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Background: Breast cancer (BC) remains a significant threat to human health,

with substantial variations in prognosis and treatment responses. Intra-tumor

heterogeneity (ITH) presents a critical challenge in developing reliable

prognostic models.

Methods: This study integrated multi-region RNA sequencing data from BC

patients with the TCGA BC dataset. Genes resistant to sampling bias were

identified by evaluating inter-patient heterogeneity (IPH) and ITH. A machine

learning framework incorporating ten algorithms was used to construct a

prognostic signature.The expression levels and oncogenic function of the

prognostic genes were validated through RT-qPCR and in vitro experiments.

Results: The signature, comprising CFL2 and SPNS2, demonstrated stable

predictive performance in both training and validation cohorts (C-index > 0.6).

High-risk patients exhibited enriched immune infiltration, particularly CD8+ T

cells, and higher expression of immune checkpoint molecules, suggesting

sensitivity to immunotherapy. A nomogram integrating risk score with clinical

variables further improved prognostic accuracy. The dysregulation of signature

genes was confirmed in BC cell lines.

Conclusion: By minimizing ITH interference, this study developed a robust

prognostic signature for BC, offering insights into the tumor immune

microenvironment and potential therapeutic strategies.
KEYWORDS

breast cancer, immunotherapy, immune infiltration, intra-tumor heterogeneity,
prognosis, tumor microenvironment
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1 Introduction

Breast cancer (BC) remained the most prevalent cancer among

women globally in 2022, with its incidence rate continuing to rise.

Notably, a more pronounced increase has been observed among

younger women (1). Surgery is the cornerstone treatment for early-

stage BC, particularly for managing primary tumors and regional

lymph nodes. It is often combined with radiotherapy to enhance

local control rates (2). In recent years, significant advancements

have been made in BC treatment. These include molecularly

targeted therapies, immune checkpoint inhibitors (ICIs), and

novel antibody-drug conjugates (ADCs), which have led to

marked improvements in patient survival rates (3, 4). Despite

these advancements, some patients still respond poorly to current

therapies, and there are considerable inter-individual variations in

prognosis, ranging from several months to decades (5, 6). Accurate

stratification of prognosis is crucial for monitoring disease

progression and selecting appropriate treatment strategies.

Currently, BC classification systems mainly include the American

Joint Committee on Cancer (AJCC) TNM (tumor-node-metastasis)

staging system and molecular subtypes (Luminal A, Luminal B,

HER2-enriched, and triple-negative BC), which are widely

implemented in clinical practice. While these assessment methods

have proven useful, they exhibit various limitations in patient

stratification and offer limited predictive accuracy. Furthermore,

they fail to provide insights into the biological characteristics of BC

that could explain clinical heterogeneity, highlighting the need for

further improvements.

Over the past decades, breakthroughs in sequencing technology

have significantly deepened our understanding of the molecular

mechanisms underlying BC. Researchers have developed numerous

gene-based prognostic models using tumor transcriptomic data,

with the goal of guiding individualized treatment strategies (7, 8).

However, these multi-gene signatures have yet to achieve

widespread clinical translation. Challenges include the absence of

standardized detection protocols and interference from intra-tumor

heterogeneity (ITH) (9). Transcriptomic ITH poses a particular

challenge, as it can lead to shifts in molecular subtyping and the

heterogeneous distribution of therapeutic targets, ultimately

compromising the reproducibility of biomarkers (10). Most

existing prognostic models fail to account for the impact of ITH

on feature stability, which may exacerbate prediction biases.

Addressing this gap by integrating ITH into prognostic signature

development is a critical step toward enhancing BC stratification

precision and advancing personalized treatment.

Multi-region sequencing is a technique that involves sampling

from different regions of the same tumor and performing high-

throughput sequencing. This approach comprehensively captures

molecular diversity and systematically quantifies the distribution

patterns of ITH, thus improving the model’s ability to predict tumor

evolution across regions (11). Multi-region sequencing helps

mitigate the bias of single-point sampling, thus reducing the

impact of tumor heterogeneity on prognostic models. Here, by

integrating multi-region BC dataset and the TCGA (The Cancer

Genome Atlas Program) BC dataset, we employed machine
Frontiers in Immunology 02
learning algorithms to identify prognosis-related genes resistant

to sampling bias and constructed a risk signature. This signature

was validated in an external independent cohort, demonstrating

robust survival prediction performance. The signature was also

proven to be a biologically specific marker associated with the

tumor microenvironment (TME) and capable of predicting

responses to immunotherapy. Furthermore, we combined the

signature with clinical variables to create a dynamic nomogram

for individualized risk assessment.
2 Methods

2.1 Data preparation and processing

We first downloaded sequencing data from TCGA breast

invasive carcinoma (TCGA-BRCA) dataset (n=1231), including

1,118 tumor samples and 113 normal samples. We excluded cases

with missing survival time or endpoint event status. To minimize

interference from non-cancer-related deaths, we excluded patients

with survival times less than 30 days. The expression data were

normalized using DESeq2 (Version 1.44) and transformed with

VST, serving as the training set to construct the prognostic model.

