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Role of TRPV1 in neuroendocrine 
regulation: a potential target 
against obesity? 
Jiexin Wang, Maohui Liu, Lingmiao Wen, Pengfei Xing, 
Jiawei Chen, Xiuwen Xia* and WeiJun Ding* 

School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, 
Chengdu, China 
Obesity is a common metabolic syndrome in which an imbalance between 
energy intake and consumption is the main cause of excessive accumulation of 
body fat. The increasing prevalence of obesity and its associated complications 
poses significant challenges to public health. Activation of the transient receptor 
potential vanilloid subtype 1 (TRPV1) cascade plays a key role in lipid metabolism 
and energy intake. TRPV1 is expressed across the central nervous system and 
peripheral organs is involved in the regulation of hormone secretion, appetite 
and mitochondrial function, and is recognized as one of the key targets for 
preventing obesity. The current treatments for obesity exhibit limited efficacy and 
are associated with numerous side effects. Targeting TRPV1 represents a 
potentially effective approach for managing obesity. In this work, by combining 
the recent mechanism of the role of TRPV1 in neuroendocrine regulation, we 
hope to provide novel approaches to block or even reverse the development 
of obesity. 
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1 Introduction 

The increasing prevalence of obesity is expected to affect 4 billion people by 2035 (1–3). 
As a common metabolic syndrome, an imbalance in energy storage and expenditure is the 
main cause of excessive accumulation of body fat (4–7). Recent studies have shown that 
neuroendocrine modulation plays an important role in regulating adipose tissue 
thermogenesis and lipid metabolism (8). Body weight homeostasis is regulated by the 
coordinated interactions of nutrients, circulating neuroendocrine hormones, the central 
nervous system, and peripheral nerves, and even the release of hormonal signals from 
endocrine tissues is largely regulated by the peripheral nervous system (PNS) (9–13). 
Sympathetic nervous system (SNS) innervation of adipose tissue has been demonstrated in 
recent studies (14–16), and activation of the SNS prevents obesity by promoting brown fat 
thermogenesis and energy expenditure via  the hypothalamic neuropeptide Y and

norepinephrine. The SNS is an integral part of metabolism-related organs, but our 
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understanding of the mechanisms by which the nervous system 
regulates the endocrine system to affect obesity is still 
lacking. understanding. 

Activation of transient receptor potential vanilloid subtype 1 
(TRPV1) sustains centrally regulated thermogenesis in peripheral 
tissues. TRPV1 is a nonselective cation channel (17). TRPV1 has a 
tetrameric structure consisting of three parts, the N-terminus and 
C-terminus located intracellularly, and six transmembrane regions 
(S1–S6) (18–20), with the N-terminal end playing a role in the 
activation of the channel. Early studies of TRPV1 focused on 
thermal and inflammatory pain transmission, and recent studies 
have revealed that TRPV1 also plays an important role in the 
regulation of tissue energy metabolism. A study of TRPV1 
involvement in white adipose tissue (WAT) browning revealed 
(21) that the gene levels of TRPV1, silent message regulator 1 
(Sirt1), and uncoupling protein-1 (UCP1) were suppressed in high-
fat diet-fed mice, whereas capsaicin-fed mice presented a reversal of 
the expression levels of all these genes. Increasing evidence suggests 
that TRPV1 plays a key role in the regulation of body weight and 
lipid metabolism and is therefore considered a potential target for 
the treatment of obesity (22–26). 

Given the increasing incidence of obesity annually, the resulting 
complications place heavy psychological and economic pressure on 
patients. Therefore, revealing the neuroendocrine regulatory 
mechanism of TRPV1 in obesity is particularly important. This 
paper reveals the core mechanism of TRPV1 in the endocrine 
system and the central nervous system of obese patients by 
reviewing previous studies on obesity and TRPV1 to provide a 
theoretical basis for stopping or even reversing obesity. 
2 The potential role of TRPV1 in 
obesity 

2.1 Neuromodulatory mechanisms of 
TRPV1 

2.1.1 Regulation of feeding behavior and energy 
metabolism by TRPV1 activation in the central 
nervous system 

The TRPV1 protein in the central nervous system (CNS) plays 
an important role in the regulation of feeding behavior. TRPV1­
positive neurons are widely distributed in the CNS (27–30), 
especially in the hypothalamus and nucleus tractus solitarius 
(NTS), which are closely related to food intake and energy 
expenditure (31, 32). TRPV1 expression in the hypothalamus of 
high-fat diet (HFD)-fed mice was significantly downregulated (33), 
whereas capsaicin restored its expression level, and activation of 
TRPV1 was able to increase energy expenditure and reduce 
body weight. 

