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single-cell RNA sequencing
reveal COL4A2 and CXCL6 as
oxidative stress-associated
biomarkers in periodontitis
Siyu Sun1,2†, Jing Ren1,2†, Xiujuan Zeng1, Yanbin Chen1,
Qianbing Zhou3, Junying Yang1* and Shan Chen1*

1Department of Stomatology, The First Affiliated Hospital of Sun Yat-sen University,
Guangzhou, China, 2National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment
of Vascular Diseases, Guangzhou, Guangdong, China, 3Department of Stomatology, The First
Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
Background: Periodontitis, recognized as the secondmost prevalent oral disease

globally, is strongly linked to systemic disorders like diabetes and cardiovascular

diseases, highlighting the critical need for effective prevention and treatment

strategies. Oxidative stress plays an important role in periodontitis pathogenesis

and progression, yet their specific association remains unclear. This study aims to

explore the association between oxidative stress and periodontitis pathogenesis

while identifying potential diagnostic biomarkers and therapeutic targets for

this condition.

Methods: Transcriptomic data from gingival tissues of periodontitis patients and

controls were obtained from the Gene Expression Omnibus (GEO) database. Key

genes linked to oxidative stress in periodontitis were identified through a

comprehensive analytical approach, including differential expression analysis,

weighted gene co-expression network analysis (WGCNA), gene set enrichment

analysis (GSEA), and functional enrichment analyses (GO and KEGG). Machine

learning algorithms were subsequently employed to refine the selection of key

genes. The relationship between oxidative stress and the expression of these key

genes was validated using external datasets and a periodontitis rat model.

Additionally, single-cell RNA sequencing (scRNA-seq) data were interrogated

to delineate the cellular subpopulations expressing the key genes, leveraging

clustering and annotation approaches.

Results: Comprehensive bioinformatics analysis identified COL4A2, CYR61, and

CXCL6 as key genes associated with oxidative stress in periodontitis. Among

these genes, COL4A2 and CXCL6 showed elevated expression levels in the

gingival tissues of periodontitis rats. Single-cell RNA-seq analysis further

demonstrated that COL4A2 exhibited predominant expression within

endothelial and stromal cell clusters, whereas CXCL6 was predominantly

localized to epithelial cell clusters.
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Conclusions: This study demonstrates a correlation between oxidative stress and

the progression of periodontitis. COL4A2 and CXCL6 were identified as potential

therapeutic targets for the treatment of periodontitis.
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1 Introduction

Periodontitis is a chronic inflammatory disease caused by bacterial

infection. It is characterized by chronic gingival inflammation and

progressive destruction of periodontal structures, including alveolar

bone, periodontal ligament, and cementum. This condition is also one

of the primary causes of tooth loss (1). In recent years, oxidative stress

has been identified as a key mechanism in the development of

periodontitis. Oxidative stress exacerbates periodontal tissue damage

by promoting inflammatory responses, disrupting bone metabolism,

and regulating gene expression (2). Oxidative stress (OS) occurs when

there is an imbalance between the production of reactive oxygen

species (ROS) and the body’s antioxidant defenses (3). During

periodontitis, oxidative stress causes direct damage to periodontal

tissues. It induces oxidative damage to mitochondrial DNA and

degrades the extracellular matrix (4, 5). This process exacerbates

inflammatory responses and triggers apoptosis in periodontal

ligament cells. Additionally, oxidative stress enhances the activity of

matrix metalloproteinases (MMPs) (6). This indirectly regulates

signaling pathways related to inflammation and apoptosis, further

increasing periodontal tissue damage and alveolar bone resorption.

Over the past decades, therapeutic strategies targeting oxidative stress

have been explored for periodontitis treatment. For example, some

approaches aim to reduce oxidative damage by scavenging reactive

oxygen species or activating antioxidant signaling pathways (7, 8).

However, their clinical efficacy remains limited, partly due to the

absence of biomarkers capable of precisely indicating individual

oxidative stress status, leading to a lack of targeted therapeutic

strategies. The cellular mechanisms underlying the imbalance of

oxidative stress in periodontitis remain incompletely understood,

particularly as the cell type-specific responses to oxidative

microenvironments have not been systematically characterized,

necessitating further research to elucidate these processes.

