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Background: Acetyl-CoA carboxylase alpha (ACACA), a crucial rate-limiting

enzyme governing de novo biosynthesis of fatty acids, drives oncogenic

metabolic reprogramming in diverse malignancies. However, the multiomics

investigation and immunological implications of ACACA across cancers

remain unclear.

Methods: We performed a comprehensive pan-cancer analysis of ACACA via

transcriptomic, proteomic, and clinical data from The Cancer Genome Atlas

(TCGA), Clinical Proteomic Tumor Analysis Consortium (CPTAC), and the Human

Protein Atlas (HPA) databases. Then, single-cell RNA sequencing acquired from

the Gene Expression Omnibus (GEO) database was employed to map the

expression pattern of ACACA in the tumor microenvironment (TME).

Subsequently, functional validation experiments were conducted in lung

cancer and sarcoma cells.

Results: High ACACA expression was associated with poor survival in various

cancers, particularly those exhibiting dysregulated lipid metabolism. Immune

profiling revealed that elevated ACACA expression was associated with low

infiltration of CD8+ T cells and activated natural killer (NK) cells. Single-cell
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analysis of lung adenocarcinoma revealed that ACACA was expressed

predominan t l y w i th in ma l i gnan t ce l l s and cont r i bu ted to an

immunosuppressive microenvironment through migration inhibitory factor

(MIF) signaling and the extracellular matrix (ECM) remodeling pathway.

Furthermore, in vitro studies demonstrated that ACACA inhibition suppresses

fatty acid synthesis and tumor growth in lung cancer and sarcoma cells.

Conclusions:Our study establishes ACACA as a keymetabolic regulator that links

lipid metabolism to immune evasion and drug resistance, highlighting its

potential as a promising therapeutic target across cancers.
KEYWORDS

Acetyl-CoA carboxylase alpha (ACACA), pan-cancer analysis, single-cell analysis, tumor
microenvironment, drug resistance
1 Introduction

Lipid metabolism is widely acknowledged as a core cellular process

underpinning bioenergetic demands, membrane biogenesis, signal

transduction, and regulation of the tumor microenvironment (TME)

(1, 2). Characterized by high metabolic demands, tumor cells rely on

enhanced fatty acid biosynthesis to fuel their rapid growth and

maintain viability. Tumor cells exhibit characteristic changes in the

expression levels and functional dynamics of enzymes critical for lipid

metabolism, including acetyl-CoA carboxylase 1 (ACC1), ATP citrate

lyase (ACLY) and fatty acid synthase (FASN) (3, 4). Lipid metabolic

reprogramming and specific lipid signatures have emerged as potential

biomarkers for disease assessment, prognosis prediction, and treatment

response monitoring.

The enzyme encoded by the ACACA gene is Acetyl-CoA

Carboxylase 1(ACC1), which facilitates the conversion of acetyl-

CoA into malonyl-CoA through a carboxylation reaction, serving as

the critical first-step enzymatic reaction in fatty acid biosynthesis

(5). Structurally, ACC1 is a multifunctional enzyme with domains

like biotin carboxylase (BC) and carboxyltransferase (CT), whose

polymerization and dissociation affect the enzyme’s activity (6, 7).

Cells exhibit adaptive regulation of fatty acid synthesis and

oxidation, adjusting these processes according to different

metabolic conditions, which underscores the complexity and
a; TCGA, The Cancer

AC, Clinical Proteomic

Atlas; MIF, Migration

or microenvironment;

CLE, Cancer Cell Line

pecific survival; PFI,

rcinoma; LUAD, Lung
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importance of ACACA in maintaining cellular homeostasis and

adaptability (8). Given ACACA’s significant involvement in the

synthesis of fatty acids, it has emerged as a potential target for

various metabolic disorders, including non-alcoholic hepatitis

(NASH), obesity, and diabetes (9, 10).

In addition to its canonical involvement in lipid biosynthesis,

increasing evidence in tumor and non-tumor contexts has shown

that ACACA has pleiotropic functions in metabolism and immune

regulation, modulating immune cell functionality, inflammatory

responses, macrophage polarization, and overall immune

surveillance (11–14). Among them, studies on ACACA in tumors

have made remarkable progress. In prostate cancer, ACACA

downregulation reduces ATP production, disrupts mitochondrial

function, and increases ROS levels (15). In breast cancer, ACACA

drives resistance to aromatase inhibitors in estrogen-deprived cells

(16). Moreover, in murine models with liver-specific ACC

knockout, carcinogen exposure doubles the incidence of tumor

formation, collectively underscoring ACACA’s oncogenic capacity

(17). These findings highlight the significance of further exploration

of ACACA in tumors. The comprehensive multiomics profiling and

immunological implications of ACACA across various cancer types

have yet to be fully elucidated.

To fully assess the role of ACACA across cancers, we employed

bioinformatic techniques to analyze ACACA expression data across

several cancer databases, including The Cancer Genome Atlas

(TCGA), Cancer Cell Line Encyclopedia (CCLE), and Clinical

Proteomic Tumor Analysis Consortium (CPTAC). First, we

conducted a comprehensive analysis to investigate the correlations

of ACACA expression levels with key clinical outcomes, we also

examined its involvement in immune cell infiltration and the tumor-

immune landscape. Subsequently, pathway enrichment analysis was

carried out to explore tits potential functions associated withACACA.

Then, single-cell analysis was leveraged to delineate ACACA

expression patterns within both malignant and immune cell

subgroups. Finally, functional experiments were conducted to

confirm its role in lung cancer and sarcoma.
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2 Materials and methods

2.1 Data acquisition

We obtained transcriptome profiles and sample data from

TCGA (https ://portal .gdc.cancer .gov/) , CCLE (http://

www.sites.broadinstitute.org/ccle) and the Genotype-Tissue

Expression (GTEx; (https://gtexportal.org/home/). Protein

characterizations were obtained from The Cancer Proteome Atlas

(TPCA; http://bioinformatics.mdanderson.org/main/TCPA:

Overview) and CPTAC (https://pdc.cancer.gov/pdc/browse).