Additionally, we incorporated multi-region bulk-RNA data from

BC patients (32 samples from 10 patients) provided by Aneja et al.

to explore markers less affected by ITH (12). The GSE42568 dataset

(104 BC cases) was downloaded from the GEO database for

validating the prognostic signature. “Masked Somatic Mutation”

data was selected as the somatic mutation dataset for TCGA-BRCA.
2.2 Immune infiltration analysis

ESTIMATE (Estimation of STromal and Immune cells in

MAlignant Tumours using Expression data) (Version 1.0.13) was

used to infer the proportions of stromal and immune cells in tumor

samples (13). CIBERSORT (Cell-type Identification By Estimating

Relative Subsets Of RNA Transcripts), a deconvolution algorithm-

based tool, was employed to quantify the relative proportions of 22

immune cell subtypes within the TME (14). quanTIseq was used to

quantify the absolute abundance of immune cells (15). The IOBR

(Immuno-Oncology Biological Research) (Version 0.99.8) was

utilized to analyze metabolic features in the TME, identifying key

characteristics associated with the survival of TCGA-BRCA patients

(16). The Immunophenoscore (IPS) was used to reflect the immune

activity of the TME, aiding in evaluating patients’ potential response

to ICIs (17).
2.3 Quantification of gene heterogeneity

Gene expression heterogeneity was assessed by evaluating inter-

patient heterogeneity (IPH) and ITH (10). These two sets of scores

were used to measure the variability in expression between different

patients and within different regions of the same tumor, quantified
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using standard deviation. For ITH, the standard deviation of

expression within the group of samples was calculated for each

gene individually. For IPH, one sample was randomly selected from

each region to construct new cross-group sample subsets,

generating a total of 10 independent resampling iterations. For

each resampled subset, the measure of cross-group gene expression

variability was calculated.
2.4 Functional enrichment analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) was

utilized for gene functional annotation and enrichment analysis to

identify biological pathways or metabolic processes in which the

genes are involved.
2.5 Construction of prognostic signature

Reducing ITH helps maintain the stability of prognostic markers.

Additionally, enhancing IPH facilitates the identification of unique

prognostic markers for different individuals, enhances the

discriminative ability of prognostic models, and strengthens patient

stratification for tailored treatment strategies. First, we divided genes

from multi-region samples into groups based on the mean standard

deviation levels, categorizing them as exhibiting high/low interpatient

heterogeneity (IPH) and high/low ITH. Genes displaying both high

IPH and low ITH were subjected to intersection analysis with

differentially expressed genes (DEGs) from the TCGA-BRCA dataset.

Using a threshold of 0.05, these genes underwent further screening via

univariate Cox regression and proportional hazards (PH) assumption

testing. Subsequently, the selected genes were processed through an

integrated machine learning framework that incorporates ten classical

algorithms (Mime1, Version 0.0.0.9000): random survival forest (RSF),

elastic net (Enet), stepwise Cox regression (StepCox), CoxBoost, partial

least squares regression for Cox models (plsRcox), supervised principal

component analysis (superPC), generalized boosted regression

modeling (GBM), survival support vector machine (survival-SVM),

ridge regression, and least absolute shrinkage and selection operator

(Lasso) (18). This approach generated 117 algorithm combinations,

which were then trained and evaluated on the TCGA training dataset

using K-fold cross-validation. The risk score is calculated using the

following formula:

Risk score = S (Expi × Coefi).

Expi and Coefi represent the expression levels and coefficients

of prognostic genes.
2.6 Nomogram construction

Following the derivation of risk scores, we further integrated

clinicopathological variables to construct an individualized prognostic

prediction model. First, univariate Cox proportional hazards regression

analysis was performed to assess the impact of each variable (including

risk group, tumor stage, age, and sex) on overall survival. Variables
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reaching the significance threshold (P < 0.05) in univariate analysis

were subjected to multivariate Cox regression to identify independent

prognostic predictors. Based on the multivariate Cox regression results,

a nomogram was constructed using the rms package (Version 6.8-0) in

R. In the nomogram, each variable was assigned points proportional to

its regression coefficient. The total score for each patient, calculated by

summing the points across all variables, was mapped to a scale for

predicting survival probabilities or risk rates.
2.7 Drug sensitivity analysis

Using the TCGA-BRCA gene expression profiles and the

cgp2016ExprRma dataset, we employed the R package pRRophetic

(Version 0.5) to predict the half-maximal inhibitory concentration

(IC50) values for each drug, representing tumor cell sensitivity. To

explore the relationship between the risk score and drug sensitivity, we

performed a Spearman rank correlation test to calculate the correlation

coefficient between the risk score and the IC50 of each drug. Candidate

drugs with an absolute correlation value exceeding 0.3 were retained.
2.8 Cell culture

Human normal breast cell lines (MCF-10A) and BC cells

(MDA-MB-231, MCF-7, BT-474, SKBR3) were obtained from

ATCC. Cells were maintained at 37°C under 5% CO2 atmosphere.
2.9 RT-qPCR analysis

