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Type 1 diabetes (T1D) is an autoimmune disease characterized by the progressive

destruction of pancreatic b-cells, leading to insulin deficiency and chronic

hyperglycemia. While immune-mediated mechanisms of b-cell destruction are

well-recognized, emerging evidence highlights hypoxia as a silent yet critical

contributor to T1D pathogenesis. Hypoxia in the pancreatic islets arises from

inflammation, vascular dysfunction, hyperglycemia, and immune cell infiltration,

creating a microenvironment that exacerbates b-cell dysfunction and amplifies

autoimmune responses. Hypoxia-inducible factors (HIFs) play a dual role in

regulating adaptive and maladaptive responses to hypoxia, influencing b-cell
survival, immune activation, and oxidative stress. Specifically, hypoxia promotes

the polarization of macrophages toward a pro-inflammatory M1 phenotype,

enhances the differentiation of Th17 cells, and impairs the function of regulatory

T cells (Tregs), thereby shifting the immune landscape toward sustained

autoimmunity. This perspective discusses the multifaceted role of hypoxia in

driving immune dysregulation and b-cell vulnerability in T1D as well as highlights

the need for innovative research approaches to target this pathway. We propose

future directions that emphasize the development of advanced experimental

models to mimic the interplay between hypoxia, hyperglycemia, and immune

responses in clinically relevant conditions. Furthermore, we highlight the

potential of therapeutic strategies that target hypoxia and its downstream

effects to preserve b-cell function and modulate autoimmunity. Collaborative

efforts across disciplines will be crucial to translating these insights into clinical

innovations that improve outcomes for individuals with T1D.
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Introduction

Type 1 diabetes (T1D) is an autoimmune disease characterized by

the progressive destruction of insulin-producing b-cells within the

pancreatic islets of Langerhans (1–3). This loss of b-cells results in an

inability to produce insulin, a hormone critical for regulating blood

glucose levels, necessitating lifelong insulin replacement therapy for

affected individuals. While T1D is primarily recognized as an

immune-mediated disorder driven by autoreactive T cells targeting

b-cell antigens, the microenvironment within the islets plays an

increasingly recognized role in modulating disease progression.

Emerging evidence highlights hypoxia, a state of insufficient oxygen

supply, as a key factor that contributes to b-cell dysfunction (4, 5). It

also exacerbates immune activation, forming a vicious cycle that

accelerates the destruction of b-cells (6).
Pancreatic islets are among the most vascularized tissues in the

body, with a dense capillary network that ensures rapid oxygen and

nutrient delivery to b-cells (7). This vascularization is essential for

supporting the high metabolic demands of insulin production and

secretion (8). However, in T1D, this intricate network is disrupted by

multiple factors, including chronic inflammation, hyperglycemia, and

immune cell infiltration (9). Inflammatory cytokines such as

interleukin-1b (IL-1b) and tumor necrosis factor-alpha (TNF-a)
damage endothelial cells as well as impair vascular function, while

the recruitment of immune cells to the islets increases local oxygen

consumption (10, 11). Hyperglycemia, a hallmark of T1D, further

compounds these effects by inducing metabolic stress and promoting

vascular dysfunction. Together, these factors create a hypoxic

microenvironment within the islets (12).

The consequences of hypoxia in T1D extend beyond impaired

oxygen supply. Hypoxia directly affects b-cell survival by inducing

mitochondrial dysfunction, oxidative stress, and endoplasmic

reticulum (ER) stress, all of which compromise insulin secretion

and b-cell viability (13, 14) (Figure 1). Furthermore, hypoxia

triggers maladaptive cellular responses mediated by hypoxia-

inducible factors (HIFs), transcription factors that regulate genes

involved in angiogenesis, metabolism, and inflammation (15)

(Figure 1). While transient HIF activation can promote protective

mechanisms, such as vascular remodeling and metabolic

adaptation, chronic HIF signaling has been implicated in

exacerbating b-cell apoptosis and inflammation (16, 17).

In addition to its effects on b-cells, hypoxia significantly

influences the immune microenvironment within the islets.

Hypoxia-induced metabolic reprogramming of immune cells

promotes a shift toward pro-inflammatory phenotypes, including

Th17 cells and M1 macrophages, while impairing the function of

regulatory T cells (Tregs) that are critical for maintaining immune

tolerance (18). This pro-inflammatory milieu perpetuates

autoimmune activity and amplifies b-cell destruction. Moreover,

hypoxia-induced oxidative stress enhances the release of damage-

associated molecular patterns (DAMPs) and the formation of

neoantigens, further driving immune activation (19).

