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Background: Acetyl-CoA carboxylase alpha (ACACA), a crucial rate-limiting
enzyme governing de novo biosynthesis of fatty acids, drives oncogenic
metabolic reprogramming in diverse malignancies. However, the multiomics
investigation and immunological implications of ACACA across cancers
remain unclear.

Methods: We performed a comprehensive pan-cancer analysis of ACACA via
transcriptomic, proteomic, and clinical data from The Cancer Genome Atlas
(TCGA), Clinical Proteomic Tumor Analysis Consortium (CPTAC), and the Human
Protein Atlas (HPA) databases. Then, single-cell RNA sequencing acquired from
the Gene Expression Omnibus (GEO) database was employed to map the
expression pattern of ACACA in the tumor microenvironment (TME).
Subsequently, functional validation experiments were conducted in lung
cancer and sarcoma cells.

Results: High ACACA expression was associated with poor survival in various
cancers, particularly those exhibiting dysregulated lipid metabolism. Immune
profiling revealed that elevated ACACA expression was associated with low
infiltration of CD8* T cells and activated natural killer (NK) cells. Single-cell
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analysis of lung adenocarcinoma revealed that ACACA was expressed
predominantly within malignant cells and contributed to an
immunosuppressive microenvironment through migration inhibitory factor
(MIF) signaling and the extracellular matrix (ECM) remodeling pathway.
Furthermore, in vitro studies demonstrated that ACACA inhibition suppresses
fatty acid synthesis and tumor growth in lung cancer and sarcoma cells.
Conclusions: Our study establishes ACACA as a key metabolic regulator that links
lipid metabolism to immune evasion and drug resistance, highlighting its
potential as a promising therapeutic target across cancers.

Acetyl-CoA carboxylase alpha (ACACA), pan-cancer analysis, single-cell analysis, tumor

microenvironment, drug resistance

1 Introduction

Lipid metabolism is widely acknowledged as a core cellular process
underpinning bioenergetic demands, membrane biogenesis, signal
transduction, and regulation of the tumor microenvironment (TME)
(1, 2). Characterized by high metabolic demands, tumor cells rely on
enhanced fatty acid biosynthesis to fuel their rapid growth and
maintain viability. Tumor cells exhibit characteristic changes in the
expression levels and functional dynamics of enzymes critical for lipid
metabolism, including acetyl-CoA carboxylase 1 (ACC1), ATP citrate
lyase (ACLY) and fatty acid synthase (FASN) (3, 4). Lipid metabolic
reprogramming and specific lipid signatures have emerged as potential
biomarkers for disease assessment, prognosis prediction, and treatment
response monitoring.

The enzyme encoded by the ACACA gene is Acetyl-CoA
Carboxylase 1(ACC1), which facilitates the conversion of acetyl-
CoA into malonyl-CoA through a carboxylation reaction, serving as
the critical first-step enzymatic reaction in fatty acid biosynthesis
(5). Structurally, ACC1 is a multifunctional enzyme with domains
like biotin carboxylase (BC) and carboxyltransferase (CT), whose
polymerization and dissociation affect the enzyme’s activity (6, 7).
Cells exhibit adaptive regulation of fatty acid synthesis and
oxidation, adjusting these processes according to different
metabolic conditions, which underscores the complexity and

Abbreviations: ACACA, Acetyl-CoA carboxylase alpha; TCGA, The Cancer
Genome Atlas; GTEx, Genotype-Tissue Expression; CPTAC, Clinical Proteomic
Tumor Analysis Consortium; HPA, the Human Protein Atlas; MIF, Migration
inhibitory factor; ECM, Extracellular matrix; TME, Tumor microenvironment;
FASN, Fatty acid synthase; ACLY, ATP citrate lyase; CCLE, Cancer Cell Line
Encyclopedia; OS, Overall survival; DSS, Disease-specific survival; PFI,
Progression-free interval; LIHC, Liver hepatocellular carcinoma; LUAD, Lung
adenocarcinoma; COAD, Colon adenocarcinoma; PAAD, Pancreatic
adenocarcinoma; PRAD, Prostate adenocarcinoma; STAD, Stomach
adenocarcinoma; BRCA, Breast invasive carcinoma; LUSC, Lung squamous

cell carcinoma.
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importance of ACACA in maintaining cellular homeostasis and
adaptability (8). Given ACACA’s significant involvement in the
synthesis of fatty acids, it has emerged as a potential target for
various metabolic disorders, including non-alcoholic hepatitis
(NASH), obesity, and diabetes (9, 10).

In addition to its canonical involvement in lipid biosynthesis,
increasing evidence in tumor and non-tumor contexts has shown
that ACACA has pleiotropic functions in metabolism and immune
regulation, modulating immune cell functionality, inflammatory
responses, macrophage polarization, and overall immune
surveillance (11-14). Among them, studies on ACACA in tumors
have made remarkable progress. In prostate cancer, ACACA
downregulation reduces ATP production, disrupts mitochondrial
function, and increases ROS levels (15). In breast cancer, ACACA
drives resistance to aromatase inhibitors in estrogen-deprived cells
(16). Moreover, in murine models with liver-specific ACC
knockout, carcinogen exposure doubles the incidence of tumor
formation, collectively underscoring ACACA’s oncogenic capacity
(17). These findings highlight the significance of further exploration
of ACACA in tumors. The comprehensive multiomics profiling and
immunological implications of ACACA across various cancer types
have yet to be fully elucidated.