Total RNA was extracted from the cells using TRIzol reagent

(Invitrogen, USA). Subsequently, reverse transcription was performed

using the PrimeScript RT Reagent Kit acquired from TaKaRa. The

following PCR conditions were employed on the StepOnePlus PCR

System (TaKaRa) using 2× RealStar Power SYBR Mixture (TaKaRa):

an initial predenaturation at 95°C for 2 min, then 95°C for 15 s, 60°C

for 30 s, and 72°C for 30 s, for a total of 40 cycles. The PCR

amplification primer sequences were as follows: CFL2, forward: 5’-

A GCCGAGGGCACTATGGTAA - 3 ’ , r e v e r s e : 5 ’ -

AGAAGCCTTGGAGGCCAAAA-3’; SPNS2, forward: 5’- GACAG

GTACACCGTGGCAG-3’, reverse: 5’- CCAGGTAGCCGAAGAT

GGG-3’; b-actin, forward: 5′-TCCATCATGAAGTGTGACGT-3’,
reverse: 5’-GAGCAATGATCTTGATCTTCAT-3′. Relative mRNA

expression levels were calculated using the comparative Ct (2−DDCt)
method and normalized to b-actin as the endogenous control.

Experiments included three independent biological replicates.
2.10 Cell function assays

The short hairpin (sh)RNAs for CFL2 knockdown (sh-CFL2),

CFL2 overexpression (oe-CFL2), SPNS2 knockdown (sh-SPNS2),

SPNS2 overexpression (oe-SPNS2), and negative controls (sh-NC

and oe-NC) plasmids were obtained from GenePharma (China).
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Cells were seeded in 24-well plates at a density of 3×104 cells/well.

When cell confluence reached approximately 70%, transfection was

performed using Lipofectamine 3000 (Invitrogen, USA). After 48

hours of transfection, cells were collected for experimental studies.

Transfected MDA-MB-231 cells were seeded into 96-well plates

at a density of 2,500 cells/well. At 24, 72, and 120 hours post-

seeding, 10 mL of CCK-8 reagent was added to each well, followed

by incubation for 2 hours. The optical density (OD) at 450 nm was

measured using a spectrophotometer. Growth curves were

generated, and cell viability was calculated for each group.

Transfected MDA-MB-231 cells were plated in six-well plates

and incubated for 24 hours in a culture incubator. After colony

formation, cells were fixed with 4% paraformaldehyde for 30

minutes, stained with 0.1% crystal violet for 20 minutes, air-dried,

photographed, and images were recorded.

Transfected MDA-MB-231 cells were trypsinized and resuspended

in serum-free medium. For the invasion assay, cell suspensions were

placed in the upper chamber, while the lower chamber was filled with

600 mL of medium containing 20% fetal bovine serum. The upper

chamber was coated with Matrigel and allowed to solidify at 37°C for 2

hours. Subsequently, cell suspensions were added, and the assay

proceeded for 24 hours. After incubation, chambers were washed

with PBS at room temperature, fixed with 4% paraformaldehyde for

30 minutes, and stained with 0.1% crystal violet for 20 minutes. After

drying, images were captured and saved for analysis using an inverted

microscope at room temperature.
2.11 Statistical methods

For normally distributed data with equal variances, the t-test was

used to compare mean differences between two independent or paired

samples. For non-normally distributed data, the Mann-Whitney U test

was applied to assess group differences. The Spearman rank correlation

coefficient was used to evaluate the relationship between variables.

Time-dependent receiver operating characteristic (ROC) curves were

generated to evaluate the model’s predictive accuracy at different time

points. Calibration curves were plotted using the Bootstrap resampling

method (1,000 iterations) to assess the agreement between model-

predicted survival probabilities and observed survival rates. A curve

close to the diagonal (ideal fit) indicated good model calibration.

Harrell’s concordance index (C-index) was calculated to quantify the

model’s global predictive ability for survival outcomes. Univariate and

multivariate Cox regression analyses were performed to identify

prognostic factors. The proportional hazards assumption was tested

using Schoenfeld residuals. A p-value < 0.05 was considered

statistically significant.
3 Results

3.1 IPH and ITH in BC

Unsupervised hierarchical clustering was performed on the

most variable genes across 32 multi-regional primary BC tissues
Frontiers in Immunology 04
from 10 patients. Results showed that almost all patients exhibited

distinct clustering patterns, with regions from the same tumor

consistently grouped together (Figure 1A). This revealed strong

IPH and highlighted consistent ITH profiles. Dimensionality

reduction of the entire transcriptome profiles further confirmed

that regions from the same tumor primarily clustered by

patient (Figure 1B).

Using the CIBERSORT algorithm, we quantified the

proportions of 22 immune cell types across tumor regions.

Significant differences in immune cell composition were observed,

even within the same tumor (Figure 2A). For instance, the P1B

region exhibited CD8+ T cell infiltration exceeding 20%, indicating

strong immune activity and a potential robust anti-tumor response.

In contrast, other regions of the same tumor showed CD8+

T cell proportions below 5%, suggesting weaker immune

activity (Figure 2B).

