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Objective: Esophageal cancer (EC) ranks among the most prevalent 
malignancies globally and represents a significant and growing public health 
burden. This study aimed to construct a prognostic model leveraging anoikis
related genes (ARGs) to predict patient survival and elucidate the immunological 
microenvironment in EC. The findings are anticipated to enhance prognostic 
accuracy and inform therapeutic strategies, ultimately improving patient 
outcomes and treatment efficacy. 

Methods: A comprehensive analysis was conducted using 11 control samples and 
159 EC samples obtained from The Cancer Genome Atlas (TCGA) database, 
alongside associated clinical features. A total of 794 ARGs were curated from 
GeneCards database. Functional enrichment analyses of EC-related differentially 
expressed ARGs were performed using Gene Ontology (GO) and the Kyoto 
Encyclopedia of Genes and Genomes (KEGG). Prognostic differential ARGs 
associated with EC were identified through univariate Cox regression analysis, 
while LASSO regression was employed to minimize overfitting and construct a 
robust risk prognostic model. The EC cohort was stratified into training and 
testing groups for model development and verification. Model performance was 
evaluated through risk curves, survival curves, time-dependent receiver 
operating characteristic (ROC) curves, ROC curves for the riskscore and clinical 
features, and independent prognostic analysis. A nomogram with high predictive 
accuracy was also developed to estimate the prognosis of EC patients. To assess 
the impact of the risk prognosis model on the immune microenvironment of EC, 
analyses included tumor microenvironment analysis, single-sample gene set 
enrichment analysis (ssGSEA), immune cell infiltration correlation analysis, and 
differential analysis of immune checkpoint expression. Drug sensitivity profiling 
was conducted to identify potential therapeutic agents for EC. Finally, the 
expression of selected ARGs was validated at the mRNA level in EC cell lines 
using real-time quantitative PCR (RT-qPCR). 
01 frontiersin.org 

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1599171/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1599171/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1599171/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1599171/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1599171/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1599171/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1599171&domain=pdf&date_stamp=2025-07-11
mailto:ymy25808@163.com
mailto:hhyy_yangzhi@163.com
https://doi.org/10.3389/fimmu.2025.1599171
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1599171
https://www.frontiersin.org/journals/immunology


Su et al. 10.3389/fimmu.2025.1599171 

Frontiers in Immunology 
Results: The ARG-based risk prognostic model was constructed incorporating 
four high-risk ARGs (CDK1, IL17A, FOXC2, and OLFM3) and two low-risk ARGs 
(PIP5K1C and MAPK1). This model demonstrated strong predictive accuracy for 
the survival outcomes of EC patients. Immune correlation analyses revealed that 
the high-risk group exhibited significantly lower immunological scores 
compared to the low-risk group. Notably, immune cells such as macrophages 
and mast cells were markedly downregulated in the high-risk group. Additionally, 
key immunological functions, including APC co-inhibition, parainflammation, 
Type I IFN Response, and Type II IFN Response, were significantly suppressed in 
the high-risk group. Eight immune checkpoint-related genes (TNFRSF25, 
TNFRSF14, CD70, TNFSF15, TMIGD2, CD160, TNFSF18, and HHLA2) displayed 
distinct expression differences between high- and low-risk groups. The 
nomogram developed from this model demonstrated high efficacy in 
predicting EC patient prognosis. Furthermore, six potential therapeutic agents 
for EC were identified: BIRB.0796, Camptothecin, CHIR.99021, Methotrexate, 
PF.4708671, and Vorinostat. Finally, the mRNA expression levels of ARGs were 
validated using RT-qPCR in EC cell lines. Compared to normal esophageal 
epithelial cells (NE-2), CDK1 and MAPK1 were significantly upregulated in two 
EC cell lines (KYSE-30 and KYSE-180). 

Conclusion: This study provides valuable insights into the prognostic outcomes 
and immune microenvironment of EC through the analysis of ARGs. 
Furthermore, several potential therapeutic agents for EC were identified, 
offering promising avenues for treatment. These findings hold significant 
potential for enhancing the survival outcomes of EC patients and provide 
meaningful guidance for clinical decision-making in managing this malignancy. 
KEYWORDS 
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1 Introduction 

Esophageal cancer (EC) ranks among the most prevalent and 
lethal malignancies globally, posing an increasingly significant 
disease burden worldwide (1). Despite advancements in 
diagnostic and therapeutic approaches, the prognosis for EC 
patients remains poor, largely due to the absence of robust and 
reliable diagnostic biomarkers. Although surgical resection remains 
a cornerstone of treatment and can extend patient survival, high 
rates of recurrence and metastasis continue to challenge clinical 
management, significantly limiting long-term outcomes (2). 
Understanding the molecular and cellular mechanisms underlying 
EC progression is therefore critical to addressing these challenges. 
Insights into these mechanisms could facilitate the identification of 
novel diagnostic indicators and therapeutic targets, ultimately 
improving early detection, treatment efficacy, and patient survival 
rates (1, 3). This underscores the urgent need for continued research 
into the pathogenesis and progression pathways of EC to inform 
innovative clinical strategies and reduce the global burden of 
this malignancy. 
02 
Anoikis is a specialized form of programmed cell death 
triggered by the disruption of cell-cell or cell-extracellular matrix 
(ECM) attachments. This process is essential for maintaining tissue 
homeostasis, as it eliminates misplaced or detached cells, thereby 
preventing inappropriate cellular growth and localization (4, 5). 
Anoikis plays a pivotal role in various physiological and 
pathological processes, including development, carcinogenesis, 
and the maintenance of tissue equilibrium (6). In most cancers, 
anchorage-dependent growth is a hallmark, and the absence of 
ECM attachment typically induces anoikis, which serves as a critical 
barrier to tumor metastasis. Consequently, the activation of anoikis 
is a vital mechanism in counteracting tumor initiation and 
progression (5). However, for cancer cells to metastasize 
successfully, they must evade anoikis. Evidence from prior 
research highlights the significance of this evasion in cancer 
biology. For example, inactivation of IL1RAP induces anoikis and 
prevents the metastatic spread of Ewing sarcoma cells (5). Similarly, 
Tubeimoside V sensitizes triple-negative breast cancer MDA-MB

