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Extracellular vesicles (EVs) are nanoscale particles secreted by cells,

encapsulating a variety of biomolecules, and have emerged as significant

players in the pathophysiology of acute myocardial infarction (AMI). These

vesicles exhibit both detrimental and therapeutic effects. On one hand, EVs

contribute to AMI progression by promoting apoptosis, exacerbating

inflammatory responses, and impairing angiogenesis. On the other hand, they

facilitate cardiac repair by enhancing neovascularization, mitigating programmed

cell death, and inhibiting fibrosis. This review provides a comprehensive overview

of EV biogenesis, release mechanisms, and their dual regulatory roles in AMI,

emphasizing the complex interplay of EVs in myocardial injury. Additionally, it

explores the potential of EVs as diagnostic biomarkers and therapeutic delivery

vehicles, highlighting their importance in advancing diagnostic and therapeutic

strategies. By elucidating the multifaceted roles of EVs, this review aims to

establish a foundation for their clinical translation, improve their applicability in

precision medicine, and explore the promising potential in cardiovascular

disease treatment.
KEYWORDS

extracellular vesicles, acute myocardial infarction, therapeutic targets, cardiac repair,
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1 Introduction

Acute myocardial infarction (AMI) remains one of the leading causes of high mortality

and disability in cardiovascular diseases. Despite significant advancements in medical

technologies, such as timely thrombolysis, percutaneous coronary intervention (PCI) for

vascular reperfusion, and the standardized use of antithrombotic, antiplatelet, and
frontiersin.or01
 g

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1598407/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1598407/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1598407/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1598407/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1598407&domain=pdf&date_stamp=2025-06-26
mailto:helloliuping@163.com
mailto:zyycardio@foxmail.com
mailto:liumengnan@swmu.edu.cn
https://doi.org/10.3389/fimmu.2025.1598407
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1598407
https://www.frontiersin.org/journals/immunology


Wu et al. 10.3389/fimmu.2025.1598407
prognostic-improving pharmacotherapies, AMI continues to be a

significant cardiovascular disorder closely associated with global

mortality (1). The continuing clinical need for innovative and

effective treatment strategies highlights the urgency of exploring

novel treatment options. Extracellular vesicles (EVs) are naturally

secreted, non-replicative, nucleus-free particles encased in a lipid

bilayer. Depending on their biogenesis, biophysical properties, and

receptor composition, EVs can be classified into various subtypes,

including exosomes, microvesicles, apoptotic bodies, exosome-like

vesicles, migrasomes, and ectosomes, with exosomes, microvesicles,

and apoptotic bodies being the most extensively studied (2). EVs

encapsulate a broad array of biomolecules derived from their parent

cells, such as proteins, mRNA, microRNA, lipids, and small-molecule

metabolites. These biomolecules can be transferred to recipient cells,

thereby mediating intercellular communication and regulation.

Secreted by various cell types and tissues, EVs exhibit lower

immunogenicity, reduced tumorigenic potential, and enhanced

stability, making them promising candidates for therapeutic

applications (3). Emerging research indicates that EVs play pivotal

roles in regulating diverse physiological and pathological processes

and act as key mediators of intercellular signaling, presenting a

breakthrough avenue for disease treatment. Their potential

application in AMI therapy has sparked increasing interest. This

review provides an in-depth discussion of the therapeutic and

biomarker potential of EVs derived from various cell types in AMI.

By exploring their roles in promoting angiogenesis, alleviating

myocardial fibrosis, improving cardiac function, modulating

inflammation, and regulating immune responses, this review aims

to offer insights into the mechanistic underpinnings of EVs in AMI

and promote their clinical translation as a promising strategy for

cardiovascular therapy.
Abbreviations: EVs, extracellular vesicles; AMI, acute myocardial infarction;

mRNA, messenger RNA; miRNA, microRNA; MVBs, multivesicular bodies;

mTOR, mechanistic Target of Rapamycin; ESCRT, endosomal sorting complex

required for transport; SNARE, soluble N-ethylmaleimide-sensitive factor

attachment protein receptor; ARF, ADP-ribosylation factor; ALIX, ALG-2-

interacting protein XEGF, epidermal growth factor; MVs, microvesicles; CFs,

cardiac fibroblasts; TGF-b1, transforming growth factor b1; NF-kB, nuclear

factor-kappa B; HUVECs, human umbilical vein endothelial cells; ox-LDL,

oxidized low-density lipoprotein; ATP, adenosine triphosphate; M2

macrophages, anti-inflammatory macrophages; MSCs-Exos, mesenchymal stem

cell-derived exosomes; BM-MSCs, bone marrow-derived mesenchymal stem

cells; HSP60, heat shock protein 60; ROS, reactive oxygen species; IGF-1,

insulin-like growth factor 1; ICAM-1, Intercellular Adhesion Molecule 1 Akt,

protein kinase B; ERK1/2, extracellular signal-regulated kinase 1 and 2; FASL, Fas

Ligand; PTEN, phosphatase and tensin homolog; IL-10, interleukin-10; CPCs,

cardiac progenitor cells; BMSC-Exo, bone marrow-derived mesenchymal stem

cell exosomes; LOX-1, lectin-like oxidized low-density lipoprotein receptor-1;

S1P, sphingosine-1-phosphate; SIRT1, sirtuin 1; cTn, cardiac troponin; MMP-9,

matrix metalloproteinase-9; TLR4, toll-like receptor 4; VEGF, vascular

endothelial growth factor.
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2 Biogenesis, release, and uptake of
extracellular vesicles

As illustrated in Figure 1, the left figure summarizes the

biogenesis pathways of exosomes, microvesicles, and apoptotic

bodies, as well as the regulatory mechanisms governing EV

release, including cytoskeletal remodeling and membrane fusion

events. The right figure illustrates the primary mechanisms by

which recipient cells internalize EVs, such as membrane fusion,

receptor–ligand interactions, and various endocytic pathways. By

transporting bioactive molecules including proteins and nucleic

acids, EVs play a pivotal role in mediating intercellular

communication. The composition and functional properties of

EVs can vary significantly, even when secreted by the same cell

type under different environmental conditions. Moreover, different

classes of EVs follow different biogenetic pathways, which further

contributes to their heterogeneity and specific functions (4).
2.1 Biogenesis of extracellular vesicles and
exosome formation

EVs are widely distributed across various biological fluids,

including plasma, serum, saliva, amniotic fluid, breast milk, and

urine, and are also secreted into cell culture media (5). Among the

different EV subtypes, exosomes originate from intraluminal vesicles

(ILVs) within multivesicular bodies (MVBs), which fuse with the

plasma membrane to release ILVs into the extracellular space (6).

Exosome formation primarily occurs through the endosomal

pathway. Early endosomes undergo inward budding of their

limiting membrane, generating ILVs within MVBs. These MVBs

may either fuse with lysosomes for degradation or the plasma

membrane to release ILVs as exosomes (7). The biogenesis of ILVs

is regulated by both endosomal sorting complex required for

transport (ESCRT) -dependent and ESCRT-independent

mechanisms. The ESCRT-dependent pathway involves four protein

complexes (ESCRT-0, -I, -II, and -III) along with accessory proteins

that coordinate membrane remodeling and vesicle scission (8).

ESCRT-0 recognizes and binds ubiquitinated cargo, recruiting

ESCRT-I, which subsequently engages ESCRT-II to drive

membrane invagination and ILV formation. ESCRT-III facilitates

vesicle scission, a process that ALG-2-interacting protein X (ALIX)-

mediated recruitment can further regulate. The ESCRT-independent

pathway relies on alternative mechanisms, including the Syndecan-

Syntenin-ALIX axis, lipid rafts, tetraspanins, and Rab family GTPases.

Together, these factors regulate ILV formation and cargo sorting,

reflecting the complexity and diversity of exosome biogenesis (9).
2.2 Mechanisms underlying the formation
of microvesicles and apoptotic bodies

The biogenesis of microvesicles (MVs) fundamentally differs

from that of exosomes, as MVs are formed through the direct

outward budding of the plasma membrane, with a size range of
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100–1000 nm (10). Their generation shares mechanistic similarities

with ILV formation, involving both ESCRT-dependent and lipid-

dependent pathways. Notably, the suppression of ESCRT-

associated proteins, such as ALIX, TSG101, Vps22, CHMP1/3

(charged multivesicular body protein 1/3), and Vps4, results in a

marked reduction in MV secretion (11). In addition, lipid

components such as ceramides and cholesterol play regulatory

roles in MV formation. A key driver of MV biogenesis is Ca²+-

dependent cytoskeletal remodeling, which facilitates membrane

deformation and vesicle budding. In contrast, apoptotic bodies

(ABs) are distinct from other EV subtypes, as they are generated

exclusively during programmed cell death and serve as hallmarks of

apoptosis (12). Their size, ranging from 50 to 5000 nm,

distinguishes them from the continuous release of EVs by viable

cells. ABs emerge during the disassembly of apoptotic cells, wherein

nuclear and cytoplasmic fragments are rapidly enclosed within

densely packed membrane-bound vesicles of varying sizes (13).

