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Background: Breast cancer (BC) remains a significant threat to human health,
with substantial variations in prognosis and treatment responses. Intra-tumor
heterogeneity (ITH) presents a critical challenge in developing reliable
prognostic models.

Methods: This study integrated multi-region RNA sequencing data from BC
patients with the TCGA BC dataset. Genes resistant to sampling bias were
identified by evaluating inter-patient heterogeneity (IPH) and ITH. A machine
learning framework incorporating ten algorithms was used to construct a
prognostic signature.The expression levels and oncogenic function of the
prognostic genes were validated through RT-gPCR and in vitro experiments.
Results: The signature, comprising CFL2 and SPNS2, demonstrated stable
predictive performance in both training and validation cohorts (C-index > 0.6).
High-risk patients exhibited enriched immune infiltration, particularly CD8+ T
cells, and higher expression of immune checkpoint molecules, suggesting
sensitivity to immunotherapy. A nomogram integrating risk score with clinical
variables further improved prognostic accuracy. The dysregulation of signature
genes was confirmed in BC cell lines.

Conclusion: By minimizing ITH interference, this study developed a robust
prognostic signature for BC, offering insights into the tumor immune
microenvironment and potential therapeutic strategies.
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1 Introduction

Breast cancer (BC) remained the most prevalent cancer among
women globally in 2022, with its incidence rate continuing to rise.
Notably, a more pronounced increase has been observed among
younger women (1). Surgery is the cornerstone treatment for early-
stage BC, particularly for managing primary tumors and regional
lymph nodes. It is often combined with radiotherapy to enhance
local control rates (2). In recent years, significant advancements
have been made in BC treatment. These include molecularly
targeted therapies, immune checkpoint inhibitors (ICIs), and
novel antibody-drug conjugates (ADCs), which have led to
marked improvements in patient survival rates (3, 4). Despite
these advancements, some patients still respond poorly to current
therapies, and there are considerable inter-individual variations in
prognosis, ranging from several months to decades (5, 6). Accurate
stratification of prognosis is crucial for monitoring disease
progression and selecting appropriate treatment strategies.
Currently, BC classification systems mainly include the American
Joint Committee on Cancer (AJCC) TNM (tumor-node-metastasis)
staging system and molecular subtypes (Luminal A, Luminal B,
HER2-enriched, and triple-negative BC), which are widely
implemented in clinical practice. While these assessment methods
have proven useful, they exhibit various limitations in patient
stratification and offer limited predictive accuracy. Furthermore,
they fail to provide insights into the biological characteristics of BC
that could explain clinical heterogeneity, highlighting the need for
further improvements.

Over the past decades, breakthroughs in sequencing technology
have significantly deepened our understanding of the molecular
mechanisms underlying BC. Researchers have developed numerous
gene-based prognostic models using tumor transcriptomic data,
with the goal of guiding individualized treatment strategies (7, 8).
However, these multi-gene signatures have yet to achieve
widespread clinical translation. Challenges include the absence of
standardized detection protocols and interference from intra-tumor
heterogeneity (ITH) (9). Transcriptomic ITH poses a particular
challenge, as it can lead to shifts in molecular subtyping and the
heterogeneous distribution of therapeutic targets, ultimately
compromising the reproducibility of biomarkers (10). Most
existing prognostic models fail to account for the impact of ITH
on feature stability, which may exacerbate prediction biases.
Addressing this gap by integrating ITH into prognostic signature
development is a critical step toward enhancing BC stratification
precision and advancing personalized treatment.

Multi-region sequencing is a technique that involves sampling
from different regions of the same tumor and performing high-
throughput sequencing. This approach comprehensively captures
molecular diversity and systematically quantifies the distribution
patterns of ITH, thus improving the model’s ability to predict tumor
evolution across regions (11). Multi-region sequencing helps
mitigate the bias of single-point sampling, thus reducing the
impact of tumor heterogeneity on prognostic models. Here, by
integrating multi-region BC dataset and the TCGA (The Cancer
Genome Atlas Program) BC dataset, we employed machine
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learning algorithms to identify prognosis-related genes resistant
to sampling bias and constructed a risk signature. This signature
was validated in an external independent cohort, demonstrating
robust survival prediction performance. The signature was also
proven to be a biologically specific marker associated with the
tumor microenvironment (TME) and capable of predicting
responses to immunotherapy. Furthermore, we combined the
signature with clinical variables to create a dynamic nomogram
for individualized risk assessment.

