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Gastrointestinal (GI) cancers are main causes of poor health, with most remaining

difficult to treat effectively. Identifying new targets for treatment is crucial for

improving the efficacy of tumour therapies and enhancing patient quality of life.

Anoctamin-1 (ANO1), a crucial component of calcium-activated chloride

channels (CaCCs), is expressed widely in various cell types, including epithelial

cells, vascular smooth muscle cells, and tumour cells, and influences cell

proliferation and migration. Nonetheless, the exact pathways through which

ANO1 contributes to malignant transformation and immune responses remain

elusive. This review comprehensively examines the regulatory functions and

potential therapeutic applications of ANO1 in GI cancers. The goal of this work is

to offer new perspectives for further study on the role of ANO1 in gastrointestinal

cancers and to support improvements in therapeutic strategies for cancer

diagnosis and treatment through the targeting of ANO1.
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1 Introduction

The treatment of gastrointestinal (GI) cancers has long been significant subjects in

medical research. Important progress has been made in treating GI cancers through

advances in medical technology and research. However, the complex and variable

pathogenesis of tumours creates challenges such as recurrence, metastasis, and drug

resistance, which pose major threats to human health (1, 2). Data from the International

Agency for Research on Cancer revealed that the global incidence of cancer was

approximately 20 million cases, with 9.7 million fatalities in 2022. Colorectal cancer is

the most common and the most fatal GI cancer, accounting for 9.6% of all cancers and 9.3%

of all cancer-related deaths, followed by cancers of the stomach, liver, oesophagus, and

pancreas (3).

The treatment of GI cancers typically involves surgery, chemotherapy, radiotherapy,

targeted therapy, and immunotherapy (4–6). However, patients may respond differently to
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treatments due to tumour heterogeneity. Moreover, adverse

reactions such as resistance to chemotherapy and systemic

toxicity may occur as tumours develop (7). Compared with

traditional chemotherapy, targeted therapy offers advantages such

as high specificity, efficacy, and low toxicity. Over the past 30 years,

targeted therapy has proven effective for treating various types of

cancer, achieving significant results. However, challenges such as a

limited number of targets, the occurrence of off-target toxicity, and

development of resistance have hindered the clinical application of

targeted therapies (8, 9). Thus, there is a pressing need to increase

overall survival or quality of life through discovery of novel targets

and therapeutic approaches. Ion channels such as transient receptor

potential channels, volume-regulated anion channels, and calcium-

activated chloride channels (CaCCs) are integral to various

pathophysiological activities are abnormally expressed in GI

cancers. Among these, CaCCs have garnered significant attention

due to their critical functions in cancer progression (10–12).

Anoctamin-1 (ANO1), also known as transmembrane protein

16A (TMEM16A) or discovered on gastrointestinal stromal tumour

1 (DOG1), is a member of the CaCC family. The gene that encodes

ANO1 is located on chromosome 11q13. Initially discovered in

Xenopus oocytes, ANO1 is localized primarily on the plasma

membrane (13). As an essential component of voltage-dependent

channels, ANO1 activates chloride ion transport through

intracellular calcium ions, thereby regulating the cell’s membrane

potential, calcium balance, and excitability (14, 15). It is involved in

various biological processes that are linked to malignancies,

including mucus secretion, neuronal excitability, cell proliferation,

and signal transduction (16–19). ANO1 plays a key role in

gastrointestinal cancers, and targeting the pathway through which

it acts may be an effective treatment strategy.

Interventions that inhibit ANO1 or related pathways can reduce

its activity and thereby suppress tumorigenesis and progression.

Most currently known ANO1 modulators are channel inhibitors

that affect chloride and calcium channel currents in a

concentration-dependent manner (20–22). Some ANO1 inhibitors

block ion conduction pores, induce pore closure, and inhibit

channel activity (23). Other inhibitors downregulate ANO1

expression; in addition, targeting the ion-binding sites of ANO1

is a feasible approach. Preclinical studies have confirmed the efficacy

of ANO1 inhibitors (24, 25). However, additional clinical trials are

needed to verify their functions.