Sequencing technology has become a widely used tool in the

biomedical field. RNA sequencing (RNA-seq) datasets, which

integrate transcriptomic profiling and microarray data analysis,

represent a high-throughput technique for genome-wide gene

expression quantification and analysis (9). It enables the simultaneous

detection of expression levels for a large number of genes, offering

significant advantages such as cost-effectiveness and well-established

technological reliability. However, RNA-seq is limited in its ability to

reveal intercellular heterogeneity (10). In contrast, single-cell RNA

sequencing (scRNA-seq) allows for gene expression analysis at the
02
single-cell level. This method provides significant advantages, including

high resolution and the ability to identify new cell types. As a result,

scRNA-seq has emerged as a powerful tool for studying cellular

heterogeneity and gene expression patterns in complex tissues (11).

In this study, RNA sequencing data, single-cell RNA sequencing

(scRNA-seq) data, and associated clinical metadata were acquired

from the Gene Expression Omnibus (GEO) database. Gene Set

Enrichment Analysis (GSEA) is a bioinformatics method that

evaluates the correlation between gene sets and clinical variables

across different samples (12). Weighted Gene Co-expression

Network Analysis (WGCNA) is a systems biology method used to

construct gene co-expression networks, identify modules of highly

correlated genes, and explore their relationships with phenotypic

traits or external conditions (13). We used the WGCNA and GSEA

to investigate the relationship between oxidative stress (OS) gene

expression and periodontitis. However, traditional bioinformatics

methods are prone to limitations from multicollinearity, gene

redundancy, and linear assumptions when processing high-

dimensional genomic data (14), which struggle to analyze the

complex nonlinear relationships between genes and phenotypes

(15, 16). By employing three machine learning algorithms, we

systematically screened a set of oxidative stress (OS)-related genes

associated with periodontitis progression. The combination strategy

of multiple algorithms ensured robustness in biomarker screening

and improved the accuracy and reliability of our analysis.

Additionally, the key genes were validated through external

dataset analysis and experimental validation in a rat periodontitis

model, thereby confirming their reliability and biological

significance. Finally, we validated the expression of key genes at

the single-cell level. By integrating RNA-seq and scRNA-seq data,

this study provides a novel approach to understanding cell type-

specific and functional regulatory networks in periodontal tissues.

This integration also helps clarify the role of oxidative stress in the

mechanisms underlying periodontitis.
2 Materials and methods

2.1 Dataset acquisition and preprocessing

RNA-seq datasets (GSE10334, GSE16134) and scRNA-seq

dataset (GSE171213) were obtained from the Gene Expression

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/).
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The training dataset, GSE10334, included transcriptome data from

183 gingival samples of periodontitis lesion sites and 64 samples

from healthy sites. For validation, we used the GSE16134 dataset,

which contains gingival tissue samples from 120 patients who

underwent periodontal surgery. Additionally, 404 genes related to

oxidative stress were retrieved from the Gene Set Enrichment

Analysis (GSEA) database (https://www.gsea-msigdb.org/gsea/

index.jsp). Data analysis was performed using R language (version

4.3.2) (https://www.r-project.org/).
2.2 Differentially expressed genes analysis

The “limma” package (version 3.58.1) (17) was utilized to

analyze differentially expressed genes, aiming to compare gene

expression profiles between periodontitis patients and controls.

The “normalizeBetweenArrays” function was applied to correct

potential technical errors and minimize batch effects across

multiple samples. Differentially expressed genes (DEGs) were

identified based on the following criteria: |log2(fold-change)| ≥ 1

and adjusted P-value ≤ 0.05. The “ggplot2” package (version 3.5.1)

was utilized to generate heat and volcano maps. The prcomp

function was used to perform PCA analyses of the samples, and

the “factoextra” package (version 1.0.7) was employed to generate

scatter plots.
2.3 GSEA and WGCNA

Gene Set Enrichment Analysis (GSEA) was primarily used to

identify gene sets significantly enriched under specific biological

conditions, such as disease states or drug treatments (18). The

“GSEABase” package(version 1.64.0) and “GSVA” package(version

1.50.1) were employed in this study to assess the enrichment of

oxidative stress-related gene sets in transcriptome data expression

profiles through GSEA, and barcode enrichment maps were

generated. The “WGCNA” package(version 1.72) was utilized to

construct gene co-expression networks (13). Initially, hierarchical

clustering analysis was applied to the transcriptome dataset to

detect and eliminate outlier samples. Subsequently, the optimal

soft threshold power was determined using the “pickSoftThreshold”

function in the “WGCNA” package. Dynamic hybrid cutting was

employed to identify co-expression modules, and a hierarchical

clustering dendrogram was constructed to visualize the module

structure (minModuleSize = 50, mergeCutHeight = 0.25, the colors

representing different modules). Finally, the oxidative stress-related

gene sets identified through GSEA were integrated with results

obtained from WGCNA. Pearson correlation analysis was

performed to evaluate the relationships between these gene sets

and the modules, with correlation heatmaps generated to visualize

the results. In the heatmaps, rows represented modules, columns

represented traits, and the corresponding boxes displayed

correlation coefficients and P-values. This approach identified

gene co-expression modules closely associated with oxidative stress.
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2.4 Identification of oxidative stress-related
DEGs