The function of TRPV1 is related to its distribution. In the 
hypothalamus, TRPV1-positive neurons coexpress a variety of 
neuropeptides [including calcitonin gene-related peptide (CGRP), 
Frontiers in Immunology 02 
NPY, and substance P (SP)] to regulate peripheral thermogenesis 
and dietary intake (33). TRPV1 activation induces Ca2+ influx, which 
may be crucial  for the  release and  function  of  CGRP  (34, 35), and 
CGRP may inhibit food intake by increasing cyclic adenosine 
monophosphate (cAMP) and cholecystokinin (CCK) expression in 
the hypothalamus, downregulating the expression of appetite-inducing 
neuropeptides (NPY and MCH), and increasing skin temperature and 
brown adipose tissue (BAT) thermogenesis (34, 36). In POMC 
neurons, which regulate appetite and satiety, TRPV1 activation 
releases a-melanocyte-stimulating hormone (a-MSH) to act on 
satiety centers, leading to a reduction in appetite (37), and this 
process is TRPV1 dependent. In terms of hypothalamic gene 
expression profiles in HFD-fed mice, TRPV1 activation upregulates 
the expression of satiety-related neuropeptide genes (e.g., UCN, PYY, 
RAMP3, GRP, BDNF, and CARTPT) and downregulates the 
expression of appetite-stimulating genes (e.g., CNR1, GALR1, 
GHRL, ADRA2B, and GHSR), reducing food intake and body 
weight (33, 38–41). (Figure 1). 

Activation of TRPV1 in the solitary tract nucleus (NTS) inhibits 
BAT activation in HFD-fed rats. The levels of linoleic acid 
metabolites (LAs) are elevated in the NTS of HFD-fed rats, and 
these metabolites can act as endogenous TRPV1 activators (42). The 
activation of TRPV1 at the afferent terminals of the vagus nerve 
induced the release of glutamate to increase the activity of the 
neurons in the NTS, which in turn inhibited the sympathetic 
excitatory neurons of the BAT, forming a pathway to inhibit 
brown adipose tissue (BAT) thermogenesis and energy 
expenditure. pathway. Therefore, the energy metabolism 
regulatory function of TRPV1 is spatially inhibitory (Figure 1). 

2.1.2 Central regulation of tissue energy 
metabolism is dependent on activation of TRPV1 
in peripheral sensory nerves 

Peripheral sensory nerves are involved in regulating adipose 
tissue thermogenesis and WAT browning processes. Studies have 
shown that BAT-specific denervation in rats is associated with 
increased body weight; decreased resting metabolic rates; decreased 
BAT mass; decreased adipocyte and mitochondrial numbers; 
downregulated UCP1 protein expression; and decreased core 
body temperature (43–45). In contrast, both unilateral and 
bilateral ablation of subcutaneous WAT in mice upregulated the 
expression of thermogenic genes and was accompanied by beige 
adipocyte  formation  (8) .  These  findings  suggest  that  
neuromodulation is necessary to maintain the homeostasis of fat 
energy metabolism. 

The regulation of energy metabolism in adipose tissue is 
dependent on neuropeptide secretion following TRPV1 activation. 
Mammalian adipose tissue function is regulated by the peripheral 
nervous system (8), and the activation of TRPV1 in BAT and WAT 
sensory neurons results in the expression of the neuropeptides 
CGRP and SP (46, 47), which transmit information from adipose 
tissue to the central nervous system (hypothalamus, solitary tract 
nucleus, etc.) through synaptic links between neurons, and the 
frontiersin.or
g 

https://doi.org/10.3389/fimmu.2025.1598804
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1598804 
removal of sensory nerves of the adipose tissue results in 
compensatory hyperplasia, further demonstrating the involvement 
of sensory signaling in systemic adipose homeostasis (48, 49). 
Tracing of sympathetic nerves and sensory nerves innervating the 
BAT revealed colocalization in the central nervous system 
(hypothalamus, solitary tract nucleus, and other brain regions) 
(49, 50), suggesting that there is a direct interaction between 
sympathetic and sensory signals at the center. Thus, sympathetic 
and sensory nerves synergistically regulate fat metabolism through a 
bidirectional loop, with sympathetic nerves dominating lipolysis 
and thermogenesis and sensory nerves feeding back on fat status to 
modulate sympathetic output, a mechanism that is functionally 
specific in WAT and BAT but shares some central nodes. 

