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Gut microbiota dysbiosis in
people living with HIV who
have cancer: novel insights
and diagnostic potential
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Jie Zhou2,3* and Jiegang Huang2,3*

1The Fourth People’s Hospital of Nanning & Nanning Infectious Diseases Hospital Affiliated to Guangxi
Medical University, Nanning, Guangxi, China, 2Guangxi Key Laboratory of AIDS Prevention and
Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China,
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Background: People living with HIV(PLWH) are a high-risk population for cancer.

We conducted a pioneering study on the gut microbiota of PLWH with various

types of cancer, revealing key microbiota.

Methods: We collected stool samples from 54 PLWH who have cancer (PLWH-C),

including Kaposi’s sarcoma (KS, n=7), lymphoma (L, n=22), lung cancer (LC, n=12),

and colorectal cancer (CRC, n=13), 55 PLWH who do not have cancer (PLWH-NC),

and 49 people living without HIV (Ctrl). The gut microbiota in fecal samples was

analyzed using 16S rRNA sequencing. We compared the microbial diversity among

groups and identified key microbiota and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways using random forest. Furthermore, we analyzed the

correlation between microbiota and KEGG pathways and constructed microbiota

Receiver Operating Characteristic (ROC) diagnostic models.

Results: Compared with PLWH-NC and Ctrl, PLWH with any type of cancer

exhibited significantly lower alpha diversity and significant alterations in beta

diversity of the gut microbiota. The significantly decreased abundance of

Bacteroides and Bacteroides vulgatus in PLWH-C showed a negative

correlation with the Pathways in cancer pathway, and a positive correlation

with Choline metabolism in cancer, Central carbon metabolism in cancer, and

Proteoglycans in cancer pathways. Bacteroides (AUC≥0.84) and Bacteroides

vulgatus (AUC≥0.78) exhibited discriminatory diagnostic capabilities for PLWH-

C in patients with different cancers compared with PLWH-NC and Ctrl.

Discussion: We confirmed a more severe dysbiosis of the gut microbiota in

PLWH with KS, L, LC, or CRC. Bacteroides may be associated with disruptions in

cancer-relatedmetabolic pathways and serve as diagnostic biomarkers for PLWH

with various cancers.
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Introduction

The gut microbiota interacts with the host to participate in crucial

metabolic processes within the human body. It provides various

enzymes and metabolic pathways for specific metabolic processes,

playing a vital role in maintaining gut homeostasis. An increasing

body of research suggests that the gut microbiota plays a role in the

pathogenesis of various diseases, including inflammatory bowel

disease (1), diabetes (2), tumors (3), and HIV/AIDS (4). HIV/AIDS

poses a significant threat to human health. Research indicates that

during HIV infection, the gut mucosal barrier is disrupted. Early in

infection, the virus rapidly attacks the gut-associated lymphoid tissue,

which contains one of the highest concentrations of CD4+ T cells.

These immune cells play a key role in maintaining gut barrier

integrity and prevent bacterial translocation. As gut permeability

increases, microbial translocation triggers chronic immune

activation, which in turn accelerates HIV disease progression and

causes a further reduction in CD4+ (5). Alpha diversity commonly

measures the abundance and uniformity of microbial species within a

single sample, whereas beta diversity measures the variation in

microbial composition among samples. Both alpha diversity and

beta diversity are reduced in the gut microbiota of People living with

HIV(PLWH), who also show an increased abundance of Prevotella

and a decreased abundance of Bacteroides (6).

With the widespread application of highly active antiretroviral

therapy (HAART), AIDS has evolved into a chronic disease. HAART

has extended the survival of PLWH; however, due to incomplete

immune recovery, there is an increased incidence of cancer.

Moreover, individuals with both HIV and cancer experience more

severe clinical symptoms and lower survival rates (7, 8). HIV

infection combined with tumors has become one of the leading

causes of death among PLWH. The 19th European Congress on

AIDS indicated that the incidences of both AIDS-defining cancers

and non-AIDS-defining cancers (NADCs) declined from 1997 to

2018, but they remain higher than in the general population.