Additionally, UCSC Xena databases (https://xenabrowser.net/

datapages/) also provided most of these datasets we used.
2.2 Differentially Expressed Genes analysis
and prognostic analysis

CCLE RNA-seq data underwent TPM normalization and were

filtered to retain genes expressed in >80% samples. Differential

expression analyses were conducted via the limma package in R

with empirical Bayes moderation. ACACA upregulation was defined

by adj. p<0.001 and log2FC>1.5. Optimal survival-based cutoff

values for ACACA mRNA expression were identified using the

“surv_cutpoint” R function, patient were categorized into two

distinct subgroups, namely ACACA-High and ACACA-Low,

according to the established threshold values. The limma package

facilitated the analysis of differential gene expression, with

significance defined as adjusted P < 0.05. Univariate Cox

proportional hazards regression (using survival R package, v3.7.0)

was used to calculate hazard ratios (HRs) for associations between

ACACA expression and four survival endpoints: overall survival

(OS), disease specific survival (DSS), disease free interval (DFI) and

progression free interval (PFI). The “survfit” function was employed

to construct Kaplan-Meier survival curves, and survival differences

between groups were statistically evaluated via log-rank tests. The

receiver operating characteristic (ROC) curves were computed

using the pROC package (v1.18.0) to assess the predictive

performance of the models, the evaluation of diagnostic

performance was conducted by calculating the area under the

curve (AUC).
2.3 Immune infiltration analysis

To assess the Stromal and Immune Cells in Malignant Tumors

(ESTIMATE) score, we utilized the “estimate” R package.

Additionally, we explored associations between immune cell

infiltration and gene expression patterns across various cancer

types, we employed several computational deconvolution methods

to analyze the correlation between these biological parameters

(TIMER, xCell, MCP-counter, EPIC and CIBERSORT). Bubble

plots generated through ggplot2 (v3.5.1) visualized associations

between ACACA expression patterns and immune cell infiltration

potential, with statistical significance defined by Benjamini-
Frontiers in Immunology 03
Hochberg adjusted p-values. TIDE (Tumor Immune Dysfunction

and Exclusion) score is an algorithm for predicting responses to

immunotherapy by analyzing tumor gene expression data, which

calculating a comprehensive score by evaluating the two major

mechanisms of tumor immune escape.
2.4 Single-cell RNA sequencing analysis

The scRNA-seq dataset was retrived from the Gene Expression

Omnibus (GEO) under accession number GSE131907 (http://

www.ncbi.nlm.nih.gov/geo). Tumor and matched normal samples

were subjected to computational analysis via Seurat (v5.0) within R.

The expression matrices were first normalized with the

“NormalizeData” function, followed by identification of various

features with the “FindVariableFeatures” function, and the

“ScaleData” function was used for data scaling. Subsequently.

Principal component analysis (PCA) and cell clustering were

performed. Nonlinear manifold embedding was visualized

through uniform manifold approximation and projection

(UMAP) topology. Differential gene expression profiling across

clusters was executed via the FindAllMarkers function employing

aWilcoxon rank-sum test framework. Cellular annotation leverages

canonical lineage markers curated from peer-reviewed ontologies

(Cell Marker database v2.0) and references carcinogenesis

literature. Intercellular communication networks were

deconvoluted using CellChat (v2.1.2) with the human ligand-

receptor interaction repository (CellChatDB.human), which

quantifies autocrine/paracrine signaling modalities including

secreted factors, extracellular matrix interactions, and direct

membrane contact pathways.
2.5 Drug sensitivity analysis

Information regarding drug sensitivity and gene expression was

obtained from the Genomics of Drug Sensitivity in Cancer database

(GDSC, https://www.cancerrxgene.org/). Drugs with an FDR < 0.05

were deemed statistically significant. Bubble plots were created via

the R package ggplot2 to display associations between ACACA

expression, drug half-maximal inhibitory concentrations (IC50),

and their FDR values(v3.5.1).
2.6 Human samples and
immunohistochemistry

We collected 41 paraffin-embedded sections of tumor tissues

and paired normal tissues from the Cancer Hospital of the Chinese

Academy of Medical Sciences. These patients were diagnosed with

LUAD and underwent surgical resection during 2015 and 2016. The

project obtained approval from the Ethics Committee of the Cancer

Hospital of the Chinese Academy of Medical Sciences and acquired

patients’ informed consent. These paraffin-embedded samples were

stained with anti-ACC1 antibody (1:200 dilution; Cell Signaling
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Technology, #3676). Immunohistochemistry staining was

performed as previously described. We evaluated tissue protein

expression levels using the Histochemistry score (H-score),

specifically calculated as: H-score = S(pi × i), i represents the

staining intensity grade: 0 (Negative), 1 (Weak positive),

2 (Moderate positive), 3 (Strong positive), and pi denotes the

percentage of positively stained cells within each intensity category.
2.7 Cell lines and siRNA transfection assay

The experimental design included four human lung

adenocarcinoma cell models (PC9, HCC827, A549, and H1299),

with Beas-2B bronchial epithelial cells used as non-malignant

controls. The osimertinib-resistant cells PC9OR and HCC827OR

were established by the method of increasing the drug

concentration step by step. The IC50 values of Osimertinib in the

parental cells versus resistant cells were quantified using the CCK-8

assay (Supplementary Figure 5E). Gene-specific siRNA duplexes

(Shanghai GenePharma Co.) targeting ACACA were transfected via

jetPRIME® reagent following the manufacturer’s reverse

transfection protocol. The siACACA siRNA sequences (5’-3’)

were as follows: siRNA#1 (GCAGCUAUGUUCAGAGAAUTT),

siRNA#2 (GCUCAUACACUUCUGAAUATT). Both preliminary

and subsequent functional validation experiments demonstrated no

significant difference in ACACA silencing efficiency between the

two ACACA siRNAs.
2.8 Immunocytochemistry assay

Cellular samples were cultured via confocal imaging disher for

24 hours under standard growth conditions. After immobilization,

permeabilization, and blocking, primary antibody incubation was

performed with rabbit monoclonal anti-ACC1 (1:200 dilution; Cell

Signaling Technology, #3676) and mouse anti-a-tubulin (1:200

dilution; Sigma-Aldrich, T6074) at 4°C for 16 hours. After washes

with PBS-T (0.1% Tween-20), the samples were exposed to species-

matched secondary antibodies conjugated to Alexa Fluor 488 (anti-

rabbit) and Alexa Fluor 594 (anti-mouse) for 2 hours. Nuclear

counterstaining employed DAPI for 5 min before mounting.