231 cells to anoikis by modulating caveolin-1-related signaling 
pathways (4), and disulfiram activates calpain-mediated anoikis, 
frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1599171
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Su et al. 10.3389/fimmu.2025.1599171 

 

inhibiting lung colonization in triple-negative breast cancer (5, 7). 
Unfortunately, not all cancer cells are susceptible to anoikis, as some 
acquire resistance, a phenomenon crucial to the progression of 
certain malignancies (8, 9). For instance, HCRP-1 regulates anoikis 
resistance through the EGFR-AKT-BIM axis and serves as a 
prognostic marker in colon cancer (10). The PLAG1-GDH1 axis 
promotes anoikis resistance and metastasis via CAMKK2-AMPK 
signaling in LKB1-deficient lung cancer (9). Moreover, nuclear 
MYH9-induced CTNNB1 transcription, which can be targeted by 
staurosporine, enhances anoikis resistance and metastasis in gastric 
cancer cells (11). Despite these insights into the role of anoikis in 
various cancers, its function and mechanisms in EC remain 
unexplored. This gap underscores the need for focused research 
to elucidate the involvement of anoikis in EC progression and its 
potential as a therapeutic target. 

The development of robust risk prognostic models holds 
significant promise for predicting tumor outcomes and improving 
personalized treatment strategies. In recent years, novel prognostic 
models have been proposed to enhance the accuracy of predicting 
patient prognosis across various cancers. For instance, a ferroptosis
related lncRNA signature has been shown to correlate with 
esophageal squamous cell carcinoma (ESCC) prognosis, tumor 
microenvironment dynamics, and therapeutic responsiveness 
(12). Similarly, an autophagy-related gene signature has been 
identified and validated for its prognostic value in ESCC patients, 
providing insights into tumor progression and patient outcomes 
(13). Moreover, transcriptional and genomic alterations in 
cuproptosis-related genes have been linked to EC malignancy and 
immune infiltration, highlighting their potential as biomarkers and 
therapeutic targets (14). Building upon this foundation, the current 
study introduces a novel risk prognostic model based on ARGs, 
which offers a new perspective on EC prognosis. This model not 
only underscores the critical role of ARGs in predicting patient 
outcomes but also sheds light on their influence within the immune 
microenvironment. By integrating ARGs into the prognostic 
framework, this study provides a deeper understanding of their 
involvement in tumor progression, immune regulation, and 
potential therapeutic interventions. Such advancements pave the 
way for more precise risk stratification and personalized treatment 
strategies for EC patients, ultimately aiming to improve clinical 
outcomes and quality of life. 
2 Materials and methods 

2.1 Data acquisition and collation 

The transcriptomic and clinical data utilized in this study were 
sourced from The Cancer Genome Atlas (TCGA) database (https:// 
portal.gdc.cancer.gov/), comprising a total of 170 samples, including 
11 normal controls and 159 EC samples. The clinical parameters for 
EC patients included survival time (futime), survival status (fustat), 
gender, pathological stage, and TNM classification (T: tumor size/ 
invasion, N: lymph node involvement, M: distant metastasis). 
Additionally, a comprehensive set of 794 ARGs was curated from 
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the GeneCards database (https://www.genecards.org/). From the 
GeneCards database, we retrieved ARGs associated with “Anoikis” 
categorized as “Protein Coding”. 
2.2 EC-related differentially expressed 
ARGs 

To identify ARGs associated with EC, a set of 794 ARGs was 
intersected with the genes expressed in the EC transcriptomic dataset. 
Differential expression analysis was conducted on 159  EC  samples and  
11 normal control samples using the limma package in R. The analysis 
identified differentially expressed genes (DEGs) in EC based on the 
screening thresholds of P<0.05 and |logFC|≥0.5 (15). Subsequently, the 
intersection of EC-related ARGs with EC-specific DEGs yielded  a
subset of differentially expressed ARGs associated with EC, providing a 
focused set of candidates for further investigation. 
2.3 Enrichment analysis 

The Database for Annotation, Visualization, and Integrated 
Discovery (DAVID, http://david.abcc.ncifcrf.gov/) was employed to 
conduct Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analyses for the differentially 
expressed ARGs associated with EC. A significance threshold of 
P<0.05 was applied for screening (16). GO enrichment analysis 
encompassed three primary categories: Biological Processes (BP), 
Cellular Components (CC), and Molecular Functions (MF), 
providing a comprehensive framework for understanding the 
functional roles of these genes in EC pathogenesis. 
2.4 Construction of risk prognostic model 

Univariate Cox regression analysis was performed using the 
survival package in R to identify the differentially expressed ARGs 
significantly associated with EC prognosis. To mitigate the risk of 
overfitting and determine the optimal number of differentially 
expressed ARGs for model construction, LASSO regression 
analysis was subsequently conducted using the glmnet package in 
R (17). The EC samples were randomly partitioned into training 
and testing cohorts, and a prognostic risk model was developed. The 
riskscore for each patient was then calculated as follows: 

n 
Riskscore = o(mrnaexpi x coefi) 

i=1 

The n represents the number of differentially expressed ARGs 
associated with EC prognosis, and i denote the i-th ARG. The 
riskscore for each sample was calculated by multiplying the 
expression level of each EC prognosis-related differentially 
expressed ARGs by its corresponding regression coefficient, and 
then summing the results (18). Based on the median riskscore, EC 
patients were stratified into high-risk and low-risk groups for 
further analysis. 
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2.5 Validation of the risk prognostic model 