Despite advances in understanding the immune mechanisms of

T1D, the role of hypoxia as a driver of both b-cell dysfunction and

immune dysregulation has been underexplored. Addressing
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hypoxia in T1D represents a promising therapeutic avenue, as it

offers the potential to not only preserve b-cell function but also

modulate the autoimmune response. Understanding the role of

hypoxia in the pathogenesis of T1D necessitates its integration into

established immunopathological frameworks. Hypoxia does not act

in isolation but rather potentiates immune dysregulation by

intensifying pro-inflammatory cytokine signaling, reprogramming

immune cell metabolism toward pathogenic phenotypes, and

heightening the susceptibility of pancreatic b-cells to stress-

induced apoptosis. This mechanistic interplay highlights the need

for a systems biology perspective, wherein hypoxia is recognized not

merely as a downstream consequence of islet inflammation, but as

an active modulator of both immune and metabolic dysfunction in

T1D. By elucidating the interplay between hypoxia, b-cell stress,
and immune activation, researchers can identify novel targets for

intervention, creating opportunities for therapies that address the

underlying mechanisms of T1D and potentially prevent disease

onset or progression. This perspective aims to highlight the

multifaceted role of hypoxia in T1D and its implications for

disease progression and therapeutic innovation. It synthesizes

findings from peer-reviewed experimental and clinical literature

to integrate current knowledge on hypoxia in T1D pathogenesis.

Our analysis draws upon mechanistic studies, animal models, and

single-cell transcriptomics to identify converging pathways of b-cell
stress and immune dysfunction.
Sources of hypoxia in T1D

To understand how hypoxia contributes to b-cell failure and

immune dysregulation in T1D, it is essential to examine the

mechanisms that drive oxygen deprivation within the islet

microenvironment. The pancreatic islets are uniquely vulnerable to

hypoxia due to their reliance on a dense and highly specialized

vascular network that facilitates efficient oxygen delivery to support

insulin secretion and metabolic activity. However, in the context of

T1D, multiple factors converge to disrupt this delicate balance,

leading to the development of a hypoxicmicroenvironment (Table 1).
Inflammation and vascular dysfunction

Inflammatory cytokines, particularly IL-1b, TNF-a, and

interferon-gamma (IFN-g), secreted by infiltrating immune cells,

not only exert cytotoxic effects on b-cells but also disrupt

endothelial cell function within the microvasculature (20). These

cytokines impair the structural integrity of islet capillaries

by promoting endothelial apoptosis and increasing vascular

permeability. The islet endothelium, crucial for maintaining

optimal oxygen and nutrient exchange, becomes compromised

under inflammatory stress. This leads to increased vascular

permeability, reduced nitric oxide bioavailability, and endothelial

cell apoptosis. As the vasculature deteriorates, the effective delivery

of oxygen and nutrients to b-cells diminishes, contributing to the

onset of hypoxia (21). Additionally, chronic inflammation leads to
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the deposition of extracellular matrix proteins and fibrosis, which

physically obstructs oxygen diffusion within the islets (22). This

fibrotic remodeling occurs in parallel with increased leukocyte

adhesion and transmigration, facilitated by the upregulation of

adhesion molecules such as ICAM-1 and VCAM-1 on endothelial

surfaces, further perpetuating local inflammation and vascular

dysfunction (23). Beyond the islets, systemic vascular dysfunction

is frequently observed in individuals with T1D, even in the early

stages of the disease. This includes impaired flow-mediated dilation,

increased arterial stiffness, and microvascular rarefaction. Such

changes are not only markers of early cardiovascular risk but may

also reflect persistent low-grade inflammation, endothelial

activation, and impaired repair mechanisms. Importantly,

alterations in vascular health may precede overt hyperglycemia
Frontiers in Immunology 03
and serve as early indicators of disease development in at-

risk individuals.
Hyperglycemia-induced stress

Sustained hyperglycemia, a hallmark of T1D, exacerbates

hypoxia through several mechanisms. High glucose levels induce

oxidative stress in endothelial cells, reducing their ability to respond

to angiogenic signals and repair damaged vasculature (24, 25).

Furthermore, hyperglycemia increases the metabolic demand of

b-cells, forcing them to consume more oxygen for insulin

production and secretion (26, 27). This hypermetabolic state

creates an oxygen imbalance, where demand surpasses supply,
FIGURE 1

Hypoxia-Induced Pathways: Adaptive and Maladaptive Responses. A schematic representation regarding the role of Hypoxia-Inducible Factors (HIFs)
in regulating cellular responses within a hypoxic microenvironment. Hypoxia stabilizes HIF-1a, leading to an adaptive response via upregulation of
VEGF and GLUT1, promoting angiogenesis and glycolysis. However, chronic hypoxia induces maladaptive consequences, including ROS production,
caspase activation, and apoptosis. Additionally, hypoxia triggers angiogenic imbalance (VEGF, PDGF, Ang1/Ang2) contributing to islet dysfunction.
Inflammatory pathways (TNF-1a, IL-1b, IL-6, NF-kB) promote autoimmunity, further exacerbating tissue damage. HIF-1a – Hypoxia-inducible factor
1-alpha; VEGF – Vascular endothelial growth factor; GLUT1 – Glucose transporter 1; PDGF – Platelet-derived growth factor; Ang1/Ang2 –