2 Methods
2.1 Data preparation and processing

We first downloaded sequencing data from TCGA breast
invasive carcinoma (TCGA-BRCA) dataset (n=1231), including
1,118 tumor samples and 113 normal samples. We excluded cases
with missing survival time or endpoint event status. To minimize
interference from non-cancer-related deaths, we excluded patients
with survival times less than 30 days. The expression data were
normalized using DESeq2 (Version 1.44) and transformed with
VST, serving as the training set to construct the prognostic model.
Additionally, we incorporated multi-region bulk-RNA data from
BC patients (32 samples from 10 patients) provided by Aneja et al.
to explore markers less affected by ITH (12). The GSE42568 dataset
(104 BC cases) was downloaded from the GEO database for
validating the prognostic signature. “Masked Somatic Mutation”
data was selected as the somatic mutation dataset for TCGA-BRCA.

2.2 Immune infiltration analysis

ESTIMATE (Estimation of STromal and Immune cells in
MAlignant Tumours using Expression data) (Version 1.0.13) was
used to infer the proportions of stromal and immune cells in tumor
samples (13). CIBERSORT (Cell-type Identification By Estimating
Relative Subsets Of RNA Transcripts), a deconvolution algorithm-
based tool, was employed to quantify the relative proportions of 22
immune cell subtypes within the TME (14). quanTIseq was used to
quantify the absolute abundance of immune cells (15). The IOBR
(Immuno-Oncology Biological Research) (Version 0.99.8) was
utilized to analyze metabolic features in the TME, identifying key
characteristics associated with the survival of TCGA-BRCA patients
(16). The Immunophenoscore (IPS) was used to reflect the immune
activity of the TME, aiding in evaluating patients’ potential response
to ICIs (17).

2.3 Quantification of gene heterogeneity

Gene expression heterogeneity was assessed by evaluating inter-
patient heterogeneity (IPH) and ITH (10). These two sets of scores
were used to measure the variability in expression between different
patients and within different regions of the same tumor, quantified
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using standard deviation. For ITH, the standard deviation of
expression within the group of samples was calculated for each
gene individually. For IPH, one sample was randomly selected from
each region to construct new cross-group sample subsets,
generating a total of 10 independent resampling iterations. For
each resampled subset, the measure of cross-group gene expression
variability was calculated.

2.4 Functional enrichment analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) was
utilized for gene functional annotation and enrichment analysis to
identify biological pathways or metabolic processes in which the
genes are involved.

2.5 Construction of prognostic signature

Reducing ITH helps maintain the stability of prognostic markers.
Additionally, enhancing IPH facilitates the identification of unique
prognostic markers for different individuals, enhances the
discriminative ability of prognostic models, and strengthens patient
stratification for tailored treatment strategies. First, we divided genes
from multi-region samples into groups based on the mean standard
deviation levels, categorizing them as exhibiting high/low interpatient
heterogeneity (IPH) and high/low ITH. Genes displaying both high
IPH and low ITH were subjected to intersection analysis with
differentially expressed genes (DEGs) from the TCGA-BRCA dataset.
Using a threshold of 0.05, these genes underwent further screening via
univariate Cox regression and proportional hazards (PH) assumption
testing. Subsequently, the selected genes were processed through an
integrated machine learning framework that incorporates ten classical
algorithms (Mimel, Version 0.0.0.9000): random survival forest (RSF),
elastic net (Enet), stepwise Cox regression (StepCox), CoxBoost, partial
least squares regression for Cox models (plsRcox), supervised principal
component analysis (superPC), generalized boosted regression
modeling (GBM), survival support vector machine (survival-SVM),
ridge regression, and least absolute shrinkage and selection operator
(Lasso) (18). This approach generated 117 algorithm combinations,
which were then trained and evaluated on the TCGA training dataset
using K-fold cross-validation. The risk score is calculated using the
following formula:

Risk score = X (Expi x Coefl).

Expi and Coefi represent the expression levels and coefficients
of prognostic genes.

2.6 Nomogram construction

Following the derivation of risk scores, we further integrated
clinicopathological variables to construct an individualized prognostic
prediction model. First, univariate Cox proportional hazards regression
analysis was performed to assess the impact of each variable (including
risk group, tumor stage, age, and sex) on overall survival. Variables
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reaching the significance threshold (P < 0.05) in univariate analysis
were subjected to multivariate Cox regression to identify independent
prognostic predictors. Based on the multivariate Cox regression results,
a nomogram was constructed using the rms package (Version 6.8-0) in
R. In the nomogram, each variable was assigned points proportional to
its regression coefficient. The total score for each patient, calculated by
summing the points across all variables, was mapped to a scale for
predicting survival probabilities or risk rates.

2.7 Drug sensitivity analysis

Using the TCGA-BRCA gene expression profiles and the
cgp2016ExprRma dataset, we employed the R package pRRophetic
(Version 0.5) to predict the half-maximal inhibitory concentration
(IC50) values for each drug, representing tumor cell sensitivity. To
explore the relationship between the risk score and drug sensitivity, we
performed a Spearman rank correlation test to calculate the correlation
coefficient between the risk score and the IC50 of each drug. Candidate
drugs with an absolute correlation value exceeding 0.3 were retained.