To assess the differential survival outcomes between high- and 
low-risk groups, a risk curve and survival status plot were generated 
using R, enabling visualization of survival status variations among 
EC patients (19). The pheatmap package in R was utilized to create a 
heatmap, which allowed for the examination of the expression 
patterns of differentially expressed ARGs in both high- and low-risk 
groups. To evaluate the prognostic impact of the risk model on EC 
patient survival, survival analysis was conducted using the survival 
and survminer packages in R. Time-dependent receiver operating 
characteristic (ROC) curves were generated to assess the model’s 
predictive accuracy over time, as well as ROC curves for the 
riskscore and clinical features, using the survival, survminer, and 
timeROC packages. Furthermore, to determine whether the risk 
score and clinical features could serve as independent prognostic 
factors, univariate and multivariate Cox regression analyses were 
performed using the survival package in R. These analyses provided 
a robust evaluation of the model ’s potential utility in 
clinical prognostication. 
2.6 Risk differential analysis 

Differential analysis between the high-risk and low-risk groups 
within both the training and testing cohorts was conducted using 
the reshape2 and ggpubr packages in R. This analysis aimed to 
evaluate whether the ARGs incorporated in the model exhibited 
distinct expression patterns between the two risk groups. 
2.7 Clinical features analysis 

A nomogram is a valuable tool for predicting cancer prognosis, 
and in this study, we developed a nomogram based on the training 
cohort. The RMS package in R was utilized to construct the 
nomogram, which was designed to predict the 1-, 3-, and 5-year 
survival outcomes of EC patients. Additionally, a calibration curve 
was plotted to assess the agreement between the predicted and 
observed survival probabilities. To evaluate the applicability of the 
risk prognostic model across various clinical subgroups of EC 
patients, we validated its performance according to different 
clinical features. The clinical features were categorized as follows: 
gender (male vs. female), tumor stage (I-II vs. III-IV), T stage (T1–2 
vs. T3-4), N stage (N0 vs. N1-3), and M stage (M0 vs. M1). Model 
validation was performed using the survival and survminer 
packages in R to test whether the prognostic model was 
applicable and effective within each clinical subgroup. This 
validation allowed us to assess the robustness and generalizability 
of the model in predicting survival outcomes across diverse 
patient profiles. 
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2.8 Tumor microenvironment analysis 

Tumor microenvironment analysis was conducted on the EC 
transcriptome data using the limma and estimation in R. This 
analysis yielded stromal scores, immune scores, and the ESTIMATE 
score for each EC patient. The stromal, immune, and ESTIMATE 
scores for both the high-risk and low-risk groups within the training 
cohort were subsequently examined using the limma and ggpubr R 
packages, allowing for a comparative evaluation of tumor 
microenvironment components across the risk groups. 
2.9 Single sample gene set enrichment 
analysis (ssGSEA) 

The ssGSEA of the EC transcriptome data was conducted using 
the GSVA, limma, and GSEABase R packages to calculate 
enrichment scores for immune cell types and immune functions. 
Subsequently, the limma, reshape2, and ggpubr packages in R were 
utilized to assess and compare the differences in immune cell 
populations and immune functions between the high-risk and 
low-risk groups within the training cohort. This analysis 
facilitated a deeper understanding of the immune landscape in 
relation to the risk stratification of EC patients. 
2.10 Immune infiltration cell correlation 
analysis 

The CIBERSORT software was utilized to derive the relative 
abundance of 22 immune cell types from the EC transcriptome 
data, employing the e1071, parallel, and preprocessCore R packages 
(20). Samples with a P>0.05 were excluded from the analysis to 
ensure the reliability of the infiltrating immune cell data. 
Subsequently, a correlation analysis was performed to examine 
the relationships between the 22 infiltrating immune cell types 
and the differentially expressed ARGs incorporated in the risk 
prognostic model. This analysis was conducted using the limma, 
reshape2, and ggpubr R packages, providing insights into the 
interactions between immune infiltration and ARG expression in 
the context of EC prognosis. 
2.11 Differential analysis of immune 
checkpoints 

The differential expression of immune checkpoint-related genes 
within the risk prognostic models of the training cohort was 
analyzed using the limma, reshape2, ggplot2, and ggpubr R 
packages. This analysis identified the immune checkpoint-related 
genes that exhibited significant differences between the high-risk 
and low-risk groups, providing valuable insights into the potential 
role of immune regulation in the prognosis of EC. 
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2.12 Drug sensitivity analysis 

Drug sensitivity analysis was performed using the limma, 
ggpubr, and pRRophetic R packages to identify medications with 
differential sensitivities in the risk prognostic model of the training 
cohort, applying a significance threshold of P<0.001. This approach 
facilitated the identification of potential therapeutic agents for EC 
by screening for drugs that may offer therapeutic benefits based on 
the model’s prognostic stratification. 
2.13 Cell culture 

Human EC cell lines, KYSE-30 and KYSE-180, along with 
normal esophageal epithelial cells (NE-2), were used in this study. 
The EC cell lines (KYSE-30 and KYSE-180) were cultured in RPMI 
1640 medium supplemented with 10% fetal bovine serum (FBS). In 
contrast, the normal esophageal epithelial cells (NE-2) were 
cultured in a mixture of Defined Keratinocyte-SFM (DK-SFM) 
and Epilife medium. All cell cultures were maintained at 37°C in 
a humidified incubator with 5% CO2 to support optimal 
growth conditions. 
 

