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Editorial on the Research Topic

Exploring the molecular mechanisms that regulate macrophage polarization
Macrophages are ubiquitous innate immune cells found in almost every organ of the

body. This family of phagocytes, represented by a variety of different subtypes, performs

tissue-specific functions as diverse as maintaining surfactant homeostasis performed by

alveolar macrophages in the lung (1) or synaptic pruning carried out by the brain’s

microglial cells (2). However, these cells are united by a common role in host defense,

providing a rapid response to microbial invaders and/or tissue damage. As part of this

function, macrophages adopt activation states, also referred to as polarization, during

different phases of an infection, cycling between a resting state (M0) in the absence of

infection to a highly proinflammatory and antimicrobial state upon exposure to microbial

ligands or inflammatory cytokines, referred to as M1. In contrast to this classical

inflammatory activation, alternative macrophage activation states are referred to as M2,

which can promote the resolution of inflammation and tissue repair, among other

functions (3).

This M1/M2 paradigm is not without its detractors. Several alternative models and

naming systems have been proposed over the years, and with good reason (4–8). At least 3

distinct types of M2 activation have been proposed using idealized in vitro condition

systems (9), and these systems cannot fully capture the complexity of these phenotypic

shifts, which are a composite of multiple stimuli in specific tissue microenvironments

overlaid with their temporal fluctuations. Furthermore, the M1/M2 system may be

inappropriate for describing the behavior of certain macrophage subtypes. For example,

alveolar macrophages do not express or only minimally express many of the canonical M1

markers (10, 11) and, due to their plasticity, often display intermediate M1/M2 phenotypes

(12). For all its flaws, the M1/M2 system persists as a utilitarian shorthand that remains

helpful when describing the pro-inflammatory and anti-inflammatory extremes of the

polarization continuum and the shifts of macrophage populations toward these extremes as

part of specific disease processes (13–15).
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Given the broad transcriptional reprogramming necessary for

macrophages to transition from one polarization state to another,

which is generally accepted to involve the altered expression of over

1,000 genes (16), significant attention has been focused on the core

transcriptional regulators responsible for its control. The M1 state,

as induced by interferon-gamma (IFNg) and microbial ligands

signaling via toll-like receptors, is largely controlled by STAT1

(17, 18), IRF1 (19, 20), and NF-kB (21), whereas the M2 state, as

induced by interleukin (IL)-4, IL-10, and IL-13, is mainly controlled

by STAT3, 6 (22), and PPARg (23). These circuits are not separate
but linked by a range of feedback loops and cross-inhibitory

mechanisms that generally provide coherent shifts from one state

to the other. Superimposed on these mechanisms are the activities

of other transcription factors, including c-Myc (24), KLF4 (25), p53

(26), and HIF1 (27), which are better known for regulating other

cellular processes, such as cell proliferation, apoptosis, and the

response to hypoxia, but make significant contributions to the

regulation of either or both the M1 and M2 states.

In this Research Topic, which includes 6 (Mini) Reviews and

Original Research Articles, we explore some of the lesser-known

and often surprising contributors to macrophage polarization.

These inc lude ext r ins i c f ac tor s o f the macrophage

microenvironment, such as the biomechanical properties of the

extracellular matrix and non-cytokine signaling agents, as well as

intrinsic factors ranging from transcriptional co-regulators that

modulate the activity of core M1 and M2 transcription factors to

long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) that

influence the process at a post-transcriptional level.

In the first set of articles exploring the role of the tissue

microenvironment on macrophage polarization, Joshi et al.

provided an Original Research article on how changes in tissue

compliance or stiffness and integrin signaling contribute to this

process. This work was motivated by the observation that

mechanical properties differ markedly between tissues, with

stiffness generally increasing in the disease states (e.g., infection,

cancer, and fibrosis), which has the potential to impact macrophage

phenotype through mechanotransduction. This was explored using

an in vitro model system employing bone marrow-derived

macrophages incubated on collagen-coated gels of varying stiffness

and in parallel experiments with leukadherin-1 (LA1), a CD11b

agonist, used to activate integrin-mediated mechanical signaling

independent of the substrate. Here, the authors showed that softer

substrates favor a macrophage host-defense phenotype. They also

found that LA1 attenuates pro-inflammatory signaling by inhibiting

NLRP3 activation. Given that a recent clinical trial using LA1 was

halted as the drug was found to have no benefit to cancer patients,

this work raises the prospect that LA1 could be repurposed as an

immunomodulatory drug to treat select inflammatory diseases.