Confocal imaging was performed, and images were captured.
2.9 RT-PCR and RT-qPCR

Total RNA was isolated from the cellular samples using a DNA/

RNA extraction kit (RK30153, ABclonal Biotechnology Co., Ltd.,

Wuhan, China) following the manufacturer’s protocol. Next, the

RNA was reverse transcribed into complementary DNA (cDNA)

using the ABScript II cDNA First-Strand Synthesis Kit

(Takara).Then, the 7500 real-time PCR system from Applied

Biosystems was employed for qPCR analysis, utilizing the SYBR

Premix Ex Taq kit manufactured by Takara. Chemically

synthesized primers were obtained from Generay (Shanghai,
Frontiers in Immunology 04
China), and their sequences are presented below. The forward

primer for ACACA (5’->3’): is AGGAGCTGTCTATTCGGGGT,

and the reverse primer (5’->3’) is GGTCGCTCAGCCTGTACTTT.

The ACTB forward primer(5’->3’) is CTCGCCTTTGCCGATCC,

and the reverse primer (5’->3’) is ATCCTTCTGACCCATGCCC.
2.10 CCK8 assay

Using the CCK-8 kit (RM02823, ABclonal Biotechnology Co.,

Ltd., Wuhan, China). In accordance with the experimental protocol,

the cells were digested, resuspended, counted before and then plated

into 96-well plates. At predefined time points (0, 24, 48, 72, and 96

hours), each well received 10 ml of CCK-8 solution. Following

2-hour incubation, absorbance at 450 nm was measured using a

microplate reader. The average absorbance value of 5 wells was

calculated, and each assay was replicated three times. Sterile PBS

blanks and cell-free medium controls were included for

background correction.
2.11 Transwell assay

Metastatic potential was quantified through modified Boyden

chamber assays using Corning BioCoat chambers (8-mm pore,

#3422). In the migration experiments, a total of 5×103 cells were

plated into the upper compartment containning serum-free medium,

while 600 mL of complete medium was added to the lower

compartment. Prior to cell seeding in the invasion assay, 50 mL of

diluted BD Matrigel matrix was applied to the upper chamber

membrane. After the appropriate incubation period, the cells were

incubated with 4% paraformaldehyde, and the fixed cells underwent

coloration with 0.1% crystal violet solution. Migration patterns were

observed, and image were acquired through microscopic

examination. The Cells in five random fields per chamber

were counted.
2.12 Western blot

A protease inhibitor cocktail was added into the RIPA buffer.

Following lysis, total protein concentration was quantified using the

Pierce BCA kit (Thermo Scientific, #23227). Proteins were

separated by 8% SDS-PAGE. All other steps are carried out in

accordance with the standard instructions. The primary antibodies

included rabbit monoclonal anti-ACC1 (Cell Signaling Technology,

#3676), mouse anti-a-tubulin (Sigma, T6074).
2.13 EdU assay

To evaluate cell proliferation, the BeyoClick™ EdU Cell

Proliferation Kit (Beyotime) was employed. The cells were

cultured for 24 hours, followed by incubation with EdU labeling

(10 mm) medium at 37°C. After fixation, permeabilization, and the
frontiersin.org
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Click reaction, nuclei were stained with DAPI. Fluorescence

microscopy was employed for image capture, and the proportion

of EdU-positive cell nuclei was quantified via ImageJ software to

further calculate the cell proliferation rate.
2.14 Nile Red staining

Intracellular lipid content was assessed using a lipid fluorescent

staining kit (Nile Red Method) (Solarbio, China) in strict

accordance with the manufacturer’s protocol. Briefly, the culture

medium was aspirated from the cells, which were then rinsed twice

with PBS. Subsequently, the cells were fixed with a fixation solution

for 10 minutes, followed by an additional PBS rinse. The fixed cells

were incubated with the staining solution for 15 minutes under

light-protected conditions. After 2–3 rounds of PBS washing, the

cells were visualized and imaged using a fluorescence microscope.

The fluorescence intensity of the stained cells was further quantified

and analyzed using Image J software.
2.15 Statistical analysis

Data analysis was performed using R version 4.3.1 and

GraphPad Prism 10 software. For intergroup comparative

analyses, either unpaired or paired Student’s t-tests were applied,

with the selection based on the intrinsic data structure. Correlation

assessments were executed through Spearman’s rank correlation

coefficient (for non-parametric data) or Pearson’s correlation

coefficient (for parametric data). Survival analyses were

implemented via Kaplan-Meier Kaplan-Meier curves with log-

rank tests and multivariate Cox regression. All experiments were

performed in triplicate, with quantitative data presented as mean ±

standard deviation (SD). The threshold for statistical significance

was defined as two-tailed P < 0.05.
3 Results

3.1 Pan-cancer expression profiles of
ACACA

We first conducted a systematic analysis using the CCLE

database, and found significant upregulation of ACACA in

prostate, lung, stomach, pancreas and liver cell lines, which

suggested possible aberrant lipid biosynthesis in these tumors

(Figure 1A). Subsequent validation in TCGA data also

demonstrated significant overexpressions across multiple tumors

compared with matched normal controls (Figure 1B). Integrated

RNA sequencing analysis of TCGA cancer specimens and

Genotype-Tissue Expression (GTEx) normal controls confirmed

consistent upregulation of ACACA in diverse tumors (Figure 1C).

Specifically, elevated ACACA expression pattern was observed in

hepatocellular carcinoma (LIHC), stomach adenocarcinoma

(STAD), pancreatic ductal adenocarcinoma (PDAC), prostate
Frontiers in Immunology 05
adenocarcinoma (PAAD), head and neck squamous cell

carcinoma (HNSC), non-small cell lung cancer (NSCLC),

esophageal carcinoma (ESCA), and cholangiocarcinoma (CHOL).

Utilizing transcriptomic and proteomic data from the TCGA and

THPA datasets coupled with detailed clinical features, we

systematically profiled ACACA expressions across diverse TNM

stages (Supplementary Figures 1A–C). In LUAD, ACACA mRNA

expression was significantly elevated in the M1-stage tumors,

indicating its potential involvement in tumor metastasis.