2.14 Real-time quantitative PCR (RT-qPCR) 

Total RNA was extracted from EC cell lines and normal 
esophageal epithelial cells (NE-2) using TRIzol Reagent (Catalog 
No. 15596018, Life Technologies Invitrogen), following the 
manufacturer’s protocol. RNA was subsequently reverse 
transcribed and amplified using ChamQ Universal SYBR qPCR 
Master Mix (Cat#: Q711-02, Vazyme), according to the 
manufacturer’s guidelines. The mRNA expression levels of ARGs 
were quantified using RT-qPCR. Primer pairs, synthesized by 
Accurate Biology, are listed in Table 1. Gene expression was

normalized to the b-actin reference gene, and relative expression 
levels were calculated using the. method. 
2.15 Statistical analysis 

All statistical analyses and visualizations were conducted using 
R software (version 4.1.2) and GraphPad Prism v9.0.0. Statistical 
significance was assessed using one-way analysis of variance 
(ANOVA), with a P <0.05 considered indicative of statistical 
significance. Each experiment was performed independently a 
minimum of three times to ensure reproducibility and reliability 
of the results. 
3 Results 

To enhance the clarity and comprehension of our study, we 
have provided a flowchart summarizing the key steps of the 
research, as illustrated in Figure 1. 
Frontiers in Immunology 05 
3.1 EC-related differentially expressed 
ARGs 

Through the intersection of 794 ARGs with the genes in the EC 
transcriptome data, we identified 794 EC-related ARGs. Differential 
expression analysis yielded 6465 DEGs, of which 3133 were 
upregulated and 3332 were downregulated. The resulting DEGs 
were visualized using volcano plots (Figure 2A) and heatmaps 
(Figure 2B). Upon intersecting the 6465 DEGs with the 794 EC-
related ARGs, we identified 318 EC-related differentially expressed 
ARGs (Figure 2C). 
3.2 Enrichment analysis 

The BP category revealed significant enrichment in apoptotic 
processes, signal transduction, positive regulation of gene 
expression, and positive regulation of cell proliferation among the 
318 EC-related differentially expressed ARGs. In terms of CC, 
substantial enrichment was observed in the cytoplasm, nucleus, 
cytosol, and extracellular space. MF related to ATP binding, DNA 
binding, protein kinase binding, and cytokine activity were also 
markedly enriched (Figure 2D). Additionally, these 318 EC-related 
differentially expressed ARGs were notably enriched in several 
cancer-related pathways, including pathways in cancer, PI3K-Akt 
signaling, MAPK signaling, FoxO signaling, apoptosis, cellular 
senescence, IL-17 signaling, and TNF signaling (Figure 2E). 
3.3 Construction of risk prognostic model 

Univariate Cox regression analysis was performed on the 318 
differentially expressed EC-related ARGs to calculate the Hazard 
Ratio (HR) values. This analysis identified 16 ARGs that were 
significantly associated with the prognosis of EC (Figure 3A). 
LASSO regression analysis was then employed to determine the 
optimal number of ARGs for model construction, with a penalty 
parameter (l) value revealing that six ARGs were most appropriate 
for inclusion in the prognostic model (Figures 3B, C). Using the 
constructed model, a riskscore was calculated for each EC sample. 
Based on the median riskscore, the training cohort was stratified 
into high-risk (N=40) and low-risk (N=40) groups. Similarly, the 
testing cohort was divided into high-risk (N=40) and low-risk 
(N=39) groups according to the median riskscore. 
3.4 Validation of the risk prognostic model 

The risk curves for both the training and testing groups 
demonstrate a consistent increase in the risk of EC as patients 
progress from the low-risk to the high-risk group (Figures 4A, 5A). 
Correspondingly, survival status maps for both groups indicate a 
higher mortality rate in patients with EC as the risk increases 
(Figures 4B, 5B). According to the risk heatmaps of both groups, the 
expression levels of high-risk ARGs, including CDK1, IL17A, 
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FOXC2, and OLFM3, progressively rise from the low-risk to the 
high-risk group, while the expression levels of low-risk ARGs, 
PIP5K1C and MAPK1, decrease accordingly (Figures 4C, 5C). 
Survival analysis for both the training and testing groups reveals 
Frontiers in Immunology 06
significant differences in patient survival between the high- and 
low-risk groups (Figures 4D, 5D). Time-dependent ROC curves for 
both groups demonstrate a higher area under the curve (AUC) at 1, 
3, and 5 years (Figures 4E, 5E). ROC curves for the risk score and 
TABLE 1 Primer sequences for RT-qPCR. 

Genes Forward Reverse 

b-actin TGGCACCCAGCACAATGAA CTAAGTCATAGTCCGCCTAGAAGCA 

CDK1 ACAGGTCAAGTGGTAGCCAT ACCTGGAATCCTGCATAAGCAC 

FOXC2 CAACATGTTCGAGAACGGCAG CTCGCTCTTGATCACCACCTTC 

IL17A ACAACCGATCCACCTCACCTT TGGTAGTCCACGTTCCCATCAG 

MAPK1 CGTTGGTACAGGGCTCCAGAA CTGCCAGAATGCAGCCTACAGA 

OLFM3 ATGACTACGAGGAACTACACCAA TCATCAGTTTGCCACATGTTAGC 

PIP5K1C GTTCAATCGCTCCGCCTGTC GATTGTCACGCACCAGACCAC 
 

FIGURE 1 

Flow chart of our study. 
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clinical features in both groups also show that the risk score, 
pathological stage, and N stage have larger AUC (Figures 4F, 5F). 
In the training group, univariate independent prognostic analysis 
identified that the risk score, pathological stage, N, and M stages can 
all serve as independent prognostic indicators (Figure 6A). 
Multivariate independent prognostic analysis in the training 
group further revealed that the risk score and N stage are 
significant independent prognostic factors (Figure 6B). In the 
testing group, univariate analysis also identified risk score, 
pathological stage, and N stage as independent prognostic factors 
(Figure 6C), and multivariate analysis confirmed that risk score, N, 
and M stages are independent prognostic indicators (Figure 6D). A 
comprehensive analysis of these independent prognostic factors 
suggests that both the risk score from the prognostic model and N 
stage may serve as reliable independent prognostic indicators for 
EC patients. 
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3.5 Risk differential analysis 