By employing the IOBR tool, we identified 10 metabolic

signatures closely associated with BC patient survival (Figure 2C).

These scores encompassed core metabolic pathways within the

TME. Heatmaps revealed metabolic heterogeneity across different

regions of the same tumor. Tryptophan metabolism was

significantly upregulated in the P1C and P1D regions but

downregulated in P1A and P1B (Figure 2D). This metabolic

pathway plays diverse mechanistic roles in the TME: Its

degradation product kynurenine promotes immune escape by

inhibiting effector T cell function (19); enhanced activity may

reflect competitive nutrient uptake by tumor cells, altering the

metabolic balance of the local microenvironment (20). Such ITH

in the metabolism underscores the extreme complexity of the TME,

influencing both tumor cell behavior and immune cell function.

In exploring genomic heterogeneity in breast cancer, we focused

on Mutant-Allele Tumor Heterogeneity (MATH). This metric

quantifies ITH by calculating the dispersion of mutant allele

frequencies in tumor samples. A higher MATH value suggests

greater genetic diversity among tumor subclones. Based on the

MATH values computed for the TCGA-BRCA cohort samples, we

further analyzed its relationship with clinical variables. The results

showed that there was no significant clinical correlation between

MATH values and factors such as age, treatment regimens, overall

survival, or most TNM stages (Supplementary Figures S1A, B).

However, a statistically significant difference was observed in

MATH between Stage I and Stage II tumors (Supplementary

Figure S1A). This finding suggests that genomic heterogeneity

may increase as tumors progress from early-stage to slightly more

advanced Stage II. In contrast, late-stage tumors (Stage III and IV)

may generally reach a high baseline level of heterogeneity, with

dominant clones expanding significantly within these tumors. This

could be a reason why no significant differences in MATH values

were observed between different late-stage subgroups.
3.2 Quantification of gene heterogeneity

To define RNA heterogeneity, we derived IPH and ITH metrics

for each gene using multi-regional BC samples. These metrics were
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categorized into high or low groups based on their mean values,

resulting in four RNA heterogeneity quadrants for BC. Genes with

high IPH and low ITH (Blue points in Figure 3A) exhibit notable

variability across patients but high homogeneity within tumors.

This characteristic not only helps minimize biases during sample

collection but also offers potential molecular markers for precise

patient stratification.

To further explore the biological functions of genes with high

IPH and low ITH, we conducted pathway enrichment analysis. The

results revealed significant enrichment of genes related to FcgR-
mediated phagocytosis. Fcg receptors, as critical components of the

immune system, play a key role in antibody-dependent cellular

cytotoxicity (7). Additionally, we observed significant enrichment of

genes associated with thermogenesis (Figure 3B). This finding

suggests that energy metabolism pathways may play a more

complex regulatory role in the progression of BC.
3.3 Construction and validation of
prognostic signature

Analysis of the intersection between DEGs from the TCGA-

BRCA dataset and high-IPH/low-ITH genes identified differentially

expressed ITH-resistant genes. To assess their prognostic value,

univariate Cox regression analysis and PH assumption testing were

conducted, yielding 24 prognostic candidate genes. Within a

comprehensive machine learning framework (Figure 4A)

incorporating 10 classical algorithms and 117 diverse algorithm

combinations, the RSF and StepCox-both algorithms were selected

based on C-index results to establish a BC prognostic risk

assessment model. Initially, the random survival forest quantified
Frontiers in Immunology 05
the importance of the 24 genes (Figure 4B). Further, high-conserved

variable selection via minimal depth filtering identified three genes

(CFL2, FGD4, and SPNS2). After applying StepCox-both, the final

model retained CFL2 and SPNS2 (Figure 4C). The prognostic risk

signature demonstrated stable predictive performance in both the

TCGA-BRCA cohort and GSE42568 validation set, with C-index

values of 0.61 and 0.62, respectively (Figure 4A). BC samples were

stratified into high- and low-risk groups based on median risk

scores. Risk stratification analysis revealed significant prognostic

divergence between groups (Figures 4D, E). High-risk patients

exhibited poorer clinical outcomes in both TCGA-BRCA and

GSE42568 datasets, confirming the signature’s clinical validity.

Time-dependent ROC analysis showed robust performance in

TCGA-BRCA, with 1-year, 3-year, and 5-year AUCs of 0.621,

0.627, and 0.635 (Figures 4F–H). In GSE42566, while short-term

prediction improved (1-year and 3-year AUCs: 0.665 and 0.667), 5-

year performance declined to 0.625 (Figures 4F–H).
3.4 Construction of an individualized
prognostic nomogram