The next Original Research article featured in our topic

highlights a novel interaction of macrophages with a specific

microbial component. In this rigorous study with mouse bone

marrow-derived, peritoneal, and tumor-associated macrophages

(TAMs), Zhang et al. demonstrated the effect of the Escherichia
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coli adhesion portion of type I fimbriae (FimH), which drives

macrophage polarization status. The FimH, via a TLR4-mediated

mechanism, not only M1-polarized resting macrophages but also

M1-reprogrammed M2-macrophages induced by IL-4 and IL-13

cytokines or a tumor microenvironment. These properties of FimH

were then validated in human macrophages and were shown to

have therapeutic relevance. FimH could enhance anti-cancer

immunity in C57BL/6 mice implanted with B16F10 melanoma

treated with an anti-PD-L1 antibody. These therapeutic effects

were linked to the induction of M1 polarization in TAMs, a

property that could be clinically explored as a future adjunct

therapy to the PD-L1 antibody treatment of tumors.

Two review articles published in our Research Topic focused on

the lesser-known effects of growth factors and their receptors on

macrophage polarization status. The first article by Shen et al.

reviewed fibroblast growth factor (FGF) signaling in macrophage

polarization. The authors discussed the importance of the FGF/FGF

receptor (FGFR) axis during homeostasis and disease processes.

FGFs have diverse regulatory functions in physiological processes,

promoting the growth and development of bones and organs.

However, they also contribute to the development of diseases

such as cancer and metastasis, inflammatory processes, and

metabolic disorders. The relationship between macrophages and

different FGFs is complex. For example, FGF1 and 2 promote M1-

type activation, while FGF20 has been reported to inhibit these

pathways. In contrast, low molecular weight variants of FGF2 and

FGF7 are either directly or indirectly linked to the promotion of M2

pathways. Similarly, the M1/M2 macrophage polarization cues

induce different subsets of FGFR expression by macrophages and

the production of specific FGFs such as FGF23. Since both FGFs

and macrophages are involved in the progression of tumors,

autoimmune, and degenerative diseases, these interactions need to

be further examined in their specific biological contexts.

In the second review, Kannan and Rutkowski discussed the

effects of vascular endothelial growth factor receptor-3 (VEGFR-3),

which is highly expressed in lymphatic endothelial cells. However,

monocyte-derived cells also express VEGFR-3 in specific organs

such as the lung and the gut, but also in tumors and other chronic

diseases. For instance, VEGFR-3-expressing macrophages are

protected from the undesirable activation of pyroptosis pathways

in the context of microbial infection, which results in better

clearance and less inflammatory collateral damage of the infected

tissues. However, the effects of VGFR-3 signaling on macrophage

polarization appear to be contextual, especially in chronic diseases.

Finally, a set of articles in our Research Topic focused on

intrinsic modulators of the polarization transcriptional program.

Here, we featured a mini-review by Wiggins et al., in which the

authors covered the recent literature on the CBP/p300-interacting

transactivator with the glutamic acid/aspartic acid-rich carboxy-

terminal domain (CITED) family of transcriptional co-regulators.

Here, they summarized recent literature to argue that CITED1 and

2 function as general controllers of the M1 transcriptional program

by regulating access to CBP/p300. This histone acetyltransferase can
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be considered a convergence point for signaling pathways

regulating M1-associated gene expression as STAT, IRF, NF-kB,
and HIF1 proteins utilize it as a coactivator. Here, CITED2 operates

as a co-repressor, directly competing with these transcription

factors for binding to a common interaction surface in CBP/p300,

thereby attenuating pro-inflammatory gene expression. Conversely,

CITED1 appears to enhance the expression of select pro-

inflammatory genes, although the precise mechanisms for this

remain enigmatic.

The intrinsic regulation of macrophage status is exemplified by

the unique function of a nucleic acid regulator, a lncRNA identified

in metastatic cancer macrophages, which has been described in an

Original Research article from Ahmad et al.. Here, the authors

explored the role of the metastasis-associated lung adenocarcinoma

1 (MALAT1) lncRNA, which is upregulated when monocytes are

differentiated into M2 macrophages (28). This study found that

MALAT1 functions as an antagonist of microRNAs from the miR-

30 family, including miR-30b, which is known to support M2-

associated gene expression. In this way, MALAT1 was found to bias

macrophage polarization toward the M1 state by suppressing M2

gene expression.

In conclusion, this collection of research and review articles

describes recently discovered and lesser-known regulators of

macrophage behavior and polarization. These are diverse in

nature and operate in a variety of different mechanisms, including

mechanotransduction, and transcriptional and post-transcriptional

control, with some playing important roles in tumor macrophage

behavior, leading to cancer suppression or promotion, while others

are involved in the response to infection and acute tissue injury or

play roles in autoimmune or chronic inflammatory diseases. The

number of genes and pathways found to be involved in the

macrophage polarization process continues to grow, further

increasing the number of defined or hypothetical interactions in

these regulatory networks. This apparent complexity speaks to the

incredible sophistication of macrophage polarization and the need

for its tight regulation. Our Research Topic highlights only a small

number of these regulatory mechanisms, and future studies will

build on these, helping us better understand their contributions to

health and disease.
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