Furthermore, the number of cancer cases among male individuals

living with HIV was nearly double that of uninfected males. Age-

related cancers have increased among infected individuals (9). AIDS-

defining cancers include Kaposi’s sarcoma (KS), non-Hodgkin

lymphoma, and invasive cervical cancer. NADCs include Hodgkin

lymphoma, lung cancer (LC), and colorectal cancer (CRC), etc. (10).

The gut microbiota is a risk or preventive factor for various diseases.

An increase in the abundance of Fusobacterium and Sphingomonas

has been observed in CRC (11); specific gut microbiota features for

predicting early-stage lung cancer were established based on 13 high-

precision OTU biomarkers (12); and in PLWH with oral KS, a

decrease in the abundance of the genera Aggregibacter and Lautropia

was observed (13).

The gut microbiota is closely associated with both HIV and

cancer, potentially serving as a novel target for therapeutic

interventions. However, the characteristics of the gut microbiota

and key biomarkers of PLWH with various cancers have not been

investigated. This study analyzed the characteristics of the gut

microbiota of PLWH who have cancer (PLWH-C), including KS,

lymphoma (L), LC, and CRC, and identified specific microbial
Frontiers in Immunology 02
community characteristics that may be helpful in the diagnosis of

PLWH-C. This exploration provides guidance for the investigation

of potential biomarkers for the diagnosis, treatment, and prognosis

of HIV with concomitant cancer.
Methods

Subject recruitment and sample collection

We conducted a cross-sectional study. PLWH were recruited

from the Fourth People’s Hospital of Nanning (Nanning, Guangxi,

China), and people living without HIV (Ctrl) were enrolled from

the health examination department of the First Affiliated Hospital

of Guangxi Medical University. In simple terms, individuals

meeting the following criteria were included in this study: PLWH

were required to meet the diagnostic criteria outlined in the Chinese

guidelines for the diagnosis and treatment of HIV/AIDS (2021)

(14); PLWH who have cancer were those diagnosed with KS, L, LC,

or CRC through pathological examination; PLWH who do not have

cancer (PLWH-NC) and Ctrl were identified through clinical

physician screening, with no previous history of cancer and

currently presenting no symptoms or signs related to tumor

diseases. The exclusion criteria for the subjects were as follows:

history of antibiotic or other medication use within the past 2 weeks

that affects the gut microbiota; PLWH-NC and Ctrl had factors that

may affect the gut microbiota, such as hypertension, diabetes

mellitus, coronary artery disease, chronic kidney disease, and

pregnancy. This study was approved by the Ethics Committee of

the Fourth People’s Hospital of Nanning (Approval number: [2022]

45). All participants signed an informed consent form before

participating in the study.

We collected demographic and clinical information, as well as

stool samples, from the subjects. Stool samples were collected using

tubes containing stool DNA stabilizers (STRATEC stool collection

tubes with stool DNA stabilizer, Germany), which can lyse and

release DNA from stool microbiota and maintain DNA stability at

room temperature for up to 3 months. Generally, stool samples

were transported to the laboratory on ice within 6 hours of

collection and then stored at -80°C. Every 3 months, a batch of

stool samples was transported on dry ice to the company (Majorbio

BioPharm Technology Co., Ltd., Shanghai, China) for sequencing

to avoid technical and operational variability caused by multiple

sequencing runs.
16S rRNA sequencing

DNA was extracted from stool samples using an EZNA® DNA

Kit (Omega Bio-tek, Norcross, GA, USA). Primers 338F (5’-

ACTCCTACGGGAGGCAGCAG-3 ’ ) a nd 8 0 6R ( 5 ’ -

GGACTACHVGGGTWTCTAAT-3’) were used to amplify the V3-

V4 variable region of the 16S rRNA gene by PCR. The amplified PCR

products were then purified, recovered, and quantified. The

NEXTFLEX Rapid DNA-Seq Kit was used to construct the library.
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Sequencing was performed on an Illumina MiSeq PE300 platform

(Majorbio BioPharm Technology Co., Ltd., Shanghai, China).
16S rRNA data processing and differential
bacteria identification

Fastp 15 was used to control the quality of the original

sequencing sequence. Microbiota bioinformatics was performed

using QIIME 2 (version 2021.11) (15). Quality filtering of raw

sequences using the q2-demux plugin, followed by DADA2 17 (via

q2-dada2) for denoising and generation of amplicon sequence

variants (ASV). All ASVs were aligned with Mafft (q2-alignment)

and used to construct a phylogenetic tree with FastTree2 (q2-

phylogeny). The species annotation of ASV was performed using

silva-138 99% OTU reference sequences pretrained with the

classify-sklearn Naive Bayes classifier and the q2-feature-classifier

plugin. Based on the microbial sequence and ASV table, we used

PICRUSt2 (16) to predict KEGG functional pathways and generate

a table of relative functional abundances.

