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Identification and validation of
NETs-related biomarkers in
active tuberculosis through
bioinformatics analysis and
machine learning algorithms
Shengfang Xia, Qi An, Rui Lin, Yalan Tu, Zhu Chen*

and Dongmei Wang*

Department of Science and Education Division, Public Health Clinical Center of Chengdu, Chengdu,
Sichuan, China
Introduction: Diagnostic delays in tuberculosis (TB) threaten global control

efforts, necessitating early detection of active TB (ATB). This study explores

neutrophil extracellular traps (NETs) as key mediators of TB immunopathology

to identify NETs-related biomarkers for differentiating ATB from latent TB

infection (LTBI).

Methods: We analyzed transcriptomic datasets (GSE19491, GSE62525,

GSE28623) using differential expression analysis (|log, FC| ≥ 0.585, adj. p <

0.05), immune cell profiling (CIBERSORT), and machine learning (SVM-RFE,

LASSO, Random Forest). Regulatory networks and drug-target interactions

were predicted using NetworkAnalyst, Tarbase, and DGIdb.

Results: We identified three hub genes (CD274, IRF1, HPSE) showing high

diagnostic accuracy (AUC 0.865-0.98, sensitivity/specificity >80%) validated

through ROC/precision-recall curves. IRF1 and HPSE correlated with

neutrophil infiltration (r > 0.6, p < 0.001), suggesting roles in NETosis. FOXC1,

GATA2, and hsa-miR-106a-5p emerged as core regulators, and 46 candidate

drugs (e.g., PD-1 inhibitors, heparin) were prioritized for repurposing.

Discussion: CD274, IRF1, and HPSE represent promising NETs-derived

diagnostic biomarkers for ATB. Their dual roles in neutrophil-mediated

immunity highlight therapeutic potential, though drug predictions require

preclinical validation. Future studies should leverage spatial omics and CRISPR

screening to elucidate mechanistic pathways.
KEYWORDS
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Introduction

TB, caused by Mycobacterium tuberculosis (MTB), remains one

of the major public health challenges globally. Despite the

significant progress made in the global fight against TB in recent

years, according to the Global Tuberculosis Report 2024 released by

the World Health Organization (WHO) (1), there were an

estimated 10.8 million new TB cases worldwide in 2023, a slight

increase from the 10.7 million cases in 2022. TB is transmitted

through the air, and individuals exposed to an environment with

MTB approximately 30% risk of developing LTBI, which is an

asymptomatic and non - infectious state (2). However, without

timely treatment, about 5% - 10% of LTBI patients with normal

immune function may progress to ATB, and those with underlying

diseases may develop ATB more rapidly (3). Delayed diagnosis of

ATB and LTBI not only facilitates disease progression but also

increases the risk of person-to-person transmission, posing a

substantial threat to global TB control efforts. Early detection of

ATB and LTBI is therefore critical for initiating timely treatment

and implementing effective public health strategies to

mitigate transmission.

The pathogenesis of TB involves a complex interplay between

MTB and the host immune system (4, 5). Upon inhalation, MTB are

phagocytosed by alveolar macrophages, triggering a cascade of innate

and adaptive immune responses. During this process, neutrophils, as

the first line of defense of the host immune system, participate in anti-

TB defense through phagocytosis, production of reactive oxygen

species (ROS), and release of NETs,web-like structures composed of

DNA, histones, and antimicrobial proteins (6, 7). Existing studies

have shown that neutrophils are significantly enriched in the blood

and bronchoalveolar lavage fluid of patients with ATB (8), and these

cells demonstrate their anti-mycobacterial ability by phagocytosing

MTB (9, 10). However, excessive activation of neutrophils may lead to

immunopathological damage. For example, although the excessive

release of NETs can capture MTB, it can trigger pulmonary

inflammation and tissue damage (11, 12). This dual role of NETs—

host protection versus pathological damage—highlights their complex

regulatory function in TB pathogenesis. These discrepancies

underscore the necessity to systematically analyze NETs-related

genes (NRGs) and clarify their roles in TB pathogenesis.

Distinguishing between LTBI and ATB is particularly

challenging due to overlapping clinical and immunological

features. Current diagnostic methods, such as tuberculin skin tests

(TSTs) and interferon-gamma release assays (IGRAs), cannot

reliably predict disease progression or differentiate between active

and latent infection (13, 14). Genomic profiling studies have

identified transcriptional signatures associated with TB

progression, but these signatures often lack specificity for NETs-

related pathways (15, 16). This knowledge gap underscores the need

for novel biomarkers that can accurately discriminate between LTBI

and ATB, particularly in high-risk populations such as household

contacts of TB patients. The immune microenvironments of LTBI

and ATB differ significantly. In LTBI, the immune response is

characterized by a balanced Th1/Th17 cytokine profile, which

restricts MTB replication without causing tissue damage (17, 18).
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In contrast, ATB is marked by a hyperinflammatory state

dominated by neutrophil infiltration and pro-inflammatory

cytokine secretion, leading to granuloma formation and lung

destruction (19–22). These divergent immune responses likely

involve distinct NRG expression patterns. Identifying these

differentially expressed NRGs could provide critical insights into

disease progression and enable the development of targeted

diagnostic tools.