The list of DEG was cross-referenced with the list of genes from

the oxidative stress-related co-expression module identified

through WGCNA. Genes that appeared in both lists were

designated as oxidative stress-related DEGs. The “VennDiagram”

package (version 1.12) (19) was used to create a Venn diagram,

visually representing the intersection results.
2.5 Functional enrichment analysis

Functional enrichment analysis of oxidative stress-associated

DEGs was conducted using the Gene Ontology (GO) and the Kyoto

Encyclopedia of Genes and Genomes (KEGG). GO enrichment

analysis included three categories: molecular function (MF),

biological process (BP), and cellular component (CC). KEGG

pathway analysis was also performed to identify relevant signaling

pathways. The “clusterProfiler” package (version 4.10.1) and the

“org.Hs.eg.db” package (version 3.18.0) (20) were used to perform

these analyses. The “GOplot” package (version 1.0.2) and the

“ggplot2” package (version 3.5.1) were utilized to visualize the

results, generating bar charts and pie charts to illustrate the

enrichment results.
2.6 Machine learning screens for key genes

We further analyzed the previously screened genes to identify

the optimal key genes associated with OS. Three machine learning

algorithms were employed for feature selection and key gene

identification: Least Absolute Shrinkage and Selection Operator

(LASSO) (21), Gradient Boosted Tree (GBM) (22), and Extreme

Gradient Boosting (XGBoost) (23). Genes consistently identified by

all three algorithms were considered optimal key genes. LASSO

regression overcomes the limitations of gene redundancy in

WGCNA modules by introducing a regularization term into the

loss function (15), thereby enhancing predictive performance. The

R package “glmnet” (version 4.1) (24) was used to identify the

optimal tuning parameters through 10-fold cross-validation,

ensuring robust parameter tuning and model evaluation. GBM

can capture nonlinear interactions between genes through

iterative residual optimization. The “gbm” package (version 2.1.9)

was utilized to implement the GBM algorithm. XGBoost employs

an iterative approach to construct decision trees (16), rectifying the

errors from preceding iterations, and enhances accuracy via an early

stopping mechanism to avert overfitting. The “xgboost” package

(version 1.7.1) was used to perform the XGBoost algorithm. Finally,

the UpSetR package (version 1.4.0) was used to generate UpSet

plots, which visually represent the key DEGs identified by the

intersection of the three algorithms.
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2.7 Validation of key genes and diagnostic
performance assessment

The differential expression of the key genes was validated using

the external dataset GSE16134. Differential box line plots were

generated to visualize the expression patterns using the “ggpubr”

package (version 1.7.7). The “pROC” package (version 1.18.5) was

used to perform receiver operating characteristic (ROC) curve

analysis for evaluating the diagnostic performance of the key

genes. The area under the curve (AUC) was calculated to quantify

the diagnostic efficacy of the key genes.
2.8 Construction of a rat model of
ligature-induced periodontitis

The animal experimental protocol was approved by the Ethics

Committee of the First Affiliated Hospital of Guangdong

Pharmaceutical University (No. G2R2024012), and all experimental

animals were housed in the institution’s Animal Experiment Center.

Six-week-old male Sprague-Dawley (SD) rats were randomly assigned

to a periodontitis group (n=4, ligation-induced) and a control group

(n=4, untreated). Following established methods from previous studies

(8), periodontitis was induced by placing orthodontic steel ligatures

(diameter: 0.2 mm) around the necks of the bilateral maxillary second

molars in the periodontitis group. Prior to ligation, rats were

anesthetized via intraperitoneal injection of 2% pentobarbital sodium

(0.2 ml/100 g). Ligatures were checked daily to ensure retention.

After 28 days, the rats were fasted for 2 hours and euthanized by

cervical dislocation. Alveolar bone and gingival tissue samples were

then collected for further analysis. Micro-CT technology was employed

to perform three-dimensional reconstruction image analysis, allowing

for the observation of structural changes in periodontal tissues.