The expression levels of CDK1, PIP5K1C, FOXC2, and MAPK1 
were found to differ significantly between the high- and low-risk 
groups in the training cohort (Figure 7A). Similarly, in the testing 
cohort, CDK1, IL17A, PIP5K1C, and MAPK1 exhibited notable 
differences in expression between the high- and low-risk 
groups (Figure 7B). 
3.6 Clinical features analysis 

A nomogram model was developed based on the riskscore and 
clinical features to predict the 1-, 3-, and 5-year survival rates of EC 
patients (Figure 7C). The calibration curve closely aligned with the 
ideal reference curve (represented by the gray straight line), 
FIGURE 2 

EC-related differentially expressed ARGs. (A) Volcano plot of DEGs in patients with EC; (B) Heatmap of DEGs in patients with EC; (C) The intersection 
of EC-related ARGs and DEGs results in EC-related differentially expressed ARGs; (D) GO enrichment analysis of the EC-related differentially 
expressed ARGs; (E) KEGG enrichment analysis of the EC-related differentially expressed ARGs. 
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indicating a high degree of concordance between the predicted and 
observed survival outcomes (Figure 7D). This finding underscores 
the strong predictive accuracy of the nomogram model for EC 
patient prognosis. Further model validation within various clinical 
subgroups revealed that the risk prognostic model performed well 
across the stage, T, and N clinical groupings. Additionally, the 
model was effective for male patients in the gender subgroup and for 
patients with M0 stage in the M clinical subgroup (Figure 8). 
3.7 Tumor microenvironment analysis 

The tumor microenvironment analysis of the risk prognostic 
model in the training group revealed significant differences in the 
stromalScores, immuneScores, and ESTIMATEScores between the 
high- and low-risk groups. Notably, the scores in the low-risk 
group were higher compared to those in the high-risk 
group (Figure 9A). 
3.8 ssGSEA 

Differential analysis of immune cell populations in the risk 
prognostic model of the training group revealed a significant 
downregulation of macrophages and mast cells in the high-risk 
group (P < 0.01). Furthermore, immune function analysis indicated 
a notable downregulation of pathways, including APC co-
inhibition, parainflammation, Type I IFN response, and Type II 
IFN response, in the high-risk group (P < 0.01) (Figure 9B). 
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3.9 Immune infiltration cell correlation 
analysis 

Immunological correlation analysis revealed that CDK1 
exhibited a negative correlation with resting mast cells and 
plasma cells, while it was positively associated with activated CD4 
memory T cells, activated dendritic cells, activated mast cells, and 
M0 macrophages. Additionally, resting mast cells, memory B cells, 
resting dendritic cells, M2 macrophages, and activated NK cells 
showed a negative correlation with IL17A, whereas plasma cells, 
naïve B cells, regulatory T cells (Tregs), and neutrophils were 
positively correlated with IL17A. PIP5K1C demonstrated a 
positive correlation with resting mast cells. FOXC2 was positively 
correlated with M0 and M1 macrophages but negatively correlated 
with naïve B cells, plasma cells, Tregs, and resting CD4 T cells. 
MAPK1 showed a positive correlation with resting NK cells and a 
negative correlation with follicular helper T cells, CD8 T cells, and 
Tregs. Finally, OLFM3 exhibited a negative correlation with 
activated dendritic cells (Figure 10). 
3.10 Differential analysis of immune 
checkpoints 

Immune checkpoint differential analysis revealed significant 
differences in the expression of 11 immune checkpoint-related 
genes between the high-risk and low-risk groups in the training 
cohort. Among these, TNFRSF25, TNFRSF14, CD70, TNFSF15, 
TMIGD2, CD160, TNFSF18, and HHLA2 exhibited exceptionally 
high statistical significance (P < 0.01) (Figure 11A). 
FIGURE 3 

Construction of risk prognostic model. (A) Univariate Cox regression analysis obtained 16 candidates prognostic EC-related differentially expressed 
ARGs; (B) Lasso Cox regression analysis; (C) Selection of the optimal penalty parameter for Lasso regression. 
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3.11 Drug sensitivity analysis 

A drug sensitivity analysis of the risk prognostic model in the 
training cohort revealed that several compounds, including 
BIRB.0796, Camptothecin, CHIR.99021, Methotrexate, PF.4708671, 
and Vorinostat, demonstrated statistically significant sensitivity 
across both high-risk and low-risk groups (P < 0.001). Notably, 
patients in the high-risk group exhibited heightened sensitivity to 
BIRB.0796, Camptothecin, Methotrexate, PF.4708671, and 
Vorinostat, whereas those in the low-risk group showed increased 
responsiveness to CHIR.99021 (Figure 11B). 
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3.12 Validation of the expression of ARGs 
in EC 

To further assess the expression of ARGs in EC, mRNA 
expression levels were analyzed in two EC cell lines, KYSE-30 and 
KYSE-180, with normal esophageal epithelial cells (NE-2) serving as 
the control group. Compared to NE-2 cells, the mRNA levels of 
CDK1 and MAPK1 were notably upregulated in both EC cell lines, 
KYSE-30 and KYSE-180. Additionally, the mRNA expression of 
FOXC2, IL17A, and OLFM3 was significantly elevated in the KYSE
180 cell line when compared to the control group (Figure 12). 
FIGURE 4 