The expression and catalytic activity of ACACA exert direct

regulatory control over cellular lipogenesis, which is modulated

through multilevel regulation involving transcriptional, post-

translational, and metabolic feedback mechanisms. Leveraging

proteogenomic data from CPTAC, we identified significant

oncogenic dysregulation of ACC1 protein expression across

diverse malignancies. Specifically , compared with the

corresponding normal controls, quantitative proteomic profiling

revealed a substantial increase in protein levels in lung

adenocarcinoma, uterine cancer, kidney cancer, colon cancer, and

pancreatic ductal adenocarcinoma patients. Conversely, significant

downregulation was observed in brain cancer, breast cancer, and

ovarian cancer (Figure 1D).
3.2 Clinical correlation analysis of ACACA

To explore the role of ACACA expression in prognostic

prediction, Cox regression analyses were carried out to assess its

association with different survival endpoints. Integrated analysis

revealed that ACACA transcript levels were significantly correlated

with adverse prognostic indices, with elevated hazard ratios (HRs)

for OS, DSS, DFI, and PFI in several tumor types, including LIHC,

adrenocortical carcinoma (ACC), mesothelioma (MESO), and uveal

melanoma (UVM) (Figure 1C). Subsequently, Kaplan-Meier (KM)

survival analyses were performed utilizing prognostic data from the

TCGA database to visualize survival trends. KM analyses revealed

that elevated ACACA expression was significantly associated with

poorer OS in patients with LIHC, HNSC, ACC, ovarian serous

cystadenocarcinoma (OV), sarcoma (SARC), kidney renal clear cell

carcinoma (KIRC), cervical squamous cell carcinoma (CESC),

kidney chromophobe (KICH) and thyroid carcinoma

(THCA) (Figure 2A).

Interestingly, in both colon adenocarcinoma (COAD) and

lower-grade glioma (LGG) patients (Supplementary Figures 2A,

B), patients with high ACACA expression demonstrated better OS,

suggesting a potential context-dependent role for ACACA in

different cancer types. K-M curves derived from CPTAC clinical

proteomic datasets demonstrated significantly worse overall

survival in patients with elevated ACC1 protein levels,

particularly in those with kidney cancer, liver cancer, uterine

cancer, and lung adenocarcinoma (Supplementary Figures 2C–F).

Integrative analysis of TCGA transcriptomic data revealed the

diagnostic potential of ACACA across malignancies, which was

validated through receiver operating characteristic (ROC) curve

analysis (Figure 2B). ACACA demonstrated superior discriminatory
frontiersin.org
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FIGURE 1

Integrative analysis of ACACA expression and survival outcome. (A) ACACA mRNA expression in different cancer cells form CCLE database.
(B) Boxplot showing ACACA mRNA expression levels in paired tumor samples (red) compared to adjacent normal tissues (blue) in TCGA. (C) ACACA
mRNA expression levels and survival outcome correlation in pan-cancer analysis. A heatmap illustrating that ACACA exhibits high expression in the
majority of cancers within TCGA and GTEx database. Heatmap integrates hazard ratios (HRs) for OS, DSS, DFI, and PFI. Cox proportional hazards
models were used to calculate HRs, with adjustments for age, gender, and stage. Red boxes indicate HR >1 (poor prognosis), blue boxes indicate
HR <1 (favorable prognosis). (D) ACACA protein expression and overall survival correlation in CPTAC datasets. Significance levels: *p<0.05, **p<0.01,
***p<0.001 (log-rank test with FDR correction).
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capacity in LIHC (AUC = 0.891, 95%CI: 0.846-0.921), COAD

(AUC = 0.887, 95%CI: 0.828-0.931), CESC (AUC = 0.873, 95%CI:

0.833-0.886) and CHOL (AUC = 0.918, 95%CI: 0.766-0.948).

Additionally, significant tumor discrimination potential was

observed in HNSC (AUC = 0.748, 95% CI: 0.671-0.810), KIRC

(AUC = 0.777, 95% CI: 0.715-0.839), PRAD (AUC = 0.794, 95% CI:

0.742-0.841), and STAD (AUC = 0.799, 95% CI: 0.715-0.870).
Frontiers in Immunology 07
3.3 Relationship between ACACA gene
expression and tumor immune cell
infiltration

The tumor microenvironment, composed of stromal elements

and immune cells, occupies a central position in governing tumor

progression and facilitating immune evasion. Pan-cancer analysis
FIGURE 2

Prognostic value of ACACA mRNA expression across cancers. (A) Kaplan-Meier survival curves of ACACA mRNA expression in multiple TCGA cancer
cohorts (LIHC, HNSC, KIRC, KICH, OV, THCA, CESC, SARC and ACC). (B) Receiver operating characteristic (ROC) curves demonstrating the
diagnostic performance of ACACA mRNA expression in distinguishing tumor tissues from normal tissues.
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across 33 distinct tumor types, employing ESTIMATE algorithm-

derived metrics, revealed a consistently negative association

between ACACA expression and TME characteristics. Specifically,

ACACA expression was significantly negatively correlated with

stromal, immune and ESTIMATE scores (Figure 3A), suggesting

that elevated ACACA expression may facilitate the development of

an immunosuppressive TME.

Additionally, comprehensive multi-algorithmic analysis

(TIMER 2.0, xCell, MCPCOUNTER, EPIC, CIBERSORT)

revealed a dual role of ACACA in shaping the tumor immune

landscape across malignancies. Using the TIMER 2.0 database, we

carried out a Spearman correlation analysis to link the ACACA

transcriptional profiles to the immune cell infiltration data

(Figure 3B). Systematic interrogation of tumor immune

landscapes across 33 malignancies revealed that ACACA

expression showed significant inverse associations with the

infiltration of CD8+ cytotoxic T cells and activated NK cells,

whereas it positively correlated with resting memory CD4+ T cells

and M2 macrophage abundance. These associations are particularly

apparent in breast cancer, renal cancer, lung adenocarcinoma, and

prostate cancer. Further analysis using the xCell algorithm

confirmed a significant negative relationship between ACACA

expression levels and the infiltration of CD8+ T cells (Figure 3C).

EPIC and MCPCOUNTER analyses displayed a significant positive

correlation between elevated ACACA mRNA expression and

increased numbers of endothelial cells, neutrophils, and CD4+ T

cells (Figure 3C). These results indicated that ACACA may

modulate the populations of diverse immune and stromal cells

within the tumor microenvironment, possibly fostering conditions

that support tumor development.