Angiopoietin-1 and Angiopoietin-2; ROS – Reactive oxygen species; TNF-1a – Tumor necrosis factor-alpha; IL-1b – Interleukin-1 beta; IL-6 –

Interleukin-6; NF-kB – Nuclear factor-kappa B. Created with BioRender.com
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further deepening the hypoxic state. Hyperglycemia also induces

advanced glycation end products (AGEs), which contribute to

endothelial dysfunction and impair microvascular function (28).
Immune cell infiltration

The autoimmune nature of T1D results in the infiltration of

immune cells, including T cells, B cells, and macrophages, into the

pancreatic islets (29, 30). These cells are metabolically active and

consume large amounts of oxygen to sustain their pro-

inflammatory activity. For example, activated macrophages rely

on aerobic glycolysis, a process driven by high oxygen consumption,

to produce inflammatory mediators (31–33). Similarly, autoreactive

T cells utilize oxygen to proliferate and release cytokines, further

straining the already limited oxygen availability within the islets

(34). This increased oxygen demand by immune cells compounds

the hypoxic burden on b-cells, creating a vicious cycle of oxygen

deprivation and immune activation (35, 36).
b-cell overactivation and metabolic stress

As b-cells are destroyed by autoimmune attack, the remaining

b-cells are forced to compensate by increasing their insulin

production. This overactivation leads to higher metabolic activity

and oxygen consumption. Simultaneously, the stress imposed by

hyperglycemia and inflammatory cytokines amplifies oxidative

phosphorylation within b-cells, leading to excessive mitochondrial

oxygen utilization and the generation of reactive oxygen species

(ROS). The combination of high oxygen consumption and ROS-

induced mitochondrial dysfunction further exacerbates hypoxia

and b-cell vulnerability (37). Unlike other tissues, b cells have

relatively low antioxidant capacity, making them particularly

susceptible to oxidative stress (38). This environment promotes

endoplasmic reticulum stress, unfolded protein response (UPR)
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activation, and mitochondrial dysfunction, processes that can

trigger pro-apoptotic signaling cascades and compromise b-
cell viability.
Islet capillary dysfunction

In T1D, the capillary network within the islets becomes

increasingly dysfunctional due to pericyte loss, basement

membrane thickening, and impaired angiogenesis. This

dysfunction reduces the ability of the capillaries to adequately

supply oxygen and nutrients to b-cells. Studies have shown that

islet endothelial cells are particularly sensitive to inflammatory and

hyperglycemic stress, which accelerates their deterioration and

diminishes capillary density over time (39–41).
Role of hypoxia-inducible factors

Hypoxia-inducible factors (HIFs) are pivotal transcriptional

regulators orchestrating cellular responses to oxygen deprivation

(42) (Supplementary Table 1). Specifically, under normoxic

conditions, HIF-1a and HIF-2a undergo prolyl hydroxylation by

oxygen-dependent prolyl hydroxylase domain (PHD) enzymes,

targeting them for ubiquitination and proteasomal degradation

via the von Hippel–Lindau (VHL) E3 ligase (43, 44). In hypoxic

conditions, this hydroxylation is inhibited, allowing HIF-a subunits

to stabilize, accumulate in the cytoplasm, translocate to the nucleus,

dimerize with HIF-1b, and drive the transcription of genes (45). In

pancreatic islets, transient HIF activation during early hypoxia

confers adaptive advantages. HIF-1a promotes the expression of

vascular endothelial growth factor (VEGF), which facilitates

angiogenesis to improve oxygen delivery to hypoxic islets (46).

Concurrently, HIF-1a enhances the expression of glycolytic

enzymes, enabling b-cells and surrounding immune cells to shift

from oxidative phosphorylation to glycolysis, thereby supporting
TABLE 1 Sources of Hypoxia in Type 1 Diabetes (T1D).

Source Mechanism Contributing Factors Impact on Islets

Inflammation and
Vascular
Dysfunction

Cytokine-induced endothelial dysfunction, increased
vascular permeability

Elevated levels of IL-1b, TNF-a, and
IFN-g

Damaged endothelial cells, reduced oxygen
delivery, increased islet permeability to
immune cells

Hyperglycemia-
Induced Stress

Oxidative stress in endothelial cells, increased
metabolic demand of beta cells

Prolonged high glucose levels,
advanced glycation end-
products (AGEs)

Impaired vascular repair, worsened oxygen
imbalance, increased beta-cell oxidative stress

Immune
Cell Infiltration

High oxygen consumption by metabolically active
immune cells (such as macrophages, T cells, B cells)

Autoimmune response, recruitment
of pro-inflammatory cells

Oxygen demand surpasses supply, amplifies
hypoxia in islets

b-Cell
Overactivation

Elevated oxygen consumption due to increased
insulin production in response to beta-cell loss