Training groups. (A) Risk curve. (B) Survival status map; (C) Risk heatmap; (D) Survival curve. (E) Time-dependent ROC curves; (F) ROC curves for the 
riskScore and clinical features. 
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4 Discussion 

In this study, we developed an innovative risk prognostic model 
based on ARGs, which effectively predicts the survival outcomes 
and characterizes the immunological microenvironment of EC 
patients. This model is capable of forecasting overall survival in 
EC patients, with N serving as an independent prognostic indicator. 
The model incorporates six ARGs: PIP5K1C and MAPK1, which 
are identified as low-risk ARGs, and CDK1, IL17A, FOXC2, and 
OLFM3, which are high-risk ARGs for EC patients. Additionally, 
we constructed a nomogram model that significantly enhances the 
prediction of EC patient prognosis. Our findings also revealed that 
the immuneScores of high-risk EC patients were lower compared to 
low-risk patients. Furthermore, immune cells, such as macrophages 
and mast cells, were notably downregulated in the high-risk group. 
Immune functions related to APC co-inhibition, parainflammation, 
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Type I IFN response, and Type II IFN response were also 
significantly reduced in the high-risk group. We identified eight 
immune checkpoint-related genes—TNFRSF25, TNFRSF14, CD70, 
TNFSF15, TMIGD2, CD160, TNFSF18, and HHLA2—that 
demonstrated high statistical significance. Lastly, we identified six 
drugs—BIRB.0796, Camptothecin, CHIR.99021, Methotrexate, 
PF.4708671, and Vorinostat—that may hold potential therapeutic 
value for EC patients. 

CDK1, a key regulator of the eukaryotic cell cycle, orchestrates 
crucial processes such as the centrosome cycle and the initiation of 
mitosis (21, 22). As a therapeutic target, CDK1 has gained 
significant attention for its potential in cancer treatment, with 
inhibitors being particularly promising (22). In pancreatic cancer, 
CDK1 inhibition has been shown to overcome IFNG-mediated 
adaptive immune resistance (23). In melanoma, CDK1 collaborates 
with Sox2 to promote tumor initiation (24), while in gastrointestinal 
FIGURE 5 

Testing groups. (A) Risk curve. (B) Survival status map; (C) Risk heatmap; (D) Survival curve. (E) Time-dependent ROC curves; (F) ROC curves for the 
riskScore and clinical features. 
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FIGURE 6 

Independent prognostic analysis. (A) Univariate COX regression analysis of the training groups; (B) Multivariate COX regression analysis of the 
training groups; (C) Univariate COX regression analysis of the testing groups; (D) Multivariate COX regression analysis of the testing groups. 
FIGURE 7
 

Risk differential analysis and nomogram. (A) Risk differential analysis of the training groups; (B) Risk differential analysis of the testing groups;
 
(C) Nomogram of the training groups; (D) Calibration curve. 
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stromal tumors, CDK1 emerges as a novel vulnerability 
independent of the cell cycle, offering potential therapeutic 
avenues for advanced-stage patients (25). NCAPG-driven CDK1 
facilitates the malignant progression of non-small cell lung cancer 
through ERK signaling activation (26). In prostate cancer, SLC14A1 
downregulation enhances CDK1/CCNB1 and mTOR pathway 
activity, accelerating tumorigenesis (27). Conversely, NFIX 
inhibits breast cancer cell proliferation by delaying mitotic entry 
Frontiers in Immunology 12 
via CDK1 suppression (28). Additionally, CDK1 exerts a 
proapoptotic function, sensitizing ovarian cancer cells to 
paclitaxel and overcoming resistance when co-administered with 
duloxetine (29). FOXC2, a transcription factor belonging to the 
forkhead/winged helix family, is essential for embryonic 
development and organogenesis (30). As a critical regulator of 
tumor progression, FOXC2 has become a valuable biomarker for 
predicting cancer aggressiveness and patient prognosis (31, 32). For 
FIGURE 8 

Training groups, clinical validation of the risk prognosis model. 
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instance, in esophageal squamous cell carcinoma (ESCC) (33) and 
hepatocellular carcinoma (34), FOXC2 serves as a prognostic 
marker, playing a role in tumor growth and invasion (35). 
Moreover, FOXC2 promotes chemoresistance in nasopharyngeal 
Frontiers in Immunology 13 
cancer by inducing epithelial-mesenchymal transition, while also 
modulating the YAP signaling pathway and enhancing glycolysis 
(35). FOXC2 serves as a prognostic biomarker and facilitates tumor 
growth and invasive potential in hepatocellular carcinoma (34). In 
FIGURE 9 

Training groups. (A) Differential analysis of tumor microenvironment. (B) Immune cell and Immune function difference analysis of ssGSEA. 
FIGURE 10 

Correlation analysis between immune infiltration cells and differential ARGs involved in model construction. 
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ovarian cancer, stanniocalcin 1 enhances metastatic capacity, lipid 
metabolism, and cisplatin resistance through the FOXC2/ITGB6 
signaling pathway (36). Furthermore, MRTX1133 suppresses 
progression of KRAS G12D-mutated colorectal cancer by 
inducing ferroptosis via the METTL14/LINC02159/FOXC2 
axis (37). 