This review describes the role of ANO1 and its regulatory

mechanisms in gastrointestinal cancers and the results of ANO1

inhibitors in vivo and in vitro studies. ANO1 expression is

upregulated in various GI cancers, involved in tumour invasion,

metastasis, or drug resistance, and associated to poor prognosis in
Abbreviations: ANO1, anoctamin-1; TMEM16A, transmembrane protein 16A;

DOG1, discovered on gastrointestinal stromal tumour 1; GI, gastrointestinal;

CaCCs, calcium-activated chloride channels; STAT6, signal transducer and

activator of transcription 6; CRC, colorectal cancer; HCC, hepatocellular

carcinoma; EMT, epithelial–mesenchymal transition; ESCC, oesophageal

squamous cell carcinoma; GIST, gastrointestinal stromal tumour.
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patients with these cancers. The mechanisms by which ANO1

promotes the malignant behaviour of tumour cells are complex

and primarily include the regulation of upstream noncoding RNAs

and the activation of multiple downstream signalling pathways. The

tumorigenic effects of ANO1 can be inhibited by blocking channel

current conduction, reducing channel activity, or decreasing ANO1

expression. ANO1 may serve as a therapeutic target and novel

prognostic biomarker. Further exploration of the role of ANO1 in

gastrointestinal cancer is crucial for advancing tumour diagnosis

and treatment.
2 Structure and physiological function
of ANO1 in gastrointestinal cells

The anoctamin family includes 10 members, anoctamin 1–10,

all of which exhibit high sequence conservation. Among them,

ANO1 and ANO2 are CaCCs (26), whereas ANO3–7 and ANO9

function as Ca2+-dependent lipid scramblases (27–32). ANO8–10

are are mostly retained in the cytoplasm (33–35). ANO1 displays

characteristics typical of CaCCs, including Ca2+ and voltage-

dependent activation and anion selectivity. Notably, the sequence

of ANO1 contains at least four alternatively spliced exons

(designated a, b, c, and d), producing proteins of 712 to 1006

amino acids (36, 37).

Paulino et al. used cryoelectron microscopy to determine that

the ANO1 protein forms a homodimer, each subunit of which

contains two Ca2+-binding sites and 10 transmembrane helices (38).

The extracellular region of the protein contains cyclic folded

domains that are formed by amino acid residues that link a1–a2,
a5–a6, and a9–a10. Both the N-terminus and the C-terminus of

ANO1 reside on the cytoplasmic side of the membrane. Research

has revealed that the Ca2+ binding site on ANO1 contains five

negatively charged residues—E654, E702, E705, E734, and D738—

that coordinate the binding of two calcium ions. These residues are

distributed across transmembrane helices a6–a8 (Figure 1). In

addition, mutations of N650, N651, and N730 to alanine have

been shown to reduce the affinity of ANO1 for Ca2+, suggesting that

these residues also contribute to calcium ion binding (39–41).

The subunit cavity within the ANO1 structure forms an ion

conduction pore that mediates ion permeation. Transmembrane

helices a3–a7 surround this pore, forming a closed channel

resembling an hourglass. Electrophysiological experiments and

mutagenesis have shown that R515 (in a3) and K603 (in a5–a6)
are key to anion selectivity. Further studies indicated that seven

residues within the pore region contribute to the calcium-

dependent gating mechanism of ANO1. Specific mutations, such

as N546A, I550A, Y593A, I596A, and F712A, increase the apparent

affinity of ANO1 for calcium, whereas the V59A and L643A

mutations decrease it (42).

The fact that ANO1 is expressed in various gastrointestinal

tissues highlights its involvement in several physiological roles.

ANO1 is highly expressed on membranes of the interstitial cells

of Cajal, where ANO1 maintains cell excitability by regulating

generation and propagation of slow-wave currents and
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contributes to the secretion of digestive fluid and intestinal

peristalsis (43). ANO1 is present at the apical membranes of

colonic and jejunal epithelial cells and contributes to Cl- efflux.