Studies have identified the involvement of specific kinases in AB

formation, including myosin light chain kinase (MLCK), Rho-

associated kinase (ROCK1), and pannexin 1 (PANX1), a plasma

membrane channel protein. These molecular regulators orchestrate

cytoskeletal reorganization and membrane dynamics required for

AB biogenesis, further highlighting their mechanistic divergence

from other EV subtypes (14).
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2.3 Release of extracellular vesicles

Exosome secretion occurs following the fusion of MVBs with

the plasma membrane, a process that relies on the soluble N-

ethylmaleimide-sensitive factor attachment protein receptor

(SNARE) complex (15). During this event, v-SNARE proteins on

the MVB membrane interact with t-SNARE proteins on the plasma

membrane, forming a functional SNARE complex that facilitates

membrane fusion and subsequent release of ILVs. Key molecular

regulators of exosome release include VAMP7, a v-SNARE-

associated protein associated with membrane transport and cell

migration, which modulates EV secretion in specific cell types (16).

Additionally, SNAP23, a t-SNARE protein, and YKT6, a member of

the SNARE family, serve as essential mediators of exosomal release.

In contrast, the shedding of MVs is governed by the Rho family of

small GTPases and Rho-associated kinase (ROCK) signaling

pathways. Among these, CDC42, a key Rho-family GTPase, acts

as a central hub integrating multiple regulatory signals for MV

biogenesis (17). Activation of CDC42 by GTP promotes MV release

via its downstream effector, IQGAP1 (IQ-domain GTPase-

activating protein 1), which facilitates membrane budding.

Simultaneously, CDC42 sustains epidermal growth factor (EGF)

signaling by inhibiting receptor endocytosis, further enhancing MV

secretion. Additionally, ARF1 and ARF6, small GTP-binding
FIGURE 1

Biogenesis, release, and uptake of extracellular vesicles.
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proteins, contribute to MV release by activating RhoA, which drives

actomyosin contraction and promotes vesicle shedding (18).
2.4 Cargo, uptake, and intercellular
communication of extracellular vesicles

EVs are critical mediators of intercellular communication,

carrying a wide range of biomolecular “cargo,” including proteins,

lipids, and nucleic acids (such as DNA, mRNA, miRNA, and

lncRNA) (19). The lipid bilayer encapsulating these molecules

ensures their stability and integrity, allowing for the efficient

transfer of information between cells (12). At the same time, this

ability to reflect both physiological and pathological changes has led

to the recognition of EVs as potential clinical diagnostic

biomarkers. EVs interact with target cells through three primary

mechanisms. First, exosomes and target cells directly interact via

ligands and receptors (such as proteins, sugars, and lipids) on their

respective membranes, initiating a cascade of signaling events (20).

For instance, dendritic cells can transfer membrane proteins, like

Major Histocompatibility Complex II (MHC II), to homologous T

cells via exosomes, thereby playing a role in immune regulation

(21). Second, the lipid bilayer of EVs can fuse directly with the

target cell membrane, releasing their internal contents (such as

proteins and RNA) into the cytoplasm, thus effectively transferring

information. Third, EVs can be internalized by target cells through

endocytosis, which includes clathrin-dependent endocytosis,

caveolin-dependent endocytosis, macropinocytosis, phagocytosis,

and lipid raft-mediated endocytosis (22). In clathrin-dependent

endocytosis, clathrin assembles around membrane receptors to

form a hexagonal and triangular lattice structure that encases the

receptors and internalized substances, leading to the formation of

clathrin-coated vesicles, which then fuse with intracellular vesicles

to release their contents (23). Caveolin-mediated endocytosis,

distinct from clathrin-mediated endocytosis, involves RhoA-

dependent and Cdc42-mediated processes. These pathways are

distinguished by their sensitivity to the biochemical properties of

the cargo and the specificity of the involvement of adaptor proteins

(11). External cholesterol and sphingolipids selectively stimulate

caveolin-dependent endocytosis. Unlike the other two mechanisms,

macropinocytosis and phagocytosis form larger vesicles (24). In

macropinocytosis, the cell membrane undergoes folding to form

large, irregular vesicles that engulf extracellular fluid and materials,

whereas phagocytosis relies on receptor-ligand interactions to

internalize particles. Lipid rafts, composed of cholesterol,

sphingolipids, and receptor proteins, mediate endocytosis

influenced by the lipid composition of these microdomains (25).
2.5 miRNA-mediated intercellular
communication mechanisms: canonical
and non-canonical pathways

Accumulating evidence indicates that exosome-associated

miRNAs play crucial roles in various cardiac pathophysiological
Frontiers in Immunology 04
processes, particularly in myocardial repair and the regulation of

fibrosis following ischemic injury, by modulating the function of

recipient cells (26). Traditionally, miRNAs are thought to exert their

effects via canonical mechanisms, primarily through complementary

binding to the 3′ untranslated region (3′UTR) of target mRNAs,

thereby repressing translation or promoting mRNA degradation,

ultimately influencing downstream signaling pathways and cellular

functions (27). However, an increasing number of studies have

revealed that certain miRNAs can also mediate biological effects

through non-canonical pathways. For instance, miR-21, miR-29a,

and members of the let-7 family have been shown to act as

endogenous ligands for Toll-like receptors 7 and 8 (TLR7/8),

triggering inflammatory or stress responses in recipient cells (28).

These findings suggest that exosomal miRNA-mediated intercellular

communication extends beyond the regulation of gene expression

and may also involve immune recognition, apoptosis, and metabolic

regulation, thus unveiling a broader and more complex spectrum of

biological effects.
3 The dual role of extracellular
vesicles in acute myocardial infarction

AMI is most commonly caused by intraluminal occlusion of the

coronary artery due to atherosclerosis and the rupture and erosion

of unstable plaques (29). When the blood supply is persistently

reduced or completely interrupted, a large portion of the

myocardium undergoes coagulative necrosis, accompanied by

congestion, edema, and extensive infiltration of inflammatory

cells in the myocardial interstitium (30). These pathological

changes lead to a significant decline in myocardial contractility

and a sudden reduction in cardiac output. Consequently,

controlling excessive inflammatory responses, inhibiting

myocardial apoptosis and necrosis, preventing ventricular fibrosis,

and promoting vascular regeneration have emerged as potential

therapeutic strategies to improve the prognosis of AMI patients. To

gain a more comprehensive understanding of the negative effects of

EVs in AMI, (Figures 2E–G) and Table 1 illustrate various

detrimental impacts of EVs associated with myocardial injury,

including their roles in promoting programmed cell death,

exacerbating inflammatory responses, and enhancing cardiac

fibrosis. In contrast, (Figures 2A–D) and Table 2 reveal the

mechanisms through which EVs improve the prognosis of AMI.

Exploring how to modulate the function of EVs to maximize their

therapeutic benefits while minimizing potential negative effects is

becoming an increasingly important focus of research.
3.1 The negative aspect of disease
rehabilitation

3.1.1 Induction of programmed cell death
Cardiomyocyte-derived exosomes contain a variety of non-

coding RNAs, particularly miRNAs, which regulate apoptosis by

targeting different apoptotic genes. As shown in Figure 2E,
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Following myocardial infarction, the secretion of certain paracrine

factors in cardiomyocyte-derived exosomes increases, and when

these exosomes are taken up by recipient cells, they may exacerbate

myocardial injury. Caspases, a family of cysteine proteases, play a

crucial role in programmed cell death and inflammation by

selectively cleaving specific proteins, thereby inducing apoptosis

(31). Research by Huang et al. (32) demonstrated that the levels of

miR-328-3p in exosomes secreted by infarcted cardiomyocytes are

significantly elevated. This miRNA activates intracellular caspase-

related signaling pathways, promoting apoptosis. Infarcted

cardiomyocytes can also directly transfer exosomes to adjacent
Frontiers in Immunology 05
cardiomyocytes, further inducing apoptosis and exacerbating MI.

Similar studies have shown that miR-19a-3p is enriched in

exosomes derived from infarcted cardiomyocytes. When taken up

by endothelial cells, it inhibits endothelial cell proliferation and

impairs cardiac function in post-MI mice by targeting the

expression of hypoxia-inducible factor-1a (HIF-1a) (33).