Autoimmune-mediated beta-cell
destruction, hyperglycemia

Excessive mitochondrial oxygen utilization, ROS
generation, beta-cell stress and dysfunction

Islet Capillary
Dysfunction

Loss of pericytes, thickened basement membrane,
impaired angiogenesis

Chronic inflammation, vascular
damage, endothelial apoptosis

Decreased capillary density, reduced nutrient and
oxygen supply

Oxidative Stress
Generation of reactive oxygen species (ROS) that
impair cellular metabolism and
mitochondrial function

Mitochondrial dysfunction,
sustained hyperglycemia

Exacerbation of beta-cell apoptosis and reduced
insulin production
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cellular energy production and viability despite reduced oxygen

availability (47). This metabolic adaptation provides temporary

protection to islets under acute hypoxic stress.

However, prolonged HIF activation in chronic hypoxia has

maladaptive consequences, severely compromising b-cell function
and immune homeostasis (4). Sustained HIF stabilization

exacerbates ROS accumulation and oxidative stress, impairing

mitochondrial integrity and b-cell insulin secretion. Chronic HIF

activity decreases insulin signaling pathways and disrupts the

expression of critical insulin-related transcription factors,

including PDX1 and MAFA, undermining b-cell identity and

functionality (5, 48). Moreover, in immune cells, HIF-1a
drives macrophage polarization toward a pro-inflammatory M1

phenotype and enhances the differentiation of Th17 cells, both of

which contribute to autoimmune b-cell destruction (49).

Simultaneously, HIF-1a diminishes the functionality of regulatory

T cells (Tregs) by promoting the proteasomal degradation of

FOXP3, a master transcription factor critical for Treg identity and

suppressive capacity (50, 51). Additionally, HIF-1a promotes

glycolytic metabolism, which antagonizes the oxidative

phosphorylation-dependent metabolic program necessary for Treg

stability and function (50, 52). This intricate interplay between HIF-

mediated immune dysregulation and b-cell dysfunction accelerates

the progression of islet pathology (53, 54).

Chronic HIF activation also disrupts angiogenesis within islets,

leading to a persistent imbalance. Despite the upregulated VEGF

expression, the resultant blood vessels are structurally abnormal,

leaky, and non-functional, failing to restore adequate oxygen

delivery. This angiogenic dysregulation sustains hypoxia and

perpetuates islet dysfunction. Additionally, HIF signaling

amplifies inflammatory pathways by promoting the secretion of

pro-inflammatory cytokines such as IL-6 and TNF-a from b-cells
and infiltrating immune cells. These cytokines exacerbate immune

cell recruitment and activation, intensifying islet inflammation. The

combined effects of HIF-driven inflammation, oxidative stress, and

angiogenic imbalance create a hostile microenvironment that

accelerates b-cell apoptosis and disrupts islet homeostasis.
b-Cell stress pathways: mitochondrial,
ER, and autophagic dysfunction

Concurrently with its effects on immune architecture, hypoxia

imposes direct cellular stress on pancreatic b-cells. In the subsequent

section, we delineate how hypoxia-induced perturbations in

mitochondrial function, protein folding, and intracellular

degradation pathways contribute to b-cell dysfunction.
Mitochondrial dysfunction

b-cells exhibit increased sensitivity to mitochondrial

dysfunction, particularly when subjected to the simultaneous

stressors of hypoxia and hyperglycemia (55, 56). Chronic hypoxia

compromises the efficiency of oxidative phosphorylation by limiting
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oxygen availability, which is a critical substrate for the electron

transport chain (57). This results in reduced ATP production and

altering cellular energy homeostasis (58). Concurrently,

hyperglycemia exacerbates the metabolic burden on mitochondria

by driving an excessive flux of glucose-derived substrates through

the tricarboxylic acid (TCA) cycle (59). This overloading of

mitochondrial metabolism leads to an increased generation

of ROS, creating a state of oxidative stress (60). The accumulation

of ROS initiates widespread oxidative damage to lipids, proteins,

and mitochondrial DNA, impairing the integrity and function of

the mitochondria. This oxidative stress also disrupts the delicate

balance of intracellular signaling pathways critical for b-cells
survival, such as those regulating insulin secretion (56, 61).

Additionally, the sustained oxidative environment activates

apoptotic pathways, including mitochondrial outer membrane

permeabilization and cytochrome c release, which accelerate b-
cell death (62).

While mitochondrial dysfunction is well documented in type 2

diabetes, similar mechanisms may contribute to b-cell loss in T1D.