To fully assess the role of ACACA across cancers, we employed
bioinformatic techniques to analyze ACACA expression data across
several cancer databases, including The Cancer Genome Atlas
(TCGA), Cancer Cell Line Encyclopedia (CCLE), and Clinical
Proteomic Tumor Analysis Consortium (CPTAC). First, we
conducted a comprehensive analysis to investigate the correlations
of ACACA expression levels with key clinical outcomes, we also
examined its involvement in immune cell infiltration and the tumor-
immune landscape. Subsequently, pathway enrichment analysis was
carried out to explore tits potential functions associated with ACACA.
Then, single-cell analysis was leveraged to delineate ACACA
expression patterns within both malignant and immune cell
subgroups. Finally, functional experiments were conducted to
confirm its role in lung cancer and sarcoma.
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2 Materials and methods
2.1 Data acquisition

We obtained transcriptome profiles and sample data from
TCGA (https://portal.gdc.cancer.gov/), CCLE (http://
www.sites.broadinstitute.org/ccle) and the Genotype-Tissue
Expression (GTEx; (https://gtexportal.org/home/). Protein
characterizations were obtained from The Cancer Proteome Atlas
(TPCA; http://bioinformatics.mdanderson.org/main/TCPA:
Overview) and CPTAC (https://pdc.cancer.gov/pdc/browse).
Additionally, UCSC Xena databases (https://xenabrowser.net/
datapages/) also provided most of these datasets we used.

2.2 Differentially Expressed Genes analysis
and prognostic analysis

CCLE RNA-seq data underwent TPM normalization and were
filtered to retain genes expressed in >80% samples. Differential
expression analyses were conducted via the limma package in R
with empirical Bayes moderation. ACACA upregulation was defined
by adj. p<0.001 and log,FC>1.5. Optimal survival-based cutoff
values for ACACA mRNA expression were identified using the
“surv_cutpoint” R function, patient were categorized into two
distinct subgroups, namely ACACA-High and ACACA-Low,
according to the established threshold values. The limma package
facilitated the analysis of differential gene expression, with
significance defined as adjusted P < 0.05. Univariate Cox
proportional hazards regression (using survival R package, v3.7.0)
was used to calculate hazard ratios (HRs) for associations between
ACACA expression and four survival endpoints: overall survival
(0S), disease specific survival (DSS), disease free interval (DFI) and
progression free interval (PFI). The “survfit” function was employed
to construct Kaplan-Meier survival curves, and survival differences
between groups were statistically evaluated via log-rank tests. The
receiver operating characteristic (ROC) curves were computed
using the pROC package (v1.18.0) to assess the predictive
performance of the models, the evaluation of diagnostic
performance was conducted by calculating the area under the
curve (AUQ).

2.3 Immune infiltration analysis

To assess the Stromal and Immune Cells in Malignant Tumors
(ESTIMATE) score, we utilized the “estimate” R package.
Additionally, we explored associations between immune cell
infiltration and gene expression patterns across various cancer
types, we employed several computational deconvolution methods
to analyze the correlation between these biological parameters
(TIMER, xCell, MCP-counter, EPIC and CIBERSORT). Bubble
plots generated through ggplot2 (v3.5.1) visualized associations
between ACACA expression patterns and immune cell infiltration
potential, with statistical significance defined by Benjamini-
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Hochberg adjusted p-values. TIDE (Tumor Immune Dysfunction
and Exclusion) score is an algorithm for predicting responses to
immunotherapy by analyzing tumor gene expression data, which
calculating a comprehensive score by evaluating the two major
mechanisms of tumor immune escape.

2.4 Single-cell RNA sequencing analysis

The scRNA-seq dataset was retrived from the Gene Expression
Omnibus (GEO) under accession number GSE131907 (http://
www.ncbi.nlm.nih.gov/geo). Tumor and matched normal samples
were subjected to computational analysis via Seurat (v5.0) within R.
The expression matrices were first normalized with the
“NormalizeData” function, followed by identification of various
features with the “FindVariableFeatures” function, and the
“ScaleData” function was used for data scaling. Subsequently.
Principal component analysis (PCA) and cell clustering were
performed. Nonlinear manifold embedding was visualized
through uniform manifold approximation and projection
(UMAP) topology. Differential gene expression profiling across
clusters was executed via the FindAllMarkers function employing
a Wilcoxon rank-sum test framework. Cellular annotation leverages
canonical lineage markers curated from peer-reviewed ontologies
(Cell Marker database v2.0) and references carcinogenesis
literature. Intercellular communication networks were
deconvoluted using CellChat (v2.1.2) with the human ligand-
receptor interaction repository (CellChatDB.human), which
quantifies autocrine/paracrine signaling modalities including
secreted factors, extracellular matrix interactions, and direct
membrane contact pathways.

2.5 Drug sensitivity analysis

Information regarding drug sensitivity and gene expression was
obtained from the Genomics of Drug Sensitivity in Cancer database
(GDSC, https://www.cancerrxgene.org/). Drugs with an FDR < 0.05
were deemed statistically significant. Bubble plots were created via
the R package ggplot2 to display associations between ACACA
expression, drug half-maximal inhibitory concentrations (ICs),
and their FDR values(v3.5.1).

2.6 Human samples and
immunohistochemistry

We collected 41 paraffin-embedded sections of tumor tissues
and paired normal tissues from the Cancer Hospital of the Chinese
Academy of Medical Sciences. These patients were diagnosed with
LUAD and underwent surgical resection during 2015 and 2016. The
project obtained approval from the Ethics Committee of the Cancer
Hospital of the Chinese Academy of Medical Sciences and acquired
patients’ informed consent. These paraffin-embedded samples were
stained with anti-ACCI antibody (1:200 dilution; Cell Signaling
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Technology, #3676). Immunohistochemistry staining was
performed as previously described. We evaluated tissue protein
expression levels using the Histochemistry score (H-score),
specifically calculated as: H-score = X(pi x i), i represents the
staining intensity grade: 0 (Negative), 1 (Weak positive),
2 (Moderate positive), 3 (Strong positive), and pi denotes the
percentage of positively stained cells within each intensity category.

2.7 Cell lines and siRNA transfection assay

The experimental design included four human lung
adenocarcinoma cell models (PC9, HCC827, A549, and H1299),
with Beas-2B bronchial epithelial cells used as non-malignant
controls. The osimertinib-resistant cells PCOOR and HCC8270R
were established by the method of increasing the drug
concentration step by step. The ICs, values of Osimertinib in the
parental cells versus resistant cells were quantified using the CCK-8
assay (Supplementary Figure 5E). Gene-specific siRNA duplexes
(Shanghai GenePharma Co.) targeting ACACA were transfected via
jetPRIME® reagent following the manufacturer’s reverse
transfection protocol. The siACACA siRNA sequences (5’-3’)
were as follows: siRNA#1 (GCAGCUAUGUUCAGAGAAUTT),
siRNA#2 (GCUCAUACACUUCUGAAUATT). Both preliminary
and subsequent functional validation experiments demonstrated no
significant difference in ACACA silencing efficiency between the
two ACACA siRNAs.