Additionally, histological sectioning and pathological analysis were

conducted using hematoxylin and eosin (H&E) staining to assess the

degree of inflammation in the periodontal tissues.
2.9 Measurement of oxidative stress
markers in periodontal tissues

After homogenizing and grinding the periodontal tissues, the

protein concentration of the samples was quantified using a BCA

assay kit (Biosharp, BL521A). Subsequently, malondialdehyde

(MDA) levels were quantified using the MDA kit (Beyotime,
Frontiers in Immunology 04
S0131S). The procedure involved adding the TBA working solution

and incubating the mixture at 100°C for 45 minutes. After cooling,

the supernatant was collected via centrifugation, and its absorbance

was measured at 532 nm. The MDA concentration in the samples

was then calculated based on the standard curve. A total SOD assay

kit (Beyotime, S0101S) was used to measure the concentration of

superoxide dismutase (SOD). After homogenizing the periodontal

tissues and determining the protein concentration of the samples, the

samples were mixed with the prepared WST-8 working solution and

incubated at 37°C for 30 minutes. The absorbance was measured at

560 nm, and the SOD concentration was calculated accordingly.
2.10 RNA extraction and quantitative real-
time PCR

Gingival tissue samples were homogenized in Trizol (Sigma-

Aldrich, T9424) to extract total RNA. The RNA was reverse-

transcribed into complementary DNA (cDNA) using the HiScript

III RT SuperMix for qPCR kit (Vazyme, R323-01). Subsequently,

quantitative real-time PCR (qPCR) was performed to quantify the

expression of key genes using the ChamQ Blue Universal SYBR

qPCR Master Mix (Vazyme, Q312-02). The relative mRNA

expression levels of the target genes were calculated using the 2^

(-DDCt) method, with b-actin serving as the internal reference gene.

The primer sequences used in this study are provided in Table 1.
2.11 ScRNA-seq data analysis

The scRNA-seq data (GSE171213) (25) were processed using the

“Seurat” software package (version 5.1.0). The filter conditions were as

follows: nFeature_RNA > 300, nFeature_RNA < 10,000, percent.mt <

10, and nCount_RNA > 600. Gene expression data were normalized

and scaled using the “LogNormalize” method. Principal component

analysis (PCA) was performed to identify principal components

(PCs), and the batch correction was applied using the “harmony”

software package (version 1.2.0) to mitigate batch effects. Cell

clustering and sub-clustering analyses were performed using the

FindClusters function in the Seurat package with a resolution

parameter of 1 (resolution = 1). This analysis classified cells into 25

distinct clusters. Cell types were manually annotated using cellMarker,

and the expression patterns of key genes were subsequently identified

and visualized through Uniform Manifold Approximation and

Projection (UMAP) and violin plots (VlnPlot).
TABLE 1 Primers used for qPCR.

Gene name Forward primer (5’-3’) Reverse primer (5’-3’)

b-actin AACACAGTGCTGTCTGGTG GTAACAGTCCGCCTAGAAGC

Col4a2 GGGACCTGCCATTACTTCGCTAAC GGATGGTGTGCTCTGGAAGTTCTG

CYR61 CGGTGCGAAGATGGCGAGATG GGGATGCGGGCAGTTGTAGTTAC

CXCL6 GTCTTGACCCAGAAGCTCCGTTG GGCTGATCTGACCAGTGCAAGTG
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1598642
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2025.1598642
2.12 Statistical analysis

All statistical analyses were conducted using R software (version

4.3.2). All tests were two-sided, and a p-value < 0.05 was considered

statistically significant.
3 Results

3.1 Identification of DEGs in periodontitis

The raw RNA-seq data were normalized to minimize expression

differences arising from technical variability and batch effects

(Figure 1A). Dimensionality reduction was performed on the

normalized data using principal component analysis (PCA).

Dimensionality reduction was performed on the normalized data

using PCA, and the results revealed a clear separation between the

periodontitis and the controls in principal component space

(Figure 1B), indicating significant differences in gene expression

profiles between the two groups. To further investigate these

differences, heatmaps were constructed to visualize gene expression

patterns (Figure 1C). Additionally, the statistical significance of the
Frontiers in Immunology 05
DEGs was assessed using volcano plots (Figure 1D). The analysis

revealed a total of 139 DEGs between the periodontitis and control

groups, with 111 genes up-regulated and 28 genes down-regulated.
3.2 Identifying co-expression modules of
genes associated with oxidative stress