However, the direct connection with T1D remains unclear,

highlighting the need for future investigations to elucidate the

role of mitochondrial impairment in T1D pathogenesis. Emerging

evidence suggests that in T1D, immune mediated inflammation

driven by cytokines such as IL-1b, TNF-a, and IFN-g, along with

local hypoxia, impairs mitochondrial respiration and elevates ROS

production in pancreatic b-cells (63). This oxidative stress disrupts
ATP synthesis, damages mitochondrial structures, and activates

apoptotic pathways (64–66). Hypoxia further exacerbates

mitochondrial dysfunction by stabilizing HIF-1a, which promotes

a shift to glycolysis and impairs insulin secretion (4, 67, 68).

Additionally, chronic inflammation impairs mitophagy, leading to

the accumulation of dysfunctional mitochondria (69–71). These

synergistic stressors accelerate b-cell dysfunction and death,

highlighting potential therapeutic targets in oxidative stress

regulation and immune modulation.
Endoplasmic reticulum stress

In addition to impairing mitochondrial bioenergetics, hypoxia

and hyperglycemia synergistically activate endoplasmic reticulum

stress pathways, thereby disrupting insulin biosynthesis and

triggering apoptotic signaling cascades. Endoplasmic reticulum

(ER) stress occurs when the protein-folding capacity of the ER is

overwhelmed, leading to an accumulation of misfolded or unfolded

proteins within its lumen. This disruption activates a highly

conserved cellular mechanism known as the unfolded protein

response (UPR). The UPR is designed to mitigate ER stress by

halting general protein translation, increasing the production of

molecular chaperones to aid in proper protein folding, and

enhancing ER-associated degradation (ERAD) to clear misfolded

proteins. However, when ER stress is prolonged or severe, the

adaptive mechanisms of the UPR become maladaptive, triggering

pathways that promote cell dysfunction and death, primarily

through apoptosis (72–74).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1599321
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mittal et al. 10.3389/fimmu.2025.1599321
In the context of hyperglycemia, elevated glucose levels intensify

ER stress. The b-cells are highly sensitive to ER stress due to their

essential role in insulin biosynthesis, a process that places a

significant burden on the ER. Hyperglycemia increases the

demand for insulin production, leading to excessive protein

synthesis. This heightened demand exacerbates the likelihood of

protein misfolding and impairs the ER’s ability to manage the

cellular workload. Consequently, persistent hyperglycemia and ER

stress contribute to b-cell dysfunction and eventual apoptosis,

undermining insulin production and promoting hyperglycemia in

a vicious cycle. Moreover, in hypoxic conditions, often observed in

inflamed or poorly vascularized tissues, ER stress is further

intensified due to impaired oxygen availability, which disrupts

protein folding processes that rely on oxidative environments.

Proper formation of disulfide bonds in the ER requires oxygen-

dependent enzymes such as ERO1 and protein disulfide isomerase

(PDI) (75–78). Hypoxia inhibits these redox reactions, leading to

the accumulation of misfolded proinsulin, sustained activation of

the unfolded protein response (UPR), and subsequent apoptotic

signaling (79, 80). Combined with the effects of hyperglycemia, this

dual stressor amplifies UPR activation, leading to chronic

inflammation through the release of pro-inflammatory cytokines.

This inflammatory state exacerbates systemic metabolic

disturbances and cellular damage, contributing to the

pathogenesis of T1D (81–84).
Impaired autophagy

Hypoxia disrupts cellular homeostasis by impairing various

metabolic and repair processes, including autophagy (85).

Autophagy is a highly conserved cellular mechanism responsible

for degrading and recycling damaged organelles, misfolded

proteins, and other cytoplasmic debris (86, 87). In pancreatic b-
cells, autophagy plays a critical role in maintaining cellular health,

especially given their high metabolic activity and demand for

protein synthesis to support insulin production. Under normal

conditions, autophagy supports b-cell survival by mitigating

oxidative stress, removing damaged mitochondria, and preserving

mitochondrial quality, which is essential for ATP production and

glucose-stimulated insulin secretion (43, 88, 89). During hypoxia,

the ability of b-cells to sustain efficient autophagic activity is

compromised. Hypoxia directly inhibits autophagic flux by

interfering with key steps in the autophagy pathway. Specifically,

the low oxygen levels can disrupt the activity of hypoxia-sensitive

proteins and signaling pathways, such as AMP-activated protein

kinase (AMPK) and mechanistic target of rapamycin (mTOR) (90).

AMPK typically promotes autophagy by activating the ULK1

complex, while mTOR acts as a negative regulator of autophagy

(91, 92). In hypoxic conditions, dysregulation of these pathways

reduces the induction and progression of autophagy, leading to the

accumulation of damaged organelles, such as dysfunctional

mitochondria. This exacerbates oxidative stress, as impaired
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mitochondria produce ROS, creating a self-reinforcing cycle of

cellular damage (93–95).

Hyperglycemia compounds the autophagic impairment

induced by hypoxia. Chronic high glucose levels generate

excessive amounts of toxic metabolites, including AGEs and ROS

(96). These metabolites further stress cellular systems and increase

the demand for autophagic clearance (97–99). However, when

autophagic capacity is already compromised due to hypoxia, b-
cells are unable to efficiently clear these harmful byproducts. This

leads to cellular dysfunction and damage, contributing to b-cell
apoptosis and exacerbating the loss of insulin production.