2.8 Immunocytochemistry assay

Cellular samples were cultured via confocal imaging disher for
24 hours under standard growth conditions. After immobilization,
permeabilization, and blocking, primary antibody incubation was
performed with rabbit monoclonal anti-ACC1 (1:200 dilution; Cell
Signaling Technology, #3676) and mouse anti-o.-tubulin (1:200
dilution; Sigma-Aldrich, T6074) at 4°C for 16 hours. After washes
with PBS-T (0.1% Tween-20), the samples were exposed to species-
matched secondary antibodies conjugated to Alexa Fluor 488 (anti-
rabbit) and Alexa Fluor 594 (anti-mouse) for 2 hours. Nuclear
counterstaining employed DAPI for 5 min before mounting.
Confocal imaging was performed, and images were captured.

2.9 RT-PCR and RT-qPCR

Total RNA was isolated from the cellular samples using a DNA/
RNA extraction kit (RK30153, ABclonal Biotechnology Co., Ltd.,
Wuhan, China) following the manufacturer’s protocol. Next, the
RNA was reverse transcribed into complementary DNA (cDNA)
using the ABScript II ¢cDNA First-Strand Synthesis Kit
(Takara).Then, the 7500 real-time PCR system from Applied
Biosystems was employed for qPCR analysis, utilizing the SYBR
Premix Ex Taq kit manufactured by Takara. Chemically
synthesized primers were obtained from Generay (Shanghai,
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China), and their sequences are presented below. The forward
primer for ACACA (5->3’): is AGGAGCTGTCTATTCGGGGT,
and the reverse primer (5->3’) is GGTCGCTCAGCCTGTACTTT.
The ACTB forward primer(5’->3’) is CTCGCCTTTGCCGATCC,
and the reverse primer (5->3’) is ATCCTTCTGACCCATGCCC.

2.10 CCK8 assay

Using the CCK-8 kit (RM02823, ABclonal Biotechnology Co.,
Ltd., Wuhan, China). In accordance with the experimental protocol,
the cells were digested, resuspended, counted before and then plated
into 96-well plates. At predefined time points (0, 24, 48, 72, and 96
hours), each well received 10 pl of CCK-8 solution. Following
2-hour incubation, absorbance at 450 nm was measured using a
microplate reader. The average absorbance value of 5 wells was
calculated, and each assay was replicated three times. Sterile PBS
blanks and cell-free medium controls were included for
background correction.

2.11 Transwell assay

Metastatic potential was quantified through modified Boyden
chamber assays using Corning BioCoat chambers (8-um pore,
#3422). In the migration experiments, a total of 5x10> cells were
plated into the upper compartment containning serum-free medium,
while 600 uL of complete medium was added to the lower
compartment. Prior to cell seeding in the invasion assay, 50 UL of
diluted BD Matrigel matrix was applied to the upper chamber
membrane. After the appropriate incubation period, the cells were
incubated with 4% paraformaldehyde, and the fixed cells underwent
coloration with 0.1% crystal violet solution. Migration patterns were
observed, and image were acquired through microscopic
examination. The Cells in five random fields per chamber
were counted.

2.12 Western blot

A protease inhibitor cocktail was added into the RIPA buffer.
Following lysis, total protein concentration was quantified using the
Pierce BCA kit (Thermo Scientific, #23227). Proteins were
separated by 8% SDS-PAGE. All other steps are carried out in
accordance with the standard instructions. The primary antibodies
included rabbit monoclonal anti-ACC1 (Cell Signaling Technology,
#3676), mouse anti-o-tubulin (Sigma, T6074).

2.13 EdU assay

To evaluate cell proliferation, the BeyoClickTM EdU Cell
Proliferation Kit (Beyotime) was employed. The cells were
cultured for 24 hours, followed by incubation with EdU labeling
(10 um) medium at 37°C. After fixation, permeabilization, and the
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Click reaction, nuclei were stained with DAPI. Fluorescence
microscopy was employed for image capture, and the proportion
of EdU-positive cell nuclei was quantified via Image] software to
further calculate the cell proliferation rate.

2.14 Nile Red staining

Intracellular lipid content was assessed using a lipid fluorescent
staining kit (Nile Red Method) (Solarbio, China) in strict
accordance with the manufacturer’s protocol. Briefly, the culture
medium was aspirated from the cells, which were then rinsed twice
with PBS. Subsequently, the cells were fixed with a fixation solution
for 10 minutes, followed by an additional PBS rinse. The fixed cells
were incubated with the staining solution for 15 minutes under
light-protected conditions. After 2-3 rounds of PBS washing, the
cells were visualized and imaged using a fluorescence microscope.
The fluorescence intensity of the stained cells was further quantified
and analyzed using Image J software.

2.15 Statistical analysis

Data analysis was performed using R version 4.3.1 and
GraphPad Prism 10 software. For intergroup comparative
analyses, either unpaired or paired Student’s t-tests were applied,
with the selection based on the intrinsic data structure. Correlation
assessments were executed through Spearman’s rank correlation
coefficient (for non-parametric data) or Pearson’s correlation
coefficient (for parametric data). Survival analyses were
implemented via Kaplan-Meier Kaplan-Meier curves with log-
rank tests and multivariate Cox regression. All experiments were
performed in triplicate, with quantitative data presented as mean +
standard deviation (SD). The threshold for statistical significance
was defined as two-tailed P < 0.05.