GSEA demonstrated the enrichment of oxidative stress-related

genes within the list of genes associated with periodontitis. The

peaks and significance of the running enrichment score curves

indicated a statistically significant correlation (P < 0.05) between the

oxidative stress-related genes and the periodontitis transcriptome

data (Figure 2A). To further analyze the transcriptome data, we

employed WGCNA to identify gene co-expression modules linked

to oxidative stress. A soft threshold (power) of 10 was selected based

on the optimal scale-free fit and average connectivity (Figure 2B),

and this approach identified 15 distinct gene co-expression modules

(Figure 2C). A correlation heatmap was generated to visualize

module-trait relationships, with color intensity indicating

correlation strength—red for positive and blue for negative. Each

row represents a gene module, and each column represents a
FIGURE 1

Differential expression analysis of the Periodontitis dataset. (A) A standardized box plot was generated to visualize the distribution of gene expression
data from GEO datasets, with each box representing the expression profile of an individual sample. (B) The PCA plot illustrates the distribution of the
controls(red) and the periodontitis(blue) in the principal component space. (C) Heatmap depicting the expression patterns of DEG. The intensity of
the color corresponds to the expression level, with red representing up-regulated genes and blue representing down-regulated genes. (D) Volcano
plot displaying the results of the statistical significance analysis of DEGs. The horizontal axis represents the logarithmic fold change in gene
expression (logFC), while the vertical axis represents the statistical significance (-log10(P-value)). Significantly changed genes are highlighted: up-
regulated in red, down-regulated in blue, and non-significant in gray.
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clinical trait. Among these, the white module, containing 154 genes,

exhibited the most significant correlation with the oxidative stress

gene set (Cor = 0.7, P = 4e-38) (Figure 2D).
3.3 Identification of DEGs associated with
oxidative stress and their functions

The 139 DEGs were identified through a comparison of gene

expression profiles between periodontitis samples and controls, as

presented in Figure 1B. By intersecting these DEGs with oxidative

stress-related modules derived from WGCNA, we identified 13 genes
Frontiers in Immunology 06
highly associated with oxidative stress (Figure 3A). Subsequent Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analyses were performed on these 13 genes. GO

analysis revealed significant enrichment in biological processes and

molecular functions related to the extracellular matrix, chemokine

activity, and cytokine activity (Figure 3B). Meanwhile, KEGG pathway

analysis highlighted significant enrichment in key pathways such as

IL-17 signaling, AGE-RAGE signaling, and cytokine-cytokine receptor

interaction (Figure 3C).In summary, this analysis identified 13 genes

with significant expression changes in periodontitis, closely linked to

oxidative stress, offering insights into the molecular mechanisms of

periodontitis pathogenesis.
FIGURE 2

Identification of Oxidative Stress-Related Genes by WGCNA. (A) GSEA Enrichment Plot revealed enrichment of the oxidative stress gene set in
the transcriptome data. The upper graph shows the enrichment trend, while the lower heatmap depicts individual gene expression patterns, with
red for up-regulation and blue for down-regulation. The gray curve represents the density of gene expression changes. (B) Network topology
analysis was performed to determine the optimal soft threshold power for a scale-free network. The left graph plots the scale-free fitting index
(y-axis) against the soft threshold power (x-axis), achieving an index of 0.9 at a minimum power of 10, which was selected for network
construction. The right graph displays average connectivity (co-expression degree) as a function of soft threshold power. (C) Dendrogram
generated by hierarchical clustering of gene modules identified through WGCNA. The colors below the dendrogram represent distinct gene
modules, with the gray module indicating genes that could not be clustered into any specific module. (D) Correlation heatmap illustrating the
relationship between gene modules and traits.
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3.4 Identification of the key genes based
on machine learning

Machine learning algorithms are widely recognized as powerful

tools for identifying biomarkers associated with complex diseases. To

further analyze the previously screened genes, we utilized three different

machine learning algorithms to identify oxidative stress-related genes.