In addition, the neuropeptides CGRP and SP released upon 
sensory nerve activation exert regulatory effects on adipose tissue 
metabolism. Previous studies have shown that CGRP has hormonal 
effects as a neuropeptide (51). Lipid metabolism regulation by 
CGRP may occur through changes in plasma catecholamine, 
cortisol, glucagon, insulin, lactate, and adipokine levels, as well as 
in the blood supply of adipose tissue (36, 52–60). SP upregulates 
neurokinin 1 receptor (NK1R) mRNA and protein expression levels 
in human preadipocytes (61). SP also promotes lipolysis in 3T3L1 
adipocytes, blocks insulin-mediated fatty acid uptake, and inhibits 
the accumulation of lipid droplets during differentiation (62). In 
contrast, high-fat diet-induced weight gain was inhibited in 
NK1R-/- mice, circulating levels of insulin and leptin were 
reduced, and insulin-dependent glucose uptake was improved 
(63). Thus, neuropeptides secreted upon the activation of sensory 
nerve TRPV1 not only play a role in central regulation but also play 
a role in regulating local adipose tissue (Figure 1). 
Frontiers in Immunology 03 
2.2 Endocrine regulatory mechanisms of 
TRPV1 

2.2.1 Adipose tissue TRPV1 activation promotes 
mitochondrial oxidation 

Adipose tissue is an important part of the human body. Owing 
to its structure and function, it can be divided into WAT, which is 
responsible for storing fat, maintaining body temperature and 
regulating metabolism throughout the body, and BAT, which 
generates a large amount of heat energy through the catabolism 
and oxidation of lipids and helps to maintain body temperature. 

Adipose tissue TRPV1 activation to promote mitochondrial 
energy metabolism is required for WAT browning. WAT browning 
has been used as a novel strategy to improve metabolic health (6), and 
WAT browning is able to inhibit energy intake-induced weight loss by 
triggering thermogenesis to promote energy expenditure (40, 64, 65). 
Upon the activation of WAT-expressed TRPV1 (66, 67), the 
intracellular Ca2+ concentration increases, and the activation of 
calmodulin kinase II (CaMKII) causes the phosphorylation of AMP 
protein kinase (AMPK), leading to the activation of sirtuin 1 (SIRT-1), 
which serves as a sensor of cellular metabolism and energy utilization 
(68, 69), the activation of which leads to the deacetylation of PPARg 
and PRDM-16, both of which promote WAT browning (70, 71). With 
the activation of TRPV1, the expression of UCP-1 and bone 
morphogenetic protein 8B (BMP8B) is upregulated. UCP-1 is 
localized on the inner mitochondrial membrane, and when 
activated, it short-circuits the mitochondrial proton gradient, thus 
promoting thermogenesis (66, 72). By increasing p38 MAPK/CREB 
signaling and adiponectin activity, BMP8B enhances the sensitivity of 
BAT to NE to promote energy expenditure (73). Upon activation of 
FIGURE 1 

(1) Activation of TRPV1 in adipose tissue triggers the release of CGRP and SP, which mediate signal transduction in the central nervous system to 
regulate fat metabolism. (2) Activation of TRPV1 in the central nervous system (CNS) modulates the expression of appetite and adipose 
thermogenesis-related genes, leading to weight loss through increased energy expenditure. 
frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1598804
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1598804 
TRPV1, the mitochondrial deacetylase SIRT-3 is activated, leading to 
a decrease in ROS production (74) and an increase in energy 
metabolism due to increased mitochondrial activity. SIRT-3 was 
also able to downregulate the expression of H3K27ac on the 
mitochondrial calcium unidirectional transporter (MCU) promoter 
via an AMPK-dependent pathway, which inhibited mitochondrial 
calcium ion overload to prevent BAT whitening. The expression of the 
adipogenic regulators Pparg2 and PPARg coactivator 1a (Pgc-1a) in  
BAT is also upregulated upon activation of TRPV1 (75). Pparg2 
promotes transcriptional cascades involved in adipocyte function 
(76, 77), whereas Pgc-1a stimulates mitochondrial biogenesis as 
well as BAT cell function, including transcriptional activation of 
Ucp1 (78). Mitochondrial homeostasis in BAT is critical for 
maintaining BAT thermogenesis, and mitochondrial Ca2+ regulates 
the activity of essential metabolic enzymes and transporter proteins 
(79). TRPV1 maintains mitochondrial Ca2+ homeostasis in BAT by 
repressing the expression of the ion channel protein LETM1 (80). 
When genes regulating TRPV1 expression are knocked down, the 
expression of UCP1 and LETM1 tends to increase, leading to 
disturbances in mitochondrial Ca2+ homeostasis in BAT and 
aggravating obesity (Figure 2). 