Furthermore, hyperglycemia-driven activation of the hexosamine

biosynthetic pathway and protein kinase C (PKC) signaling disrupts

autophagy by altering post-translational modifications of key

autophagy-related proteins (100–102). These modifications reduce

the efficiency of autophagosome formation and lysosomal

degradation. Additionally, excess glucose exposure causes ER

stress, which interacts with and inhibits autophagic pathways,

further compounding the inability of b-cells to manage

intracellular damage (103).

The combined effects of hypoxia and hyperglycemia create a

cellular environment where repair and quality control mechanisms

are overwhelmed. The progressive accumulation of damaged

organelles, misfolded proteins, and oxidative stress amplifies b-
cell dysfunction, contributing to the pathogenesis and progression

of diabetes. These findings highlight the critical importance of

maintaining autophagic activity for b-cell health and suggest

potential therapeutic avenues aimed at restoring autophagic flux

in hypoxic and hyperglycemic conditions. Given the multifaceted

role of hypoxia in amplifying both immune dysregulation and b-cell
intrinsic stress, therapeutic strategies that target hypoxia-adaptive

pathways represent a novel and potentially transformative approach

for disease modification in T1D.
Future directions

Recent studies have suggested the potential role of modulating

hypoxia in T1D pathogenesis (4, 104–107). A study demonstrated

that human umbilical cord-derived mesenchymal stem cells (hUC-

MSCs) enhance the survival and function of pancreatic islets under

hypoxic conditions via the HIF-1a/PFKFB3 pathway, suggesting a

protective mechanism against hypoxia-induced b-cell dysfunction
(108). Additionally, research by Kelly et al. revealed that intrauterine

growth restriction leads to adaptive and immune responses in fetal

sheep islets, including the activation of immune pathways and stress

responses, which may predispose individuals to T1D (109). These

findings highlight the necessity for advanced experimental models

that accurately mimic the hypoxic and immunological milieu of T1D,

thereby facilitating the development of targeted therapeutic strategies

aimed at preserving b-cell function and modulating autoimmunity.

Building on these findings, it becomes increasingly important to

elucidate the cellular and molecular mechanisms that mediate the
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interplay between hypoxia, immune activation, and b-cell stress,
thereby guiding the development of precise, mechanism-

based interventions.
Mechanistic studies

Advancing our understanding of the molecular mechanisms

linking hyperglycemia, hypoxia, and immune dysregulation in T1D

is critical for developing targeted therapeutic strategies. Despite

significant progress in characterizing the individual contributions of

these factors, the precise cellular and molecular pathways through

which they interact remain poorly defined. Future research should

aim to dissect how hyperglycemia-induced metabolic stress and

hypoxia collectively drive immune activation and b-cell dysfunction.
Organoid platforms that recapitulate the 3D architecture and

cellular complexity of human islets are emerging as powerful tools

for modeling these interactions under controlled conditions (110).

By incorporating endothelial and immune components into islet

organoids, researchers can more accurately simulate the hypoxic

and inflammatory microenvironment characteristic of early T1D,

allowing for longitudinal and mechanistic studies of disease

initiation and progression.

Single-cell RNA sequencing (scRNA-seq) can play a pivotal role

in elucidating the heterogeneity of cellular responses within the

hypoxic islet microenvironment (111, 112). This approach enables

the high-resolution mapping of transcriptomic changes in b-cells,
endothelial cells, and infiltrating immune cells, revealing dynamic

interactions that exacerbate hypoxia and inflammation. Spatial

transcriptomics can complement scRNA-seq by providing spatial

context to molecular changes, capturing the precise localization of

hypoxia-related genes in relation to islet architecture and immune

cell infiltration (35, 113, 114). Utilizing these techniques will

provide novel insights regarding the role of hypoxia in the

pathophysiology of T1D.
Therapeutic delivery platforms

While advanced in vitro and omics-based platforms are critical

for decoding the molecular underpinnings of hypoxia in T1D,

translating these insights into viable therapies requires parallel

innovation in delivery strategies capable of targeting the islet

microenvironment with precision. The development of innovative

therapeutic delivery platforms offers significant promise in targeting

hypoxia and immune dysregulation in T1D. Traditional systemic

treatments are often limited by off-target effects and insufficient

delivery to the pancreatic islet microenvironment. Encapsulation

technologies for b-cell transplants, for instance, could provide

localized protection from immune attack while supporting

oxygenation and nutrient delivery. These encapsulated transplants

can be engineered to enhance survival and function in the hypoxic

and inflamed microenvironment characteristic of T1D (115, 116).
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Localized drug delivery systems also hold potential for improving