The generated ASV table, phylogenetic tree, and species

annotation files were imported into R 4.2.2, and the microeco

package was used to normalize the features to enable comparison

across samples with the same sequencing depth. The microeco

package was used to calculate microbial alpha and beta diversity.

The alpha diversity indices included community richness indices

(Observed, Chao1, and ACE), community diversity and evenness

indices (Fisher, Shannon, Simpson, and Invsimpson), and the

phylogenetic diversity index (PD). Principal Coordinate Analysis

(PCoA) based on the Bray–Curtis distance algorithm was conducted

to assess the similarity of beta diversity among samples. We used the

feature screening tool Random Forest analysis in the microeco

package to identify differential bacteria and Kyoto Encyclopedia of

Genes and Genomes (KEGG) functional pathways among groups.

The Venn diagram was used to identify overlapping factors between

groups. Cytoscape 3.7.1 software was used to draw the correlation

network diagram between bacterial abundance and clinical indicators.

GraphPad Prism (version 6.01) was used to construct Receiver

Operating Characteristic (ROC) diagnostic models.
Statistical analysis

Statistical analysis was performed using R 4.2.2. Variables with

missing values of less than 20% were imputed using multiple

imputation. For data that met normality were described using the

mean ± standard deviation and analyzed them using the Student’s t-

test. For data that did not meet the normality criteria were described

using median (interquartile range) and analyzed them using the

Mann–Whitney U test. The count data were described using the

number of cases and analyzed them using the chi-square test. The

nonparametric PERMANOVA test was used to assess significant

differences in gut microbiota structure between groups. For data that

met normality, the Pearson correlation coefficients between indicators

were calculated. For data that did not meet normality, we calculated the
Frontiers in Immunology 03
Spearman correlation coefficients between indicators. All tests were

two-sided, and P<0.05 was considered statistically significant.
Results

Characteristics of the subjects

A total of 54 subjects were included in the PLWH-C group,

consisting of PLWH-KS (n=7), PLWH-L (n=22), PLWH-LC (n=12),

and PLWH-CRC (n=13). The PLWH-NC and Ctrl groups included

55 and 49 subjects, respectively. There were no statistically significant

differences in antiretroviral therapy (ART) regimens between PLWH-

C and PLWH-NC. There were no significant differences in the use of

antibiotics or other drugs that may affect the gut microbiota within the

past two weeks (P>0.05). The baseline characteristics of the subjects

were shown in Table 1. Additionally, most PLWH receiving ART had

viral loads below 20 copies/mL, while newly diagnosed patients in the

PLWH-NC group mostly had viral loads above 20 copies/mL

(Supplementary Table 1). However, due to approximately 35%

missing data, further analysis could not be performed.
PLWH with cancer exhibited a more
significant dysbiosis of the gut microbiota

We initially compared the diversity of the gut microbiota among

PLWH-C, PLWH-NC, and Ctrl groups. The results showed a

decrease in gut microbiota alpha diversity in both PLWH-C and

PLWH-NC compared with Ctrl (Figure 1A), with a distinct

distribution of PLWH in the PCoA plots compared with Ctrl

(Figure 1B). These alterations were more pronounced in PLWH-C,

where alpha diversity was significantly lower than in PLWH-NC and

Ctrl (Figure 1A). The samples showed distinct separation from both

PLWH-NC and Ctrl in the PCoA plots (Figure 1B). Therefore, we

observed distinct characteristics among the different cancer types.