Through chi-square tests on the characteristics of TCGA BC

patients in the high-risk and low-risk groups, we identified some

noteworthy clinical feature distribution patterns. Mortality cases

were significantly higher in the high-risk group (17%) compared to

the low-risk group (10%) (p < 0.05) (Figure 5A). This validated the

discriminant ability of the prognostic risk signature. However,

comparisons of other clinicopathological features (age, gender,

treatment status, and tumor stage) showed no significant

differences between the two groups (p > 0.05) (Figures 5B–E),
FIGURE 1

Strong IPH was observed in the multi-region BC cohort. (A) The heatmap displayed unsupervised hierarchical clustering of BC samples in the multi-
region BC cohort based on the top 500 variable genes. (B) Principal component analysis of the entire transcriptome profile of the multi-region BC
cohort.
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which suggests that the prognostic risk signature may be based on

different biological foundations than traditional clinical indicators,

providing additional prognostic information. Moreover, the

consistency in feature distribution indicates that the risk score

may be independent of conventional clinical factors, offering a

new dimension for prognosis assessment. Thus, we conducted a

systematic prognostic factor analysis. First, in the univariate Cox

analysis, variables with a significance threshold of P < 0.05 were

screened, revealing that age, tumor stage, and risk group met the

criteria as significant predictors (Figure 5F). In multivariate Cox
Frontiers in Immunology 06
regression analysis, these variables were confirmed as independent

prognostic factors (P < 0.05), reaffirming the importance of

traditional indicators while validating the independent prognostic

value of the risk score (Figure 5G). To visualize these results, we

constructed a nomogram using the rms package in R. The

nomogram transforms multivariate Cox regression results into a

scoring system, enabling clinicians to quickly assess patient

prognosis (Figure 5H). The model demonstrated good

discriminatory ability, with a C-index consistently nearly 0.7

(Figure 5I), and calibration curves showed strong agreement
FIGURE 2

Immune microenvironment ITH in the multi-region BC cohort. (A) Stacked percentage plot illustrated the proportional composition of cell subtypes
across different regions. (B) Bar chart showed the infiltration abundance of CD8+ T cells in different regions. (C) IOBR identified the ten TME
metabolic signatures with the most significant impact on BC patient prognosis. (D) Heatmap displayed the enrichment levels of metabolic signatures
across different regions.
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between predicted and actual outcomes, further validating its

accuracy (Figure 5J).
3.5 Immune infiltration and
immunotherapy response of prognostic
signature

Through the analysis of the immune microenvironment, we

uncovered a complex landscape of immune infiltration in high- and

low-risk groups. Using the ESTIMATE algorithm, we evaluated the

overall immune infiltration levels and found that the high-risk group

exhibited more pronounced immune infiltration characteristics

(Figure 6A). Employing the CIBERSORT algorithm, we performed

detailed immune cell subset analysis. A significant elevation of CD8+ T

cells was observed in the high-risk group, indicative of an active

immune state in these patients (Figure 6B). Notably, CIBERSORT

analysis revealed reduced proportions of regulatory T cells and M2

macrophages in the high-risk group (Figure 6B). We also used

quanTIseq to quantify the absolute abundance of immune cells in

the TME (Supplementary Figure S2). Further analysis revealed that the

z-scores related to MHC-I molecules and the antigen processing

machinery (APM) were significantly elevated in the high-risk group

(Figures 6C, D). The upregulation of MHC-I and APM indicates

stronger antigen-presenting capabilities in immune cells, which may

contribute to the increased infiltration of CD8+ T cells. In the high-risk

group, the expression levels of several key immune checkpoint

molecules (including CD27, CTLA4, PDCD1 (PD-1), LAG3, TIGIT,

TNFSF14, TNFRSF25) were significantly upregulated. This suggests

more active but suppressed tumor-immune interactions in high-risk

patients and provides critical insights for selecting appropriate

immunotherapy targets (Figure 6E). This study further explored the

correlation between the prognostic risk signature and the prediction of

immunotherapy response. It was found that the IPS was significantly

higher in the high-risk group compared to the low-risk group. Since the

IPS is closely associated with immunotherapy responsiveness, the
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results suggest that high-risk patients may exhibit greater sensitivity

to immunotherapy (Figures 6F–I).
3.6 Mutational landscape of risk subgroups

The waterfall plot revealed that TP53 and PIK3CA were the

most frequently mutated genes in both the high- and low-risk

groups (Figures 7A, B). This finding aligns with previous findings

on BC, confirming the central role of these genes in BC

development (21). As a key tumor suppressor gene, mutations in

TP53 may lead to genomic instability and pro-tumorigenic

properties, which could partially explain the more aggressive

features observed in the high-risk group. On the other hand,

activating mutations in PIK3CA likely play a significant role in

promoting cell proliferation and survival through dysregulation of

the PI3K/AKT pathway (21). Although slight differences in the

mutation frequencies of TP53 and PIK3CA were observed between

the two groups, overall, they exhibited remarkable convergence in

the types and frequencies of the most common mutated genes. This

similarity suggests that differences in high-frequency mutations

alone may not sufficiently explain the significant clinical

prognostic disparities between the two groups.