therapeutic precision. Nanoparticle-based carriers, for example, can

be designed to deliver antioxidants, hypoxia modulators, or anti-

inflammatory agents directly to the islet microenvironment, reducing

systemic side effects while maximizing efficacy. Hydrogel-based

systems that release therapeutic agents in response to specific

triggers, such as low oxygen levels or high reactive oxygen species,

could offer another level of control. Further exploration of these

delivery systems is needed to refine their effectiveness and scalability,

as well as to evaluate their long-term safety and durability in clinical

trials (117, 118).
Data-driven approaches

As delivery technologies evolve to address site-specific therapeutic

challenges, data-driven approaches offer a complementary framework

to optimize intervention timing, predict therapeutic responses,

and uncover non-obvious molecular targets within the hypoxia–

autoimmunity axis. The integration of data-driven methodologies,

particularly machine learning and computational modeling, has the

potential to revolutionize the understanding and treatment of

hypoxia-related mechanisms in T1D (119, 120). By leveraging

machine learning techniques, researchers can extract meaningful

insights from complex, large-scale datasets generated from multi-

omics analyses, such as transcriptomics, proteomics, and

metabolomics, as well as from clinical trials and patient registries.

These algorithms can uncover intricate patterns, correlations, and

predictive markers that might otherwise remain undetected (121–

123). For instance, specific molecular drivers or pathways linking

hypoxia to immune dysregulation, oxidative stress, and b-cell
dysfunction can be identified, which are critical in the pathogenesis

of T1D (124).

In parallel, computational modeling provides a powerful tool to

simulate the dynamic andmultifaceted islet microenvironment under

various physiological and pathological conditions, including hypoxia,

hyperglycemia, and inflammatory stress (125). These models enable

researchers to explore how b-cells interact with immune cells and

their surrounding microenvironment, allowing for the in silico testing

of hypotheses about disease progression and potential interventions.

By incorporating data from experimental studies and clinical

observations, computational simulations can predict how changes

in oxygen availability, nutrient levels, and inflammatory mediators

influence b-cell viability and function (126).
Developing therapeutic strategies

Building on the foundation of experimental and computational

advances, therapeutic efforts now focus on mitigating hypoxia-

driven b-cell dysfunction through molecular and tissue-level

interventions. Hypoxia in T1D plays a pivotal role in the

dysfunction and death of pancreatic b-cells, amplifying the
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progression of the disease. Therefore, targeting hypoxia will pave

the way to develop novel therapeutic modalities for T1D

(Supplementary Table 2). Restoring oxygen levels in the pancreatic

microenvironment could alleviate hypoxic stress and improve b-cell
survival (127–129). Oxygenation-based approaches, such as

hyperbaric oxygen therapy or oxygen-releasing nanoparticles, have

been proposed as potential strategies to counteract hypoxia. By

addressing the oxygen supply to b-cells, these strategies may

mitigate cellular damage and improve metabolic outcomes.

Modulation of HIFs is another promising approach for addressing

hypoxia-related b-cell dysfunction. Dysregulated HIF-1a signaling

during hypoxia contributes to inflammation, impaired autophagy,

and b-cell apoptosis (130). Stabilizing HIF-2a or targeting

maladaptive HIF-1a activity could enhance angiogenesis, improve

islet vascularization, and support b-cell survival. These strategies

highlight the therapeutic potential of manipulating hypoxia signaling

pathways to mitigate cellular stress and maintain b-cell health

(131, 132).

Islet vascularization is critically impaired in T1D, exacerbating

hypoxic conditions and b-cell loss. Promoting angiogenesis through

VEGF-based therapies or cell-based approaches, such as

mesenchymal stem cells (MSCs), could enhance islet perfusion

and oxygen delivery (133, 134). These interventions may also

address inflammation-induced vascular damage, improving

overall islet resilience and functionality in the context of T1D (135).

Hypoxia-induced autophagy impairment is another significant

contributor to b-cell dysfunction in T1D. Autophagy plays a crucial

role in removing damaged organelles and maintaining cellular health.

Hypoxia disrupts this process, leading to the accumulation of

damaged mitochondria, increased oxidative stress, and b-cell death
(136, 137). Strategies to restore autophagic flux, such as mTOR

inhibition or AMPK activation, could counteract hypoxia-induced

cellular damage by reactivating autophagy and enhancing cellular

stress resilience (138–140). However, systemic administration of

these modulators raises concerns due to their broad physiological

effects, including metabolic dysregulation, immune suppression, or

unintended impacts on proliferative signaling in non-target tissues

(141, 142). To circumvent these risks, localized delivery approaches

are being developed to restrict therapeutic activity to the pancreatic

microenvironment. These include engineered nanoparticles that

exploit local tissue markers or microenvironmental cues (such as

pH or hypoxia) for targeted release, oxygen-sensitive or hypoxia-

responsive hydrogels that release payloads in response to local oxygen

tension and encapsulated islet or beta-cell devices incorporating drug

reservoirs or responsive release systems (143–148). Such strategies

aim to minimize off-target exposure while ensuring sufficient local

concentration to modulate autophagy-regulatory pathways within

the islet graft or endogenous pancreas. In islet transplantation,

hypoxia remains a major barrier to long-term graft survival and

function. Transplanted islets often experience hypoxic conditions due

to insufficient vascularization, leading to graft failure. Approaches to

mitigate hypoxia, such as preconditioning islets with hypoxia-

mimicking agents or incorporating oxygen-releasing materials into

encapsulation technologies, have the potential to improve transplant

outcomes. Additionally, strategies that reduce hypoxia-induced
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inflammation and oxidative stress could further enhance graft