Inhibition of ANO1 causes mild oedema in the intestine, suggesting

that blocking ANO1 may be an effective method of treating

enterotoxin-related diarrhoea (44). A reduction in the amount of

ANO1 in gastric muscles leads to the loss of gastric slow waves and

an irregular spike complex, resulting in increased gastric emptying

time (45). ANO1 can also activate bile duct epithelial cells through

the ATP-Ca²+-PKCa pathway and thereby increase bile secretion

(46). In pancreatic islet b cells, ANO1 interacts with the INS

promoter to regulate electrical activity and promote insulin

secretion (47). ANO1 acts as an HCO3
- transport channel In

pancreatic acinar cells, regulating the luminal pH and providing a

therapeutic approach for acute pancreatitis (48). In lacrimal and

salivary gland acinar cells, ANO1 interacts with transient receptor

potential vanilloid 4 (TRPV4), inducing cell contraction by

increasing intracellular Ca²+-induced chloride currents and

thereby promoting saliva and tear secretion (49). ANO1

activation promotes the proliferation of smooth muscle cells in

portal vein and contributes to liver fibrosis and portal vein wall

thickness, two characteristics associated with portal hypertension

and chronic liver disease (50, 51).
3 Research on ANO1 in
gastrointestinal cancers

3.1 Research on ANO1 in colorectal cancer

CRC ranks third among malignant tumours in terms of

occurrence. More than 2.2 million new cases and 1.1 million deaths

due to CRC are projected to occur by 2030, representing a 60%

increase in the worldwide burden of this disease (52, 53). ANO1 has

been identified as a novel oncogene in CRC (54, 55). According to

The Cancer Genome Atlas database, ANO1 expression is upregulated

in CRC, and associated with metastasis and immune regulation. It is

also significantly related to higher tumour-node-metastasis (TNM)

stage and worse prognosis (56, 57).

Inhibition of ANO1 can downregulate the expression of the

membrane proteins frizzled protein 1 (FZD1) and b-catenin,
increase the level of glycogen synthase kinase-3b (GSK3b),
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disrupt the Wnt/b-catenin signalling pathway, and reduce the

proliferative capacity of CRC cells (54).

Yuen et al. analysed two independent CRC patient datasets

from the Gene Expression Omnibus and reported that high

expression of the transcription coactivator PDZ-binding motif

(TAZ), its downstream targets AXL and connective tissue growth

factor (CTGF) is associated with shortened survival. Further

analysis of patients with co-overexpression of TAZ–AXL–CTGF

revealed lower ANO1 levels are significantly associated with better

survival. Combined analysis of ANO1 and TAZ–AXL–CTGF

expression levels can accurately predict prognosis of patients (58).

The occurrence or development of CRC is regulated by ANO1

through interactions with microRNAs. Upregulated ANO1

expression in CRC is accompanied by downregulated expression of

tumour-suppressing microRNAs including miR-144, miR-132, miR-

9, and miR-18a. MiRNAs can integrate with the 3’-untranslated

region of ANO1 mRNA, downregulate its expression, and reduce the

invasion of CRC cells. MiR-9 can limit the invasive capacity of CRC

cells by directly inhibiting ANO1. This is achieved by decreasing the

expression of downstream molecules such as Ser and Thr kinase

(AKT), cyclin D1, and extracellular signal-regulated kinase (ERK)

(59). Overexpression of miR-144 can target ANO1 and suppress the

epidermal growth factor receptor (EGFR)/ERK signalling pathway.

Patients with colorectal cancer whose miR-132 expression is low and

whose ANO1 expression is high have shorter progression-free

survival (60, 61). MiR-18a regulated F.nucleatum-mediated

chemoresistance in colorectal cancer, but the specific mechanism

remains unclear (62). Another study reported the gut microbiome

can increase ANO1 expression by co-culture F.nucleatum with colon

cancer cell lines HCT116 and HT29, thereby reducing apoptosis

induced by oxaliplatin and 5-fluorouracil in CRC cells. Consistently,

ANO1 silencing could reverse F.nucleatum effects and increase

apoptosis. The results demonstrated that F.nucleatum promoting

resistance to chemotherapy via ANO1 pathway (63). These studies

suggest that the miRNA/ANO1 axis is crucial in CRC and that it

represents a potential therapeutic target.
3.2 Research on ANO1 in gastric cancer

Epithelial–mesenchymal transition (EMT), lymph node

metastasis, and poor prognosis are clinicopathological

characteristics associated with ANO1 overexpression in gastric
FIGURE 1

Schematic representation of the structure of ANO1.
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cancer tissues (64–66). MiR-381 functions as a tumour suppressor

by targeting ANO1. It inhibits invasion and metastasis of cancer

cells by inactivating transforming growth factor-b (TGF-b)
signalling; which in turn decreases EMT-related genes such as

vimentin, fibronectin, and N-cadherin (67). The ANO1 promoter

was shown to be activated by signal transducer and activator of

transcription 6 (STAT6). Inhibition of the STAT6/ANO1 pathway

reduced proliferation, migration, and invasion by gastric cancer

cells, suggesting that the STAT6/ANO1 pathway could represent a

novel therapeutic target for gastric cancer.
3.3 Research on ANO1 in liver cancer