3 Results

3.1 Pan-cancer expression profiles of
ACACA

We first conducted a systematic analysis using the CCLE
database, and found significant upregulation of ACACA in
prostate, lung, stomach, pancreas and liver cell lines, which
suggested possible aberrant lipid biosynthesis in these tumors
(Figure 1A). Subsequent validation in TCGA data also
demonstrated significant overexpressions across multiple tumors
compared with matched normal controls (Figure 1B). Integrated
RNA sequencing analysis of TCGA cancer specimens and
Genotype-Tissue Expression (GTEx) normal controls confirmed
consistent upregulation of ACACA in diverse tumors (Figure 1C).
Specifically, elevated ACACA expression pattern was observed in
hepatocellular carcinoma (LIHC), stomach adenocarcinoma
(STAD), pancreatic ductal adenocarcinoma (PDAC), prostate
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adenocarcinoma (PAAD), head and neck squamous cell
carcinoma (HNSC), non-small cell lung cancer (NSCLC),
esophageal carcinoma (ESCA), and cholangiocarcinoma (CHOL).
Utilizing transcriptomic and proteomic data from the TCGA and
THPA datasets coupled with detailed clinical features, we
systematically profiled ACACA expressions across diverse TNM
stages (Supplementary Figures 1A-C). In LUAD, ACACA mRNA
expression was significantly elevated in the MI-stage tumors,
indicating its potential involvement in tumor metastasis.

The expression and catalytic activity of ACACA exert direct
regulatory control over cellular lipogenesis, which is modulated
through multilevel regulation involving transcriptional, post-
translational, and metabolic feedback mechanisms. Leveraging
proteogenomic data from CPTAC, we identified significant
oncogenic dysregulation of ACC1 protein expression across
diverse malignancies. Specifically, compared with the
corresponding normal controls, quantitative proteomic profiling
revealed a substantial increase in protein levels in lung
adenocarcinoma, uterine cancer, kidney cancer, colon cancer, and
pancreatic ductal adenocarcinoma patients. Conversely, significant
downregulation was observed in brain cancer, breast cancer, and
ovarian cancer (Figure 1D).

3.2 Clinical correlation analysis of ACACA

To explore the role of ACACA expression in prognostic
prediction, Cox regression analyses were carried out to assess its
association with different survival endpoints. Integrated analysis
revealed that ACACA transcript levels were significantly correlated
with adverse prognostic indices, with elevated hazard ratios (HRs)
for OS, DSS, DFI, and PFI in several tumor types, including LIHC,
adrenocortical carcinoma (ACC), mesothelioma (MESQO), and uveal
melanoma (UVM) (Figure 1C). Subsequently, Kaplan-Meier (KM)
survival analyses were performed utilizing prognostic data from the
TCGA database to visualize survival trends. KM analyses revealed
that elevated ACACA expression was significantly associated with
poorer OS in patients with LIHC, HNSC, ACC, ovarian serous
cystadenocarcinoma (OV), sarcoma (SARC), kidney renal clear cell
carcinoma (KIRC), cervical squamous cell carcinoma (CESC),
kidney chromophobe (KICH) and thyroid carcinoma
(THCA) (Figure 2A).

Interestingly, in both colon adenocarcinoma (COAD) and
lower-grade glioma (LGG) patients (Supplementary Figures 2A,
B), patients with high ACACA expression demonstrated better OS,
suggesting a potential context-dependent role for ACACA in
different cancer types. K-M curves derived from CPTAC clinical
proteomic datasets demonstrated significantly worse overall
survival in patients with elevated ACCI protein levels,
particularly in those with kidney cancer, liver cancer, uterine
cancer, and lung adenocarcinoma (Supplementary Figures 2C-F).

Integrative analysis of TCGA transcriptomic data revealed the
diagnostic potential of ACACA across malignancies, which was
validated through receiver operating characteristic (ROC) curve
analysis (Figure 2B). ACACA demonstrated superior discriminatory
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FIGURE 1

Integrative analysis of ACACA expression and survival outcome. (A) ACACA mRNA expression in different cancer cells form CCLE database.

(B) Boxplot showing ACACA mRNA expression levels in paired tumor samples (red) compared to

adjacent normal tissues (blue) in TCGA. (C) ACACA

MRNA expression levels and survival outcome correlation in pan-cancer analysis. A heatmap illustrating that ACACA exhibits high expression in the
majority of cancers within TCGA and GTEx database. Heatmap integrates hazard ratios (HRs) for OS, DSS, DFI, and PFI. Cox proportional hazards
models were used to calculate HRs, with adjustments for age, gender, and stage. Red boxes indicate HR >1 (poor prognosis), blue boxes indicate
HR <1 (favorable prognosis). (D) ACACA protein expression and overall survival correlation in CPTAC datasets. Significance levels: *p<0.05, **p<0.01,

***p<0.001 (log-rank test with FDR correction).
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FIGURE 2

Prognostic value of ACACA mRNA expression across cancers. (A) Kaplan-Meier survival curves of ACACA mRNA expression in multiple TCGA cancer
cohorts (LIHC, HNSC, KIRC, KICH, OV, THCA, CESC, SARC and ACC). (B) Receiver operating characteristic (ROC) curves demonstrating the
diagnostic performance of ACACA mRNA expression in distinguishing tumor tissues from normal tissues.

capacity in LIHC (AUC = 0.891, 95%CI: 0.846-0.921), COAD
(AUC = 0.887, 95%CI: 0.828-0.931), CESC (AUC = 0.873, 95%CI:
0.833-0.886) and CHOL (AUC = 0.918, 95%CI: 0.766-0.948).
Additionally, significant tumor discrimination potential was
observed in HNSC (AUC = 0.748, 95% CI: 0.671-0.810), KIRC
(AUC =0.777,95% CI: 0.715-0.839), PRAD (AUC = 0.794, 95% CI:
0.742-0.841), and STAD (AUC = 0.799, 95% CI: 0.715-0.870).
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3.3 Relationship between ACACA gene
expression and tumor immune cell
infiltration

The tumor microenvironment, composed of stromal elements

and immune cells, occupies a central position in governing tumor
progression and facilitating immune evasion. Pan-cancer analysis
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across 33 distinct tumor types, employing ESTIMATE algorithm-
derived metrics, revealed a consistently negative association
between ACACA expression and TME characteristics. Specifically,
ACACA expression was significantly negatively correlated with
stromal, immune and ESTIMATE scores (Figure 3A), suggesting
that elevated ACACA expression may facilitate the development of
an immunosuppressive TME.