Immune checkpoints are pivotal in governing tumor immune

evasion, and therapies targeting these axes have markedly

transformed cancer therapy. In order to elucidate the interplay

between ACACA-driven lipid metabolism and immune checkpoint

regulation, we performed correlation analyses across 33 cancer

types. Strikingly, ACACA expression exhibited significant negative

correlations with the immune checkpoint-related genes (PDCD1,

LAG3, LAGLS9, IDO1, CD244, CTLA4 and TIGIT), while showing

positive associations with other genes (TGFBR1, KDR, IL10RB,

CD160 and CD274) across most cancer types (Figure 3D).

Furthermore, the results of TIDE algorithm demonstrated that

increased ACACA expression was related to higher TIDE scores

in LGG, THCA, SARC, cholangiocarcinoma (CHOL), glioblastoma

(GBM) and breast invasive carcinoma (BRCA), which suggested

impaired cytotoxic T-cell infiltration and increased immune

evasion (Figure 3E). In contrast, inverse correlations were

observed for UVM, testicular germ cell tumor (TGCT) and

diffuse large B-cell lymphoma (DLBC), suggesting tumor-specific

regulatory mechanisms. Validation in independent immunotherapy

cohorts (GSE126044 and GSE91061) further demonstrated that

non-responders (SD/PD) exhibited significantly higher ACACA

levels than responders (PR/CR) (Figures 3F, G). KM survival

analysis of the GSE91061 cohort indicated that the patients with

high ACACA expression patients had an unfavorable prognosis

(Figures 3H, I). These findings identify ACACA as a metabolic
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orchestrator of immune checkpoint networks and propose its utility

as a predictive biomarker for immunotherapy resistance, thereby

providing new mechanistic insights into the metabolic-immune

interplay in cancer.
3.4 Gene set enrichment analysis of
ACACA

To delineate the oncogenic networks modulated by ACACA, we

performed GSEA on transcriptomic datasets spanning 33 TCGA

cancer types, by stratifying patients into high (top 25%) and low

(bottom 25%) ACACA expression cohorts. Hallmark pathway

analysis revealed striking differential enrichment patterns, the high

ACACA group exhibited significant activation of cell cycle regulatory

pathways, including mitotic spindle formation, the G2/M checkpoint,

E2F transcriptional targets, and MYC-driven signaling pathway

(Figure 4A). These findings suggest that ACACA may enhance

tumor cell proliferation by promoting cell cycle progression and

DNA replication. Intriguingly, high ACACA expression was inversely

correlated with key immunomodulatory pathways, as evidenced by

the suppression of interferon-a responses, the inflammatory

signaling cascades, and complement activation, particularly in

LGG, SARC, PAAD, and lung squamous cell carcinoma (LUSC).

These findings imply that ACACA might facilitate tumor immune

evasion by attenuating critical antitumor immune responses.

The GDSC database provides data on the sensitivity of a broad

range of antineoplastic drugs across various cancer cell lines and is

widely used for drug-gene association analysis. We next examined

the associations between ACACA expression levels and dug the IC50

values (Figure 4B). The efficacy of drugs such as TGX221, CHIR-

99021, temsirolimus, and dabrafenib was decreased in patients with

higher ACACA expression. In contrast, drugs (e.g., mitomycin C,

thapsigargin, MLN4924, and epothilone B) showed a negative

correlation with ACACA expression, suggesting that in pancancer

analysis, increased ACACA gene expression may contribute to

drug sensitivity.
3.5 Investigating the function of ACACA in
lung cancer

We subsequently conducted an in-depth analysis of the mRNA

and protein expression profiles retrieved from TCGA lung cancer

database. Our findings demonstrated that lung cancer patients with

elevated ACACA mRNA expression had a worse prognosis

(Figure 5A). Concordantly, KM survival analysis of proteomic

data from the TCPA database revealed a significant correlation

between high ACC1 protein levels and poorer OS (Figure 5B).

Interestingly, analysis of ACC1-S79 phosphorylation status

suggested that patients with elevated ACC1-S79 expression levels

experienced an better prognosis (Figure 5C), which is congruent

with previous reports indicating that phosphorylation of ACC1 at

se r ine 79 inh ib i t s i t s enzymat i c ac t i v i t y ( 18 , 19 ) .

Immunohistochemical analysis via the Human Protein Atlas
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FIGURE 3

Pan-cancer immune landscape correlated with ACACA mRNA expression. (A) Correlation of ACACA with ESTIMATE score, immune score, and
stromal score. (B) Immune cell infiltration in tumors stratified by ACACA expression (TIMER algorithm). Heatmap colors represent Spearman’s r
values (red: positive correlation; blue: negative). Significance levels: *p<0.05, **p<0.01, ***p<0.001 (C) Circular plot integrating immune cell
infiltration results from xCell, MCP-counter, EPIC, and CIBERSORT algorithms. Circle size indicates statistical significance (−log10(p.adjust)); color
scale reflects correlation direction (red: positive; blue: negative). (D) Association of ACACA expression with immune-related genes. (E) Correlation
between ACACA expression and TIDE scores across various cancer types. (F, G) Violin plots comparing ACACA expression in responders (R) vs. non-
responders (NR) from immunotherapy cohorts (GSE126044, GSE91061). (H, I) The immune response proportion and survival status of patients in
high and low ACACA expression groups in GSE91061 cohort.
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(HPA) database confirmed significant ACC1 protein upregulation

in LUAD tumor tissues (Figures 5D, E).

Single-sample gene set enrichment analysis (ssGSEA) of

TCGA-LUAD datasets validated significant associations between

ACACA expression and pathway activity scores (Figure 5F).

Specifically, ACACA upregulation was positively linked to the

activation of pathways related to fatty acid synthesis, tumor

proliferation, TGF-b signaling, and the PI3K-AKT-mTOR

pathway. Conversely, it was negatively correlated with oxidative

phosphorylation, apoptosis, and immune-related pathways like the

p53 pathway, the tumor inflammatory signature, and the IL-10 anti-

inflammatory signaling pathway. The results indicate that ACACA

may drive proliferation and survival of tumor cells in lung

adenocarcinoma by modulating multiple oncogenic and metabolic

pathways while inhibiting apoptosis and immune responses. KEGG

and GO analyses were conducted to examine biological pathways

linked to ACACA-related DEGs (Figure 5G), the results revealed

that ACACA expression had associations with key pathways,

including fatty acid metabolism, intercellular tight junctions,

protein digestion, cytokine-receptor interactions, and the AMPK

signaling pathway. Collectively, these findings imply that ACACA

potentially has a multifaceted role in orchestrating energy balance,

modulating immune responses, and driving cancer progression.