The results indicated that the alpha diversity of PLWH-KS, PLWH-L,

PLWH-LC, and PLWH-CRC was lower than that of PLWH-NC and

Ctrl (Figure 1C). The samples were also significantly separated from

PLWH-NC and Ctrl in PCoA coordinates (Figure 1D). These

findings indicate that HIV infection alters the diversity of the gut

microbiota in the human body, and KS, L, LC, and CRC further

intensify these changes in gut microbiota diversity.

Furthermore, the composition of the gut microbiota in the study

subjects was illustrated using a percentage stacked bar chart. At the

genus level, it was evident that compared with PLWH-NC and Ctrl, the

proportions of Bacteroides, Prevotella, and others were reduced,

whereas the proportions of Escherichia-Shigella, Blautia, and others

were increased in PLWH-KS, PLWH-L, PLWH-LC, and PLWH-CRC

patients (Figure 1E). Random forest analysis confirmed significant

differences among the six groups of 178 genera, including Bacteroides,

Prevotella, Escherichia-Shigella, and Blautia (Supplementary Table 2).

At the species level, compared to PLWH-NC and Ctrl, the proportions

of Bacteroides vulgatus, Bacteroides stercoris, and Bacteroides plebeius

were decreased in PLWH-KS, PLWH-L, PLWH-LC, and PLWH-CRC
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patients. In contrast, the proportion of Streptococcus salivarius

increased (Figure 1F). Random forest analysis also confirmed

significant differences among the six groups for 114 species,

including Bacteroides vulgatus, Bacteroides stercoris, Bacteroides

plebeius, and Streptococcus salivarius (Supplementary Table 3).
Dysbiosis of the gut microbiota is
associated with cancer metabolic pathways
in PLWH who have cancer

Indeed, closely related microorganisms generally exhibit similar

genetic compositions and metabolic functions. We employed the

PICRUSt2 (16) algorithm to compare the 16S rRNA gene sequences

of unknown microorganisms with those of known genomic databases,

thereby inferring their potential functional characteristics. Subsequently,

differential pathways among groups were identified using Random

Forest analysis, a widely used method for the differential analysis of

microbiome data. The proposed method integrates ensemble learning
Frontiers in Immunology 04
by constructing a large number of decision trees. Each tree uses

randomly selected features of the microbial community to make

grouping judgments, and the results of all trees are ultimately

combined to assess the contribution of each genus to classification

decisions (17). The contribution of each genus to the sample

classification was quantified using the Gini index or feature

importance rankings, thereby identifying the most relevant differential

taxa associated with the experimental grouping. A total of 360

differential KEGG functional pathways were identified among Ctrl,

PLWH-NC, PLWH-KS, PLWH-L, PLWH-LC, and PLWH-CRC

(Supplementary Table 4). Among these pathways, we identified

significant intergroup differences in several cancer-related pathways,

including Pathways in cancer and metabolism-related pathways, such as

central carbon metabolism in cancer, Choline metabolism in cancer, and

Proteoglycans in cancer. Furthermore, we analyzed the correlations

between the abundances of 178 differential genera and 114 differential

species with those of the four aforementioned pathways.

Using Spearman correlation analysis, we identified 85 genera or

species with significant correlations with the pathways in the cancer
TABLE 1 Characteristics of subjects.

Characteristics

PLWH-Ca(n=54) PLWH-
NCb

n=55

Ctrlc

n=49
P-

valueKSd, n=7 Le, n=22 LCf, n=12
CRCg,
n=13

All

Gender 0.728

Male 6 18 9 9 42 45 37

Female 1 4 3 4 12 10 12

Age 40.00 ± 15.29 53.14 ± 11.54 64.08 ± 7.90 60.92 ± 10.39 55.74 ± 13.21 42.07 ± 12.37
42.00

(33.00, 54.50)
<0.001

BMI 20.15 ± 2.83
19.62

(16.94, 22.66)
23.44

(20.52, 26.14)
19.56 ± 1.88 20.89 ± 3.52

20.75
(19.03, 22.10)

23.44 ± 2.85 <0.001

MSM 0.011

Yes 0 0 0 0 0 5 0

No 7 22 12 13 54 50 49

CD4+
48.00

(36.00, 120.00)
132.00

(95.25, 227.25)
407.00

(307.61, 641.25)
284.38
± 183.58

195.00
(102.75, 349.25)