2.8 Cell culture

Human normal breast cell lines (MCF-10A) and BC cells
(MDA-MB-231, MCF-7, BT-474, SKBR3) were obtained from
ATCC. Cells were maintained at 37°C under 5% CO, atmosphere.

2.9 RT-gPCR analysis

Total RNA was extracted from the cells using TRIzol reagent
(Invitrogen, USA). Subsequently, reverse transcription was performed
using the PrimeScript RT Reagent Kit acquired from TaKaRa. The
following PCR conditions were employed on the StepOnePlus PCR
System (TaKaRa) using 2x RealStar Power SYBR Mixture (TaKaRa):
an initial predenaturation at 95°C for 2 min, then 95°C for 15 s, 60°C
for 30 s, and 72°C for 30 s, for a total of 40 cycles. The PCR
amplification primer sequences were as follows: CFL2, forward: 5-
AGCCGAGGGCACTATGGTAA-3’, reverse: 5-
AGAAGCCTTGGAGGCCAAAA-3’; SPNS2, forward: 5- GACAG
GTACACCGTGGCAG-3’, reverse: 5- CCAGGTAGCCGAAGAT
GGG-3; B-actin, forward: 5-TCCATCATGAAGTGTGACGT-3’,
reverse: 5-GAGCAATGATCTTGATCTTCAT-3". Relative mRNA
expression levels were calculated using the comparative Ct (2-AACt)
method and normalized to P-actin as the endogenous control.
Experiments included three independent biological replicates.

2.10 Cell function assays
The short hairpin (sh)RNAs for CFL2 knockdown (sh-CFL2),
CFL2 overexpression (oe-CFL2), SPNS2 knockdown (sh-SPNS2),

SPNS2 overexpression (oe-SPNS2), and negative controls (sh-NC
and o0e-NC) plasmids were obtained from GenePharma (China).
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Cells were seeded in 24-well plates at a density of 3x10* cells/well.
When cell confluence reached approximately 70%, transfection was
performed using Lipofectamine 3000 (Invitrogen, USA). After 48
hours of transfection, cells were collected for experimental studies.

Transfected MDA-MB-231 cells were seeded into 96-well plates
at a density of 2,500 cells/well. At 24, 72, and 120 hours post-
seeding, 10 pL of CCK-8 reagent was added to each well, followed
by incubation for 2 hours. The optical density (OD) at 450 nm was
measured using a spectrophotometer. Growth curves were
generated, and cell viability was calculated for each group.

Transfected MDA-MB-231 cells were plated in six-well plates
and incubated for 24 hours in a culture incubator. After colony
formation, cells were fixed with 4% paraformaldehyde for 30
minutes, stained with 0.1% crystal violet for 20 minutes, air-dried,
photographed, and images were recorded.

Transfected MDA-MB-231 cells were trypsinized and resuspended
in serum-free medium. For the invasion assay, cell suspensions were
placed in the upper chamber, while the lower chamber was filled with
600 UL of medium containing 20% fetal bovine serum. The upper
chamber was coated with Matrigel and allowed to solidify at 37°C for 2
hours. Subsequently, cell suspensions were added, and the assay
proceeded for 24 hours. After incubation, chambers were washed
with PBS at room temperature, fixed with 4% paraformaldehyde for
30 minutes, and stained with 0.1% crystal violet for 20 minutes. After
drying, images were captured and saved for analysis using an inverted
microscope at room temperature.

2.11 Statistical methods

For normally distributed data with equal variances, the t-test was
used to compare mean differences between two independent or paired
samples. For non-normally distributed data, the Mann-Whitney U test
was applied to assess group differences. The Spearman rank correlation
coefficient was used to evaluate the relationship between variables.
Time-dependent receiver operating characteristic (ROC) curves were
generated to evaluate the model’s predictive accuracy at different time
points. Calibration curves were plotted using the Bootstrap resampling
method (1,000 iterations) to assess the agreement between model-
predicted survival probabilities and observed survival rates. A curve
close to the diagonal (ideal fit) indicated good model calibration.
Harrell’s concordance index (C-index) was calculated to quantify the
model’s global predictive ability for survival outcomes. Univariate and
multivariate Cox regression analyses were performed to identify
prognostic factors. The proportional hazards assumption was tested
using Schoenfeld residuals. A p-value < 0.05 was considered
statistically significant.