Additionally, comprehensive multi-algorithmic analysis
(TIMER 2.0, xCell, MCPCOUNTER, EPIC, CIBERSORT)
revealed a dual role of ACACA in shaping the tumor immune
landscape across malignancies. Using the TIMER 2.0 database, we
carried out a Spearman correlation analysis to link the ACACA
transcriptional profiles to the immune cell infiltration data
(Figure 3B). Systematic interrogation of tumor immune
landscapes across 33 malignancies revealed that ACACA
expression showed significant inverse associations with the
infiltration of CD8" cytotoxic T cells and activated NK cells,
whereas it positively correlated with resting memory CD4" T cells
and M2 macrophage abundance. These associations are particularly
apparent in breast cancer, renal cancer, lung adenocarcinoma, and
prostate cancer. Further analysis using the xCell algorithm
confirmed a significant negative relationship between ACACA
expression levels and the infiltration of CD8" T cells (Figure 3C).
EPIC and MCPCOUNTER analyses displayed a significant positive
correlation between elevated ACACA mRNA expression and
increased numbers of endothelial cells, neutrophils, and CD4™ T
cells (Figure 3C). These results indicated that ACACA may
modulate the populations of diverse immune and stromal cells
within the tumor microenvironment, possibly fostering conditions
that support tumor development.

Immune checkpoints are pivotal in governing tumor immune
evasion, and therapies targeting these axes have markedly
transformed cancer therapy. In order to elucidate the interplay
between ACACA-driven lipid metabolism and immune checkpoint
regulation, we performed correlation analyses across 33 cancer
types. Strikingly, ACACA expression exhibited significant negative
correlations with the immune checkpoint-related genes (PDCD1,
LAG3, LAGLS9, IDO1, CD244, CTLA4 and TIGIT), while showing
positive associations with other genes (TGFBRI, KDR, IL10RB,
CD160 and CD274) across most cancer types (Figure 3D).
Furthermore, the results of TIDE algorithm demonstrated that
increased ACACA expression was related to higher TIDE scores
in LGG, THCA, SARGC, cholangiocarcinoma (CHOL), glioblastoma
(GBM) and breast invasive carcinoma (BRCA), which suggested
impaired cytotoxic T-cell infiltration and increased immune
evasion (Figure 3E). In contrast, inverse correlations were
observed for UVM, testicular germ cell tumor (TGCT) and
diffuse large B-cell lymphoma (DLBC), suggesting tumor-specific
regulatory mechanisms. Validation in independent immunotherapy
cohorts (GSE126044 and GSE91061) further demonstrated that
non-responders (SD/PD) exhibited significantly higher ACACA
levels than responders (PR/CR) (Figures 3F, G). KM survival
analysis of the GSE91061 cohort indicated that the patients with
high ACACA expression patients had an unfavorable prognosis
(Figures 3H, I). These findings identify ACACA as a metabolic
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orchestrator of immune checkpoint networks and propose its utility
as a predictive biomarker for immunotherapy resistance, thereby
providing new mechanistic insights into the metabolic-immune
interplay in cancer.

3.4 Gene set enrichment analysis of
ACACA

To delineate the oncogenic networks modulated by ACACA, we
performed GSEA on transcriptomic datasets spanning 33 TCGA
cancer types, by stratifying patients into high (top 25%) and low
(bottom 25%) ACACA expression cohorts. Hallmark pathway
analysis revealed striking differential enrichment patterns, the high
ACACA group exhibited significant activation of cell cycle regulatory
pathways, including mitotic spindle formation, the G2/M checkpoint,
E2F transcriptional targets, and MYC-driven signaling pathway
(Figure 4A). These findings suggest that ACACA may enhance
tumor cell proliferation by promoting cell cycle progression and
DNA replication. Intriguingly, high ACACA expression was inversely
correlated with key immunomodulatory pathways, as evidenced by
the suppression of interferon-o responses, the inflammatory
signaling cascades, and complement activation, particularly in
LGG, SARC, PAAD, and lung squamous cell carcinoma (LUSC).
These findings imply that ACACA might facilitate tumor immune
evasion by attenuating critical antitumor immune responses.

The GDSC database provides data on the sensitivity of a broad
range of antineoplastic drugs across various cancer cell lines and is
widely used for drug-gene association analysis. We next examined
the associations between ACACA expression levels and dug the ICs,
values (Figure 4B). The efficacy of drugs such as TGX221, CHIR-
99021, temsirolimus, and dabrafenib was decreased in patients with
higher ACACA expression. In contrast, drugs (e.g., mitomycin C,
thapsigargin, MLN4924, and epothilone B) showed a negative
correlation with ACACA expression, suggesting that in pancancer
analysis, increased ACACA gene expression may contribute to
drug sensitivity.

3.5 Investigating the function of ACACA in
lung cancer

We subsequently conducted an in-depth analysis of the mRNA
and protein expression profiles retrieved from TCGA lung cancer
database. Our findings demonstrated that lung cancer patients with
elevated ACACA mRNA expression had a worse prognosis
(Figure 5A). Concordantly, KM survival analysis of proteomic
data from the TCPA database revealed a significant correlation
between high ACC1 protein levels and poorer OS (Figure 5B).
Interestingly, analysis of ACC1-S79 phosphorylation status
suggested that patients with elevated ACC1-S79 expression levels
experienced an better prognosis (Figure 5C), which is congruent
with previous reports indicating that phosphorylation of ACC1 at
serine 79 inhibits its enzymatic activity (18, 19).
Immunohistochemical analysis via the Human Protein Atlas
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FIGURE 3

Pan-cancer immune landscape correlated with ACACA mRNA expression.
stromal score. (B) Immune cell infiltration in tumors stratified by ACACA expression (TIMER algorithm). Heatmap colors represent Spearman’s p

values (red: positive correlation; blue: negative). Significance levels: *p<0.

infiltration results from xCell, MCP-counter, EPIC, and CIBERSORT algorithms. Circle size indicates statistical significance (-log10(p.adjust)); color
scale reflects correlation direction (red: positive; blue: negative). (D) Association of ACACA expression with immune-related genes. (E) Correlation
between ACACA expression and TIDE scores across various cancer types.
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FIGURE 4

Functional annotation and therapeutic implications of ACACA in pan-cancer. (A) Gene Set Enrichment Analysis (GSEA) of ACACA-high vs. ACACA-
low tumors (TCGA pan-cancer cohort). (B) Correlation between ACACA expression and GDSC drug sensitivity in pan-cancer.