Notably, hypoxia is a key factor contributing to cardiomyocyte

apoptosis following MI. The hypoxic environment also activates

transforming growth factor b1 (TGF-b1) and its downstream

signaling pathways, regulating the proliferation and apoptosis of

cardiac fibroblasts (CFs). Long non-coding RNAs (lncRNAs) also
FIGURE 2

The dual role of extracellular vesicles in acute myocardial infarction. (A) Promotion of Angiogenesis. (B) Inhibition of Programmed Cardiomyocyte
Death. (C) Delaying Myocardial Fibrosis Progression. (D) Anti-Inflammatory Effects. (E) Induction of Programmed Cell Death. (F) Exacerbation of
Inflammatory Responses and Impairment of Angiogenesis. (G) Enhancement of Cardiac Fibrosis.
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play an important role in exosomes. Hypoxic exposure upregulates

the expression of lncRNA AK139128 in both cardiomyocytes and

exosomes, which has been found to promote CF apoptosis and

inhibit proliferation both in vitro and in vivo, thereby aggravating

myocardial injury after MI (33, 34).
Frontiers in Immunology 06
Additionally, circulating inflammatory EVs play a critical role

in the acute and chronic phases of MI. One study found that

inhibiting neutral sphingomyelinase (nSMase) significantly reduced

inflammatory EVs and cytokines, improving left ventricular

ejection fraction and enhancing cardiac function post-MI.
TABLE 1 An overview of the adverse effects of extracellular vesicles in myocardial infarction.

Cell source
Experimental

model
Adverse factors

Key
molecule

Related molecular
mechanisms

References

Exosomes Derived
from Cardiomyocytes

MI Mouse Model, H9C2
Cardiomyocyte Culture

Promotes programmed cell
death, exacerbates
myocardial injury

miR-328-3p
miR-328-3p induces cell apoptosis by

activating the Caspase signaling pathway.
(32)

Exosomes Derived
from Cardiomyocytes

MI Mouse Model,
Endothelial Cell Culture

Promotes endothelial cell death
and inhibits angiogenesis,

exacerbates myocardial injury
post-myocardial infarction

miR-19a-3p
miR-19a-3p inhibits endothelial cell
proliferation and angiogenesis by

regulating the expression of HIF-1a.
(33)

Exosomes Derived
from

Hypoxic
Cardiomyocytes

MI Rat Model, Co-culture
of Cardiac Fibroblasts with

Exosomes from
Hypoxic Cardiomyocytes

Promotes cardiac fibroblast
apoptosis and inhibits

cell proliferation

lncRNA
AK139128

Exosomes carrying AK139128 exacerbate
cardiac remodeling by affecting the

proliferation and apoptosis of
cardiac fibroblasts.

(34)

Inflammatory
Circulatory

Extracellular Vesicles

LAD Rat Model, Pro-
inflammatory EV-induced
Cardiomyocyte Culture

Promotes cardiomyocyte death
nSMase, NF-
kB, TLR4,

IL-1a, IL-1b

EVs activate the TLR4-NF-kB axis,
leading to cell death.

(35)

Exosomes Derived
from

Ferroptotic
Cardiomyocytes

MI Mouse Model, RAW
264.7 Macrophage Culture

Promotes programmed cell
death, exacerbates

inflammatory response

Wnt1, b-
catenin,

NOS2, IL-10

MI-derived exosomes induce M1
macrophage polarization and promote
pathological progression of MI through

the Wnt/b-catenin pathway.

(39)

Exosomes Derived
from M1 Macrophages

MI Mouse Model, Co-
culture of miR-155 Mimic-

transfected
Cardiomyocytes with

M1-Exosomes

Inhibits cardiomyocyte
proliferation, inhibits
angiogenesis, leads to
cardiac dysfunction

miR-155

M1-Exosomes deliver miR-155 to inhibit
the IL-6R/JAK/STAT3 signaling
pathway, thereby suppressing
cardiomyocyte proliferation.

(40)

Exosomes Derived
from Bone Marrow-
Derived Dendritic
Cells (BMDCs)

ApoE-/- Mouse Model,
Co-culture of

Differentiating Dendritic
Cells and HUVECs

Promotes inflammation,
increases immune
cell activation

TNF-a, NF-
kB, VCAM-
1, ICAM-1

Exosomes activate endothelial cell
inflammation and promote the

progression of atherosclerosis via TNF-
a-mediated NF-kB signaling.

(42)

Plasma Exosomes
from Chronic

Periodontitis and
Carotid

Atherosclerosis
Patients

ApoE-/- Mouse Model,
Culture of HUVECs and
HAECs with miR-155-

5p Exosomes

Promotes plaque formation,
exacerbates vascular burden

miR-155-5p

Exosomes carrying miR-155-5p enhance
vascular permeability and angiogenesis,

promoting the development of
carotid atherosclerosis.

(45)

Exosomes Derived
from Adipose Tissue

ApoE-/- Mouse Model
Promotes release of
inflammatory factors

miR-
34a, Klf4

miR-34a promotes macrophage
polarization to the M1 phenotype by
inhibiting Klf4, resulting in systemic

inflammation and metabolic dysfunction.

(47)

Endothelial
Microparticles (EMPs)

Human Aortic Endothelial
Cell (hAEC) Culture

Promotes atherosclerosis
and thrombosis

EMP,
p38 MAPK

Inhibition of p38 MAPK signaling
significantly reduces TNF-a-induced

EMP generation.
(50)

Endothelial
Microparticles (EMPs)

Human Umbilical Vein
Endothelial Cell
(HUVEC) Culture

EMPs reduce endothelial cell
proliferation and
increase apoptosis

EMP,
Mn-TBAP

EMPs impair HUVEC angiogenesis on
Matrigel substrates.

(52)

Exosomes Derived
from Cardiomyocytes

MI Rat Model, Isolation of
Cardiac Fibroblasts and

Cardiomyocytes from Rats
Promotes cardiac fibrosis

miR-
208a, Dyrk2

miR-208a targets Dyrk2, promoting the
proliferation and myofibroblast

differentiation of cardiac fibroblasts.
(54)

Exosomes Derived
from CD4+ T Cells

MI Mouse Model,
Cardiomyocyte Culture
with Cardiac Fibroblasts

Promotes cardiac fibrosis miR-142-3p
miR-142-3p promotes cardiac fibrosis via

the WNT signaling pathway.
(55)
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1598407
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2025.1598407
TABLE 2 An overview of the therapeutic implications of extracellular vesicles in myocardial infarction.

Cell source
Experimental

model
Therapeutic effect

Key
molecule

Related molecular
mechanisms

References

Exosomes
Derived
from

Cardiomyocytes

H9c2 Cardiomyocytes
Cultured Under

Ischemic Conditions,
Primary

Cardiomyocytes Co-
cultured with

Endothelial Cells

Promotes endothelial cell
proliferation and sprouting,
stimulates capillary structure

formation, enhances endothelial cell
adhesion complexes and barrier
properties, improves angiogenesis

post-MI

miR-222,
miR-

143, MMP

miR-222 and miR-143 in exosomes promote
angiogenesis by regulating endothelial cell

MMP secretion, while enhancing endothelial
cell adhesion and barrier function.

(63)

Exosomes
Derived from
Endothelial

Cells

Mouse Model, Human
Microvascular

Endothelial Cell Line
(HMEC-1) in
vitro Culture

Promotes endothelial cell migration,
angiogenesis, and inhibits the
expression of mutated ataxia
telangiectasia, promoting

vascular formation

miR-214
miR-214 mediates endothelial cell signaling
through exosomes, inhibits AT expression,
promotes angiogenesis, and prevents aging.

(64)

Exosomes
Derived from
Endothelial

Cells

Rat Model, Rat Aortic
Endothelial Cells

(RAECs) in
vitro Culture

Exosome-dependent secretion of
HSP70 activates monocytes, causing
them to adhere to endothelial cells,

thereby regulating
endothelial function

HSP70

Ox-LDL and Hcy induce endothelial cells to
secrete HSP70, exosome-mediated HSP70

promotes monocyte adhesion, providing a new
paracrine mechanism to regulate

endothelial function.

(65)

Exosomes
Derived from
Mesenchymal

Stem
Cells (MSC)

Mouse MI Model,
MSC Exosome
Treatment

of Cardiomyocytes

MSC exosomes increase miR-21a-
5p levels to protect the heart,
regulate pro-apoptotic genes
(PDCD4, PTEN, Peli1, FasL)

miR-21a-5p

Exosomes deliver miR-21a-5p to
cardiomyocytes, regulate gene expression,

enhance heart protection effects. Exosomes may
also promote angiogenesis, cell proliferation,

and cardiac repair.

(66)

Exosomes
Derived from

Human
Umbilical

Mesenchymal
Stem

Cells (hucMSC)

AMI Rat Model,
EA.hy926 Cell Culture

Improves heart contractile function,
reduces cardiac fibrosis, protects
cardiomyocytes from apoptosis,

promotes angiogenesis

Bcl-2
family, Ki67

hucMSC-exosomes improve heart contractile
function by protecting cardiomyocytes from
apoptosis and promoting angiogenesis. Their
effects are likely related to regulating Bcl-2
family expression and promoting endothelial

cell tube formation and migration.