Studies have shown that TRPV1 activation in murine and human 
adipose precursor cells upregulates the cytoplasmic receptor 
responsible for calcium cycling (a1-AR), the calcium-sensing 
enzyme (CaMKII), and mitochondrial calcium transporters (VDAC 
and MCU), leading to increased intracellular Ca²+ concentrations, 
which suppress adipogenesis in adipose precursor cells and promote 
UCP1-dependent thermogenesis (81, 82). Following the activation of 
TRPV1, the mRNA levels of hormone-sensitive lipase (HSL), 
carnitine palmitoyltransferase Ia (CPT-Ia), which is a rate-limiting 
enzyme in mitochondrial fatty acid oxidation, and uncoupling 
protein 2 (UCP2) are increased (83–86). This results in increased 
Frontiers in Immunology 04
lipolysis in adipocytes and a reduction in the intracellular lipid 
content (Figure 2). 

2.2.2 Pancreatic b-cell TRPV1 activation regulates 
pancreatic function 

The pancreas is an important visceral organ in the regulation of 
glucose metabolism, and insulin, an anabolic hormone, is 
synthesized and secreted by pancreatic beta cells (87). In 
peripheral tissues, insulin promotes glucose uptake in adipose 
tissue and inhibits lipolysis, promoting fat storage in adipocytes 
(88, 89), and in the central nervous system, insulin acts as an 
appetite suppressant to decrease food intake and body weight (90). 

TRPV1 activation in pancreatic b-cells increases insulin 
secretion. Previous studies have shown that TRPV1 affects 
pancreatic function and insulin secretion in both humans and 
animals (91), and the activation of TRPV1 expressed on 
pancreatic b-cells by calcium influx increases insulin secretion, a 
process that involves the regulation of protein kinase C alpha (PKC 
alpha) and cyclic adenosine monophosphate cAMP (92, 93). In 
addition, TRPV1 is coexpressed with CGRP in pancreatic nerve 
fibers (94), and inhibition of TRPV1 signaling decreases CGRP 
secretion, thereby increasing insulin secretion. Insulin sensitizes 
TRPV1 in sensory nerve endings (95, 96), and TRPV1-activated 
neurons regulate pancreatic b-cell function through the release of 
neuropeptides such as SP and CGRP (97–100), where an increase in 
CGRP secretion decreases insulin release from pancreatic b-cells 
(98). Sustained high levels of circulating CGRP can lead to insulin 
resistance and obesity, whereas increased SP secretion can alleviate 
insulin resistance (97). Furthermore, TRPV1 is coexpressed with 
CCK-sensitive vagal afferent neurons. Studies have revealed that 
TRPV1 activation-induced calcium influx enhances the 
responsiveness of vagal afferent neurons to CCK, leading to 
FIGURE 2 

TRPV1 activation in brown adipose tissue, white adipose tissue, pancreas, and adrenal glands exerts regulatory effects on energy metabolism. 
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increased vagal signaling, which regulates pancreatic secretory 
function to maintain metabolic homeostasis. This mechanism 
may involve low-affinity CCK binding to CCK1 receptors 
(CCK1Rs), triggering downstream signaling (e.g., Gq proteins or 
b-arrestin) (101). Recent studies have indicated that TRPV1 
activation may contribute to b-cell dysfunction and acute 
pancreatitis, whereas TRPV1 antagonists restore SP/CGRP 
expression levels, increase the islet area, reduce pancreatic b-cell 
vacuolization, decrease proinflammatory cytokine (TNF-a, IL-1b) 
release, and increase anti-inflammatory IL-10 secretion (102). This 
process may involve the modulation of the JAK2-STAT3 signaling 
pathway (103). (Figure 2). 