Most cases of primary liver cancer are hepatocellular carcinoma

(HCC), a cancer that now ranks sixth globally. In 2022, more than

860,000 new cases of liver cancer were reported, accounting for

approximately 4.3% of all malignancies; in addition, 7.8% of all

cancer deaths (more than 750,000) were attributable to liver cancers

(2, 3). Most patients are diagnosed with liver cancer only after it has

reached advanced stages, which leads to the poor prognosis of this

disease. The statistics indicate that current treatments for liver

cancer are insufficient, and this has prompted investigations into

tumour mechanisms so that new therapeutic approaches can be

developed. One potential target for such research is ANO1.

Analysis of genomic data from primary HCC revealed the

expression of ANO1 mRNA and protein is noticeably greater in

HCC tissues than in adjacent noncancerous tissues. Distant

metastasis is positively associated with high ANO1 expression (68).

ANO1 is essential for tumour maintenance and is considered a

potential driver of HCC. Overexpression of ANO1 is related to poor

survival and vascular invasion, suggesting that ANO1 is a high-risk

marker for HCC (69). Overexpression of ANO1 induced the

upregulation of phosphatidylinositol 3-kinase (PI3K), phosphorylated

AKT (pAKT), phosphorylated p38 (p-p38) and phosphorylated ERK

(pERK) in HepG2 and SMMC7721 cells. The results suggested ANO1

promoted the proliferation of HCC cells by inducing the expression of

PI3K/AKT and the mitogen-activated protein kinase (MAPK)

signaling pathway. ANO1 regulates the cell cycle, increasing the

number of S-phase cells and decreasing the number of G-phase cells.

Inhibition of ANO1 results in decreased cell viability and increased

apoptosis in vitro and in vivo (70). Deng et al. also reported ANO1

siRNA suppressed proliferation, invasion, and migration by SMMC-

7721 cells, which accompanied inhibited MAPK signalling pathway by

phosphorylation of ERK1/2 and p38 reduction and cyclin D1 induction

(71). This evidence indicates that ANO1 induces carcinogenesis and it

represents an effective therapeutic target for HCC.
3.4 Research on ANO1 in oesophageal
squamous cell carcinoma

Oesophageal cancer ranks seventh as a cause of mortality and

eleventh in incidence, making it a major public health concern
Frontiers in Immunology 04
worldwide. According to reports, ESCC is a common subtype of

oesophageal cancer in China. Among all malignant tumours in

China, oesophageal cancer ranks 5th in mortality and 6th in

incidence (72, 73). Common risk factors for ESCC include

smoking, excessive alcohol consumption, dietary influences,

genetic predispositions, microorganisms, and other environmental

factors (74, 75).

Deng et al. reported increased ANO1 levels in ESCC tumours

and the corresponding lymph nodes as well as in metastatic

tumours (76). Kaplan-Meier survival analysis revealed patients

with positive ANO1 expression had poorer prognoses than did

those with negative ANO1 expression; the two groups had overall

survival rates of 26.22% vs. 42.91%, respectively (77).

When ANO1 binds to JUN, the liver X receptor (LXR) pathway

is rendered inactive, and intracellular cholesterol buildup is

increased; this in turn inhibits transcription of the genes that

encode cholesterol hydroxylase, cytochrome P450 (CYP)

enzymes, and CYP27A1. Additionally, in ESCC cells with high

ANO1 expression, the inhibitory effect of the LXR pathway on

interleukin-1b (IL-1b) is reduced, leading to increased secretion of

IL-1b, activation of nuclear factor-kappa B (NF-kB) signalling in

fibroblasts, and production of chemokine CCL1, thereby increasing

the invasiveness of ESCC cells. Consequently, increased ANO1

levels in cancer cells trigger both intracellular and extracellular

pathways that modify cholesterol metabolism and activate

fibroblasts, thus facilitating cancer metastasis (76).