PIP5K1C contributes to the formation of cell junctions and is 
involved in growth factor-induced directional cell migration and 
adhesion. It also regulates the establishment of adherens junctions 
by facilitating the trafficking of CDH1/cadherin (38). Genetic 
variations in PIP5K1C and MVB12B, which are part of the 
endosome-related pathway, have been linked to survival outcomes 
in cutaneous melanoma (39). MiR-4649-5p functions as a tumor 
suppressor in triple-negative breast cancer through direct targeting 
of PIP5K1C, consequently enhancing the growth-inhibitory efficacy 
of the AKT inhibitor capivasertib (40). Furthermore, genetic 
FIGURE 11 

Training cohort. (A) Differential analysis of immune checkpoints. (B) Drug sensitivity analysis. *p < 0.05, **p < 0.01, ***p < 0.001. 
FIGURE 12 

Validation of the mRNA expression level of ARGs in EC cell lines. 
*p < 0.05, ***p < 0.001, each experiment was repeated three times. 
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variants in PIP5K1C and MVB12B, components of the endosomal 
pathway, have been identified as novel prognostic markers for 
cutaneous melanoma-specific survival (39). Functioning as a 
critical signaling node, MAPK1 integrates diverse biochemical 
stimuli to regulate fundamental cellular processes including 
proliferation, differentiation, transcriptional modulation, and 
developmental programs. The enzymatic activation of this kinase 
is contingent upon phosphorylation by upstream regulators. 
Following activation, MAPK1 undergoes nuclear translocation 
where it mediates phosphorylation of nuclear substrates. MAPK1 
has been shown to correlate with overall survival in EC patients 
(41). MicroRNA-490-3p downregulates MAPK1, inhibiting ESCC 
cell growth and promoting apoptosis (41). MiR-574-3p exerts 
tumor-suppressive effects in esophageal cancer by directly 
targeting FAM3C and MAPK1, thereby inhibiting cellular 
proliferation and invasive potential (42). Furthermore, MAPK1/3 
regulates hepatic lipid metabolism via ATG7-dependent autophagy 
(43). LINC00511 drives cervical cancer progression through 
modulation of the miR-497-5p/MAPK1 regulatory axis (44). 
Independent systems-level analysis of ARGs has identified 
MAPK1 as a potential therapeutic target for osteosarcoma 
patients receiving neoadjuvant chemotherapy (45). IL-17A plays a 
pivotal role in host defense by modulating immune responses, 
facilitating leukocyte recruitment, and promoting tissue repair, 
particularly through the activation of innate immunity. 
Furthermore, IL-17A acts on non-hematopoietic cells to enhance 
chemokine secretion, thereby recruiting myeloid cells to sites of 
inflammation. Heterozygosity at the IL7A-197 A/G locus confers 
protection against both the onset and severity of colorectal cancer 
within the Bulgarian cohort (46). Furthermore, P2X7 receptor 
activation modulates the reinforcing and psychomotor effects of 
METH, possibly via an IL-17A-dependent mechanism, given this 
cytokine’s emerging role in anxiety regulation (47). 

Despite the absence of prior reports on OLFM3, our findings 
establish its significant prognostic value in conjunction with other 
critical molecular markers. The six ARGs identified in this 
investigation - PIP5K1C, MAPK1, CDK1, IL17A, FOXC2, and 
OLFM3 - collectively represent a novel molecular signature with 
robust potential for predicting clinical outcomes in EC patients. 
These results not only reveal previously unappreciated roles for 
these ARGs in EC pathogenesis but also suggest complex 
interactions within anoikis-related pathways that warrant detailed 
mechanistic exploration. Future studies should focus on elucidating 
the precise molecular networks through which these biomarkers 
influence disease progression and treatment response. 

Tumor-associated macrophages (TAMs), which are among the 
most prevalent immune cells in the tumor microenvironment, play 
a crucial role in mediating tumor initiation and progression (48). 
The infiltration of CD68+/CD163- macrophages has been identified 
as a poor prognostic factor following neoadjuvant chemotherapy in 
EC and gastric adenocarcinoma (49). Additionally, high levels of 
M2 macrophage infiltration in ESCC have been associated with 
unfavorable prognosis and suboptimal pathological responses to 
neoadjuvant therapy (3). Mast cells, multifunctional immune cells 
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primarily located in the skin, respiratory mucosa, and 
gastrointestinal tract, are also implicated in cancer progression 
(50). Elevated mast cell density correlates with tumor growth in 
ESCC, and is positively associated with tumor angiogenesis, 
invasion depth, lymph node metastasis, and overall tumor 
progression (51, 52), all of which contribute to poor prognosis in 
ESCC patients (52). Moreover, research has shown that the number 
of activated CD169 macrophages and effector CD8 T cells within 
the same region is positively correlated with a subset of mast cells 
capable of producing IL-17 in the esophageal muscular propria, as 
opposed to the tumor nests, suggesting a favorable prognosis and 
improved survival (53). In this study, we observed that the levels of 
macrophages and mast cells were significantly reduced in the high-
risk group, along with a marked downregulation of immune 
functions, including APC co-inhibition, parainflammation, and 
both Type I and Type II IFN responses. 

One potential therapeutic strategy for EC involves the 
inhibition of immune checkpoint proteins (54). Previous studies 
have demonstrated that peripheral T lymphocytes in EC patients 
exhibit dysregulated expression of CD160 (53). In addition, 
TNFSF18 has been found to be significantly correlated with 
clinical factors such as gender, TNM stage, and survival outcomes 
in EC patients (p < 0.05) (55). HHLA2, a recently identified member 
of the B7 family of immune checkpoints, has been shown to be 
highly expressed in lung cancer (56) and colorectal carcinoma (57). 
Furthermore, elevated HHLA2 expression in ESCC, clear cell renal 
cell carcinoma, and pancreatic dual adenocarcinoma has been 
associated with better prognosis (58, 59). These findings suggest 
that HHLA2 could serve as a valuable biomarker across multiple 
cancer types. However, the roles of other immune checkpoint-
related genes, such as TNFRSF25, TNFRSF14, CD70, TNFSF15, and 
TMIGD2, in EC remain largely unexplored. The findings from this 
study emphasize the potential importance of these immune 
checkpoints in EC immunotherapy. Future investigations should 
focus on elucidating their expression profiles in EC tissues, 
delineating their mechanistic contributions to disease progression, 
and evaluating their utility as therapeutic targets or biomarkers for 
immunotherapy interventions in EC. 