Through a systematic evaluation of the relationship between

common driver gene mutations in lung cancer and the expression

level of ACACA, we observed frequent upregulation of ACACA
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expression in patients harboring TP53 mutations or EGFR

mutations (Supplementary Figure 3). To further elucidate the

therapeutic implications of ACACA expression, we analyzed drug

sensitivity using IC50 value as a quantitative pharmacodynamic

parameters. Our analysis demonstrated that the high ACACA

expression group exhibited markedly reduced IC50 values (p <

0.05) for both chemotherapeutic agents (docetaxel, gemcitabine,

vinorelbine) and the ALK-inhibitor crizotinib when compared with

the low expression group, indicating enhanced therapeutic sensitivity

to these treatments (Figure 5H). Interestingly, by integrating mRNA

expression data of EGFR-mutated lung cancer patients from TCGA

and the drug sensitivity data in the GDSC database, we found that for

small molecule EGFR-TKI drugs (e.g., gefitinib, erlotinib), high

ACACA expression in the EGFR-mutated group was associated

with increased IC50 value. These findings suggest that ACACA-

mediated metabolic reprogramming may contribute to the

development of resistance to EGFR-TKI therapy in LUAD.
3.6 scRNA-seq analysis reveals the role of
ACACA in LUAD TME

To characterize the role of ACACA in the LUAD TME, we

integrated single-cell transcriptomic datasets from normal lung

(nLung), early-stage (tLung), and advanced tumor (tL/B) tissues

derived from the GSE131907 dataset (20) (Figure 6A). Following
FIGURE 4

Functional annotation and therapeutic implications of ACACA in pan-cancer. (A) Gene Set Enrichment Analysis (GSEA) of ACACA-high vs. ACACA-
low tumors (TCGA pan-cancer cohort). (B) Correlation between ACACA expression and GDSC drug sensitivity in pan-cancer.
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rigorous quality control and batch correction, unsupervised

clustering analysis identified seven major cell types: B cells, T/NK

cells, myeloid cells, mast cells, fibroblasts, endothelial cells, and

epithelial cells (Figure 6B), with annotation based on knownmarker

genes from previous article (Supplementary Figure 4D). ACACA
Frontiers in Immunology 11
expression was predominantly localized to epithelial cells, with

comparable expression levels across tumor and normal tissues

(Figure 6C). In advanced tumors (tL/B), subclustering analysis of

the epithelial cell compartment was carried out, which further

stratified the epithelial cells into ACACA-high and ACACA-low
FIGURE 5

Comprehensive analysis of ACACA in lung adenocarcinoma (LUAD). (A) Kaplan-Meier survival plots showed the association between ACACA mRNA
expression and OS in LUAD. (B) Kaplan–Meier survival curves reveal the correlation between ACACA protein expression levels and OS. (C) Kaplan–
Meier survival curves reveal the relationship between ACACA-S79 protein expression levels and OS. (D, E) Representative images showcasing
immunohistochemical (IHC) staining of the LUAD samples stained with HPA 063018 and CAB013715 antibody from HPA dataset. (F) Correlation
between the cell pathway score and ACACA expression (assessed using ssGSEA). (G) Functional enrichment of ACACA-correlated genes in LUAD
(KEGG pathway and GO functional annotation). (H) Drug sensitivity analysis between high (G1) and low (G2) ACACA expression groups.
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subsets (Figures 6D–F). Subsequent CellChat analysis revealed

enhanced interactions between ACACA-high tumor cells and

CD8+ T cells, primarily via secreted signaling pathways like the

macrophage migration inhibitory factor (MIF) axis (MIF-CD74

+CXCR4, MIF-(CD274+CD44)) (Figure 6G). The LAMB3-DAG1
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pathway is dominant in ECM-receptor interactions (Figure 6H),

and the APP (APP-CD74) and CD99 (CD99-CD99) pathways were

the major contributors to cell-cell contact pathways. These findings

collectively suggest that ACACA may orchestrate fatty acid

metabolic reprogramming to potentiate tumor-immune crosstalk
FIGURE 6

Single-cell RNA sequencing analysis of ACACA in LUAD (GEO: GSE131907). (A) UMAP projection of all cells from different samples. (B) Cell cluster
annotation: UMAP visualization of 7 major cell types (epithelial cells, fibroblasts, T/NKcells, MAST cells, B cells, Myeloid cells, endothelial cells).
(C) The expression of ACACA in single cell from tumor and normal tissues. (D) Cell cluster annotation of advanced-stage samples: UMAP
visualization of 6 major cell types (epithelial cells, fibroblasts, T/NKcells, B cells, Myeloid cells, endothelial cells). (E) Expression of ACACA across the
single-cell landscape. UMAP color scale reflects normalized expression levels (log2(CPM + 1)), with red indicating high expression. (F) UMAP
visualization of tumor cells segregated into ACACA-high (red) and ACACA-low (blue) groups. (G-I) Cellchat analysis of interaction between cell
subsets via (G) Secreted Signaling, (H) ECM-Receptor and (I) Cell-Cell Contact.
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through specific signaling networks, thereby fostering the

establishment of an immunosuppressive niche and metastatic

progression (Supplementary Figure 4).
3.7 ACACA enhances tumor self-renewal
and drug resistance in lung cancer cells

Immunohistochemical analysis of ACC1 protein expression was

performed on paraffin-embedded sections from 41 LUAD patients

(Figure 7A). The expression of ACC1 in tumor tissues was

significantly elevated compared to the adjacent normal lung

tissues (Figure 7B). Using the median H-score as a cutoff, patients

were divided into high (n =28) and low (n=13) ACACA expression

groups. Kaplan Meier (K-M) survival analysis indicated that high

levels of ACC1 suffered poorer OS (Figure 7C). And then,

immunofluorescence staining of LUAD cell lines (HCC827 and

PC9) revealed that ACC1 protein is predominantly localized within

the cytoplasm (Figure 7D), which is consistent with its central role
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in fatty acid metabolism. Bioinformatic analyses revealed the

significant influence of ACACA on cell proliferation across a

variety of malignant tumors. For a deeper investigation of its

biological function in LUAD, ACC1 protein levels were quantified

in lung cancer cell lines, revealing significantly higher protein

expression in most LUAD cell lines relative to normal bronchial

epithelial cells (Figure 7E).