3 Results
3.1IPH and ITH in BC

Unsupervised hierarchical clustering was performed on the
most variable genes across 32 multi-regional primary BC tissues
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from 10 patients. Results showed that almost all patients exhibited
distinct clustering patterns, with regions from the same tumor
consistently grouped together (Figure 1A). This revealed strong
IPH and highlighted consistent ITH profiles. Dimensionality
reduction of the entire transcriptome profiles further confirmed
that regions from the same tumor primarily clustered by
patient (Figure 1B).

Using the CIBERSORT algorithm, we quantified the
proportions of 22 immune cell types across tumor regions.
Significant differences in immune cell composition were observed,
even within the same tumor (Figure 2A). For instance, the P1B
region exhibited CD8+ T cell infiltration exceeding 20%, indicating
strong immune activity and a potential robust anti-tumor response.
In contrast, other regions of the same tumor showed CD8+
T cell proportions below 5%, suggesting weaker immune
activity (Figure 2B).

By employing the IOBR tool, we identified 10 metabolic
signatures closely associated with BC patient survival (Figure 2C).
These scores encompassed core metabolic pathways within the
TME. Heatmaps revealed metabolic heterogeneity across different
regions of the same tumor. Tryptophan metabolism was
significantly upregulated in the P1C and P1D regions but
downregulated in P1A and P1B (Figure 2D). This metabolic
pathway plays diverse mechanistic roles in the TME: Its
degradation product kynurenine promotes immune escape by
inhibiting effector T cell function (19); enhanced activity may
reflect competitive nutrient uptake by tumor cells, altering the
metabolic balance of the local microenvironment (20). Such ITH
in the metabolism underscores the extreme complexity of the TME,
influencing both tumor cell behavior and immune cell function.

In exploring genomic heterogeneity in breast cancer, we focused
on Mutant-Allele Tumor Heterogeneity (MATH). This metric
quantifies ITH by calculating the dispersion of mutant allele
frequencies in tumor samples. A higher MATH value suggests
greater genetic diversity among tumor subclones. Based on the
MATH values computed for the TCGA-BRCA cohort samples, we
further analyzed its relationship with clinical variables. The results
showed that there was no significant clinical correlation between
MATH values and factors such as age, treatment regimens, overall
survival, or most TNM stages (Supplementary Figures S1A, B).
However, a statistically significant difference was observed in
MATH between Stage I and Stage II tumors (Supplementary
Figure S1A). This finding suggests that genomic heterogeneity
may increase as tumors progress from early-stage to slightly more
advanced Stage II. In contrast, late-stage tumors (Stage IIT and IV)
may generally reach a high baseline level of heterogeneity, with
dominant clones expanding significantly within these tumors. This
could be a reason why no significant differences in MATH values
were observed between different late-stage subgroups.

3.2 Quantification of gene heterogeneity

To define RNA heterogeneity, we derived IPH and ITH metrics
for each gene using multi-regional BC samples. These metrics were
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categorized into high or low groups based on their mean values,
resulting in four RNA heterogeneity quadrants for BC. Genes with
high IPH and low ITH (Blue points in Figure 3A) exhibit notable
variability across patients but high homogeneity within tumors.
This characteristic not only helps minimize biases during sample
collection but also offers potential molecular markers for precise
patient stratification.

To further explore the biological functions of genes with high
IPH and low ITH, we conducted pathway enrichment analysis. The
results revealed significant enrichment of genes related to FcyR-
mediated phagocytosis. Fcy receptors, as critical components of the
immune system, play a key role in antibody-dependent cellular
cytotoxicity (7). Additionally, we observed significant enrichment of
genes associated with thermogenesis (Figure 3B). This finding
suggests that energy metabolism pathways may play a more
complex regulatory role in the progression of BC.

3.3 Construction and validation of
prognostic signature

Analysis of the intersection between DEGs from the TCGA-
BRCA dataset and high-IPH/low-ITH genes identified differentially
expressed ITH-resistant genes. To assess their prognostic value,
univariate Cox regression analysis and PH assumption testing were
conducted, yielding 24 prognostic candidate genes. Within a
comprehensive machine learning framework (Figure 4A)
incorporating 10 classical algorithms and 117 diverse algorithm
combinations, the RSF and StepCox-both algorithms were selected
based on C-index results to establish a BC prognostic risk
assessment model. Initially, the random survival forest quantified
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the importance of the 24 genes (Figure 4B). Further, high-conserved
variable selection via minimal depth filtering identified three genes
(CFL2, FGD4, and SPNS2). After applying StepCox-both, the final
model retained CFL2 and SPNS2 (Figure 4C). The prognostic risk
signature demonstrated stable predictive performance in both the
TCGA-BRCA cohort and GSE42568 validation set, with C-index
values of 0.61 and 0.62, respectively (Figure 4A). BC samples were
stratified into high- and low-risk groups based on median risk
scores. Risk stratification analysis revealed significant prognostic
divergence between groups (Figures 4D, E). High-risk patients
exhibited poorer clinical outcomes in both TCGA-BRCA and
GSE42568 datasets, confirming the signature’s clinical validity.
Time-dependent ROC analysis showed robust performance in
TCGA-BRCA, with 1-year, 3-year, and 5-year AUCs of 0.621,
0.627, and 0.635 (Figures 4F-H). In GSE42566, while short-term
prediction improved (1-year and 3-year AUCs: 0.665 and 0.667), 5-
year performance declined to 0.625 (Figures 4F-H).