Specifically, we utilized the LASSO regression (Figures 4A, B), Gradient

Boosted Tree (GBM) (Figure 4C), and XGBoost (Figure 4D) algorithms

for this analysis. The LASSO regression model was applied to refine the

gene set by penalizing less relevant features, while the GBM and

XGBoost algorithms were used to evaluate gene importance based on

their contribution to the predictive models. Through cross-validation

and comparative analysis of these algorithms, we identified three key

genes: CXCL6, COL4A2, and CYR61 (Figure 4E). These genes were

consistently highlighted across all three methods, suggesting their

potential significance in the pathogenesis of periodontitis.
Frontiers in Immunology 07
3.5 Validation of key genes and assessment
of their diagnostic performance

The expression of the candidate key genes was verified using an

external dataset (GSE16134). The results confirmed that the

expression levels of COL4A2, CYR61, and CXCL6 were significantly

different between periodontitis patients and the control population (P

< 0.05) (Figures 5A-C). The diagnostic performance of these three key

genes was evaluated using receiver operating characteristic (ROC)

curves. The areas under the ROC curves (AUC) were calculated as

follows: COL4A2 (AUC = 0.874), CYR61 (AUC = 0.793), and CXCL6

(AUC = 0.838) (Figures 5D–F). These AUC values indicate that the

key genes exhibit high predictive accuracy and are effective in

distinguishing between periodontitis and controls. Overall, the

findings demonstrate that COL4A2, CYR61, and CXCL6 have

strong diagnostic potential, highlighting their utility as biomarkers

for periodontitis.
FIGURE 3

Enrichment Analysis of Genes Intersected by Differential Genes and WGCNA. (A) Venn diagram illustrating the overlap between genes identified in
the white co-expression module from WGCNA and differentially expressed genes (DEGs). The diagram highlights 13 genes common to both
datasets. (B) GO enrichment analysis of the 13 intersecting genes, categorized into biological processes (BP), cellular components (CC), and
molecular functions (MF). The vertical axis represents the GO terms, while the horizontal axis represents the gene ratio. The color gradient reflects
the significance of enrichment, with red indicating higher significance. (C) KEGG pathway analysis of the intersecting genes. Each colored band
represents a pathway associated with the listed genes. The color intensity of the innermost ring in the KEGG functional clustering map corresponds
to the log2 fold change, reflecting the enrichment significance of gene-pathway associations.
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3.6 Periodontitis rat model for validation of
key gene expression

In this study, We established a ligature-induced rat model of

periodontitis. Micro-CT analysis revealed significant bone

resorption in the periodontitis group compared to controls

(Figure 6A). Additionally, both the periodontal pocket depth
Frontiers in Immunology 08
(Figure 6B) and the distance between the cemento-enamel

junction and the alveolar bone crest (Figure 6C) were markedly

increased in the periodontitis group. These differences were

statistically significant (p < 0.05). Histopathological examination

using H&E staining further corroborated the successful induction of

periodontitis. The periodontitis group exhibited pronounced bone

resorption and inflammatory cell infiltration (Figure 6D).
FIGURE 4

Machine learning screening of key genes in intersecting genes. (A, B) The lasso algorithm determined 6 feature genes based on lambda. min values.
(C) The GBM algorithm analyzed intersecting genes, identifying 6 significant genes with importance scores >25. (D) The XGBoost algorithm was
employed to further refine the analysis, identifying 5 genes with importance scores>20. (E) The upset plot was generated to visualize the overlap of
key genes identified by the three algorithms, revealing three consistently highlighted intersecting genes - CXCL6, COL4A2, and CYR61.
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Regarding oxidative stress levels, the periodontitis group

demonstrated significantly higher levels of MDA and SOD

compared to the controls (Figures 6E, F). These differences were

also statistically significant (p < 0.05), indicating elevated oxidative

stress in the periodontal tissues of rats with periodontitis. Analysis

of mRNA levels in gingival tissues revealed significant upregulation
Frontiers in Immunology 09
of COL4A2 and CXCL6 in the periodontitis group compared to the

controls (Figures 6G, I) (p < 0.05), while no significant difference in

CYR61 expression was observed between the two groups

(Figure 6H). Consequently, COL4A2 and CXCL6 were identified

as marker genes for further investigation into the specific cell types

associated with their effects.
FIGURE 5

Expression and ROC profiles of key genes. (A–C) The box plot illustrates the expression differences of three key genes based on an external dataset.
(D–F) ROC curve analysis of the three key genes, evaluating their diagnostic and prognostic significance.
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FIGURE 6