In oesophageal cancer, the long noncoding RNA (lncRNA)

GIHCG is significantly expressed. GIHCG inhibits miR-29b-3p,

and this leads to increased ANO1 expression and promotes

proliferation and invasion by oesophageal cancer cells. GIHCG

knockdown suppresses tumour growth by reducing the direct

binding of GIHCG to miR-29b-3p and inhibiting ANO1

production. This finding revealed that the lncRNA GIHCG/miR-

29b-3p/ANO1 molecular axis plays an important role in ESCC (78).
3.5 Research on ANO1 in pancreatic cancer

Tumour recurrence and metastasis pose significant obstacles to

effective treatment of pancreatic cancer (79, 80). Sixty-one percent

of pancreatic cancer tissues have high levels of ANO1 expression,

and patients with ANO1-positive tumours have worse overall

survival than patients who do not (81, 82). In AsPC-1 cells,

absence of ANO1 inhibits the phosphorylation of EGFR and AKT

and induces apoptosis (83). Overexpression of ANO1 and

oncogenic KRAS in cancer cells were demonstrated to increase

cell proliferation in vivo and vitro. RNA-seq analysis were

performed in cancer cells bearing different status of ANO1 and

KRAS. The results revealed that high levels of ANO1 and KRAS

were associated with activating key genes involved in lipid

metabolism like HMGCS1, indicating that ANO1 regulated basic

metabolic processes that occured in pancreatic cancer cells.

However, the specific mechanism through which this occurs

requires further research (84).
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3.6 Research on ANO1 in gastrointestinal
stromal tumours

GIST, which originates from Cajal cells, is the most prevalent

sarcoma of the gastrointestinal system (85). GISTs consist primarily

of spindle or epithelioid cells. Genetically, they often feature

mutations in platelet-derived growth factor receptor alpha

(PDGFRa) or c-kit. Immunophenotypically, 95% of GISTs are

positive for CD117 (86). ANO1 was initially identified in GISTs

and is highly expressed in 65–100% of cases. It is now included

alongside CD117 in the diagnosis of GISTs and serves as a specific

diagnostic marker (87, 88).

According to Miettinen et al., Cajal and gastric epithelial cells

test positive for ANO1. Overall, the sensitivities of patients with

GISTs to ANO1 and KIT are very similar, at 94.4% and 94.7%,

respectively. The expression of ANO1 is more than that of KIT in

GISTs with PDGFRa mutations (89). ANO1 expression was

assessed in 59 GIST patients by Rizzo et al., who reported its

expression was significantly related to tumour size and that it was

present in 66% of CD117-positive GISTs. Patients with high ANO1

expression exhibit worse prognosis at 2 years after treatment (66%

vs. 100% recurrence-free survival) (90). Knockdown of ANO1 in the

GIST xenograft model dramatically reduced tumour development.

According to ingenuity pathway analysis, ANO1 modulates the

antiangiogenic factor insulin-like growth factor-binding protein 5

(IGFBP5), which in turn regulates IGF/IGFR signalling in the

tumour microenvironment and hence promotes tumour growth

(91). In flow cytometry experiments, GIST cells were incubated with

ANO1 inhibitors. The results showed inhibition of ANO1 may shift

early apoptotic cells to late apoptotic stages (92). Another study

reported biochemical inhibition of ANO1 reduced cell viability and

lead to G1 cell cycle arrest, indicative of apoptosis (93). These

studies indicate ANO1 may serve as a biomarker for GIST and is

positively correlated with poor prognosis, making it a specific target

for therapy.
4 Targeting ANO1 in gastrointestinal
cancers

Due to its significant functions in cancer, ANO1 is recognized

as a potential clinical therapeutic target. Various ANO1 inhibitors

have been identified through high-throughput screening in which

iodine-sensitive yellow fluorescent protein (YFP) was employed

(94–98). CaCCinh-A01 is the most commonly used ANO1

inhibitor (98–101). Site-directed mutagenesis experiments have

shown that CaCCinh-A01 binds to the R515/K603/E623 sites of

ANO1, blocking the ion conduction pore and significantly

inhibiting ANO1 chloride ion currents while promoting protein

degradation (102). CaCCinh-A01 has demonstrated antitumour

effects in pancreatic ductal adenocarcinoma (PDAC), CRC, breast

and prostate cancer, head and neck squamous cell carcinoma

(HNSCC), and glioblastoma (GBM) (103–108). It reduced ANO1

protein expression by promoting proteasomal turnover of ANO1 in

parental cancer cells. In CaCCinh-A01-resistant cell pools, it failed
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to decrease ANO1 protein levels with inhibited ANO1-dependent