viability (149).
Conclusions

The intricate interplay between oxygen availability, immune

dynamics, and b-cell resilience in T1D highlights a paradigm shift

in our understanding of disease progression. Hypoxia, traditionally

regarded as a secondary consequence of inflammatory and metabolic

disturbances, emerges as a fundamental driver of b-cell vulnerability.
It can act as a molecular amplifier of immune-mediated cytotoxicity,

oxidative stress, and metabolic dysfunction, establishing a

pathophysiological axis that extends beyond conventional immune-

centric frameworks.

Deciphering the hypoxic landscape of pancreatic islets

necessitates an integrated, systems-biology approach. The

chronic stabilization of HIFs within b-cells and immune

infiltrates orchestrates a cascade of transcriptional and metabolic

perturbations, precipitating a shift toward maladaptive cellular

states (150). This aberrant signaling interface disrupts immune

homeostasis, subverts b-cell identity by downregulating essential

transcriptional regulators including PDX1, MAFA, and NKX6.1,

thereby impairing insulin gene expression and promoting a

dedifferentiated or progenitor-like phenotype (151–153). This loss

of identity compromises glucose-stimulated insulin secretion and b-
cell survival. Consequently, interventions targeting hypoxia-

mediated dysregulation represent an unexplored frontier in

modifying T1D trajectory.

Advancements in spatial transcriptomics, single-cell metabolic

profiling, and in silico modeling hold the potential to deconvolute

the heterogeneity of hypoxic responses within islet microenvironments.

Precision-engineered therapeutic strategies, including hypoxia-

responsive biomaterials, oxygenation-modulating nanoformulations,

and selective HIF modulation, offer novel avenues for mitigating

hypoxia-induced b-cell attrition. Furthermore, the integration of

hypoxia-centric interventions with immune-modulatory frameworks

may redefine therapeutic paradigms, bridging the gap between

metabolic preservation and immunological tolerance.

Although targeting hypoxic signaling in T1D represents a

compelling therapeutic avenue, translating these concepts into

clinical practice presents considerable complexity. One of the

foremost challenges is the ability to selectively modulate oxygen-

sensitive pathways within the pancreatic islet microenvironment

without perturbing systemic oxygen homeostasis. Pharmacologic

agents that influence the activity of hypoxia-inducible factors

or related metabolic sensors often exert pleiotropic effects in

tissues such as the myocardium, central nervous system, and

renal epithelium, where oxygen signaling plays fundamental

physiological roles. This raises significant safety concerns,

including the potential for disrupting angiogenesis, altering

mitochondrial bioenergetics, or impairing adaptive cellular

responses under normal oxygen conditions. Additionally, the

anatomical and physiological inaccessibility of pancreatic islets

complicates the targeted delivery of such interventions.
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Therapeutic compounds must traverse dense stromal tissue, evade

rapid systemic clearance, and retain functional activity within the

islet niche, which is often characterized by inflammatory and

fibrotic remodeling. Overcoming these delivery and stability

barriers necessitates the development of next-generation carrier

systems that are both biocompatible and capable of site-specific

drug release. To advance these strategies toward clinical utility, it is

essential to conduct preclinical assessments in experimental models

that accurately recapitulate human islet immunobiology, oxygen

gradients, and disease kinetics. Moreover, longitudinal studies

evaluating toxicity, pharmacokinetics, immune interactions, and

off-target responses are critical for establishing a robust safety

profile. Collectively, these efforts are foundational to ensuring that

hypoxia-focused interventions are both biologically viable and

clinically translatable in the context of T1D.

A comprehensive elucidation of the molecular interfaces between

oxygen deprivation, b-cell stress responses, and immune-mediated

cytotoxicity is essential for the rational development of targeted

therapeutic interventions in T1D. This evolving paradigm positions

hypoxia not solely as a passive biomarker of disease progression, but

as an actionable pathogenic determinant amenable to intervention.

By harnessing emerging insights into hypoxia-induced signaling

cascades and their impact on b-cell function and immune

dynamics, future therapeutic strategies may be optimized to

preserve b-cell identity, suppress autoreactive immune effector

mechanisms, and fundamentally alter the disease trajectory toward

sustained glycemic control and immune tolerance.
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