410.40
± 219.64

– <0.001

ART regimen 0.129

Non-ART 4 16 10 8 38 31 –

NRTI-
containing regimen

3 6 2 5 16 24 –

NRTI-
sparing regimen

0 0 0 0 0 0 –

Antibiotics or other drugs that affect the microbiota 0.660

Yes 0 0 0 1 1 0 0

No 7 22 12 12 53 55 49
fron
aPLWH-C, People living with HIV who have cancer.
bPLWH-NC, People living with HIV who do not have cancer.
cCtrl, People living without HIV.
dKS, Kaposi's sarcoma.
eL,Lymphoma.
fLC, Lung cancer.
gRC, Colorectal cancer.
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pathway (Supplementary Table 5), 52 genera or species with significant

correlations with the Central carbon metabolism pathway

(Supplementary Table 6), 53 genera or species with significant

correlations with the choline metabolism pathway (Supplementary

Table 7), and 137 genera or species with significant correlations with

the proteoglycans pathway (Supplementary Table 8). Bacteria with

significant correlations with all of the multiple cancer pathways were

identified through Venn diagram analysis, including 19 intersecting
Frontiers in Immunology 05
genera, such as Bacteroides, Escherichia-Shigella, and Bacteroides

stercoris, which were significantly correlated with the abundance of

all four cancer metabolic pathways in Spearman correlation analyses at

P<0.05 (Figure 2A, Supplementary Table 9). Through the correlation

network diagram, we observed that among these 19 intersecting genera,

except for Escherichia-Shigella, all were significantly negatively

correlated with Pathways in cancer (Figure 2B) and significantly

positively correlated with Choline metabolism in cancer (Figure 2C),
FIGURE 1

PLWH-C exhibited profound dysbiosis of gut microbiota. Comparison chart of alpha (A) and beta (B) diversity between among PLWH-C, PLWH-NC,
and Ctrl. Comparison chart of alpha (C) and beta (D) diversity between among PLWH-KS, PLWH-L, PLWH-LC, PLWH-CRC, PLWH-NC, and Ctrl.
Stacking chart of percentage at the level of genera (E) and species (F) of bacteria. *P<0.05, **P<0.01, ***P<0.001. ns, not statistically significant.
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Central carbon metabolism in cancer (Figure 2D), and Proteoglycans in

cancer (Figure 2E).
Bacteroides demonstrate promise as a
diagnostic biomarker of HIV-associated
cancers

ROC models were constructed using the abundance profiles of

the 19 intersecting genera identified to diagnose people without

HIV, PLWH-C, and PLWH-NC. The results showed that 9 genera
Frontiers in Immunology 06
or species, including Bacteroides, Escherichia-Shigella, Lachnospira,

Lachnospiraceae UCG 004, Lachnospiraceae UCG 010,

Lachnoclostridium, Parabacteroides, Roseburia, and Bacteroides

vulgatus, could serve as potential diagnostic markers for PLWH-C

(including PLWH-KS, PLWH-L, PLWH-LC, and PLWH-CRC)

when compared with PLWH-NC and Ctrl individuals (Figures

3A–I, 4A–I). There is also a genus, Faecalibacterium, that can

only be used to diagnose PLWH-C and Ctrl (All P<0.05,

AUC>0.70; Figure 3, Supplementary Table 11). Among them,

Bacteroides exhibited the best diagnostic performance for all the

diagnostic combinations (AUC≥0.84; Figures 3A, 4A,
FIGURE 2

Dysbiosis of the gut microbiota in PLWH-C was associated with cancer metabolic pathways. Identify intersecting bacteria significantly associated
with multiple cancer pathways using the Venn diagram (A). Correlation analysis between intersecting bacteria and the KEGG pathways of Pathways
in cancer (B), Choline metabolism in cancer (C), Central carbon metabolism in cancer (D), and Proteoglycans in cancer (E) pathways. *P<0.05,
**P<0.01, ***P<0.001.
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Supplementary Tables 10, 11). Additionally, the subspecies

Bacteroides vulgatus was the only key species that could be used

for all the diagnostic combinations (AUC≥0.78; Figures 3I, 4I,

Supplementary Tables 9, 10).
Discussion

The incidence of both AIDS-defining cancers and NADCs has

decreased, but approximately 10%-20% of PLWH still succumb to

cancer (7). Dysbiosis of the gut microbiota has been found to be

associated with HIV (4, 6) or cancer (3, 12, 18), but few studies have

explored the diversity of the gut microbiota in PLWH who have

cancer. In this study, we explored the gut microbiota characteristics

of PLWH-KS, PLWH-CRC, PLWH-LC, and PLWH-L for the first

time in a microbial spectrum associated with HIV-related cancers.