currents. Knockdown of ANO1 in CaCCinh-A01-resistant cell

pools led to significantly decrease colony formation. The results

showed CaCCinh-A01 may play its antitumor role by decreasing

ANO1 protein levels rather than inhibiting ANO1 channel activity

(104). Apart from tumor cells, it also reduces allodynia in nerve

injury (109). CaCCinh-A01 acts as a Cl- channel inhibitor to

promote cells proliferation and wound healing ability of airway

(110). CaCCinh-A01 effectively prevents the progression of kidney

fibrosis by inhibiting ANO1 expression (111). T16Ainh-A01, an

effective inhibitor of ANO1, effectively blocks chloride ion currents

with an IC50 of less than 1 mmol. T16Ainh-A01 significantly

inhibits cell migration, induces cell cycle arrest, and promotes

apoptosis of prostate and colon cancer cells (107); its antitumour

effects have also been observed in PDAC, HNSCC, and breast

cancer (112–114). The small molecular compound K786-4469

binds to ANO1 at Arg 557, reducing ANO1 expression and

reversing disordered cholesterol metabolism, thereby restoring

cholesterol homeostasis. In ESCC cells and mouse models, K786-

4469 significantly decreases the expression of ANO1 and its

downstream target CYP27A1 and reduces intracellular cholesterol

levels, thereby mitigating lung metastasis of ESCC (76). In prostate

cancer, breast cancer, and PDAC, Ani9 inhibits ANO1 synthesis in

a concentration-dependent manner, reducing the proliferation and

invasive capabilities of cancer cells (115, 116).

Natural products obtained from various plants have been found

to inhibit ANO1. In CRC, dehydroandrographolide (DP) can

significantly inhibit chloride ion currents in SW620 cells, reduce

ANO1 protein expression, and suppress the activity and migration

of tumour cells (117). Honokiol binds to ANO1 at R429/K430/

N435, blocking its channel currents and inhibiting the proliferation

of CRC cells (118). Several drugs in clinical use have been shown to

inhibit ANO1. Idebenone, an analogue of coenzyme Q10, has

demonstrated clinical effects in treating Alzheimer’s disease (119).

It inhibits ANO1 channel activity and has antitumour effects on

prostate and pancreatic cancer cells in a dose-dependent manner

(120). Jiang et al. evaluated benzbromarone, a drug used to treat

gout, in GI cancer cells and patient-derived xenograft (PDX)

models. It is also reported benzbromarone strongly inhibited

ANO1 protein expression in gastric, oesophageal, and CRC cells

and exerted antitumour effects in gastric cancer and GIST PDX

models (9). Evodiamine and rutecarpine, compounds extracted

from the traditional Chinese medicine Evodia rutaecarpa, bind to

Lys384, Thr385, and Met524 in ANO1, inhibiting Cl- currents and

suppressing peristalsis in isolated guinea pig ileum (121). Diltiazem,

a calcium channel blocking agent that is used to treat cardiovascular

disorders, can significantly inhibit invasion by HCC cells by

downregulating the expression of ANO1 (122). Table 1 lists some

chemicals that have been shown to inhibit ANO1.

5 Conclusion

GI cancers of the colorectum, stomach, liver, oesophagus,

pancreas and mesenchyme are prevalent cancers with high

mortality and morbidity. Risk factors for GI cancers include
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obesity, alcohol consumption, smoking, inflammatory diseases, viral

infections and mutations. Routine endoscopy is recommended for

screening neoplasms. However, due to the limited availability of

endoscopy in some high-risk regions, many patients are diagnosed

with disease at an advanced stage; in addition, the incidence of GI

cancers among young adults is increasing. The treatment of GI

cancers is complex and may include a combination of surgery,

chemotherapy, radiation therapy, immunotherapy and targeted

therapy. However, these interventions can have numerous side

effects, including systemic toxicity, the development of resistance,

and a need for supportive care. Moreover, treatment efficacy may be

restricted by metastasis and recurrence. Therefore, elucidating the

mechanisms involved in tumour progression and identifying novel

therapeutic targets are urgent objectives in GI cancer research.