(67)

Exosomes
Derived
from

Cardiomyocytes

Adult
Cardiomyocytes,

Hypoxia-
Reoxygenation Model

Exosomes release HSP60, enhance
immune response and
protect cardiomyocytes

HSP60

Exosomes release HSP60 through non-classical
secretion pathways, HSP60 binds to TLR4

receptors, activating immune responses and cell
protection mechanisms; hypoxic stress enhances

HSP60 release through exosomes.

(70)

Exosomes
Derived from

Cardiac
Fibroblasts

(CFs)

Co-culture of
Neonatal Rat CFs and

Cardiomyocytes,
Myocardial Infarction

Mouse Model

CFs increase cardiomyocyte viability
via paracrine signaling, reduce

infarct size
TIMP-1

Paracrine protective effects mediated by the
PI3K/Akt and ERK1/2 signaling pathways,

TIMP-1 protects cardiomyocytes via
extracellular vesicle action.

(71)

Exosomes
Derived from

Cardiac
Fibroblasts

(CFs)

H9C2
Cardiomyocytes,
Mouse IRI Model

CFs exosomes/microparticles
protect cardiomyocytes in hypoxia-

reoxygenation injury, Postcon
amplifies this effect

miR-423-3p

Postcon amplifies the heart protection effect by
upregulating miR-423-3p expression in CFs
exosomes/microparticles, miR-423-3p targets

Rap-2c, regulates H9C2 cell viability
and apoptosis.

(72)

Exosomes
Derived from

Cardiac
Progenitor
Cells (CPC)

H9C2
Cardiomyocyte

Culture

miR-21 exosomes inhibit PDCD4 to
protect cardiomyocytes from

apoptosis induced by
oxidative stress

miR-
21, PDCD4

CPC-derived exosomes inhibit cell apoptosis
through the miR-21/PDCD4 axis, improving
cardiomyocytes’ resistance to oxidative stress.

(73)

Exosomes
Derived

from MSC

Oxygen-Glucose
Deprivation (OGD)-

Induced
Cardiomyocyte Injury;

Mouse MI Model

MSC exosome treatment
significantly reduces cardiomyocyte
apoptosis, reduces inflammation,

enhances heart protection

miR-25-3p

miR-25-3p targets FASL and PTEN to reduce
protein levels, inhibit EZH2 and H3K27me3,
de-repress eNOS and SOCS3 genes, thereby
alleviating MI and providing heart protection.

(75)

Exosomes
Derived

from MSC

Hypoxic Conditions
in Cardiomyocytes;
Mouse MI Model

MSC exosomes transfer miR-210,
significantly reducing

cardiomyocyte apoptosis, improving
heart function, reducing infarct size

miR-210
miR-210 targets downstream genes like AIFM3,
improving cardiomyocytes’ tolerance to hypoxia
and other stresses, thus reducing MI damage.

(76)

(Continued)
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TABLE 2 Continued

Cell source
Experimental

model
Therapeutic effect

Key
molecule

Related molecular
mechanisms

References

Exosomes
Derived from
Adipose-
Derived

MSC (adMSC)

Oxygen-Glucose
Deprivation (OGD)
Treated Mouse

Cardiomyocytes, MI
Mouse Model

Exosome treatment significantly
improves cardiomyocyte viability,
reduces apoptosis, fibrosis, and

inflammation, improves
heart function

miR-671

miR-671 targets TGFBR2 and inhibits Smad2
phosphorylation, alleviating myocardial damage
caused by MI, improving cell viability, reducing

apoptosis and inflammation.

(77)

CDC-exo

Ang II-Induced
Cardiac Hypertrophy

and Renal
Injury Model

Reduces cardiac hypertrophy,
decreases cardiac inflammation and
fibrosis, improves kidney function,

reduces renal inflammation
and fibrosis

EV-YF1

CDC-exo and EV-YF1 improve cardiac and
renal function, correlated with changes in IL-10

expression in plasma, heart, spleen, and
kidneys, without altering blood pressure.

Exosomes and their non-coding RNAs may
become new therapies.

(78)

Exosomes
Derived from
Human Heart-

Resident
Mesenchymal
Progenitor
Cells (CPC)

Dox/Trz-Induced
Cardiotoxicity
Rat Model

Reduces Dox/Trz-induced
myocardial fibrosis, inflammatory

cell infiltration, protects
myocardial function

miR-146a-5p

CPC exosomes protect the heart by inhibiting
miR-146a-5p target genes (Traf6, Smad4, Irak1,
Nox4, and Mpo), reducing oxidative stress and

cell death.

(82)

Exosomes
Derived from
Bone Marrow

MSC
(BMMSCs)

MI Rat Heart
Failure Model

Improves myocardial injury,
reduces cardiomyocyte apoptosis
and fibrosis, improves heart failure

miR-30e,
LOX1, NF-kB

p65/
Caspase-9

miR-30e negatively regulates LOX1 expression,
inhibits NF-kB p65/Caspase-9 signaling,

reducing apoptosis and fibrosis, protecting heart
function post-MI, and improving heart failure

in rats.

(119)

Exosomes
Derived from
Bone Marrow
MSC (BMSCs)

MI Mouse Model
Improves heart function, reduces

cell apoptosis and fibrosis,
reduces inflammation

miR-129-
5p, HMGB1

miR-129-5p targets HMGB1, suppresses
inflammation in MI mouse model, reduces

inflammatory cytokines and HMGB1
expression, alleviating apoptosis and fibrosis.

(85)

Exosomes
Derived from
UC-MSCs

MI-I/R Rat Model
Improves heart function, reduces
myocardial fibrosis, promotes

angiogenesis and cell proliferation

Exo, Cx43,
Ki67, CD31,
a-SMA

Exosomes combined with injectable conductive
hydrogel improve heart function, promote

angiogenesis, and myocardial repair, enhancing
cell interaction and proliferation.

(87)

Exosomes
Derived from
Adipose-
Derived

MSC (ADSC)

Acute MI (AMI) Rat
Model, Hypoxia-
Induced H9c2

Cardiomyocyte Model

Reduces damage area in myocardial
infarction, reduces myocardial

fibrosis and inflammatory cytokines,
promotes angiogenesis

miR-126,
fibrosis-
related
proteins,

inflammatory
cytokines

Exosomes rich in miR-126 reduce inflammation
in cardiomyocytes, inhibit fibrosis protein
expression, promote angiogenesis and

cardiac repair.

(88)

Exosomes from
IL-10

Deficient EPCs
MI Mouse Model

Improves heart function, reduces
MI scar, enhances angiogenesis, but

IL-10 deficient exosomes are
less effective

IL-10, ILK,
NF-kB

IL-10 deficiency leads to upregulation of ILK
protein in exosomes, activating NF-kB pathway
and promoting inflammation. Knockdown of
ILK in exosomes reduces NF-kB activation and

restores myocardial repair.

(94)

Exosomes
Derived from
hucMSC-
exosomes

MI Rat Model, LPS-
Stimulated

Fibroblast Model

Reduces cardiomyocyte apoptosis,
promotes differentiation of
fibroblasts to myofibroblasts,

alleviates inflammation

a-SMA, TGF-
b1, IL-6,
TNF-a

Exosomes promote fibroblast differentiation to
myofibroblasts, enhance cardiac repair, reduce
cardiomyocyte apoptosis and inflammation,
reducing inflammatory damage in MI area.

(95)

Exosomes from
LPS-

Stimulated
BMSCs

LPS-Stimulated
BMSCs, H9c2

Cardiomyocyte Model

Reduces myocardial inflammation
and oxidative stress, inhibits

cardiomyocyte apoptosis, increases
antioxidant enzyme expression

miR-181a-
5p, ATF2

miR-181a-5p targets ATF2, inhibits myocardial
inflammation and oxidative stress, reduces cell

injury, and promotes cardiac repair.
(96)

Exosomes from
Adipose-
Derived

MSC (adMSC)

OGD Treated Mouse
Cardiomyocyte Model,

MI Mouse Model

Increases cardiomyocyte viability,
reduces apoptosis, fibrosis, and

inflammation; improves
heart function

miR-671

miR-671 targets TGFBR2, inhibits Smad2
phosphorylation, reducing myocardial damage
caused by MI, improving cell viability, reducing

apoptosis and inflammation.

(77)
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Furthermore, EVs induce cardiomyocyte death by activating the

toll-like receptor 4 (TLR4) -nuclear factor-kappa B (NF-kB) axis,
further contributing to myocardial damage (35).

3.1.2 Exacerbation of inflammatory responses
and impairment of angiogenesis

After AMI, cardiomyocyte death triggers an inflammatory

response, and excessive inflammation leads to extracellular matrix

(ECM) degradation and ventricular remodeling (36). From an

inflammatory perspective, exosomes secreted by cardiomyocytes

during AMI regulate various inflammatory cells. According to

Figure 2F, AMI induces a transient increase in cardiac EVs,

which, upon uptake by monocytes in the ischemic myocardium,

modulate and enhance local inflammation (37, 38). Additionally,

ferroptosis of cardiomyocytes during AMI reduces miR-106b-3p

levels in secreted exosomes, activating the WNT signaling pathway,

promoting M1 macrophage polarization, and exacerbating

myocardial inflammation (39).