2.2.3 Regulation of energy metabolism by adrenal 
TRPV1 activation 

The adrenal gland is composed of the cortex and medulla and is 
involved in the regulation of energy metabolism as an endocrine 
gland (104). The adrenal cortex synthesizes and secretes steroids, 
whereas the medulla produces catecholamines and neuropeptides 
(105–107). Epinephrine and norepinephrine maintain energy 
production  through  l ipolysis  and  ketogenesis  during  
hypoglycemia and malnutrition (108–110). Catecholamine 
binding stimulates b3-adrenergic receptors, leading to increased 
intracellular cAMP concentrations and the activation of cyclic 
AMP-dependent protein kinase A (PKA), which leads to the 
phosphorylation and activation of hormone-sensitive lipase (HSL) 
to increase adipocyte lipolysis (111). In addition, catecholamine 
stimulation of a2-adrenergic receptors inhibits lipolysis (112). 
These adrenergic responses depend on the density of these two 
receptor families, their relative affinities, and the location and 
amount of adipose tissue (113). Obesity may alter the sensitivity 
of alpha- and beta-adrenergic receptors in adipose tissue, thereby 
altering the effects of catecholamines on lipolytic processes and 
increasing fat storage (114, 115). Glucocorticoids (GCS) plays an 
important role in the regulation of metabolic homeostasis (116). 
Chronical elevation of GCs can alter body fat distribution, 
increasing visceral obesity and metabolic abnormalities (117, 
118). (Figure 2). 

TRPV1 plays an important role in metabolic pathways related 
to energy homeostasis and insulin signaling. In the rat adrenal 
gland, there are TRPV1-positive nerve fibers; in particular, TRPV1­
positive fibers are observed in the adrenal tegument, cortex and 
medulla (119), where 35% of the medullary cells and 20% of the 
cortical cells express this cation channel (120). The colocalization of 
TRPV1 in the adrenal medulla with CGRP, which is stored in 
sensory nerve endings, is associated with pain perception, 
inflammatory responses and increased catecholamine secretion in 
the adrenal medulla (121, 122). Catecholamines serve as an 
important class of neurotransmitters and hormones, including 
epinephrine, norepinephrine, and dopamine, which play key roles 
in the regulation of the nervous system, cardiovascular system, and 
energy metabolism (123). Sensory nerves expressing TRPV1 
promote energy expenditure by activating sympathetic nerves and 
promoting noradrenaline secretion (124). 
Frontiers in Immunology 05 
TRPV1 channels may be activated by acidic contents released 
by adrenal medullary cells (125), and synergistically with the 
activation of P2X3 receptors, they lead to the secretion of 
catecholamine hormones by the adrenal medulla. After the 
activation of TRPV1, the secretion of norepinephrine is 
stimulated via b2 adrenergic receptors and b3 adrenergic

receptors, which increase the expression of UCP1 in BAT. This 
leads to a reduction in visceral fat content in obese rats induced by a 
high-fat diet (78, 126, 127). BAT plays a major role in diet-induced 
thermogenesis, and UCP1 is thought to be a key thermogenic 
regulator of BAT (78). Previous studies have demonstrated that 
the activation of TPPV1 enhances the secretion of epinephrine (128, 
129), which increases energy expenditure and thermogenesis 
through the activation of adrenergic receptors (130, 131), whereas 
in adrenal-depleted rats, thermogenesis resulting from TPPV1 
activation is markedly attenuated (132). In addition, adrenergic 
receptor activation upregulated UCP1 expression in BAT, 
increasing WAT browning and BAT thermogenesis (78, 133– 
140). In addition, TRPV1 activation in adrenocortical cells leads 
to an increase in intracellular calcium ion levels, which in turn 
inhibits GC secretion, reducing the occurrence of visceral obesity 
(141). (Figure 2). 
3 TRPV1-targeted therapy 