The progression of GI cancers is influenced by various factors,

including gene editing, tumour size and location, microenvironmental

regulation and host susceptibility. An increasing number of studies

have characterized ANO1 as a chloride channel whose molecular

expression significantly impacts cancer at various stages. Its effects are

transduced through a variety of signalling pathways, including the

TGF-b, TAZ–AXL–CTGF, PI3K/AKT, andWnt/b-catenin pathways.

Given these observations, ANO1 may be considered a potential

diagnostic, therapeutic, and prognostic marker for GI cancers.

Certain miRNAs play vital roles in the invasiveness and migration

of GI cancers. These genes are negatively correlated with ANO1 and

are linked to vascular invasion or lymph node metastasis. In other

cancers, such as HNSCC and breast cancer, ANO1 is also regulated by

other factors, including DNA methylation and acetylation, lncRNAs,
Frontiers in Immunology 06
and circular RNAs (circRNAs) (10, 123–125). ANO1 is also vital in

modulating the tumour microenvironment through its effects on cell

cycle or host’s immune response to tumours. Due to these key roles,

ANO1 holds great potential as a new target for the diagnosis and

therapy of GI cancers.

Current projections for ANO1-based therapies include two

strategies: suppression of chloride channel activity and reduction of

ANO1 expression at the mRNA and protein levels. Although ANO1

expression is upregulated in GI cancers, inhibiting the activity of

ANO1 can correct the abnormal overexpression of downstream

molecules. A variety of inhibitors have been identified using high-

throughput screening, a technique that possesses the great advantages

of high specificity and wide application. Natural inhibitors represent

excellent prospects with low toxicity, good drug potential, and almost

no side effects. Clinically used drugs inhibit cancer cells by

downregulating ANO1, with promising safety and economic

efficacy. Moreover, nonspecific inhibitors of CaCCs, including

broad-spectrum inhibitors such as niflumic acid (NFA), DIDS and

4,4’-diisothiocyano-2,2’-stilbenedisulfonic acid (NPPB), are available.

NFA and DIDS block voltage-gated K+ channels and volume-

regulated anion channels as well as CaCCs (126–130), and NPPB

inhibits both ANO1 and ANO2 (131, 132). The selectivity of these

drugs is low, and their effects on tumour cells are not ideal; however,

they have therapeutic effects on other conditions such as cystic

fibrosis, hypertension, and asthma (133–137). Further investigations

are needed to understand the specific mechanisms involved.

Despite the considerable therapeutic potential of ANO1, several

challenges remain to be addressed. First, current research on ANO1
TABLE 1 Summary of chemicals used to inhibit ANO1.

Chemicals Molecular Mechanism Effects Cancer Types References

CaCCinh-A01

binds to R515/K603/E623 and blocks the
pore of ANO1
inhibits Cl- efflux
promotes degradation of the
ANO1 protein

inhibits cell proliferation, invasion
and migration

PDAC, HNSCC, GBM, CRC, breast and
prostate cancer

(103–108)

T16Ainh-A01 inhibits Cl- efflux
inhibits cell proliferation
and migration

PDAC, HNSCC, CRC, breast and
prostate cancer

(107, 112–114)

K786-4469 binds to ARG557 in ANO1
decreases cholesterol levels,
inhibits cell invasion and metastasis

ESCC (76)

Ani9 decreases ANO1 protein levels
decreases cell viability
and proliferation

HNSCC, PDAC, breast and
prostate cancer

(115, 116)

Dehydroand-
rographolide

inhibits chloride currents
decreases protein levels of ANO1

inhibits cell proliferation
and migration

CRC (117)

Honokiol
binds to R429/K430/N435 of ANO1
inhibits Cl- currents

inhibits cell proliferation CRC (118)

Idebenone inhibits Cl- efflux
decreases cell proliferation
and migration

PDAC
prostate cancer

(120)

Benzbromarone decreases levels of ANO1 protein
decreases cell proliferation
inhibits tumour growth in
PDX model

ESCC, CRC,
GC, GIST

(9)

Evodiamine
and rutecarpine

bind to Lys384, Thr385, and Met524

inhibit Cl- currents
suppress peristalsis in isolated
guinea -pig ileum

— (121)