Bacteroides were closely associated with cancer-related metabolic

pathways and may serve as potential diagnostic biomarkers.

Previous studies have demonstrated that PLWH and cancer

patients exhibit varying degrees of gut microbiota dysbiosis (19). Our

study reaffirmed that HIV infection significantly alters gut microbial

diversity and further demonstrated that PLWH-C exhibitedmore severe

dysbiosis, characterized by a marked reduction in microbial diversity

and distinct community structures compared with PLWH-NC and Ctrl.

Additionally, we characterized gut microbial features associated with
Frontiers in Immunology 07
HIV infection and various types of cancer. Random forest analysis

identified 178 differential genera, including decreases in Bacteroides and

Prevotella, an increase in Escherichia-Shigella, and 114 differential

species. Notably, Bacteroides vulgatus—a common gut commensal—

was the only species included in all of the diagnostic models. Among all

detectable species applicable for diagnostic purposes, Bacteroides and

Prevotella are the most prevalent. These genera are frequently reported

in gut microbiota studies involving HIV and cancer. Existing evidence

indicates that HIV infection is associated with reduced Bacteroides and

enriched Prevotella abundance, both of which correlate with mucosal

inflammation and immune dysregulation (20). In oncology contexts,

Bacteroidesmay enhance immunotherapy responsiveness (21), whereas

Prevotella could contribute to a pro-carcinogenic microenvironment

(22). Nevertheless, strain-specific functional analyses remain to be

further investigated. B. vulgatus is a common intestinal symbiotic

bacterium and is also a member of the Bacteroides genus. Although it

is often considered protective against CRC (23, 24), which is consistent

with our findings, its role may vary depending on the strain and host

context (25), suggesting that current understandings of host-microbiota

interactions remain limited.

Further enrichment analysis using KEGG pathways revealed

that Bacteroides and Escherichia-Shigella were closely associated

with Central carbon metabolism in cancer, Choline metabolism in

cancer, and Proteoglycans in cancer. Cancer-related metabolic

pathways are closely interrelated, and the above three metabolic
FIGURE 3

Gut microbiota associated with cancer pathways be used to distinguish PLWH-C from Ctrl. Ten genera or species, including Bacteroides (A),
Escherichia-Shigella (B), Lachnoclostridium (C), Lachnospiraceae_UCG-004 (D), Lachnospiraceae_UCG-010 (E), Parabacteroides (F), Roseburia (G),
Lachnospira (H), Bacteroides vulgatus (I) and Faecalibacterium (J), could be used for diagnosing PLWH-C and Ctrl, as well as PLWH-KS and Ctrl,
PLWH-L and Ctrl, PLWH-CRC and Ctrl, PLWH-LC and Ctrl (All P<0.05, AUC>0.70).
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pathways are the primary metabolic pathways associated with

cancer. Different types of cancer exhibit varying degrees of

metabolic reprogramming. Glycolysis, as part of central carbon

metabolism, is enhanced in most cancers, including CRC, lung

cancer (26, 27). Abnormalities in choline metabolism are often

associated with the development of non-small-cell lung cancer (28),

whereas abnormalities in proteoglycan metabolism are more

common in hepatocellular carcinoma (29). The 19 intersecting

genera we screened for were significantly associated with all of

these metabolic pathways, suggesting that disruption of these

microbiota may lead to cancer-associated metabolic abnormalities

in PLWH, which in turn affects cancer development. It is possible

that a decrease in the number of the key bacteria we screened for

(Bacteroides and Prevotella) leads to associated metabolic disorders

that promote cancer development. It could also be an increase in

key bacteria, such as Escherichia-Shigella, that promote specific

metabolic processes and, thus, cancer progression. For example,

studies showing a significant increase in the diversity and

abundance of gut microbiota in patients with CRC, accompanied

by changes in metabolites (30), as well as a significant decrease in

Lactobacillus and Bifidobacterium and a higher prevalence of

metabolic syndrome in patients with breast cancer suggest that a

decrease in the gut microbiota may contribute to the development

of breast cancer through metabolic disorders (31). One of the
Frontiers in Immunology 08
specific studies on CRC proposed that the specific regulatory