At this stage, the treatment strategy for obesity still emphasizes 
lifestyle changes, such as avoiding a sedentary lifestyle, proper 
exercise and a balanced diet. However, the incidence of obesity 
remains high. Previous studies on TRPV1-targeted therapy have 
focused mostly on relieving discomfort, such as pain and itching 
caused by the disease (142, 143), and with increasing research, 
TRPV1 has been recognized as a potential target with preventive 
effects against obesity (25). TRPV1 plays an important role in the 
regulation of pain sensation, body heat production and energy 
metabolism. In previous clinical trials, the use of TRPV1 
antagonists increased the thermal threshold and increased the risk 
of burns, which makes it difficult for related drugs to enter clinical 
phase III trials (144). Most TRPV1 antagonists used in clinical 
studies involve varying degrees of body temperature elevation in 
experimental subjects. Most TRPV1 antagonists have shown 
different degrees of temperature elevation in subjects in clinical 
studies (144, 145), and their molecular mechanisms are still poorly 
understood. Moreover, TRPV1 agonists such as capsaicin have been 
shown to induce a decrease in body temperature in animal studies 
(146). In a related study, resveratrol significantly improved the 
discomfort induced by TRPV1 agonists (147), suggesting that these 
side effects could be avoided or even eliminated. A new generation 
of TRPV1 antagonists has been reported to have a weaker effect on 
body temperature in clinical trials (148). The clinically safe TRPV1 
antagonist XEN-D0501 is currently under development as an oral 
drug for overactive bladder (148); undoubtedly, these findings 
provide valuable clinical data for the development of TRPV1­
targeted drugs to treat obesity. 
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4 Conclusion 

Obesity is a metabolic syndrome characterized by excessive 
accumulation of fat in the body due to an imbalance between energy 
intake and expenditure. In previous studies, conventional 
treatments for obesity included lifestyle interventions (such as 
dietary restrictions and physical exercise), bariatric surgery, and 
drug therapy (149). At present, the drugs commonly used in clinical 
practice for treating obesity all have certain efficacy, but most of 
them cause various side effects (150). In this review, by 
summarizing the mechanism of the role of TRPV1 in the 
endocrine system and the central nervous system under 
conditions of obesity, we found that TRPV1 plays an important 
role in the occurrence and development of obesity and participates 
in the processes of energy intake and consumption. Strict control of 
energy homeostasis is crucial for maintaining a healthy weight or 
for helping with weight loss by expending more energy than is 
consumed. TRPV1 is involved in energy homeostasis, regulating 
both food intake and energy expenditure. TRPV1 may affect 
appetite by controlling the levels of appetite hormones, and it can 
also increase energy expenditure by generating heat. 

TRPV1, a nonselective cation channel, is also an important receptor. 
The acute activation of TRPV1 leads to conformational changes in 
TRPV1, causing the opening of the TRPV1 channel, resulting in a large 
influx of Ca²+ and Na+, triggering cell depolarization. The influx of Ca²+ 

prompts sensory nerve endings to release CGRP and SP, mediating 
neurogenic inflammation (vasodilation, plasma extravasation). Chronic 
activation of TRPV1 (such as long-term exposure to capsaicin or 
inflammatory stimuli) causes changes in the phosphorylation state of 
TRPV1, leading to channel desensitization. Research has shown that 
normal rats typically lose weight after long-term capsaicin 
desensitization, and this process is associated with a reduction in fat 
accumulation (81, 151). Long-term activation of TRPV1 can also 
increase energy expenditure by enhancing the thermogenic capacity 
of brown adipose tissue and promoting the browning of white adipose 
tissue (67, 152). After capsaicin activates TRPV1, it increases the 
abundance of beneficial bacteria in the intestine, promoting the 
production of bile acids (BAs) and short-chain fatty acids (SCFAs) 
and increasing the secretion of glucagon-like peptide-1 (GLP-1) and 
peptide YY (PYY), thereby increasing satiety, reducing food intake, and 
influencing energy metabolism and inflammatory responses (153, 154). 
Furthermore, obesity, a form of chronic inflammation, increases the 
circulating levels of fat and inflammatory cytokines (155, 156). The 
activation of TRPV1 is regulated by various inflammatory mediators, 
including nerve growth factor (NGF), prostaglandins (PGs), bradykinin 
(BK), leukotrienes (LTB4), etc. These mediators increase the sensitivity 
of TRPV1 through different signaling pathways (such as PKA, PKC, and 
MAPK), thereby activating TRPV1 (157, 158). When TRPV1 is 
activated, it regulates downstream pathways and participates in the 
regulation of obesity. The acute activation of TRPV1 serves as a warning 
system for the body to avoid harm (such as burns), whereas chronic 
activation induces adaptive protection (such as maintaining vascular 
homeostasis, anti-inflammatory desensitization, and metabolic 
regulation). Therefore, chronic activation of TRPV1 has broader 
application potential for metabolic diseases. 
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Although a large body of evidence points to a relationship 
between the development of obesity and TRPV1, the relationship 
between the two is still controversial in some studies. For example, 
TRPV1 knockout mice have been reported to lose body weight (22), 
but other studies have shown that TRPV1 knockout mice are not 
obese at young ages. However, the weight of TRPV1 knockout mice 
increases significantly during aging (159). These findings suggest 
that the regulatory effect of TRPV1 on obesity may be age 
dependent, and a similar relationship was also shown in healthy 
subjects (160). Therefore, age should be considered a potential 
influencing factor in the study of TRPV1 and obesity. Nevertheless, 
aberrant TRPV1 activation and expression may contribute to the 
onset and development of obesity. Therefore, TRPV1 may be a 
target for the treatment of weight loss disorders, and finding a drug 
or stimulation method (mechanical stimulation or temperature 
stimulation) that can treat obesity by acting on TRPV1 will be 
our next research direction. 
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Montiel A, Fernández-Carvajal A. Role of the transient receptor potential vanilloid 1 in 
inflammation and sepsis. J Inflammation Res. (2011) 4:67–81. doi: 10.2147/JIR.S12978 