Rat experimental periodontitis model to verify the expression of key genes. (A) Three-dimensional reconstructed images of the periodontitis group
(P) and the controls (C) obtained through Micro-CT scanning. (B) Bar graph illustrating periodontal pocket depth (PD), demonstrating a significant
increase in the periodontitis group (P) compared to the control group (C). (C) Bar graph depicting the CEJ-ABC, indicating a significant increase in
bone resorption in the periodontitis group (P) compared to the control group (C). (D) H&E stained sections of rat alveolar bone, showing the
periodontal membrane, alveolar bone, and inflammatory cell infiltration. The scale bar represents 100mm. (E, F) Bar graphs showing the levels of
MDA and SOD in the periodontitis group (P) compared to the controls (C), respectively, to evaluate differences in oxidative stress levels. (G-I) Relative
mRNA expression levels of the genes COL4A2, CYR61, and CXCL6 were determined by qPCR in both the control and periodontitis groups. Data are
expressed as mean ± SD, n=4. *p < 0.05; **p < 0.01; ****p < 0.0001; ns, not significant.
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3.7 Single-cell analysis reveals key gene
expression patterns within cell clusters

To identify the primary sources and target cell types of two

candidate genes, we analyzed scRNA-seq data. After filtering out

low-quality cells, unsupervised cell clustering analysis was

performed using UMAP, which annotated the cell clusters into 25

distinct cell clusters (Figure 7A). Following manual single-cell

annotation, these clusters were further refined into seven major

cell types: T cells, B cells, endothelial cells, epithelial cells, stromal

cells, NK cells, fibroblasts, and mast cells (Figure 7B). The reliability

of the cell type annotation was confirmed using bubble plots, which

illustrated the average expression levels of marker genes within each

cell subpopulation (Figure 7C). Subsequently, UMAP plots and

violin plots were employed to visualize the spatial distribution and

expression intensities of COL4A2 (Figures 7D, E) and CXCL6

(Figures 7F, G) across the cell populations. The results revealed

that the expression of the COL4A2 gene was significantly

upregulated in endothelial and stromal cells. In contrast, the

CXCL6 gene exhibited pronounced upregulation primarily in

epithelial cells.
4 Discussion

In this study, we developed a comprehensive analytical

framework to identify biomarkers with potential diagnostic

value by integrating bioinformatics analysis, machine learning

algorithms, and Single cell analysis. Specifically, we identified two

genes, COL4A2 and CXCL6, which are closely associated with

oxidative stress and may play a critical role in the pathogenesis of

periodontitis. Additionally, qPCR analysis confirmed the

upregulated expression of COL4A2 and CXCL6 in gingival

tissues of periodontitis-induced rats. Through scRNA-seq

analysis, we further elucidated the distinct expression patterns

of COL4A2 and CXCL6 across different cell types. COL4A2 was

predominantly expressed in endothelial cells and stromal cells,

while CXCL6 showed significant expression in epithelial cells.

These findings suggest that these genes may contribute to the

disease process through cell type-specific mechanisms,

highlighting their potential as therapeutic targets or diagnostic

markers in periodontitis. This integrated approach not only

advances our understanding of the molecular mechanisms

underlying periodontitis but also provides a robust methodology

for identifying and validating biomarkers in complex diseases.

COL4A2 is the gene that encodes the a2 chain of type IV

collagen. Type IV collagen is an essential component of the

basement membrane, providing structural support for cells such

as endothelial cells and contributing to the stability of the

extracellular matrix (26). Previous studies on diseases such as

cerebral hemorrhage and ischemic brain injury have

demonstrated that mutations in COL4A2 may increase the

vulnerability of cerebral blood vessels by disrupting the

structure and function of collagen IV (27, 28). Although no
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direct evidence links COL4A2 to periodontitis, its significant

role in endothelial cells suggests a potential mechanism by

which it may mitigate oxidative stress-induced damage in

periodontal tissues. We hypothesize that COL4A2 may protect

periodontal tissues from reactive oxygen species (ROS) by

maintaining the integrity of the endothelial basement membrane

in microvessels (26, 29). Oxidative stress and the subsequent

inflammatory response are key features of periodontitis

pathogenesis. ScRNA-seq analysis demonstrated predominant

COL4A2 localization in endothelial cells (Figures 7D, E). As

mentioned in previous studies (27, 28), endothelial COL4A2

expression alters vascular permeability, thereby regulating the

release of pro-inflammatory mediators including TNF-a and IL-

1b, and consequently influencing inflammatory response severity.

Additionally, COL4A2 expression in stromal cells contributes to

extracellular matrix stability (30), which supports tissue repair and

regeneration. In summary, the elevated expression of COL4A2 in

endothelial and stromal cells may reflect a defense mechanism

against oxidative stress. As a gene encoding extracellular matrix

proteins, COL4A2 likely protects endothelial cells from oxidative

damage by modulating extracellular matrix stability and

intercellular signaling. Furthermore, studies have shown that

COL4A2 promotes osteogenic differentiation of periodontal

ligament stem cells (PDLSCs) by negatively regulating the Wnt/

b-catenin signaling pathway, offering a potential therapeutic

strategy for bone defect repair (31). However, the specific

mechanisms linking COL4A2 to oxidative stress in periodontitis

remain unclear. Further research is needed to determine whether

COL4A2 can serve as a potential therapeutic target or a focus for

mechanistic studies in periodontitis.