mechanism of metabolism by microbiota may be the inhibition of

glucose metabolism in colorectal cancer cells through the GPR109a-

AKT or SIRT4/HIF-1a signaling pathways (32, 33). In addition,

bacteria can also metabolize dietary choline, phosphatidylcholine,

and carnitine to produce the trimethylamine-N-oxide precursor

trimethylamine, which has been shown to have a pro-cancer effect

in various cancers (34–36).

Finally, we constructed ROC models using the abundance table of

the 19 intersecting bacteria to diagnose PLWH-KS, PLWH-C, PLWH-

LC, and PLWH-CRC, respectively, with PLWH-NC and Ctrl. The

results demonstrated that Bacteroides and its subspecies B. vulgatus

exhibited moderate diagnostic performance. Numerous studies have

demonstrated that the gut microbiota can serve as diagnostic

biomarkers for various diseases (1, 4, 12, 37), offering valuable

clinical insights for disease detection and diagnosis. Moreover, while

the diagnosis of cancer is typically achieved through tissue biopsy,

which is an invasive procedure, collecting gut microbiota from fecal

samples is a noninvasive method. Bacteroides, in particular, hold

promise as a novel approach for the detection of HIV-associated

cancer in the future. This finding provides a theoretical foundation

for developing new therapeutic strategies and treatment targets.

This study has several limitations. First, this study is limited by

its cross-sectional design and small sample size, which restricts the
FIGURE 4

Gut microbiota associated with cancer pathways be used to distinguish PLWH-C from PLWH-NC. Nine genera or species, including Bacteroides (A),
Escherichia-Shigella (B), Lachnoclostridium (C), Lachnospiraceae_UCG-004 (D), Lachnospiraceae_UCG-010 (E), Parabacteroides (F), Roseburia (G),
Lachnospira (H), and Bacteroides vulgatus (I), could be used for diagnosing PLWH-C and PLWH-NC, as well as PLWH-KS and PLWH-NC, PLWH-L
and PLWH-NC, PLWH-CRC and PLWH-NC, PLWH-LC and PLWH-NC (All P<0.05, AUC>0.70).
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generalization of the conclusions. In the future, we plan to conduct

a longitudinal cohort study and increase the sample size. Second,

PLWH who have cancer carry a substantial financial burden that

can dampen their willingness to undergo viral load testing. In this

study, roughly 35% of participants lacked viral load data, thereby

limiting further analysis. We will strive to collaborate with local

health institutions to foster greater participant motivation for

completing viral load assessments and other related examinations.

Additionally, we will enroll an HIV-negative cancer cohort and

apply stricter inclusion criteria-such as matching CD4+ T cell

counts, viral load levels, and antiretroviral therapy duration-to

further refine the study design. Future investigations should also

quantify HIV viral load, reservoir size (HIV DNA), transcriptional

activity (HIV RNA), inflammatory markers, and gut metabolomic

profiles in PLWH-C vs. PLWH-NC. Finally, as the present study is

population-based and lacks experimental validation, we will

integrate multi-omics analyses (metagenomics and metabolomics)

and in vitro models (such as intestinal organoids) to delineate the

interactions and mechanisms of the key bacterial species B. vulgatus

in the context of cancer and HIV.
Conclusions

In this study, we characterized the gut microbiota

characteristics of PLWH, combined with KS, CRC, LC, and L, as

well as PLWH-NC and Ctrl. For the first time, we revealed the

microbial signatures associated with PLWH in cancer, highlighting

a strong correlation between Bacteroides and cancer-related

metabolic pathways. Bacteroides can serve as a diagnostic

biomarker for HIV and various cancers, providing clinical

insights into disease detection and diagnosis, as well as offering

new scientific guidance for the development of probiotics.
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