Then we employed RT-qPCR and western blotting to validate

the silencing efficiency of siRNAs targeting of ACACA (Figure 8A).

The results of the CCK-8 assays and EdU assays showed that

ACACA silencing decreased the proliferative ability of HCC827

and PC9 cells (Figures 8B, C). Additionally, cells transfected with

ACACA siRNA notably impaired migration and invasion capacities

(Figure 8D). Nile red staining further demonstrated that cellular

lipids are significantly lowered by ACACA silencing, compared with

control cells (Figure 8E). Osimertinib-resistant cells (HCC827OR

and PC9OR) were established by exposing parental cells to

gradually escalating doses of osimertinib over an extended period.

CCK8 assays showed that the IC50 values of osimertinib in
FIGURE 7

Validation of ACACA expression levels in clinical tissue samples and cell lines. (A) Representative images of ACC1 staining in LUAD tumor tissue and
paracancerous tissue from clinical samples. Scale bar: 50 mm. (B) Analysis of ACC1 expression in tumor tissues and normal tissues. (C) The Kaplan-
Meier’s survival curve according to ACC1 expression levels. (D) Subcellular localization and expression intensity of ACC1 in HCC827 and PC9 cells.
(E) The relative expression of ACC1 in LUAD cell lines (HCC827, PC9, A549, and H1299) examined by western blot; human bronchial epithelial
(BEAS-2B) cell as control. The symbols indicate the level of significance: *** for p < 0.001.
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FIGURE 8

ACACA drives proliferation, migration, and EGFR-TKI resistance in lung cancer cells. (A) RT-qPCR and WB verification of the silent efficiency of
ACACA in HCC827 and PC9 cells. (B) Proliferation of HCC827 and PC9 cells transfected with two siRNAs targeting ACACA and scrambled control
was determined using CCK8 assays. (C) EdU assay was performed to assess the proliferative capacity in HCC827 and PC9 cells treated with NC or
ACACA siRNA. Red: EdU+ proliferating cells; blue: DAPI. Representative images and quantificative analysis of the transwell assay using HCC827 and
PC9 transfected ACACA siRNA. (D) Representative images and quantificative analysis of the transwell assay using HCC827 and PC9 transfected
ACACA siRNA. (E) Nile red staining was used to detect the effect of ACACA knockdown on intracellular lipid accumulation. The mean flurescence
intensity were assessed by Image J software. (F) ACACA expression levels in parental cells (HCC827 and PC9) and Osimertinib-resistant cells
(HCC827OR and PC9OR). Measured by RT-qPCR and WB assays. (G) RT-qPCR for the expression of ACACA in HCC827OR and PC9OR cells
transfected with ACACA siRNA. (H) CCK8 proliferation assays in HCC827OR and PC9OR cells treated with ACACA siRNA and Control siRNA.
(I) Sensitivity to osimertinib in HCC827OR and PC9OR cells following transfection with control or ACACA siRNAs. The symbols indicate the level of
significance: * for p < 0.05, ** for p < 0.01, *** for p < 0.001, and **** for p < 0.0001; ns denotes non-significance.
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HCC827OR and PC9OR were 10.87 mm and 5.509 mm, respectively,

both significantly higher than those in sensitive cells

(Supplementary Figure 5E). Then we found that ACACA

expression was upregulated in Osimertinib-resistant cells through

qPCR andWB (Figure 8F). Using ACACA-specific siRNAmarkedly

inhibit cell proliferation of HCC827 OR and PC9 OR cells

(Figures 8G, H), and might increase the sensitivity of drug-

resistant cells to Osimertinib (Figure 8I). These findings suggest

that ACACA may be a key factor regulating the biological behavior

of tumor cells, and a similar effect of ACACA silencing effect were

observed in sarcoma cells. According to the CCK8, transwell and

Nile Red staining assays, ACACA notably increased the

proliferation, migration and lipid synthesis capabilities of MG63

and U2OS cells (Supplementary Figures 5A–D). Inhibiting ACACA

effectively suppressed fatty acid synthesis and tumor growth.
4 Discussion

ACACA acts as a key regulator of fatty acid synthesis and energy

homeostasis (21, 22). However, its landscape across different cancers

and specific mechanism in tumor immune microenvironment

remains a mystery. In this study, we utilized a multi-omic

approach to amalgamate publicly accessible expression and survival

data from cancer patients, thereby profiling the ACACA expression

landscape. We found that ACACA exhibits significant prognostic

value in multiple cancers. Specifically, high ACACA mRNA

expression correlated with poorer outcomes in LIHC, KIRH, OV,

and SARC, whereas it predicted improved prognosis in COAD and

LGG. Moreover, clinical specimens from 41 LUAD patients

confirmed that high ACACA expression adversely impacts long-

term survival. We further demonstrated that ACACA was closely

related with tumor immune microenvironment and could serve as a

immunotherapeutic biomarker. Single-cell analysis in lung cancer

highlighted its role in activating oncogenic signaling pathways.

Subsequent functional experiments showed that targeted

knockdown of ACACA can reduce the proliferation, metastasis,

and lipid synthesis capabilities of tumor cells. Obviously, these

results suggest that ACACA could serve as potential prognostic and

immunotherapeutic biomarker across cancers especially

lung adenocarcinoma.

As a keymetabolic regulatory enzyme,ACACA’s oncogenic activity

is affected by the metabolic heterogeneity of tumor cell subpopulations,

and depends on hypoxia and nutrient conditions in the

microenvironment. Furthermore, the process by which ACC1

catalyzes the conversion of acetyl-CoA to malonyl-CoA may deplete

the acetyl group pool available for protein acetylation, thereby affecting

cell proliferation, growth, and migration. In hepatocellular carcinoma,

cells exhibit abnormally active lipid synthesis capacity, and the

expression of ACACA is positively correlated with tumor malignancy

(18, 23). In cholangiocarcinoma, inhibiting ACACA enhances the

acetylation of HSP90 so as to hinder the proliferation and migration

of tumor cells (24). However, in breast cancer, inhibition of ACACA

leads to the enhancement of Smad2 acetylation, ultimately resulting in

epithelial-mesenchymal transition (EMT) and metastasis (25). This
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observation is presumably attributed to tumor-specific metabolic

dependencies and inherent heterogeneity in the tumor immune

landscape. ACC1 harbors multiple phosphorylation sites (10), a

recent study reported that under energy-depleted conditions, AMP-

activated protein kinase (AMPK) phosphorylates ACC1 at serine 79,

which prevents its polymerization and activation (26). AMPK

activators can enhance immunotherapy efficacy by reversing T-cell

exhaustion (27). Consequently, modulating ACC1 expression or its

phosphorylation status may represent a promising therapeutic strategy

to improve cancer outcomes.