Macrophages play a critical role in the progression of

inflammation. In the early phase of AMI, M1 macrophages are

recruited to the infarcted myocardium, exhibiting strong phagocytic

activity. Multiple factors regulate macrophage phenotype changes

post-infarction (40). Liu et al. (41) found that M1-type

macrophages release pro-inflammatory M1-derived exosomes

(M1-Exos) after MI, which impair angiogenesis, accelerate

myocardial damage, and are highly enriched in miR-155. miR-

155 is transferred to endothelial cells, downregulating multiple

target genes involved in inflammation, inhibiting angiogenesis,

and leading to cardiac dysfunction. M1-Exos also suppresses

related signaling pathways, reducing the angiogenic capacity of

endothelial cells, exacerbating the myocardial injury and impeding

recovery (40). Additionally, dendritic cell (DC)-derived exosomes

recruit and activate immune cells post-MI, promoting the release of

inflammatory factors. Advanced experiments have demonstrated

that mature DCs contribute to endothelial inflammation via

exosomes. DC-derived exosomes (DC-Exos) from bone marrow-

derived DC culture medium stimulate human umbilical vein

endothelial cells (HUVECs) and mature DC-Exos regulate the

NF-kB pathway, increasing HUVEC inflammation (42). Mast

cell-derived exosomes, containing pro-inflammatory factors,

activate lymphocytes and may contribute to inflammation

initiation and amplification. Mast cells can also promote

atherosclerotic plaque rupture, leading to AMI (43, 44).

Moreover, endothelial cell-derived exosomes (EC-Exos),

depending on their origin and miRNA composition, can have

both protective and detrimental effects on the cardiovascular

system. While they offer protective effects against vascular injury,

they may also contribute to plaque formation, increasing vascular

burden. Under oxidized low-density lipoprotein (ox-LDL)

stimulation, HUVECs secrete miR-155-enriched exosomes, which

promote the transition of monocytes/macrophages from the anti-

inflammatory M2 phenotype to the pro-inflammatory M1

phenotype, exacerbating atherosclerotic plaque formation (45).

Adipose-derived exosomes (Ad-Exos) are taken up by

macrophages in adipose tissue. Triglycerides within Ad-Exos are
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hydrolyzed into fatty acids by macrophages and released to

maintain systemic metabolic homeostasis. However, under

conditions of excessive fat accumulation, this balance is disrupted,

leading to macrophage activation, increased inflammatory cytokine

release, and systemic insulin resistance. Studies have shown that

exosomes isolated from visceral adipose tissue of high-fat diet-fed

ApoE-/- mice downregulate ATP-binding cassette transporters

(ABCA1 and ABCG1), impairing cholesterol efflux and

significantly promoting M1 macrophage foam cell formation and

pro-inflammatory factor (TNF-a and IL-6) expression, thereby

exacerbating atherosclerosis (46). Another study identified miR-

34a as a key regulatory miRNA in Ad-Exos, which transmits

nutritional overload signals to resident adipose macrophages. By

inhibiting the expression of the transcription factor Krüppel-like

factor 4 (Klf4), miR-34a promotes macrophage polarization

towards the inflammatory M1 phenotype, aggravating obesity-

induced systemic inflammation and metabolic disorders (46, 47).

Beyond exosomes, microparticles also have pro-inflammatory

effects and contribute to endothelial dysfunction, promoting

atherosclerosis and thrombosis, which are closely associated with

AMI progression (48). Endothelial microparticles (EMPs) express

adhesion molecules on their surface, facilitating leukocyte

aggregation and enhancing their transmigration across endothelial

junctions. EMPs activate NF-kB, upregulating Intercellular

Adhesion Molecule 1 (ICAM-1) expression, a process that can be

inhibited by NF-kB antagonists, suggesting a role in ICAM-1

upregulation via the NF-kB pathway (49). Microparticle release is

linked to IL-6 production, with EMPs promoting inflammatory

cytokine release in a positive feedback loop. The p38 mitogen-

activated protein kinase (p38 MAPK) pathway is critical in

producing pro-inflammatory EMPs (50). Furthermore, EMPs

inhibit nitric oxide production, impair endothelial relaxation, and

increase oxidative stress in a dose-dependent manner (51).

Mezentsev et al. (52) found that prolonged exposure to and

higher concentrations of EMPs reduce endothelial cell

proliferation, increase apoptosis, and impair repair capacity,

ultimately leading to endothelial dysfunction. Additionally,

leukocyte-derived microparticles (LMPs) participate in all stages

of atherosclerosis, promoting inflammation and thrombosis, further

contributing to AMI progression.

3.1.3 Enhancement of cardiac fibrosis
Cardiac fibrosis, primarily mediated by activated CFs,

contributes to adverse cardiac remodeling and results from

various forms of cardiac injury (53). As illustrated in Figure 2G,

Cardiomyocyte-derived exosomes can influence cardiac fibrosis.

Hypoxic cardiomyocytes secrete exosomes enriched with miR-

208a into fibrotic cardiac tissue, where CF proliferation and

differentiation are promoted into myofibroblasts, exacerbating

cardiac fibrosis and further impairing cardiac function (54).

Dendritic cells, as key antigen-presenting cells, also play a role

in fibrosis. Cai et al. discovered that CD4+ T cells release exosomes

enriched with miR-142-3p, which aggravates cardiac fibrosis and

leads to post-MI cardiac dysfunction (55). miR-142-3p directly

targets and inhibits the WNT signaling pathway regulator APC,
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thereby activating theWNT pathway and stimulating CF activation.

During cardiac injury, activated macrophages regulate fibroblast

differentiation into myofibroblasts through miR-155-enriched

exosomes, further driving fibrosis progression (56).

Fibroblast-derived exosomes are also implicated in cardiac fibrosis.

These exosomes carry bioactive molecules, including miRNAs and

proteins, that influence cardiomyocytes, endothelial cells, and immune

cells, thereby accelerating fibrosis. They promote fibrosis by regulating

CF proliferation, migration, and ECM protein synthesis and deposition

(57). Additionally, fibroblast-derived exosomes may interact with

cardiomyocytes, modulating their function, promoting apoptosis, or

triggering cellular transformation, thereby worsening myocardial

fibrosis (54). Endothelial cell-derived exosomes transmit signals

related to vascular function, inflammation, or injury repair,

influencing CF migration and proliferation (58). Macrophage-derived

exosomes regulate local inflammation and tissue repair, further

enhancing CF proliferation, migration, and secretion profile changes,

thereby stimulating the secretion of fibroblast-derived exosomes (53).
3.2 The positive aspect of disease
rehabilitation

In addition to the aforementioned detrimental effects, EVs have

been shown to alleviate cardiac dysfunction effectively. Exosomes can

be secreted by various cell types, including cardiomyocytes,

endothelial cells, cardiac fibroblasts, cardiac progenitor cells, and

mesenchymal stem cells (59–61). These exosomes play a crucial role

in cardioprotection by promoting angiogenesis, inhibiting myocardial

fibrosis, reducing cardiomyocyte apoptosis, suppressing

inflammatory responses, and improving cardiac function.

Furthermore, the miRNAs and proteins contained within exosomes

regulate biological signaling pathways, thereby influencing various

physiological and pathological processes in the body. Exosomes from

different cellular sources have a wide range of biological functions,

which offer great promise for their application in the prevention and

treatment of AMI (62).

3.2.1 Promotion of angiogenesis
Cardiomyocytes and endothelial cells maintain close

communication, as detailed in Figure 2A. Ribeiro-Rodrigues et al.

(63) were the first to report that ischemic cardiomyocytes secrete

exosomes that influence endothelial cell function and promote

angiogenesis. One study confirmed that ischemic cardiomyocyte-

derived exosomes protect the myocardium from oxidative damage

while stimulating endothelial cell proliferation and sprouting,

facilitating new blood vessel formation. Further analysis of miR-143

and miR-222 in exosomes revealed that exosomes from ischemic

cardiomyocytes promote angiogenesis both in vitro and in vivo,

underscoring the significant role of intercellular signaling in

vascular regulation. Van Balkom et al. (64) demonstrated that miR-

214 plays a central role in endothelial cell-derived exosome-mediated

signaling. Endothelial cells release miR-214-enriched exosomes,

which suppress capillary dilation in target cells, regulate cell

migration, and enhance angiogenesis. Zhan et al. (65) further
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confirmed that ox-LDL and homocysteine induce endothelial cells

to release exosomes enriched with heat shock protein 70 (HSP70).

These endothelial cell-derived exosomes activate monocyte-

endothelial adhesion and upregulate HSP70 expression, providing a

novel paracrine mechanism for maintaining vascular endothelial

integrity and promoting neovascularization.