To further explore the interaction patterns among gene

mutations, we constructed a heatmap to illustrate the co-

occurrence and mutual exclusivity relationships of the top 10

mutated genes. The analysis revealed that the high- and low-risk

groups exhibited similar patterns in mutation associations, both in

terms of the frequency and strength of co-occurrence or mutual

exclusivity for specific genes (Figures 7C, D). From a biological

perspective, this similarity indicates that the core molecular

pathways influencing BC development may be conserved between

the high- and low-risk groups. Despite their significant differences

in prognosis, both groups may rely on similar molecular

mechanisms driving tumor progression.
FIGURE 3

Identification of ITH-resistant genes. (A) Quadrant plot of gene expression variability calculated using the multi-region BC cohort. The plot was
divided into four quadrants based on the average inter-patient (vertical line) and intra-tumor (horizontal line) heterogeneity scores. (B) KEGG
enrichment analysis of ITH-resistant genes.
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3.7 Drug sensitivity analysis

To identify potential therapeutic drugs that are more effective

for high-risk BC patients, this study conducted a drug sensitivity

prediction analysis based on gene expression profile data using the

R package pRRophetic. A group of potential therapeutic drugs for

high-risk BC patients was identified, including Sunitinib, Obatoclax

Mesylate, Midostaurin, Embelin, Dasatinib, and Bexarotene
Frontiers in Immunology 08
(Figures 8A–F). Previous studies support the potential use of

these drugs for the treatment of BC patients. Sunitinib, as a

multi-target tyrosine kinase inhibitor, targets the VEGFR and

PDGFR pathways, which may be related to angiogenesis and

aggressiveness in high-risk BC (22). In HR+/HER2- BC, a

synergistic effect between anti-angiogenesis and hormonal therapy

has been observed (23, 24). Dasatinib, as an SRC family kinase

inhibitor, might exert therapeutic effects by inhibiting active tumor-
FIGURE 4

Construction and validation of prognostic signatures. (A) A total of 117 predictive models were built using a machine learning framework, and the
C-index of each model was further calculated. (B) Importance of the 24 genes contributing to survival time in the random survival forest model.
(C) StepCox-both identified CFL2 and SPNS2. (D, E) Kaplan-Meier analysis showed significant prognostic differences between high-risk and low-risk
groups in TCGA-BRCA and GSE42566 datasets. (F–H) The signature’s AUC for 1-year, 3-year, and 5-year predictions in TCGA-BRCA and GSE42566
datasets.
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urvival status, age, gender, treatment status, and tumor stage in the high-risk
linical variables on patient survival time. (H) The nomogram enables clinicians
close to 0.7. (J) Calibration curves showed high agreement between predicted
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Construction of personalized prognostic nomogram. (A–E) Stacked percentage plots illustrated the proportional composition of s
and low-risk groups. (F, G) Univariate and multivariate Cox regression analyses were used to assess the impact of risk group and c
to quickly evaluate patient prognosis. (I) The nomogram demonstrated robust discriminatory ability, with the C-index consistently
and actual outcomes, further validating its accuracy.

https://doi.org/10.3389/fimmu.2025.1598858
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shen et al. 10.3389/fimmu.2025.1598858
stroma interactions in high-risk BC (25). In HER2-positive BC,

Dasatinib combined with Neratinib significantly suppresses cell

proliferation and induces stronger apoptosis and migration

inhibition. This synergy is particularly evident in trastuzumab-

resistant or Neratinib-acquired resistance models (26).

Bexarotene, a selective retinoid X receptor agonist, activates RXR

receptors to regulate the transcription of tumor-related genes,

influencing cell proliferation, differentiation, and apoptosis

pathways (27, 28). Obatoclax Mesylate and Midostaurin, as BCL-

2 family protein and PKC inhibitors, may target the apoptosis-

resistant mechanisms unique to high-risk BC (29, 30). Embelin

exhibits stronger growth inhibition against TNBC tumors enriched

with a-SMA-expressing cancer-associated fibroblasts (CAFs), such

as the 4T1 model, and reduces the expression of pro-fibrotic

markers like PDGFRA (31).
3.8 CFL2 and SPNS2 were upregulated
in BC

Based on the BC single-cell sequencing dataset GSE148673, we

employed the scCancerExplorer analytical platform for cell
Frontiers in Immunology 10
clustering and expression profiling (32). Through UMAP-based

dimensionality reduction, single-cell data were categorized into

nine distinct cellular clusters (Figure 9A). Cancer cells (red) and

normal epithelial cells (green) were completely segregated,

indicating pronounced transcriptional heterogeneity between the

two. Cancer cells accounted for 52.6%, dominating the cellular

composition, which suggests high tumor purity (Figure 9B).

Importantly, we revealed that CFL2 and SPNS2 exhibit

upregulated average expression in cancer cells compared to

normal epithelial cells (Figure 9C). To examine the expression of

CFL2 and SPNS2, RT-qPCR was conducted in BC cell lines. Results

revealed that CFL2 was significantly upregulated in MDA-MB-231,

MCF-7, BT-474, and SKBR3 cells compared with normal mammary

epithelial cells (MCF-10A) (Figure 9D). Additionally, SPNS2

exhibited significant upregulation in MDA-MB-231, BT-474 and

SKBR3. Although upregulated in MCF-7, no statistical significance

was observed (Figure 9E). To analyze the expression of CFL2 and

SPNS2 at the protein level, we downloaded immunohistochemical

images of breast tumor tissues and normal tissues from the HPA.