(HPA) database confirmed significant ACC1 protein upregulation
in LUAD tumor tissues (Figures 5D, E).

Single-sample gene set enrichment analysis (ssGSEA) of
TCGA-LUAD datasets validated significant associations between
ACACA expression and pathway activity scores (Figure 5F).
Specifically, ACACA upregulation was positively linked to the
activation of pathways related to fatty acid synthesis, tumor
proliferation, TGF-f signaling, and the PI3K-AKT-mTOR
pathway. Conversely, it was negatively correlated with oxidative
phosphorylation, apoptosis, and immune-related pathways like the
p53 pathway, the tumor inflammatory signature, and the IL-10 anti-
inflammatory signaling pathway. The results indicate that ACACA
may drive proliferation and survival of tumor cells in lung
adenocarcinoma by modulating multiple oncogenic and metabolic
pathways while inhibiting apoptosis and immune responses. KEGG
and GO analyses were conducted to examine biological pathways
linked to ACACA-related DEGs (Figure 5G), the results revealed
that ACACA expression had associations with key pathways,
including fatty acid metabolism, intercellular tight junctions,
protein digestion, cytokine-receptor interactions, and the AMPK
signaling pathway. Collectively, these findings imply that ACACA
potentially has a multifaceted role in orchestrating energy balance,
modulating immune responses, and driving cancer progression.

Through a systematic evaluation of the relationship between
common driver gene mutations in lung cancer and the expression
level of ACACA, we observed frequent upregulation of ACACA
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expression in patients harboring TP53 mutations or EGFR
mutations (Supplementary Figure 3). To further elucidate the
therapeutic implications of ACACA expression, we analyzed drug
sensitivity using ICs, value as a quantitative pharmacodynamic
parameters. Our analysis demonstrated that the high ACACA
expression group exhibited markedly reduced ICs, values (p <
0.05) for both chemotherapeutic agents (docetaxel, gemcitabine,
vinorelbine) and the ALK-inhibitor crizotinib when compared with
the low expression group, indicating enhanced therapeutic sensitivity
to these treatments (Figure 5H). Interestingly, by integrating mRNA
expression data of EGFR-mutated lung cancer patients from TCGA
and the drug sensitivity data in the GDSC database, we found that for
small molecule EGFR-TKI drugs (e.g., gefitinib, erlotinib), high
ACACA expression in the EGFR-mutated group was associated
with increased ICs, value. These findings suggest that ACACA-
mediated metabolic reprogramming may contribute to the
development of resistance to EGFR-TKI therapy in LUAD.

3.6 scRNA-seq analysis reveals the role of
ACACA in LUAD TME

To characterize the role of ACACA in the LUAD TME, we
integrated single-cell transcriptomic datasets from normal lung
(nLung), early-stage (tLung), and advanced tumor (tL/B) tissues
derived from the GSE131907 dataset (20) (Figure 6A). Following
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FIGURE 5
Comprehensive analysis of ACACA in lung adenocarcinoma (LUAD). (A) Kaplan-Meier survival plots showed the association between ACACA mRNA
expression and OS in LUAD. (B) Kaplan—Meier survival curves reveal the correlation between ACACA protein expression levels and OS. (C) Kaplan—
Meier survival curves reveal the relationship between ACACA-S79 protein expression levels and OS. (D, E) Representative images showcasing
immunohistochemical (IHC) staining of the LUAD samples stained with HPA 063018 and CAB013715 antibody from HPA dataset. (F) Correlation
between the cell pathway score and ACACA expression (assessed using ssGSEA). (G) Functional enrichment of ACACA-correlated genes in LUAD
(KEGG pathway and GO functional annotation). (H) Drug sensitivity analysis between high (G1) and low (G2) ACACA expression groups.

rigorous quality control and batch correction, unsupervised
clustering analysis identified seven major cell types: B cells, T/NK
cells, myeloid cells, mast cells, fibroblasts, endothelial cells, and
epithelial cells (Figure 6B), with annotation based on known marker
genes from previous article (Supplementary Figure 4D). ACACA
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expression was predominantly localized to epithelial cells, with
comparable expression levels across tumor and normal tissues
(Figure 6C). In advanced tumors (tL/B), subclustering analysis of
the epithelial cell compartment was carried out, which further
stratified the epithelial cells into ACACA-high and ACACA-low
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FIGURE 6

Single-cell RNA sequencing analysis of ACACA in LUAD (GEO: GSE131907). (A) UMAP projection of all cells from different samples. (B) Cell cluster
annotation: UMAP visualization of 7 major cell types (epithelial cells, fibroblasts, T/NKcells, MAST cells, B cells, Myeloid cells, endothelial cells).

(C) The expression of ACACA in single cell from tumor and normal tissues. (D) Cell cluster annotation of advanced-stage samples: UMAP
visualization of 6 major cell types (epithelial cells, fibroblasts, T/NKcells, B cells, Myeloid cells, endothelial cells). (E) Expression of ACACA across the
single-cell landscape. UMAP color scale reflects normalized expression levels (log2(CPM + 1)), with red indicating high expression. (F) UMAP
visualization of tumor cells segregated into ACACA-high (red) and ACACA-low (blue) groups. (G-I) Cellchat analysis of interaction between cell

subsets via (G) Secreted Signaling, (H) ECM-Receptor and (1) Cell-Cell Contact.

subsets (Figures 6D-F). Subsequent CellChat analysis revealed
enhanced interactions between ACACA-high tumor cells and
CD8" T cells, primarily via secreted signaling pathways like the
macrophage migration inhibitory factor (MIF) axis (MIF-CD74
+CXCR4, MIF-(CD274+CD44)) (Figure 6G). The LAMB3-DAG1
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pathway is dominant in ECM-receptor interactions (Figure 6H),
and the APP (APP-CD74) and CD99 (CD99-CD99) pathways were
the major contributors to cell-cell contact pathways. These findings
collectively suggest that ACACA may orchestrate fatty acid
metabolic reprogramming to potentiate tumor-immune crosstalk
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through specific signaling networks, thereby fostering the
establishment of an immunosuppressive niche and metastatic
progression (Supplementary Figure 4).