Mesenchymal stem cell-derived exosomes (MSCs-Exos) play a

crucial role in cardioprotection and angiogenesis. Luther et al. (66)

identified miR-21a-5p as a cardioprotective miRNA transferred via

exosomes from bone marrow-derived mesenchymal stem cells

(BM-MSCs) to cardiomyocytes, promoting angiogenesis. Zhao

et al. (67) injected human umbilical cord-derived MSC exosomes

(hUC-MSC-Exos) into AMI model rats via the tail vein and

observed significant improvement in cardiac contractile function,

inhibition of myocardial fibrosis, and enhanced cell proliferation

and angiogenesis. Similarly, Ma et al. (68) used adenovirus-

transfected hUC-MSCs to isolate and inject exosomes into an

AMI model, confirming their ability to promote endothelial cell

proliferation and significantly improve cardiac function. Adipose-

derived mesenchymal stem cell exosomes (ADSC-Exos) also

contribute to angiogenesis by modulating miR-155 expression,

improving endothelial cell function, promoting blood vessel

formation, and protecting ischemic myocardium from ischemia-

reperfusion injury. Additionally, platelet-derived microparticles

(PMPs), released by activated platelets and enriched with

coagulation-related proteins, promote coagulation, hemostasis,

and thrombosis (24, 69). These microparticles interact with

endothelial cells to facilitate vascular regeneration and repair,

potentially playing a vital role in AMI vascular recovery,

particularly restoring damaged vascular function and improving

myocardial perfusion.

3.2.2 Inhibition of programmed cardiomyocyte
death

Under ischemic and hypoxic stress conditions, cardiomyocytes

actively secrete exosomes enriched with specific bioactive cargos,

including miRNAs, lncRNAs, and stress-responsive proteins. These

exosomes not only mediate intercellular transmission of stress

signals but also exert cardioprotective effects by regulating

apoptosis-related pathways and mitigating myocardial injury.

Notably, certain proteins carried by exosomes, such as heat shock

proteins and tumor necrosis factor superfamily member 10

(TNFSF10), play critical roles in modulating apoptosis and

immune responses, and have increasingly been identified as

promising targets in cardioprotection research (60). Gupta et al.

(70) were the first to isolate exosomes containing heat shock protein

60 (HSP60) from adult rat cardiomyocytes. They found that

under hypoxic conditions, HSP60 binds to the cardiomyocyte

outer membrane, forming a protective barrier that sequesters

excessive HSP60, thereby reducing cytotoxicity and inhibiting

cardiomyocyte apoptosis.

Recently, tissue inhibitors of metalloproteinases-1 (TIMP-1)have

emerged as a key regulator in cardiovascular disease research. Studies

have explored the protective role of TIMP-1 in cardiac fibroblast-

derived exosomes during MI. Abria et al. (71) injected cardiac
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fibroblast-derived exosomes into a rat MI model and observed a

significant reduction in infarct size and cardiomyocyte apoptosis.

This protective effect is thought to be mediated by TIMP-1, which

exerts paracrine functions to inhibit fibrosis and mitigate myocardial

injury. Luo et al. (72) conducted co-culture experiments and found

that cardiac fibroblast proliferation significantly increased under

hypoxia-reoxygenation conditions, effectively protecting

cardiomyocytes from damage. Their study indicated that cardiac

fibroblast-derived exosomes play a cardioprotective role during

ischemia-reperfusion injury via the miR-423-3p/RAP2C signaling

pathway, inhibiting cardiomyocyte apoptosis.

As shown in Figure 2B, excessive reactive oxygen species (ROS)

in the ischemic region of AMI are a major cause of cardiomyocyte

apoptosis and death. Xiao et al. (73) demonstrated that oxidative

stress enhances the production of miR-21 in exosomes derived from

cardiac progenitor cells. miR-21 inhibits PDCD4 expression,

protecting cardiomyocytes from oxidative stress-induced

apoptosis, thus providing a new molecular mechanism for

cardioprotection. Additionally, Barile et al. (74) discovered that

exosomes from cardiac stem cells contain pregnancy-associated

plasma protein-A (PAPP-A), which hydrolyzes IGFBP-4 to release

insulin-like growth factor 1 (IGF-1). This activates IGF-1R

signaling, leading to phosphorylation of intracellular Akt and

ERK1/2, inhibition of caspase activation, and reduced

cardiomyocyte apoptosis. Their findings suggest that the

cardioprotective effects of cardiac stem cell-derived exosomes are

associated with PAPP-A-mediated IGF-1 release.

Peng et al. (75) found that in an AMI mouse model,

mesenchymal stem cell-derived exosomes overexpressing miR-25-

3p downregulate Fas Ligand (FASL) and phosphatase and tensin

homolog (PTEN) expression, thereby suppressing cardiomyocyte

apoptosis. Other studies have shown that mesenchymal stem cell-

derived exosomes reduce infarct size and improve post-AMI cardiac

function (76). The underlying mechanism may involve miR-210,

which targets AIFM3, pAKT, and p-p53, regulating apoptosis and

enhancing hypoxic cardiomyocyte survival. Furthermore, in vivo

studies on adipose-derived mesenchymal stem cell exosomes

revealed that they improve cardiomyocyte viability, reduce

apoptosis, and attenuate both myocardial fibrosis and

inflammation. This effect is believed to be mediated by exosomal

miR-671, which targets TGFBR2, reducing Smad2 phosphorylation

and thereby exerting anti-fibrotic and anti-apoptotic effects (77).

3.2.3 Delaying myocardial fibrosis progression
Elevated levels of angiotensin II induce heart failure and

exacerbate the progression of cardiovascular diseases. Exosomes

derived from cardiomyocytes can inhibit myocardial fibrosis by

regulating the expression of inflammation-related factors, as

detailed in Figure 2C. Cambier et al. (78) investigated the

mechanistic role of cardiomyocyte-derived EVs using a long-term

angiotensin II (Ang II) infusion-induced cardiac hypertrophy

model established in C57BL/6J mice. Their study revealed that

these exosomes modulate the expression of the anti-inflammatory

cytokine interleukin-10 (IL-10), thereby alleviating myocardial

hypertrophy, reducing cardiac inflammation, and mitigating
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fibrosis. Additionally, miR-208a, found in cardiomyocyte-derived

exosomes, is upregulated in MI models and redox enzyme-induced

cardiomyopathy in rats, demonstrating its ability to inhibit

myocardial fibrosis and improve cardiac function.

Beyond cardiomyocyte-derived exosomes, cardiac stem cells and

progenitor cells (CPCs) play significant cardioprotective roles in AMI

through multiple pathways. Cardiac homing peptides (CHPs) are a

class of small peptides capable of specifically recognizing and binding

to injured myocardial tissue, typically identified through in vivo phage

display techniques. By targeting endothelial or stromal molecules

associated with myocardial injury, CHPs enable the precise delivery

of therapeutic agents to diseased cardiac regions. They have been

widely employed to enhance the cardiac accumulation of exosomes,

drugs, or nanocarriers, thereby improving therapeutic efficacy while

minimizing off-target effects (79). Studies have shown that exosomes

released by cardiac stem cells can bind to CHP, enhancing their

targeted therapeutic effects and reducing post-infarction fibrosis and

smaller infarct scars (80). CPC-derived exosomes are highly enriched

with miR-146a-5p, which inhibits the deposition of collagen type I in

the interstitial matrix, preventing anthracycline/trastuzumab-induced

myocardial fibrosis and playing a crucial role in myocardial repair and

regeneration (81, 82). He et al. (83) found that CPC-derived exosomes

promote regulatory T cell (Treg) differentiation in MI mice, reducing

myocardial damage, potentially through enhanced mTOR activity.

Moreover, cardiosphere-derived cell (CDC)-secreted exosomes

(CDCex) are also rich in miR-146a-5p and have been shown to

reduce myocardial fibrosis by inhibiting the expression of pro-

inflammatory cytokines and transcription factors (84).

Mesenchymal stem cells (MSCs), commonly derived from bone

marrow, also exhibit anti-fibrotic effects through exosome secretion.

Studies have demonstrated that exosomes derived from bone marrow

MSCs (BMSC-Exo) overexpressing miR-30e can ameliorate

myocardial infarction in rats by inhibiting LOX-1 expression and

downregulating NF-kB p65/Caspase-9 signaling, thereby reducing

myocardial pathological damage and fibrosis (85). Similarly, BMSC-

Exo overexpressing miR-129-5p exerts cardioprotective and anti-

fibrotic effects in MI models. Furthermore, BMSC-Exo stimulated by

lipopolysaccharides (LPS) reduces inflammatory factor expression,

improves myocardial contractility, and decreases fibrosis in MI mice.

Hypoxia-treated BMSC-Exo, with increased miR-210 expression, has

been found to attenuate fibrosis (86). Exosomes from umbilical cord-

derived MSCs (UMSC-Exo) delivering circHIPK3 have been shown to

reduce infarct zone fibrosis in MI mice (87). Adipose-derived MSCs

(ADSCs) overexpressing miR-126 decrease fibrosis-related protein

expression in H9c2 cells, alleviating cardiac fibrosis in MI rats (88).