Within the tumor microenvironment, tumor and immune cells

compete for nutrients essential for proliferation and anabolism (28,

29). Our analysis showed that ACACA expression negatively

correlates with CD8+ T cells and M1 macrophages infiltration,

while positively associating with M2 macrophages. This pattern

suggests that ACC1-driven metabolic reprogramming fosters an

immunosuppressive TME by altering nutrient allocation, thereby

impairing immune surveillance (30, 31). Furthermore, ACACA

expression is negatively correlated with key immune checkpoint

genes (PDCD1, TIGIT, and CTLA4), the high ACACA expression

group had higher TIDE score. Therefore, high ACACA levels are

linked to reduced responsiveness to immunotherapies such as anti-

PD1 and anti-CTLA4. A previous study has promoted an immune

evasion mechanism in head and neck squamous cell carcinoma that

activated ACC1 reduces H3K27 acetylation, resulting in reduced

galectin-9 expression. Galectin-9 binds to immune checkpoint

proteins TIM-3 and PD-1, suppressing the production of

cytotoxic cytokines by T cells and facilitating T cell apoptosis

(32). Therefore, high ACC1 levels are linked to reduced

responsiveness to immunotherapies such as anti-PD1 and anti-

CTLA4. Consequently, targeting ACC1 or its downstream

metabolic pathways could be a promising strategy for

reprogramming tumor metabolism, enhancing immune cell

functionality, and improving the efficacy of immune checkpoint

blockade therapies.

Our functional experiments mainly focused on lung cancer and

sarcoma cells. In vitro experiments, when ACACA was knocked down

via siRNAs, lung adenocarcinoma and sarcoma cells exhibited

significantly reduced proliferation, invasion, and metastatic ability.

Recent research has demonstrated that in lung cancer cells, long

non-coding RNA CTD-2245E15.3 (33) or STAT3 (34) promote the

transcription of ACACA, thereby enhancing the proliferative and

metastatic potential of tumor cells. In preclinical models, the

pharmacological suppression of ACC1 effectively decreases the

proliferation and metastasis of lung adenocarcinoma cells, such as

the A549 and H1299 cell lines (35). However, ACC1 does not only

influence lung cancer cells through intrinsic cellular mechanisms.

Interestingly single-cell analysis of LUAD revealed that ACACA-high

epithelial cells interact with CD8+ T cells via MIF signaling pathway

while activates LAMB3-DAG1-mediated ECM remodeling, which

makes ACACA a conductor of metabolic-immune-stromal crosstalk

duringmetastatic progression. In our study, we also found thatACACA

expression is related to mutations of common driver genes in NSCLC,

which agrees with recent research that common driver gene mutations

in lung cancer, such as KRAS, EGFR, ROS1 and ALK, are closely
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related to metabolism. For example, KRAS-mutant NSCLC relies on de

novo fatty acid synthesis and phospholipid remodeling to combat

oxidative stress and evade ferroptosis (36). In MYC-translocated

multiple myeloma, ACC1 exhibits abnormal overexpression. Its

selective inhibition disrupts lipid homeostasis, induces endoplasmic

reticulum (ER) stress and impairs malignant cell survival (37). The

PI3K/AKT/mTOR pathway downstream of EGFR is not only a key

signaling axis for EGFR-driven oncogenesis but also a core pathway for

regulating lipid synthesis. Also, our study found that ACACA mRNA

expression is significantly higher in lung cancer patients with EGFR

mutations than those with wild-type EGFR. Additionally, ACACA

expression is significantly upregulated in osimertinib-resistant cells,

and targeted knockdown of ACACAmarkedly enhances the sensitivity

of these resistant cells to osimertinib. This observation implies that

ACACA-mediated metabolic reprogramming may be involved in

osimertinib resistance of lung adenocarcinoma; however, the current

findings alone are insufficient to establish a definitive causal

relationship between ACACA and this drug-resistant phenotype.

Targeting ACC1 holds promises as a novel therapeutic

approach for tumors with dysregulated metabolism. Current

small-molecule inhibitors such as TOFA, ND-630, ND-654 and

Soraphen, demonstrate antitumor potential in various solid tumors

and hematological malignancies (38). ND630 is an allosteric protein

inhibitor of ACC1,that prevents the dimerization of ACC1 and

inhibits its enzymatic activity. In prostate cancer, ND630 regulates

the expression of circKIF18B_003, thereby achieving the regulation

of ACACA and lipid reprogramming (39). Additionally, ND630 can

alleviate hepatic steatosis and regulate dyslipidemia in obese rats by

inhibiting ACC1 (40). ND654 is a potent ACC inhibitor with liver-

selective targeting. When cirrhotic rats with liver cancer are

administered 10 mg/kg of ND654 via daily intragastric gavage, it

can increase the survival rate of the rats and enhance the efficacy of

sorafenib (18). Future studies are needed to integrate metabolomics,

proteomics, and singe-cell omics technologies to explore

biomarkers, identify appropriate indications and on-target

metabolic side-effects for ACACA-targeted therapies.
5 Conclusions

In conclusion, our study elucidates a comprehensive role of

ACACA across cancers, not only as a canonical lipogenic enzyme but

also dynamic regulator of the cancer ecosystem that integrates

metabolic flux with immune evasion and stromal remodeling.

ACACA can serve as a prognostic and immunotherapeutic

biomarker. However, this study has several limitations: the number

of clinical samples obtained is relatively small, metabolomics-related

data are lacking, and an in vivo drug-resistant model has not yet been

established to support mechanistic investigations. In the future, we plan

to include multi-center, multi-cohort case data to improve the

generalizability and reliability of the study conclusions; combine

technologies such as single-cell sequencing, spatial transcriptomics,
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untargeted and targeted metabolomics technologies to analyze verify its

role in drug-resistant mechanisms and potential therapeutic value.
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