The differential protein expression between BC and normal

tissues was consistent with our transcriptomic analysis results

(Figures 9F, G).
FIGURE 6

(A) The ESTIMATE algorithm quantified the Stromal Score, Immune Score, and ESTIMATE Score in high- and low-risk BC groups. (B) CIBERSORT
quantified the relative proportions of 22 immune cell subtypes in high- and low-risk BC groups. (C, D) APM and MHC-I calculated based on z-scores
in high- and low-risk groups. (E) Immune checkpoint expression status in high- and low-risk groups. (F–I) Compared to the low-risk group, the IPS
score is significantly upregulated in the high-risk group. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns: not significant.
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FIGURE 7

Subgroup mutation analysis. (A, B) Comprehensive analysis based on whole exome sequencing data revealed that the mutation rates of TP53 and
PIK3CA in both high- and low-risk groups exceed 25%. (C, D) Analysis of mutation co-occurrence/exclusion in high- and low-risk groups.
FIGURE 8

Drug sensitivity analysis. (A-F) IC50 values of Sunitinib, Obatoclax Mesylate, Midostaurin, Embelin, Dasatinib, and Bexarotene in high- and low-risk BC
groups; correlation analysis between risk score and IC50 of different drugs. ****P < 0.0001.
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3.9 Knockdown of CFL2 or SPNS2 inhibits
the proliferation and invasion of BC cells

CFL2 and SPNS2 showed significantly increased expression in the

MDA-MB-231 cell line. Therefore, we selected MDA-MB-231 cells for

knockdown experiments. Compared with other groups, the CCK-8

assay demonstrated that knockdown of CFL2 or SPNS2 significantly

impaired the proliferative capacity of cancer cells (both p<0.001)

(Figures 10A, B). The colony formation assay further revealed that

the proliferation and clonogenic potential of MDA-MB-231 cells were

markedly reduced after CFL2 or SPNS2 knockdown (both p<0.01)
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(Figures 10C–F). The Transwell invasion assay provided additional

evidence that knockdown of CFL2 or SPNS2 significantly decreased the

number of invasive cells (all p<0.01) (Figures 10G–J). Collectively, our

findings suggest that silencing CFL2 or SPNS2 can suppress the

proliferation and invasion of BC cells.
4 Discussion

In the construction of prognostic gene signatures, the

consideration of transcriptomic ITH is crucial. Relying solely on
FIGURE 9

CFL2 and SPNS2 are upregulated in BC. (A) UMAP dimensionality reduction analysis of GSE148673, dividing the single-cell data into 9 cell clusters.
(B) Proportion and quantity distribution of each cell type in GSE148673. (C) Compared to normal epithelial cells, CFL2 and SPNS2 are upregulated in
cancer cells. (D, E) Compared to normal breast epithelial cells, RT-qPCR showed that CFL2 and SPNS2 are upregulated in BC cell lines.
(F, G) Representative images of CLF2 and SPNS2 from the HPA database. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns: not significant.
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localized features from a single biopsy sample can lead to

misjudgment of prognostic risk due to sampling bias. The

heterogeneity in driver gene expression profiles, such as spatial

variations in ER/PR/HER2 status, caused by ITH can reduce the

generalizability of prognostic models in independent cohorts.

Additionally, ITH often involves the dynamic evolution of

subclones associated with drug resistance pathways, such as

apoptosis inhibition and immune evasion. Ignoring these

features diminishes the model’s predictive power for treatment

resistance. Therefore, integrating the dynamic characteristics of

ITH is essential for improving the clinical applicability of

prognostic models.

BC, as a highly heterogeneous tumor, exhibits diverse molecular

features and biological behaviors across different regions. The TNM

staging system primarily relies on anatomical parameters and fails

to integrate tumor heterogeneity or immune microenvironment

features. Even among patients with identical TNM stages, varying

degrees of T cell infiltration in the immune microenvironment may

lead to significantly divergent treatment responses and prognoses.

Additionally, while PAM50 subtype uses gene expression profiling

to focus on tumor-intrinsic biological traits, it omits

microenvironmental characteristics like immune cell infiltration

and immunosuppressive factors, limiting its predictive capacity
Frontiers in Immunology 13
for immunotherapy efficacy. For the first time, we employed a

multi-region sequencing strategy in BC, amplifying transcriptional

differences between patients while minimizing insignificant intra-

tumoral transcriptional fluctuations, thereby constructing a robust

risk signature. In different BC cohorts, our prognostic signature

demonstrates exceptional predictive stability. It effectively

differentiates patients into high- and low-risk groups and

maintains independent prognostic value even after accounting for

traditional clinical factors. The robustness of this signature lies in

our multi-region sampling approach, which minimizes the

interference of ITH in prognostic assessment. To achieve

comprehensive quantitative assessment of complex biological

processes, we developed a nomogram by integrating the weighted

contributions of individual predictors. The nomogram captures

synergistic effects between three variables, demonstrating superior

translational capacity in prognostic prediction.