Exosomes derived from ADSCs-Exo have demonstrated superior

cardioprotective and anti-fibrotic effects compared to exosomes from

unspecified or other stem cell sources in multiple studies. At the

molecular level, ADSCs-Exo exert their beneficial effects primarily by

overexpressing miR-146a, which downregulates EGR1 expression and

suppresses the activation of the TLR4/NF-kB signaling pathway (89).

This results in a marked reduction in post-infarction inflammation and

cardiac fibrosis, thereby achieving better therapeutic outcomes than

unmodified exosomes. At the pathological level, ADSCs-Exo

significantly reduce the mRNA levels of multiple fibrosis-related
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markers, such as COL1A1 and a-SMA, in models of cardiotoxicity

induced by doxorubicin and trastuzumab, indicating a more potent

anti-fibrotic capacity (90, 91). In terms of immunomodulation,

ADSCs-Exo promote macrophage polarization toward the M2

phenotype via activation of the S1P/SK1/S1PR1 signaling pathway,

thereby contributing to myocardial microenvironmental remodeling,

attenuating inflammation, and enhancing their anti-fibrotic and

cardioprotective functions (91). Additionally, ADSCs-Exo have been

shown to upregulate SIRT1 expression, leading to a reduction in infarct

size and atrial fibrosis in AMI models, highlighting their greater

potential in promoting tissue repair and functional recovery (92).

3.2.4 Anti-inflammatory effects
In the field of inflammation research, exosomes derived from

HUVECs and human coronary artery endothelial cells (HCAECs) have

been shown to modulate inflammatory responses and induce

monocyte activation and migration (93). As shown in Figure 2D,

recent studies have revealed that exosomes secreted by endothelial cells

from IL-10 knockout mice lack pro-angiogenic and cardiac repair

properties. These exosomes exhibit upregulated expression of integrin-

linked kinase (ILK), which activates NF-kB-mediated inflammatory

genes in recipient cells. Suppression of ILK expression can rescue the

loss of repair activity caused by inflammation (94). In the later stages of

MI, M2 macrophages play an anti-inflammatory and reparative role in

myocardial tissue. Exosomes from hypoxic cardiomyocytes have been

shown to polarize macrophages towards the M2 phenotype, thereby

alleviating cardiomyocyte injury, although the underlying mechanisms

remain unclear and warrant further investigation. Research by Shi et al.

(95) demonstrated that exosomes released by human umbilical cord

mesenchymal stem cells (HUCMSCs) can suppress post-MI

inflammatory responses and protect cardiomyocytes. Injection of

these exosomes into an animal model of AMI resulted in increased

myofibroblast density in the infarct zone, further alleviating

inflammation. Additionally, studies have shown that exosomes

derived from BM-MSCs overexpressing miRNA-181a-5p attenuate

inflammation and oxidative stress by downregulating ATF2

expression (77, 96). Exosomes derived from adipose-derived

mesenchymal stem cells enhance cardiomyocyte viability, reduce

apoptosis, and mitigate myocardial fibrosis and inflammation both

in vitro and in vivo. These effects are potentially mediated by targeting

TGFBR2 by exosome-carried miR-671, which reduces Smad2

phosphorylation (77).
4 Diagnostic and therapeutic potential
of extracellular vesicles as
multifunctional carriers in acute
myocardial infarction

EVs have emerged as a promising therapeutic vehicle for AMI,

attracting considerable research attention and yielding promising

results. EVs have been validated as significant biomarkers for
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diagnosing and treating AMI. As illustrated in Figure 3, EVs have

the capacity to transport a diverse array of nucleic acids and

proteins into recipient cells, thereby influencing the phenotype

and functionality of these cells. This unique characteristic

positions EVs as a potentially advantageous drug delivery

platform. However, the challenge of achieving precise targeting of

EVs to specific recipient cells in vivo remains a critical issue that

requires further investigation and innovation.
4.1 Extracellular vesicles as biomarkers of
acute myocardial infarction

Extensive research has demonstrated that AMI patients treated

within 12 hours exhibit a 50% reduction in mortality compared to

those with delayed intervention, emphasizing the critical

importance of early and accurate diagnosis to facilitate timely

treatment, minimize myocardial damage, and prevent

complications such as heart failure or sudden cardiac death (97,

98). Although cardiac troponin (cTn) is regarded as the gold

standard for AMI diagnosis, its elevation in acute non-ACS

conditions and chronic diseases highlights the need for more

specific and sensitive biomarkers for early AMI detection (99,

100). In recent years, miRNAs and lncRNAs encapsulated within

exosomes have emerged as promising biomarkers for the early

diagnosis of AMI. Several miRNAs are presumed to originate

predominantly from cardiomyocytes, a hypothesis primarily

supported by data obtained from animal models. In AMI animal

models, particularly in mice subjected to coronary artery ligation,

researchers have employed cardiomyocyte-specific promoter-

driven reporter systems or exosome-tracking techniques to

successfully trace the myocardial origin of specific miRNAs (101).

For instance, miR-1a, miR-208a, and miR-499-5p are markedly

elevated in the circulation of mice following AMI and are known to

be highly enriched in myocardial tissue under physiological

conditions (102). Moreover, these miRNAs are rapidly released

into the plasma within 2 to 4 hours after myocardial injury, with

expression dynamics closely mirroring the progression of

myocardial damage, further substantiating their cardiomyocyte-

derived origin. Notably, miR-133a is predominantly detected in

the non-exosomal fraction of plasma, suggesting a vesicle-

independent release mechanism (103). In clinical studies,

circulating exosomes from AMI patients have been found to

contain elevated levels of miR-126, miR-183, and the PTEN gene,

while lncRNAs such as UCA1, NEAT1, and MMP-9 are also

significantly upregulated. In contrast, miR-21 and miR-204

exhibit downregulated expression patterns. Among these, the

expression levels of miR-126 and miR-183 show a positive

correlation with the severity of myocardial ischemia, indicating

their potential utility in disease assessment. Therefore, exosomal

miRNAs and lncRNAs not only hold promise for the early detection

of AMI but may also serve as indicators of the extent of myocardial

injury. Furthermore, recent findings suggest that in patients who
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progress to heart failure within one year following AMI, serum

levels of miR-192 are significantly elevated, accompanied by a

coordinated upregulation of miR-194 and miR-34a within serum

exosomes (104). These three miRNAs may serve as potential

biomarkers for predicting long-term heart failure risk after AMI.
4.2 Genetic engineering and targeted
modification of extracellular vesicles

In addition to their role as biomarkers, EVs have been extensively

explored for therapeutic applications in AMI through genetic

engineering and targeted modification techniques. A growing body

of research demonstrates that engineered EVs exhibit enhanced drug-

loading efficiency, targeting precision, and tissue retention.

Specifically, donor cells are often engineered via co-incubation or

gene transfection to incorporate therapeutic agents, while techniques

such as extrusion and microfluidics enable the fabrication of EV-like

nanovesicles (NVs). Common methods for engineering EVs include

ultrasonication, electroporation, freeze-thaw cycles, extrusion, and

saponin permeabilization, all of which facilitate the encapsulation of

therapeutic cargo into EVs. Furthermore, the anchoring of targeting
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ligands, peptides, or aptamers onto the EV membrane enhances their

homing capabilities, while the fusion of EVs with lipid-based

nanoparticles such as liposomes or micelles results in hybrid EVs

with tailored properties (105).

In the context of AMI treatment, one study employed a fusion-

extrusion technique to coat EVs with monocyte membranes.

Following intravenous injection, these membrane-coated EVs

exhibited increased interaction with ischemic cardiomyocytes,

driven by the upregulation of ICAM-1 on the cardiomyocyte

membrane and the enrichment of Mac-1 and LFA-1 on the EV

surface. This interaction promoted EV homing to hypoxic

myocardium, thereby improving therapeutic efficacy (106). Another

study overexpressed IMTP and Lamp2b in mesenchymal stem cells,

resulting in the display of IMTP on the membrane of secreted EVs.

Intravenous administration of these IMTP-modified EVs in a murine

myocardial infarction model led to enhanced accumulation in the

infarcted region, prolonged cardiac retention, and superior

therapeutic outcomes compared to unmodified EVs (107).

Additionally, CD47-modified EVs, which bind to signal regulatory

protein a (SIRPa) to inhibit monocyte-macrophage phagocytosis,

demonstrated extended cardiac retention and improved functional

recovery in treated mice (108). While most studies focus on genetic
frontiersin.or
FIGURE 3
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engineering tomodify EV surfaces, using techniques such as lentiviral

transfection raises concerns regarding operational complexity,

potential alterations in EV bioactivity, and safety issues such as

tumorigenicity (109, 110). To address these limitations, alternative

physical or chemical methods have been developed to achieve more

precise surface modifications. For instance, chemical conjugation of

tissue-specific antibodies or homing peptides onto the EV membrane

in vitro has been shown to significantly enhance targeting efficiency,

offering a safer and more controllable approach to EV engineering.