Diltiazem
decreases mRNA and protein levels
of ANO1

inhibits cell invasion HCC (122)
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inhibitors is largely being conducted in preclinical stage without any

inhibitors verified for clinical use. There is a need to develop animal

models that allow comprehensive studies and to translate the efficacy

observed in animal studies to human trials. Furthermore, the immune

response induced by ANO1 inhibitors may pose a problem with

respect to the safety and efficacy of therapy. Many ANO1 inhibitors

such as CaCCinh-A01,T16Ainh-A01, K786-4469, Ani9,

dehydroandrographolide and Idebenone are discovered from

chemical and natural products. Of those, chemical inhibitors have

half maximal inhibitory concentration values range from 100nM to

3μM with natural products up to 10μM or more (138–141).

Determination of the appropriate dosage is equally significant, as

overuse or insufficient use could impair the therapeutic effect, leading

to unsatisfactory treatment outcomes. Finally, it is still remained to

verify whether the inhibitors can act on other channels. A variety of

ANO1 inhibitors have exhibited inhibitory effects on other ion

channels such as ANO2, BEST1 and CFTR (142–144). Furthermore,

ANO1 is widely expressed in no more than one tissue, including

smooth muscle cells, epithelial cells and neuron. It is necessary to

validate targets for selective modulators. There are various limitations

related to the application of ANO1 inhibitors, understanding the

mechanism of interaction of ANO1 with other elements, and further

exploration of ANO1 expression levels. Addressing these limitations

can improve research on ANO1-based therapies.

It is anticipated that integrating ANO1 in combination cancer

therapy is a promising direction to improve therapeutic efficacy.

Combined blockade of ANO1 and EGFR remarkably improved

response to cetuximab in HNSCC and breast cancer (145, 146). In

addition, recent evidence indicated ANO1 blockade can enhance

the anti-tumor effect of cisplatin in HNSCC and lung cancer (147,

148). The resistance to Trastuzumab can be overcome by treatment

with ANO1 inhibitor in mice with prostatic and breast cancer (149).
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ANO1 also plays an important role in a variety of tumor

infiltrating immune cells and regulating anti-tumor immune

response in tumor microenvironment. Aberrant overexpression of

ANO1 contributed to tumor-induced immunosuppression. In

tumor cells, activated ANO1 promoted TGF-b production and

release, which increased cancer-associated fibroblasts (CAFs)

infiltration and inhibited accumulation of CD8+T cells, leading to

immunotherapeutic resistance to anti-PD-1 antibody in GI cancers

(9). According to data from Pan-cancer RNA-seq, immune cells

such as resting CD4+T cells and activated mast cells were higher in

ANO1-high group, while activated CD4+ Tcells and dendritic cells,

plasma cells were higher in ANO1-low group. The results showed

ANO1 may function an inhibited role in helper T cells (57). GSEA

analysis of immune cells in high and low ANO1 expression group in

HNSCC showed increased infiltration of naive B cells, lymphocytes

and CD8 cells in low group and increased infiltration of M2

macrophages in high group (150). Functional enrichment analysis

of HCC identified high expression of ANO1, CDK1 and PDGFRA

predicted high-risk group for HCC. Furthermore, some immune

checkpoints such as TIGT, CTLA4, LAG3 and HAVCR2 were

demonstrated higher in the high-risk group (68). Wang et al.

analyzed genomic data from 30 PD-L1-negative NSCLC patients

who received dual immunotherapy with anti-PD-L1 and CTLA-4.

Patients with ANO1 mutations who received combined therapy

demonstrated longer progression-free survival, indicating that

ANO1 may serve as an effective biomarker for predicting the

efficacy of dual blockade therapy in NSCLC with PD-(L)1/CTLA-

4 (151).

As research progresses, the molecular mechanisms by which

ANO1 mediates tumour malignancy are becoming clearer

(Figure 2). Knowledge of these mechanisms provides a foundation

for the use of ANO1 as a target for improving clinical diagnosis,
FIGURE 2

Role of ANO1 and targeting strategies in CRC, ESCC, liver cancer, gastric cancer, pancreatic cancer, and GIST.
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precisely predicting prognosis, and accelerating the treatment of GI

cancers. With the evolution of technology and research, the role of

ANO1 in cancer is likely to be profound and promising.
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