3.4 Construction of an individualized
prognostic nomogram

Through chi-square tests on the characteristics of TCGA BC
patients in the high-risk and low-risk groups, we identified some
noteworthy clinical feature distribution patterns. Mortality cases
were significantly higher in the high-risk group (17%) compared to
the low-risk group (10%) (p < 0.05) (Figure 5A). This validated the
discriminant ability of the prognostic risk signature. However,
comparisons of other clinicopathological features (age, gender,
treatment status, and tumor stage) showed no significant
differences between the two groups (p > 0.05) (Figures 5B-E),
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FIGURE 2
Immune microenvironment ITH in the multi-region BC cohort. (A) Stacked percentage plot illustrated the proportional composition of cell subtypes
across different regions. (B) Bar chart showed the infiltration abundance of CD8+ T cells in different regions. (C) IOBR identified the ten TME
metabolic signatures with the most significant impact on BC patient prognosis. (D) Heatmap displayed the enrichment levels of metabolic signatures
across different regions.

which suggests that the prognostic risk signature may be based on  regression analysis, these variables were confirmed as independent
different biological foundations than traditional clinical indicators,  prognostic factors (P < 0.05), reaffirming the importance of
providing additional prognostic information. Moreover, the  traditional indicators while validating the independent prognostic
consistency in feature distribution indicates that the risk score  value of the risk score (Figure 5G). To visualize these results, we
may be independent of conventional clinical factors, offering a  constructed a nomogram using the rms package in R. The
new dimension for prognosis assessment. Thus, we conducted a ~ nomogram transforms multivariate Cox regression results into a
systematic prognostic factor analysis. First, in the univariate Cox  scoring system, enabling clinicians to quickly assess patient
analysis, variables with a significance threshold of P < 0.05 were  prognosis (Figure 5H). The model demonstrated good
screened, revealing that age, tumor stage, and risk group met the  discriminatory ability, with a C-index consistently nearly 0.7
criteria as significant predictors (Figure 5F). In multivariate Cox  (Figure 5I), and calibration curves showed strong agreement
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Identification of ITH-resistant genes. (A) Quadrant plot of gene expression variability calculated using the multi-region BC cohort. The plot was
divided into four quadrants based on the average inter-patient (vertical line) and intra-tumor (horizontal line) heterogeneity scores. (B) KEGG

enrichment analysis of ITH-resistant genes.

between predicted and actual outcomes, further validating its
accuracy (Figure 5]).

3.5 Immune infiltration and
immunotherapy response of prognostic
signature

Through the analysis of the immune microenvironment, we
uncovered a complex landscape of immune infiltration in high- and
low-risk groups. Using the ESTIMATE algorithm, we evaluated the
overall immune infiltration levels and found that the high-risk group
exhibited more pronounced immune infiltration characteristics
(Figure 6A). Employing the CIBERSORT algorithm, we performed
detailed immune cell subset analysis. A significant elevation of CD8+ T
cells was observed in the high-risk group, indicative of an active
immune state in these patients (Figure 6B). Notably, CIBERSORT
analysis revealed reduced proportions of regulatory T cells and M2
macrophages in the high-risk group (Figure 6B). We also used
quanTIseq to quantify the absolute abundance of immune cells in
the TME (Supplementary Figure S2). Further analysis revealed that the
z-scores related to MHC-I molecules and the antigen processing
machinery (APM) were significantly elevated in the high-risk group
(Figures 6C, D). The upregulation of MHC-I and APM indicates
stronger antigen-presenting capabilities in immune cells, which may
contribute to the increased infiltration of CD8+ T cells. In the high-risk
group, the expression levels of several key immune checkpoint
molecules (including CD27, CTLA4, PDCD1 (PD-1), LAG3, TIGIT,
TNFSF14, TNFRSF25) were significantly upregulated. This suggests
more active but suppressed tumor-immune interactions in high-risk
patients and provides critical insights for selecting appropriate
immunotherapy targets (Figure 6E). This study further explored the
correlation between the prognostic risk signature and the prediction of
immunotherapy response. It was found that the IPS was significantly
higher in the high-risk group compared to the low-risk group. Since the
IPS is closely associated with immunotherapy responsiveness, the
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results suggest that high-risk patients may exhibit greater sensitivity
to immunotherapy (Figures 6F-I).

