD163 and CD68 on overall survival (22). In this work, consistent

with the results of a previous study on breast cancer, we were unable

to demonstrate an association between CD86 and RFS or OS (39).

In contrast we found a significantly longer BMS with high CD86

expression in the tumor nest of the cerebral metastases in our

cohort (Figure 6E). Similar favorable prognoses have also been

reported for M1macrophages in primary tumors of melanomas and

lung carcinomas, but not in their brain metastases (40, 41).

Although M1 macrophages are thought to have antitumor

properties, there are also contrary findings in the literature: In

one study, CD86 was associated with a poorer prognosis in

multivariate analysis (37). In contrast, a study on HER2-positive

breast cancer showed that a high density of M1 macrophages

labeled with iNOS correlated with longer overall survival (21).

We did not find a significant association between PD-L1 and

RFS or OS. In a study by Qin et al, 870 breast cancer cases were

analyzed for PD-L1 expression. They found that high PD-L1

expression correlated with significantly shorter recurrence-free

survival and overall survival (42). A meta-analysis of 2546 cases

confirmed this finding and showed that overall survival is shortened
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in breast cancer with high PD-L1 expression (43). In the pivotal

KEYNOTE 522 trial of the PD-1 antibody pembrolizumab for the

treatment of TNBC, the combination of pembrolizumab and

chemotherapy, followed by pembrolizumab alone, resulted in a

37% reduction in the risk of disease progression or death. Patients

must have positive PD-L1 expression with a CPS ≥ 10 to be eligible

for this therapy (28).
4.3 Associations of TAMs and PD-L1 with
clinicopathological features of primary
breast cancer

We observed a significant association between high expression

of the M2 macrophage marker CD163 in the tumor stroma and

negative hormone receptors, which is in accordance with previous

findings (Supplementary Table 1B) (44). Others have also

demonstrated a correlation between CD163-positive macrophages

and higher T-stage, lymph node metastases, increased grade,

elevated Ki-67 proliferation index, and HER2 positivity (22, 44).

Furthermore, CD86 in the tumor nest correlated with higher tumor

grading, indicating unfavorable properties of CD86 (Supplementary

Table 1C). One study group intensively investigated the role of M1

macrophages, using transcriptome analysis, and identified both

positive and negative properties. In contrast to previous studies,

they found no correlation between M1 macrophages and improved

response to neoadjuvant chemotherapy or longer survival. Defying

expectations, there was a significant correlation with clinically

aggressive tumor characteristics, such as a higher Nottingham

grade and increased Ki-67 proliferation index in breast

carcinomas. They postulated that tumors with high M1 content

exhibit increased immune activity to compensate for tumor

aggressiveness. In addition to the expected cytokines such as IFN-

g, the release of pro-tumor TGF-b was also detected. Tumors with

many M1 macrophages also showed a strong infiltration of both

favorable and unfavorable immune cells. M1 macrophages had a

significantly higher cytological activity value (CYT), which could

indicate a favorable tumor microenvironment. The CYT is

composed of the expression of perforin and granzyme, which are

secreted by cytotoxic T cells (39). High CYT levels have been

associated with longer survival in previous studies (45).
4.4 TAMs and meningeal carcinomatosis

Meningeal carcinomatosis occurs in approximately 3–8% of all

cancer cases and represents an advanced tumor stage as well as a

serious complication. In this process, the tumor cells enter into the

subarachnoid space and spread via the cerebrospinal fluid (CSF),

finally settling in areas with reduced CSF flow, such as the cauda

equina, the hippocampal fissure or the basal cisterns (46). The

prognosis is very poor, with a life expectancy of only 4–6 weeks

without treatment (47). We found a significant association between

low expression of CD68 in the tumor nest of brain metastases and

the occurrence of meningeal carcinomatosis (Supplementary Table
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2A). Polarization analysis also showed a significant correlation with

low CD163 expression (Supplementary Table 2B). Contrary to our

expectation, these results suggest that low expression of TAMs in

the brain metastasis is associated with a higher risk of this fatal

event. There is evidence, that meningeal carcinomatosis is

accompanied by higher levels of macrophages in CSF samples.

Vice versa, a high number of macrophages in CSF samples in

patients with diverse solid tumors correlates with the presence of

atypical or malignant cells. Using a cut-off value for the number of

macrophages, Kobayshi et al. were able to cytologically distinguish

tumor-positive from tumor-negative CSF samples (48). The

underlying pathophysiology is not yet fully elucidated, and

further research is necessary to address this. A comparison of the

TAMs between the brain metastasis and the corresponding CSF

could provide valuable insights.
4.5 Limitations of the study

We are aware of several limitations of this study. Due to small

sample size the statistical results should be interpreted with caution.

A further problem was posed by the tissue samples themselves,

some of which contained only slightly vital tumor cells or showed

bleeding and large areas of necrosis. Therefore, it was not possible to

determine an IRS for the tumor nest and tumor stroma in every

sample while adhering to the strict methodology. Furthermore, the

quantification of TAMs is generally challenging, as there is no

standardized and established method. Various approaches are used,

including cell counting, semi-quantitative evaluation, the use of IRS

and area calculations using Fiji/ImageJ (49–51). In addition, the

analysis is performed either separately for tumor nest and tumor

stroma or exclusively for a specific region (20, 49). This variety of

methods reflects the complexity and inconsistent quantification of

TAMs. Finally, the high plasticity of macrophages needs to be

stressed. Therefore, the term “M1-like” and “M2-like”macrophages

is more and more used, as a simple dichotomization of polarization

might no longer be appropriate (52). Finally, it must be emphasized

that macrophages represent one player among a multitude of

immune cells in shaping tumor microenvironment. Especially

mutual cell interactions are not considered in our study, such as

TAMCD86 and CD163 expression and its role for CD4+ and CD8+

T cell function and response (53). As these cell-cell interactions may

be the target of further treatment approaches, it is worth focusing

future studies on this aspect.
5 Conclusion

The aim of this study was to compare the expression of CD68,

CD86, CD163 and PD-L1 in breast carcinomas and their paired

brain metastases. Our results show a higher expression of CD68 in

the tumor stroma of brain metastases, whereas CD86 and CD163

showed comparable levels in both locations. For PD-L1, we

observed that its status in the primary does not necessarily reflect

its expression in brain metastases, highlighting the importance of
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specific PD-L1 testing in brain metastases. High CD163 expression

in the tumor stroma of the primary was associated with RFS, while

high CD86 expression in the tumor nest of brain metastases

correlated with longer brain metastasis-specific survival. In

addition, CD163 was associated with hormone receptor-negative

breast cancer, while CD86 correlated with higher tumor grade. In

brain metastases, a significant association was found between low

expression of CD68 and CD163 and the presence of carcinomatous

meningitis. Overall, these findings contribute to a better

understanding of the pathophysiology of tumor-associated

macrophages (TAMs) and PD-L1 and may help to identify

potential targets for improved therapeutic strategies in breast

cancer and brain metastases.
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