3.7 ACACA enhances tumor self-renewal
and drug resistance in lung cancer cells

Immunohistochemical analysis of ACC1 protein expression was
performed on paraffin-embedded sections from 41 LUAD patients
(Figure 7A). The expression of ACCI in tumor tissues was
significantly elevated compared to the adjacent normal lung
tissues (Figure 7B). Using the median H-score as a cutoff, patients
were divided into high (n =28) and low (n=13) ACACA expression
groups. Kaplan Meier (K-M) survival analysis indicated that high
levels of ACCI1 suffered poorer OS (Figure 7C). And then,
immunofluorescence staining of LUAD cell lines (HCC827 and
PC9) revealed that ACCI protein is predominantly localized within
the cytoplasm (Figure 7D), which is consistent with its central role

HCC827

PC9

DAPI

Tubulin ACC1

FIGURE 7

Tumorl

10.3389/fimmu.2025.1599223

in fatty acid metabolism. Bioinformatic analyses revealed the
significant influence of ACACA on cell proliferation across a
variety of malignant tumors. For a deeper investigation of its
biological function in LUAD, ACC1 protein levels were quantified
in lung cancer cell lines, revealing significantly higher protein
expression in most LUAD cell lines relative to normal bronchial
epithelial cells (Figure 7E).

Then we employed RT-qPCR and western blotting to validate
the silencing efficiency of siRNAs targeting of ACACA (Figure 8A).
The results of the CCK-8 assays and EdU assays showed that
ACACA silencing decreased the proliferative ability of HCC827
and PC9 cells (Figures 8B, C). Additionally, cells transfected with
ACACA siRNA notably impaired migration and invasion capacities
(Figure 8D). Nile red staining further demonstrated that cellular
lipids are significantly lowered by ACACA silencing, compared with
control cells (Figure 8E). Osimertinib-resistant cells (HCC8270R
and PCO9OR) were established by exposing parental cells to
gradually escalating doses of osimertinib over an extended period.
CCK8 assays showed that the ICs, values of osimertinib in
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HCC8270R and PCIOR were 10.87 um and 5.509 pm, respectively,
both significantly higher than those in sensitive cells
(Supplementary Figure 5E). Then we found that ACACA
expression was upregulated in Osimertinib-resistant cells through
qPCR and WB (Figure 8F). Using ACACA-specific siRNA markedly
inhibit cell proliferation of HCC827 OR and PC9 OR cells
(Figures 8G, H), and might increase the sensitivity of drug-
resistant cells to Osimertinib (Figure 8I). These findings suggest
that ACACA may be a key factor regulating the biological behavior
of tumor cells, and a similar effect of ACACA silencing effect were
observed in sarcoma cells. According to the CCKS, transwell and
Nile Red staining assays, ACACA notably increased the
proliferation, migration and lipid synthesis capabilities of MG63
and U20S cells (Supplementary Figures 5A-D). Inhibiting ACACA
effectively suppressed fatty acid synthesis and tumor growth.

4 Discussion

ACACA acts as a key regulator of fatty acid synthesis and energy
homeostasis (21, 22). However, its landscape across different cancers
and specific mechanism in tumor immune microenvironment
remains a mystery. In this study, we utilized a multi-omic
approach to amalgamate publicly accessible expression and survival
data from cancer patients, thereby profiling the ACACA expression
landscape. We found that ACACA exhibits significant prognostic
value in multiple cancers. Specifically, high ACACA mRNA
expression correlated with poorer outcomes in LIHC, KIRH, OV,
and SARC, whereas it predicted improved prognosis in COAD and
LGG. Moreover, clinical specimens from 41 LUAD patients
confirmed that high ACACA expression adversely impacts long-
term survival. We further demonstrated that ACACA was closely
related with tumor immune microenvironment and could serve as a
immunotherapeutic biomarker. Single-cell analysis in lung cancer
highlighted its role in activating oncogenic signaling pathways.
Subsequent functional experiments showed that targeted
knockdown of ACACA can reduce the proliferation, metastasis,
and lipid synthesis capabilities of tumor cells. Obviously, these
results suggest that ACACA could serve as potential prognostic and
immunotherapeutic biomarker across cancers especially
lung adenocarcinoma.

As a key metabolic regulatory enzyme, ACACA’s oncogenic activity
is affected by the metabolic heterogeneity of tumor cell subpopulations,
and depends on hypoxia and nutrient conditions in the
microenvironment. Furthermore, the process by which ACCI
catalyzes the conversion of acetyl-CoA to malonyl-CoA may deplete
the acetyl group pool available for protein acetylation, thereby affecting
cell proliferation, growth, and migration. In hepatocellular carcinoma,
cells exhibit abnormally active lipid synthesis capacity, and the
expression of ACACA is positively correlated with tumor malignancy
(18, 23). In cholangiocarcinoma, inhibiting ACACA enhances the
acetylation of HSP90 so as to hinder the proliferation and migration
of tumor cells (24). However, in breast cancer, inhibition of ACACA
leads to the enhancement of Smad2 acetylation, ultimately resulting in
epithelial-mesenchymal transition (EMT) and metastasis (25). This
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observation is presumably attributed to tumor-specific metabolic
dependencies and inherent heterogeneity in the tumor immune
landscape. ACCI harbors multiple phosphorylation sites (10), a
recent study reported that under energy-depleted conditions, AMP-
activated protein kinase (AMPK) phosphorylates ACCI at serine 79,
which prevents its polymerization and activation (26). AMPK
activators can enhance immunotherapy efficacy by reversing T-cell
exhaustion (27). Consequently, modulating ACCI expression or its
phosphorylation status may represent a promising therapeutic strategy
to improve cancer outcomes.