3.6 Mutational landscape of risk subgroups

The waterfall plot revealed that TP53 and PIK3CA were the
most frequently mutated genes in both the high- and low-risk
groups (Figures 7A, B). This finding aligns with previous findings
on BC, confirming the central role of these genes in BC
development (21). As a key tumor suppressor gene, mutations in
TP53 may lead to genomic instability and pro-tumorigenic
properties, which could partially explain the more aggressive
features observed in the high-risk group. On the other hand,
activating mutations in PIK3CA likely play a significant role in
promoting cell proliferation and survival through dysregulation of
the PI3K/AKT pathway (21). Although slight differences in the
mutation frequencies of TP53 and PIK3CA were observed between
the two groups, overall, they exhibited remarkable convergence in
the types and frequencies of the most common mutated genes. This
similarity suggests that differences in high-frequency mutations
alone may not sufficiently explain the significant clinical
prognostic disparities between the two groups.

To further explore the interaction patterns among gene
mutations, we constructed a heatmap to illustrate the co-
occurrence and mutual exclusivity relationships of the top 10
mutated genes. The analysis revealed that the high- and low-risk
groups exhibited similar patterns in mutation associations, both in
terms of the frequency and strength of co-occurrence or mutual
exclusivity for specific genes (Figures 7C, D). From a biological
perspective, this similarity indicates that the core molecular
pathways influencing BC development may be conserved between
the high- and low-risk groups. Despite their significant differences
in prognosis, both groups may rely on similar molecular
mechanisms driving tumor progression.
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FIGURE 4

False Positive Rate (1-Specificity)

Construction and validation of prognostic signatures. (A) A total of 117 predictive models were built using a machine learning framework, and the
C-index of each model was further calculated. (B) Importance of the 24 genes contributing to survival time in the random survival forest model.

(C) StepCox-both identified CFL2 and SPNS2. (D, E) Kaplan-Meier analysis showed significant prognostic differences between high-risk and low-risk
groups in TCGA-BRCA and GSE42566 datasets. (F-H) The signature's AUC for 1-year, 3-year, and 5-year predictions in TCGA-BRCA and GSE42566

datasets.

3.7 Drug sensitivity analysis

To identify potential therapeutic drugs that are more effective
for high-risk BC patients, this study conducted a drug sensitivity
prediction analysis based on gene expression profile data using the
R package pRRophetic. A group of potential therapeutic drugs for
high-risk BC patients was identified, including Sunitinib, Obatoclax
Mesylate, Midostaurin, Embelin, Dasatinib, and Bexarotene
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(Figures 8A-F). Previous studies support the potential use of
these drugs for the treatment of BC patients. Sunitinib, as a
multi-target tyrosine kinase inhibitor, targets the VEGFR and
PDGFR pathways, which may be related to angiogenesis and
aggressiveness in high-risk BC (22). In HR+/HER2- BC, a
synergistic effect between anti-angiogenesis and hormonal therapy
has been observed (23, 24). Dasatinib, as an SRC family kinase
inhibitor, might exert therapeutic effects by inhibiting active tumor-
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(A) The ESTIMATE algorithm quantified the Stromal Score, Immune Score, and ESTIMATE Score in high- and low-risk BC groups. (B) CIBERSORT
quantified the relative proportions of 22 immune cell subtypes in high- and low-risk BC groups. (C, D) APM and MHC-| calculated based on z-scores
in high- and low-risk groups. (E) Immune checkpoint expression status in high- and low-risk groups. (F=1) Compared to the low-risk group, the IPS
score is significantly upregulated in the high-risk group. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns: not significant.

stroma interactions in high-risk BC (25). In HER2-positive BC,
Dasatinib combined with Neratinib significantly suppresses cell
proliferation and induces stronger apoptosis and migration
inhibition. This synergy is particularly evident in trastuzumab-
resistant or Neratinib-acquired resistance models (26).
Bexarotene, a selective retinoid X receptor agonist, activates RXR
receptors to regulate the transcription of tumor-related genes,
influencing cell proliferation, differentiation, and apoptosis
pathways (27, 28). Obatoclax Mesylate and Midostaurin, as BCL-
2 family protein and PKC inhibitors, may target the apoptosis-
resistant mechanisms unique to high-risk BC (29, 30). Embelin
exhibits stronger growth inhibition against TNBC tumors enriched
with a-SMA-expressing cancer-associated fibroblasts (CAFs), such
as the 4T1 model, and reduces the expression of pro-fibrotic
markers like PDGFRA (31).