These advancements underscore the transformative potential of

engineered EVs in AMI therapy while addressing critical challenges

in their development and application (110).
4.3 The prospective advantages of
extracellular vesicles as drug delivery
vehicles

EVs have emerged as promising nanocarriers for treating AMI

due to their ability to transport a diverse array of therapeutic

molecules, including proteins and miRNAs, which collectively

enhance myocardial repair, promote angiogenesis, reduce

apoptosis, and inhibit fibrosis. The intrinsic properties of EVs,

such as excellent biocompatibility, robust tissue and cellular barrier

penetration, and relative stability in the systemic circulation, have

driven extensive research into their potential as drug delivery

vehicles. Currently, two primary strategies are employed for drug

loading into EVs: (1) integrating therapeutic agents into producer

cells, utilizing their natural biogenesis pathways to yield drug-

loaded EVs, and (2) isolating EVs from various sources (e.g.,

cultured cells, human blood, or milk) and subsequently

incorporating therapeutic molecules using biotechnological

methods (111, 112).

Studies have demonstrated the therapeutic efficacy of

engineered EVs in AMI models. For instance, Xuan et al. (113)

engineered MSCs to overexpress N1ICD, generating N1ICD-

enriched EVs that, when injected into the peri-infarct zone of

AMI mice, significantly reduced infarct size and fibrosis while

improving cardiac function. This effect was attributed to N1ICD-

mediated upregulation of LOXL2 and Biglycan, which promoted

angiogenesis and attenuated cardiomyocyte apoptosis. Similarly,

Ma et al. (68) enhanced the therapeutic potential of MSC-derived

EVs by overexpressing Akt, increasing the enrichment of platelet-

derived growth factor D (PDGF-D). These EVs facilitated

endothelial cell proliferation and migration, angiogenesis in the

peri-infarct region, and cardiomyocyte survival, ultimately

improving myocardial regeneration and cardiac function. Another

study reported that EVs derived from SDF-1-overexpressing MSCs

outperformed unmodified EVs in treating myocardial infarction, as

they upregulated Bcl-2, downregulated Bax, and inhibited

cardiomyocyte apoptosis while promoting microvascular

regeneration in the peri-infarct zone (114). The therapeutic utility

of EVs has been further expanded by incorporating nucleic acids.
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Mao et al. (115) loaded MSC-derived EVs with KLF3-AS1, which

sequestered miR-138-5p to alleviate its suppression of Sirt1, thereby

reducing hypoxia-induced cardiomyocyte apoptosis and enhancing

therapeutic outcomes compared to unmodified EVs. Liu et al. (116)

engineered adipose-derived MSC EVs to overexpress miR-93-5p,

inhibiting Atg7 and TLR4 expression, and attenuating hypoxia-

induced autophagy and inflammation. EVs loaded with miR-93-5p

demonstrated superior therapeutic effects compared to unmodified

EVs. Wei et al. (117) utilized MSC-derived EVs carrying miR-181a

to treat AMI mice, resulting in reduced infarct size, improved

cardiac function, and decreased inflammatory cell infiltration.

Additionally, Song et al. (118) identified miR-21 as a critical

cargo in MSC-derived EVs, which targeted the PDCD4/AP-1

pathway to inhibit apoptosis and activated the PTEN/Akt

signaling pathway to stimulate VEGF expression, thereby

promoting post-AMI functional recovery.
5 Discussion

5.1 Dual roles and research highlights of
EVs in AMI

(1) EVs exhibit a dualistic role in AMI, capable of exacerbating

disease progression by promoting apoptosis, amplifying

inflammation, and reducing angiogenesis, while also potentially

alleviating cardiac injury. Exosomes derived from various cell types

have demonstrated cardioprotective effects, including promoting

angiogenesis, inhibiting cardiomyocyte apoptosis, repairing

damaged myocardium, and suppressing fibrosis. Furthermore,

intercellular communication mediated by EVs provides the

molecular foundation for their diagnostic and therapeutic roles in

cardiovascular diseases, as well as their cardioprotective effects. (2)

Targeted modulation of the ratio of M1 to M2 macrophages in

cardiac tissue through small exosomes may serve as a potential

strategy for treating myocardial infarction. M1 macrophages,

classically activated, and M2 macrophages, alternatively activated,

exhibit pro-inflammatory and anti-inflammatory phenotypes,

respectively, with their balance being critical for tissue

inflammation, injury, and repair. Tissue cells and macrophages

interact via EVs, with damaged tissue cells releasing exosomes that

promote macrophage activation and polarization. Polarized

macrophages, in turn, release exosomes and other factors that

exacerbate cellular stress, tissue inflammation, and injury. (3) The

role of EVs varies significantly across different phases of myocardial

infarction, with the acute phase primarily characterized by repair and

inflammation, while the chronic phase is more associated with

fibrosis and tissue remodeling. Following AMI, cardiomyocytes,

endothelial cells, and macrophages rapidly release EVs that carry

bioactive molecules involved in inflammation, apoptosis, and repair.

In the acute phase, EVs often carry pro-inflammatory factors such as

miR-155 and miR-142-3p, which activate immune responses to

promote inflammation and local repair, but they may also mediate
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cardiomyocyte apoptosis or exacerbate cardiac dysfunction. After the

acute phase, the function of EVs shifts more towards cardiac

remodeling and fibrosis, driving fibrosis by promoting fibroblast-

related activities. In the chronic phase, EVs may carry

immunomodulatory molecules such as miR-210 and miR-122 to

regulate long-term immune responses. However, during chronic

myocardial infarction, EVs may also further deteriorate cardiac

structure and function due to persistent inflammation and fibrosis.

(4) From a therapeutic perspective, the efficacy of stem cell therapy in

cardiovascular diseases has been well-established, and exosome-based

cell-free therapies are emerging as a new focus for treating conditions

such asmyocardial infarction and heart failure.With low toxicity, low

immunogenicity and excellent biocompatibility, exosomes are a

promising natural drug delivery carrier and are expected to become

a new generation of nanoscale drug carriers.
5.2 Limitations and Prospects of EVs
Involvement in the Progression of AMI

Despite the broad therapeutic prospects of EVs, several

limitations are faced in current preclinical research: (1) The

processes of exosome extraction and purification are complex, and

targeted delivery of biologically active factors remains unresolved.

Current isolation methods, such as ultracentrifugation,

immunocapture, and density gradient centrifugation, exhibit

limitations in efficiency, cost, and scalability. (2) There is no

standardized method for drug loading into EVs. Although studies

have successfully loaded small molecules such as antibiotics and anti-

inflammatory drugs into EVs, current techniques, including

electroporation, sonication, and incubation, require improved

loading efficiency, stability, and targeting precision. (3) To date, no

clinical trials are underway to investigate the use of exosomes for

treatingMI patients. Research on the long-term safety of EVs remains

limited, particularly regarding their immunomodulatory effects

across different disease states, which are not yet fully

understood.To address these challenges, the roles of EVs in AMI

should be further explored through the following strategies: (1)

Development of EV isolation and purification technologies that

comply with good manufacturing practice standards to ensure

consistency and controllability in clinical applications.

Establishment of quality control systems, including assessments of

purity, composition, and bioactivity, to enhance safety and

therapeutic predictability. (2) Investigation of the in vivo

distribution and persistence of EVs to optimize dosing strategies.

Exploration of mild yet efficient drug-loading techniques, such as

bioengineering EV membrane proteins to enhance interactions with

target cells, combined with nanotechnology, such as modifying

specific ligands or antibodies to improve targeted delivery

capabilities. (3) In-depth evaluation of the metabolic pathways,

potential immune side effects, and long-term safety of different EVs

in vivo. Simultaneously, large-scale animal experiments and clinical
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trials should be conducted across diverse disease models to validate

their efficacy and identify optimal treatment windows.
6 Conclusion

EVs have emerged as pivotal tools for delivering essential

biological molecules, demonstrating significant potential in the

context of AMI. This review systematically summarizes the

mechanisms through which EVs influence AMI, with a particular

focus on their dual roles in both disease progression and therapeutic

intervention. While EVs can exacerbate pathological processes such

as programmed cell death and inflammation, they also hold

considerable therapeutic potential by promoting angiogenesis and

inhibiting cardiomyocyte apoptosis. By comprehensively examining

the biogenesis, release, and uptake mechanisms of EVs, as well as

their applications in AMI, this review provides a solid foundation

for utilizing EVs as biomarkers, drug delivery vehicles, and

therapeutic targets. These insights are poised to advance the

clinical translation of EVs in the diagnosis and treatment of

myocardial infarction and other cardiovascular diseases, thus

contributing to the development of precision medicine.
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