Our signature not only accurately predicts the prognosis of BC

patients but also reveals the complex characteristics of the tumor

immune microenvironment. The expression landscape of immune

markers within the TME of BC patients reflects the dynamic

interplay between the immune clearance and immune escape

phases during tumor immunoediting. The observed features in

high-risk patients (increased CD8+ T-cell infiltration, enhanced
FIGURE 10

Knockdown of CFL2 or SPNS2 inhibits the proliferation and invasion of BC cells. (A, B) Cell proliferation was assessed using the CCK-8 assay. (C–F)
Colony formation assay was conducted to assess the proliferation/cloning ability. (G–J) Transwell invasion assays were performed to evaluate the
invasion capabilities of the cells. **P < 0.01, ***P < 0.001, ****P < 0.0001, ns: not significant.
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APM, elevated MHC-I expression, and elevated IPS) represent

adaptive responses evolved by tumor cells under intense immune

surveillance. IFN-g released by CD8+ T cells can directly induce

tumor cells to express MHC-I APM. The upregulated MHC-I APM

enhances antigen presentation efficiency, activating CD8+ T cells

and forming a positive feedback loop. Although this exerts anti-

tumor protective effects, IFN-g via the JAK-STAT pathway

ostensibly enhances immune recognition by promoting MHC-I

expression, while simultaneously inducing the expression of

inhibitory molecules such as PD-L1 and IDO1 in tumor cells.

This creates a balanced regulatory circuit of activation-inhibition

(33–35). As shown in our study, high-risk patients show

upregulated expression of immune checkpoints such as PD-1,

PD-L1, and CTLA-4. Moreover, the massive infiltration of CD8+

T cells depletes local glutamine, which suppresses Foxp3 stability in

regulatory T cells through the mTORC1 signaling pathway (36–38),

while lactate accumulation inhibits IL-10 secretion in M2

macrophages (39, 40). This metabolic pressure transiently

disrupts the immunosuppressive equilibrium; however, due to

sustained checkpoint molecule expression, it ultimately drives

CD8+ T cells into a functionally inactivated intermediate state (41).

CFL2 and SPNS2may participate in the malignant progression of

BC through distinct molecular mechanisms. CFL2 expression is

significantly upregulated in BC tissues and cells (42). As an actin-

depolymerizing factor, CFL2 regulates cytoskeletal dynamics,

influencing the migratory and invasive capabilities of tumor cells

(43). circ_0008673 upregulates CFL2 expression by adsorbing miR-

153-3p, thereby relieving its inhibitory effect on CFL2. This promotes

BC cell proliferation, migration, and invasion while inhibiting

apoptosis (42). SPNS2 has been shown to promote tumor

proliferation and metastasis in other cancers by activating the Akt/

ERK signaling pathway (44). However, direct studies on its role in BC

are limited. Additionally, previous studies have also shown that CFL2

and SPNS2 regulate immune infiltration. CFL2 is a target of miR-

142-3p. Inhibition of miR-142-3p upregulates CFL2L, activating the

RIG-I-mediated immune defense response and enhancing the anti-

tumor function of natural killer cells (45). CFL2 modulates actin

dynamics to influence cytoskeletal reorganization. In natural killer

cells, suppression of its homologous protein significantly impairs cell

migration, indicating its role in immune cell infiltration toward

inflamed or tumor sites by remodeling the cytoskeleton (46). As for

SPNS2, it transports S1P from the inside to the outside of cells,

triggering S1P receptor-mediated lymphocyte migration signals (47).

When SPNS2 activity is inhibited, extracellular S1P levels decrease,

impairing immune cells’ ability to migrate effectively to tumor

sites (48).

This study holds potential clinical significance. Our signature

can be employed to quantify prognostic risk stratification in

patients and guide treatment decisions. This model may resolve

the heterogeneity challenge by identifying immune therapy-

responsive subgroups beyond conventional chemotherapy. For

high-risk patients, intensified regimens incorporating ICIs are

prioritized, whereas low-risk subgroups may avoid overtreatment,

thus shifting the current “one-size-fits-all” approach toward
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precision-based dynamic management. While this investigation

revealed potential sensitivity of stratified high-risk patient

populations to ICIs, it must be emphasized that these findings

lack validation through clinical cohort evidence. Further validation

through multi-center clinical trials is needed in the future.
5 Conclusion

In conclusion, this study represents the first effort to construct a

prognostic signature using multi-region bulk RNA sequencing in

BC. It not only provides a novel tool for prognosis assessment but

also opens new avenues for understanding tumor heterogeneity and

developing innovative therapeutic strategies.
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SUPPLEMENTARY FIGURE 1

Association between MATH and clinicopathological features as well as survival

prognosis in TCGA-BRCA patients. (A) Differences in MATH scores across age
groups, tumor stages, treatment conditions, and treatment types. (B) Kaplan-Meier

survival analysis shows the overall survival difference between high and low
MATH groups.

SUPPLEMENTARY FIGURE 2

quanTIseq was used to quantify the absolute abundance of immune cells in the

high-risk and low-risk groups. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001,
ns: not significant.
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