3.8 CFL2 and SPNS2 were upregulated
in BC

Based on the BC single-cell sequencing dataset GSE148673, we
employed the scCancerExplorer analytical platform for cell
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clustering and expression profiling (32). Through UMAP-based
dimensionality reduction, single-cell data were categorized into
nine distinct cellular clusters (Figure 9A). Cancer cells (red) and
normal epithelial cells (green) were completely segregated,
indicating pronounced transcriptional heterogeneity between the
two. Cancer cells accounted for 52.6%, dominating the cellular
composition, which suggests high tumor purity (Figure 9B).
Importantly, we revealed that CFL2 and SPNS2 exhibit
upregulated average expression in cancer cells compared to
normal epithelial cells (Figure 9C). To examine the expression of
CFL2 and SPNS2, RT-qPCR was conducted in BC cell lines. Results
revealed that CFL2 was significantly upregulated in MDA-MB-231,
MCEF-7, BT-474, and SKBR3 cells compared with normal mammary
epithelial cells (MCF-10A) (Figure 9D). Additionally, SPNS2
exhibited significant upregulation in MDA-MB-231, BT-474 and
SKBR3. Although upregulated in MCF-7, no statistical significance
was observed (Figure 9E). To analyze the expression of CFL2 and
SPNS2 at the protein level, we downloaded immunohistochemical
images of breast tumor tissues and normal tissues from the HPA.
The differential protein expression between BC and normal
tissues was consistent with our transcriptomic analysis results
(Figures 9F, G).
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CFL2 and SPNS2 are upregulated in BC. (A) UMAP dimensionality reduction analysis of GSE148673, dividing the single-cell data into 9 cell clusters.
(B) Proportion and quantity distribution of each cell type in GSE148673. (C) Compared to normal epithelial cells, CFL2 and SPNS2 are upregulated in
cancer cells. (D, E) Compared to normal breast epithelial cells, RT-qPCR showed that CFL2 and SPNS2 are upregulated in BC cell lines.

(F, G) Representative images of CLF2 and SPNS2 from the HPA database. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns: not significant.

3.9 Knockdown of CFL2 or SPNS2 inhibits
the proliferation and invasion of BC cells

CFL2 and SPNS2 showed significantly increased expression in the
MDA-MB-231 cell line. Therefore, we selected MDA-MB-231 cells for
knockdown experiments. Compared with other groups, the CCK-8
assay demonstrated that knockdown of CFL2 or SPNS2 significantly
impaired the proliferative capacity of cancer cells (both p<0.001)
(Figures 10A, B). The colony formation assay further revealed that
the proliferation and clonogenic potential of MDA-MB-231 cells were
markedly reduced after CFL2 or SPNS2 knockdown (both p<0.01)
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(Figures 10C-F). The Transwell invasion assay provided additional
evidence that knockdown of CFL2 or SPNS2 significantly decreased the
number of invasive cells (all p<0.01) (Figures 10G-]). Collectively, our
findings suggest that silencing CFL2 or SPNS2 can suppress the
proliferation and invasion of BC cells.

4 Discussion

In the construction of prognostic gene signatures, the
consideration of transcriptomic ITH is crucial. Relying solely on
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invasion capabilities of the cells. **P < 0.01, ***P < 0.001, ****P < 0.0001, ns: not significant.

localized features from a single biopsy sample can lead to
misjudgment of prognostic risk due to sampling bias. The
heterogeneity in driver gene expression profiles, such as spatial
variations in ER/PR/HER?2 status, caused by ITH can reduce the
generalizability of prognostic models in independent cohorts.
Additionally, ITH often involves the dynamic evolution of
subclones associated with drug resistance pathways, such as
apoptosis inhibition and immune evasion. Ignoring these
features diminishes the model’s predictive power for treatment
resistance. Therefore, integrating the dynamic characteristics of
ITH is essential for improving the clinical applicability of
prognostic models.

BC, as a highly heterogeneous tumor, exhibits diverse molecular
features and biological behaviors across different regions. The TNM
staging system primarily relies on anatomical parameters and fails
to integrate tumor heterogeneity or immune microenvironment
features. Even among patients with identical TNM stages, varying
degrees of T cell infiltration in the immune microenvironment may
lead to significantly divergent treatment responses and prognoses.
Additionally, while PAMS50 subtype uses gene expression profiling
to focus on tumor-intrinsic biological traits, it omits
microenvironmental characteristics like immune cell infiltration
and immunosuppressive factors, limiting its predictive capacity
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for immunotherapy efficacy. For the first time, we employed a
multi-region sequencing strategy in BC, amplifying transcriptional
differences between patients while minimizing insignificant intra-
tumoral transcriptional fluctuations, thereby constructing a robust
risk signature. In different BC cohorts, our prognostic signature
demonstrates exceptional predictive stability. It effectively
differentiates patients into high- and low-risk groups and
maintains independent prognostic value even after accounting for
traditional clinical factors. The robustness of this signature lies in
our multi-region sampling approach, which minimizes the
interference of ITH in prognostic assessment. To achieve
comprehensive quantitative assessment of complex biological
processes, we developed a nomogram by integrating the weighted
contributions of individual predictors. The nomogram captures
synergistic effects between three variables, demonstrating superior
translational capacity in prognostic prediction.