158. Huang J, Zhang X, McNaughton PA. Inflammatory pain: the cellular basis of 
heat hyperalgesia. Curr Neuropharmacol. (2006) 4:197–206. doi: 10.2174/ 
157015906778019554 

159. Wanner SP, Garami A, Romanovsky AA. Hyperactive when young, hypoactive 
and overweight when aged: connecting the dots in the story about locomotor activity, 
body mass, and aging in Trpv1 knockout mice. Aging (Albany NY). (2011) 3:450–4. 
doi: 10.18632/aging.100306 

160. Westerterp KR, Plasqui G. Physically active lifestyle does not decrease the risk 
of fattening. PloS One. (2009) 4:e4745. doi: 10.1371/journal.pone.0004745 
frontiersin.org 

https://doi.org/10.1016/j.ejmech.2024.116208
https://doi.org/10.1111/bph.14044
https://doi.org/10.1038/nrd2280
https://doi.org/10.1016/S0031-6997(24)01403-0
https://doi.org/10.1016/j.ejpain.2009.08.005
https://doi.org/10.1111/j.1365-2125.2011.04040.x
https://doi.org/10.1111/j.1365-2125.2011.04040.x
https://doi.org/10.1056/NEJMra1514009
https://doi.org/10.1016/j.soard.2014.08.007
https://doi.org/10.1530/eje.1.02046
https://doi.org/10.1038/s41598-019-45050-0
https://doi.org/10.3389/fendo.2018.00584
https://doi.org/10.3389/fendo.2018.00584
https://doi.org/10.1016/j.ejphar.2020.173567
https://doi.org/10.3389/fphys.2017.00602
https://doi.org/10.1016/j.nutres.2011.05.007
https://doi.org/10.2147/JIR.S12978
https://doi.org/10.2174/157015906778019554
https://doi.org/10.2174/157015906778019554
https://doi.org/10.18632/aging.100306
https://doi.org/10.1371/journal.pone.0004745
https://doi.org/10.3389/fimmu.2025.1598804
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Role of TRPV1 in neuroendocrine regulation: a potential target against obesity?
	1 Introduction
	2 The potential role of TRPV1 in obesity
	2.1 Neuromodulatory mechanisms of TRPV1
	2.1.1 Regulation of feeding behavior and energy metabolism by TRPV1 activation in the central nervous system
	2.1.2 Central regulation of tissue energy metabolism is dependent on activation of TRPV1 in peripheral sensory nerves

	2.2 Endocrine regulatory mechanisms of TRPV1
	2.2.1 Adipose tissue TRPV1 activation promotes mitochondrial oxidation
	2.2.2 Pancreatic β-cell TRPV1 activation regulates pancreatic function
	2.2.3 Regulation of energy metabolism by adrenal TRPV1 activation


	3 TRPV1-targeted therapy
	4 Conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