BIRB.0796, a highly potent inhibitor of p38, has shown promise 
as a therapeutic agent (60). Camptothecin, a well-established 
anticancer drug, induces apoptosis and autophagy in cancer cells 
(61). In EC cells, camptothecin inhibits neddylation, thereby 
triggering protective autophagy through the NF-kB/AMPK/ 
mTOR/ULK1 signaling axis (61). CHIR99021, a GSK-3b 
inhibitor, is involved in Wnt pathway signaling (62). Similar to 
Wnt, CHIR99021 suppresses GSK-3 activity, potentially activating 
b-catenin-Lef/Tcf signaling, which is essential for maintaining 
cancer stem cells (62, 63). Methotrexate, a widely used 
chemotherapeutic and immunosuppressive agent, acts by 
inhibiting dihydrofolate reductase, thereby preventing the 
conversion of dihydrobiopterin (BH2) to tetrahydrobiopterin 
(BH4). This results in uncoupled nitric oxide synthase activity 
and sensitization of T cells to apoptosis, reducing immune 
responses (64, 65). PF-4708671, a selective S6K1 inhibitor, 
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modestly decreases S6 phosphorylation while paradoxically 
activating the PI3K pathway (66, 67). Its metabolic benefits in 
muscle and liver cells are attributed to the inhibition of 
mitochondrial complex I (68). In early cerebral ischemia

reperfusion injury, PF-4708671’s inhibition of p70 ribosomal 
S6K1 reduced infarct size and vascular permeability (69). 
Vorinostat, a pan-histone deacetylase inhibitor, has multiple 
therapeutic applications. It suppresses productive HPV-18 DNA 
amplification and selectively targets drug-resistant tumor cells (70). 
Additionally, vorinostat enhances the efficiency of CRISPR-
mediated homology-directed repair in human induced pluripotent 
stem cells (71), making it a versatile candidate for next-generation 
cancer therapies (72). Camptothecin, a potent topoisomerase I 
inhibitor, has demonstrated significant clinical efficacy in the 
treatment of a diverse range of malignancies, including primary 
liver cancer, gastric cancer, bladder cancer, rectal cancer, head and 
neck epithelial carcinoma, and leukemia, among others. Similarly, 
methotrexate, a well-established antifolate agent, has been widely 
employed in clinical settings for the management of various 
hematologic and solid tumors, such as acute lymphoblastic 
leukemia, head and neck squamous cell carcinoma, non-small cell 
lung cancer, and gynecological malignancies including ovarian and 
cervical cancers. Vorinostat, a histone deacetylase inhibitor, has 
been primarily indicated for the treatment of primary cutaneous T-
cell lymphoma. While small-molecule kinase inhibitors such as 
BIRB-0796, CHIR-99021, and PF-470867 have not yet been 
established as first-line clinical therapeutics, studies suggest their 
considerable therapeutic potential in many pathological conditions, 
including EC. Further investigation into their pharmacokinetic 
profiles, safety, and efficacy in human trials may pave the way for 
their future clinical application. 

Despite the valuable insights provided by this study, certain 
limitations remain. First, the relatively small sample size of tumor 
specimens may have affected the statistical power and external 
generalizability of the findings. Consequently, future studies are 
warranted to validate these results in larger and more diverse 
patient cohorts, thereby enhancing the robustness and 
reproducibility of the conclusions. Expanding the sample size 
would not only improve the statistical precision of the prognostic 
model but also strengthen its applicability across different patient 
populations. Furthermore, this study lacks a validation model for 
external datasets. Future research should be able to conduct further 
external verification to enhance generalization. Finally, although 
this study identified key ARGs associated with EC prognosis and 
immune regulation, the experimental validation is relatively limited, 
their specific biological functions and underlying mechanisms 
remain insufficiently explored, which is an important limitation. 
Comprehensive functional analyses are needed to elucidate how 
these  ARGs  contribute  to  tumor  progression,  immune  
microenvironment modulation, and therapeutic resistance, 
thereby providing deeper insights into their potential as 
biomarkers or therapeutic targets. Addressing these limitations in 
future research will be essential for increasing the translational 
potential of the findings and advancing the scientific understanding 
of EC. 
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In conclusion, this study successfully established a novel risk 
prognostic model based on six ARGs, offering a valuable tool for 
stratifying EC patients according to survival outcomes and immune 
microenvironment characteristics. The model not only provides 
insights into the complex interactions between anoikis and EC but 
also enhances the ability to predict prognosis with high accuracy. 
Furthermore, a complementary nomogram model was constructed, 
demonstrating robust predictive capability for long-term survival in EC 
patients. Additionally, this  research identified six candidate therapeutic 
agents—BIRB.0796, Camptothecin, CHIR99021, Methotrexate, PF
4708671, and Vorinostat—that exhibit sensitivity in EC patients and 
hold promise for improving clinical outcomes. These findings 
underscore the potential of personalized medicine approaches in 
optimizing therapeutic strategies for EC. By integrating gene 
transcriptomics, immunological, and pharmacological insights, this 
study lays the groundwork for developing more targeted treatment 
modalities. The risk model and its associated findings represent a step 
forward in the pursuit of precision oncology for EC, providing 
clinicians with actionable tools to enhance survival rates and 
therapeutic efficacy. Future investigations should focus on validating 
these models in larger, independent cohorts and exploring the 
mechanistic roles of the identified ARGs and therapeutic agents to 
further refine their clinical applicability. 
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