Our signature not only accurately predicts the prognosis of BC
patients but also reveals the complex characteristics of the tumor
immune microenvironment. The expression landscape of immune
markers within the TME of BC patients reflects the dynamic
interplay between the immune clearance and immune escape
phases during tumor immunoediting. The observed features in
high-risk patients (increased CD8+ T-cell infiltration, enhanced
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APM, elevated MHC-I expression, and elevated IPS) represent
adaptive responses evolved by tumor cells under intense immune
surveillance. IFN-y released by CD8" T cells can directly induce
tumor cells to express MHC-I APM. The upregulated MHC-I APM
enhances antigen presentation efficiency, activating CD8" T cells
and forming a positive feedback loop. Although this exerts anti-
tumor protective effects, IFN-y via the JAK-STAT pathway
ostensibly enhances immune recognition by promoting MHC-I
expression, while simultaneously inducing the expression of
inhibitory molecules such as PD-L1 and IDOI1 in tumor cells.
This creates a balanced regulatory circuit of activation-inhibition
(33-35). As shown in our study, high-risk patients show
upregulated expression of immune checkpoints such as PD-1,
PD-L1, and CTLA-4. Moreover, the massive infiltration of CD8+
T cells depletes local glutamine, which suppresses Foxp3 stability in
regulatory T cells through the mTORCI signaling pathway (36-38),
while lactate accumulation inhibits IL-10 secretion in M2
macrophages (39, 40). This metabolic pressure transiently
disrupts the immunosuppressive equilibrium; however, due to
sustained checkpoint molecule expression, it ultimately drives
CD8+ T cells into a functionally inactivated intermediate state (41).

CFL2 and SPNS2 may participate in the malignant progression of
BC through distinct molecular mechanisms. CFL2 expression is
significantly upregulated in BC tissues and cells (42). As an actin-
depolymerizing factor, CFL2 regulates cytoskeletal dynamics,
influencing the migratory and invasive capabilities of tumor cells
(43). circ_0008673 upregulates CFL2 expression by adsorbing miR-
153-3p, thereby relieving its inhibitory effect on CFL2. This promotes
BC cell proliferation, migration, and invasion while inhibiting
apoptosis (42). SPNS2 has been shown to promote tumor
proliferation and metastasis in other cancers by activating the Akt/
ERK signaling pathway (44). However, direct studies on its role in BC
are limited. Additionally, previous studies have also shown that CFL2
and SPNS2 regulate immune infiltration. CFL2 is a target of miR-
142-3p. Inhibition of miR-142-3p upregulates CFL2L, activating the
RIG-I-mediated immune defense response and enhancing the anti-
tumor function of natural killer cells (45). CFL2 modulates actin
dynamics to influence cytoskeletal reorganization. In natural killer
cells, suppression of its homologous protein significantly impairs cell
migration, indicating its role in immune cell infiltration toward
inflamed or tumor sites by remodeling the cytoskeleton (46). As for
SPNS2, it transports SI1P from the inside to the outside of cells,
triggering S1P receptor-mediated lymphocyte migration signals (47).
When SPNS2 activity is inhibited, extracellular SI1P levels decrease,
impairing immune cells’ ability to migrate effectively to tumor
sites (48).

This study holds potential clinical significance. Our signature
can be employed to quantify prognostic risk stratification in
patients and guide treatment decisions. This model may resolve
the heterogeneity challenge by identifying immune therapy-
responsive subgroups beyond conventional chemotherapy. For
high-risk patients, intensified regimens incorporating ICIs are
prioritized, whereas low-risk subgroups may avoid overtreatment,
thus shifting the current “one-size-fits-all” approach toward
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precision-based dynamic management. While this investigation
revealed potential sensitivity of stratified high-risk patient
populations to ICIs, it must be emphasized that these findings
lack validation through clinical cohort evidence. Further validation
through multi-center clinical trials is needed in the future.

5 Conclusion

In conclusion, this study represents the first effort to construct a
prognostic signature using multi-region bulk RNA sequencing in
BC. It not only provides a novel tool for prognosis assessment but
also opens new avenues for understanding tumor heterogeneity and
developing innovative therapeutic strategies.
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