CXCL6, also known as GCP-2, is an ELR+ CXC chemokine that

primarily mediates neutrophil chemotaxis by binding to CXCR1

and CXCR2 receptors (32). The results of scRNA-seq analysis

demonstrated predominant CXCL6 expression in epithelial cells

(Figures 7F, G), consistent with prior studies (33), CXCL6 can be

induced in multiple cell types under inflammatory conditions,

including epithelial cells. CXCL6 exhibits pro-inflammatory, pro-

angiogenic, and antimicrobial properties, playing a critical role in

modulating immune responses (34). Dysregulation of CXCL6

function and expression has been strongly linked to a range of

disorders, particularly cancers, fibrosis, and inflammatory diseases

(35–37). In the context of periodontitis, CXCL6 expression is

markedly elevated in the gingival tissues of patients, where it is

closely associated with inflammatory cell infiltration and tissue

damage. Studies have demonstrated (38) that CXCL6 acts

synergistically with IL-8 to enhance the inflammatory response by

promoting neutrophil chemotaxis, thereby driving the pathological

progression of periodontitis. Oxidative stress, a key factor in the

inflammatory response, can induce CXCL6 expression through the

activation of multiple signaling pathways, such as NF-kB (39). For

instance, in models of ischemia-reperfusion injury, oxidative stress

has been shown to regulate cell permeability, proliferation, and

apoptosis by activating the AKT/FOXO3a signaling pathway. This

pathway modulates the expression of Sirt3, which subsequently
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FIGURE 7

The expression patterns of key genes resolved at the single-cell level. (A) UMAP plot of single-cell data following dimensionality reduction analysis,
where cells were categorized into 25 distinct clusters.(B) UMAP plot visualization displays 8 manually annotated cell clusters, providing a refined
classification of the cell types. (C) Bubble plot illustrating the expression profiles of selected marker genes across the identified cell types. Each small
bubble represents the distribution of gene expression within a specific cell type. (D, E) Expression pattern of COL4A2 at the single-cell level,
visualized using a UMAP plot and a violin plot. (F, G) Expression pattern of CXCL6 at the single-cell level, depicted through a UMAP plot and a
violin plot.
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influences CXCL6 secretion (40). These findings suggest that

oxidative stress may indirectly regulate CXCL6 expression

through inflammatory signaling pathways, thereby influencing the

trajectory of the inflammatory response.

Our study introduces an integrated strategy for the comprehensive

characterization of oxidative stress-related gene expression and

cellular heterogeneity in periodontitis. By leveraging this multi-

faceted methodology, our study addresses the limitations inherent in

relying on a single technique, thereby offering a more holistic

understanding of the transcriptomic landscape and the molecular

mechanisms underlying specific cell types.

Although this study offers novel insights and employs animal

model experiments to validate the relevance of specific genes in

periodontitis, several limitations warrant further investigation.

First, the relatively small sample size(n = 4) in the current rat

model experimental may compromise the statistical power and

reliability of the results. Additionally, while we identified a

correlation between oxidative stress activity and the expression of

COL4A2 and CXCL6, the precise mechanisms by which these genes

influence oxidative stress and contribute to the progression of

periodontitis remain unclear. More critically, the diagnostic value

of these genes as biomarkers and their potential as therapeutic

targets require validation in clinical cohort studies. Future

investigations should expand experimental sample sizes,

systematically elucidate the specific signaling pathways and

cellular processes regulated by COL4A2 and CXCL6 under

oxidative stress contexts, and evaluate the feasibility of their

translational application to human diseases via multi-center

clinical studies.
5 Conclusion

In this study, we employed an innovative approach to screen

and identify two key genes, COL4A2 and CXCL6, by integrating

machine learning algorithms with scRNA-seq analysis. Notably, our

results demonstrated that the upregulation of these genes was

closely associated with oxidative stress activity, with significant

expression observed primarily in endothelial, stromal, and

epithelial cells. These findings underscore the potential of

COL4A2 and CXCL6 as biomarkers for periodontitis .

Furthermore, they provide a promising foundation for the

development of personalized and effective therapeutic strategies

aimed at improving patient prognosis.
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