Within the tumor microenvironment, tumor and immune cells
compete for nutrients essential for proliferation and anabolism (28,
29). Our analysis showed that ACACA expression negatively
correlates with CD8" T cells and M1 macrophages infiltration,
while positively associating with M2 macrophages. This pattern
suggests that ACCl-driven metabolic reprogramming fosters an
immunosuppressive TME by altering nutrient allocation, thereby
impairing immune surveillance (30, 31). Furthermore, ACACA
expression is negatively correlated with key immune checkpoint
genes (PDCD1, TIGIT, and CTLA4), the high ACACA expression
group had higher TIDE score. Therefore, high ACACA levels are
linked to reduced responsiveness to immunotherapies such as anti-
PDI and anti-CTLA4. A previous study has promoted an immune
evasion mechanism in head and neck squamous cell carcinoma that
activated ACC1 reduces H3K27 acetylation, resulting in reduced
galectin-9 expression. Galectin-9 binds to immune checkpoint
proteins TIM-3 and PD-1, suppressing the production of
cytotoxic cytokines by T cells and facilitating T cell apoptosis
(32). Therefore, high ACC1 levels are linked to reduced
responsiveness to immunotherapies such as anti-PD1 and anti-
CTLA4. Consequently, targeting ACCI or its downstream
metabolic pathways could be a promising strategy for
reprogramming tumor metabolism, enhancing immune cell
functionality, and improving the efficacy of immune checkpoint
blockade therapies.

Our functional experiments mainly focused on lung cancer and
sarcoma cells. In vitro experiments, when ACACA was knocked down
via siRNAs, lung adenocarcinoma and sarcoma cells exhibited
significantly reduced proliferation, invasion, and metastatic ability.
Recent research has demonstrated that in lung cancer cells, long
non-coding RNA CTD-2245E15.3 (33) or STAT3 (34) promote the
transcription of ACACA, thereby enhancing the proliferative and
metastatic potential of tumor cells. In preclinical models, the
pharmacological suppression of ACCl effectively decreases the
proliferation and metastasis of lung adenocarcinoma cells, such as
the A549 and H1299 cell lines (35). However, ACCI does not only
influence lung cancer cells through intrinsic cellular mechanisms.
Interestingly single-cell analysis of LUAD revealed that ACACA-high
epithelial cells interact with CD8" T cells via MIF signaling pathway
while activates LAMB3-DAG1-mediated ECM remodeling, which
makes ACACA a conductor of metabolic-immune-stromal crosstalk
during metastatic progression. In our study, we also found that ACACA
expression is related to mutations of common driver genes in NSCLC,
which agrees with recent research that common driver gene mutations
in lung cancer, such as KRAS, EGFR, ROS1 and ALK, are closely

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1599223
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

He et al.

related to metabolism. For example, KRAS-mutant NSCLC relies on de
novo fatty acid synthesis and phospholipid remodeling to combat
oxidative stress and evade ferroptosis (36). In MYC-translocated
multiple myeloma, ACC1 exhibits abnormal overexpression. Its
selective inhibition disrupts lipid homeostasis, induces endoplasmic
reticulum (ER) stress and impairs malignant cell survival (37). The
PI3K/AKT/mTOR pathway downstream of EGER is not only a key
signaling axis for EGFR-driven oncogenesis but also a core pathway for
regulating lipid synthesis. Also, our study found that ACACA mRNA
expression is significantly higher in lung cancer patients with EGFR
mutations than those with wild-type EGFR. Additionally, ACACA
expression is significantly upregulated in osimertinib-resistant cells,
and targeted knockdown of ACACA markedly enhances the sensitivity
of these resistant cells to osimertinib. This observation implies that
ACACA-mediated metabolic reprogramming may be involved in
osimertinib resistance of lung adenocarcinoma; however, the current
findings alone are insufficient to establish a definitive causal
relationship between ACACA and this drug-resistant phenotype.

Targeting ACC1 holds promises as a novel therapeutic
approach for tumors with dysregulated metabolism. Current
small-molecule inhibitors such as TOFA, ND-630, ND-654 and
Soraphen, demonstrate antitumor potential in various solid tumors
and hematological malignancies (38). ND630 is an allosteric protein
inhibitor of ACCl,that prevents the dimerization of ACC1 and
inhibits its enzymatic activity. In prostate cancer, ND630 regulates
the expression of circKIF18B_003, thereby achieving the regulation
of ACACA and lipid reprogramming (39). Additionally, ND630 can
alleviate hepatic steatosis and regulate dyslipidemia in obese rats by
inhibiting ACCI (40). ND654 is a potent ACC inhibitor with liver-
selective targeting. When cirrhotic rats with liver cancer are
administered 10 mg/kg of ND654 via daily intragastric gavage, it
can increase the survival rate of the rats and enhance the efficacy of
sorafenib (18). Future studies are needed to integrate metabolomics,
proteomics, and singe-cell omics technologies to explore
biomarkers, identify appropriate indications and on-target
metabolic side-effects for ACACA-targeted therapies.

5 Conclusions

In conclusion, our study elucidates a comprehensive role of
ACACA across cancers, not only as a canonical lipogenic enzyme but
also dynamic regulator of the cancer ecosystem that integrates
metabolic flux with immune evasion and stromal remodeling.
ACACA can serve as a prognostic and immunotherapeutic
biomarker. However, this study has several limitations: the number
of clinical samples obtained is relatively small, metabolomics-related
data are lacking, and an in vivo drug-resistant model has not yet been
established to support mechanistic investigations. In the future, we plan
to include multi-center, multi-cohort case data to improve the
generalizability and reliability of the study conclusions; combine
technologies such as single-cell sequencing, spatial transcriptomics,
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untargeted and targeted metabolomics technologies to analyze verify its
role in drug-resistant mechanisms and potential therapeutic value.
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