This study addresses these unmet needs by integrating

bioinformatics and machine learning approaches to systematically

analyze NRG expression profiles in ATB and LTBI. By leveraging

publicly available transcriptomic datasets (GSE19491, GSE62525,

GSE28623), we aim to 1) identify NRGs that are differentially

expressed between ATB and LTBI; 2) validate their diagnostic

potential using machine learning algorithms; 3) characterize their

functional roles in immune cell infiltration and signaling pathways;

and 4) predict potential therapeutic targets by mapping NRGs to

druggable pathways. These findings may provide a theoretical basis

for the development of new treatment strategies, especially by

targeting the NETs regulatory pathway to intervene in the

immune response of TB and ultimately improve the treatment

prognosis of patients.
Materials and methods

Data collection

Gene expression datasets related to ATB were obtained from the

GEO database (https://www.ncbi.nlm.nih.gov/geo/) using the

GEOquery R package (version 3.20) (23). NRGs were curated

from previously validated studies (24, 25). A total of 123 NRGs

were manually extracted and compiled into a reference list

(Supplementary Table S1).
Identification of DE-NRGs

Differential expression analysis was performed using the limma

package (version 3.20) (26). Genes with |log2 (fold change) | ≥ 0.585

(equivalent to a 1.5 - fold change)and adjusted p-value < 0.05

(Benjamini-Hochberg correction) were considered significantly

differentially expressed. Subsequently, an intersection analysis was

performed between the DEGs and NRGs to screen out significantly

DE-NRGs. These genes likely contribute to ATB pathogenesis.
Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses were conducted

using the ClusterProfiler package (version 4.6.0) (27). The analysis

results were presented in various visualization methods to help

uncover the potential mechanisms of these genes in the occurrence

and development of ATB.
frontiersin.org

https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fimmu.2025.1599667
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xia et al. 10.3389/fimmu.2025.1599667
Immune cell infiltration analysis

Immune cell infiltration levels were quantified using the

CIBERSORT algorithm with the LM22 signature matrix (28).

Gene expression data and the LM22 signature file were processed

through the CIBERSORT R script to estimate the relative

proportions of 22 immune cell subtypes in each sample. To

ensure robustness, only samples with a CIBERSORT output p-

value < 0.05 were retained for downstream analysis.

For correlation analysis between hub genes (CD274, IRF1,

HPSE) and immune cell subsets, Spearman’s rank correlation was

applied. Statistical significance was defined as p < 0.05. Visualization

of correlation matrices and gene-immune cell interactions was

performed using linkET (version 0.0.7.4) (29) and ggplot2(version

3.5.1) (30), with color gradients representing correlation coefficients

and point sizes indicating statistical significance. The final plots

integrated immune cell-cell correlations (lower triangle) and gene-

immune cell correlations (upper triangle).
Identification of hub genes using machine
learning algorithms

To identify the key genes associated with ATB, we employed

three classic machine - learning algorithms, including SVM - RFE,

LASSO, and RF. These algorithms were implemented using the R

packages e1071 (31, 32), glmnet (33), and randomForest (34). The

overlapping genes of the three algorithms were considered as

hub genes, and the results were visualized using the Venn

package (35).
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Prediction of potential drug targets

Potential drug targets were identified using the Drug-Gene

Interaction database (DGIdb) (version 5.0.8) (36). Drug-gene

interaction networks were constructed using Cytoscape (version

3.7.2) (35). Aiming to provide new drug targets for the treatment

of ATB.
Construction of TFs-gene and miRNAs-
gene regulatory networks

Based on the regulatory roles of TFs and miRNAs, we used

NetworkAnalyst 3.0 (37) and the Tarbase database (38) to construct

the regulatory networks of TFs-genes and miRNAs-genes,

respectively. By analyzing the transcriptional regulation and

miRNA regulation relationships of these genes, we can better

understand the mechanism of action of NETs - related genes in

ATB. All the regulatory networks were visualized using Cytoscape

to intuitively display the interactions among these molecules.
Results

Identification and functional
characterization of DEGs

The overall flowchart of this study is shown in Figure 1. In the

GSE19491 dataset, we conducted a differential expression analysis for

69 samples of LTBI and 54 samples of ATB. Finally, a total of 7,959
FIGURE 1

Flowchart of this study.
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differentially expressed genes were identified, among which 3,471 genes

were upregulated, and 4,488 genes were downregulated in the ATB

group (Figure 2A). To explore the biological functions and potential

roles of these DEGs during the development of ATB, we performed GO

and KEGG enrichment analyses. Specifically, a total of 46 significantly

enriched KEGG pathways were identified (Supplementary File 2), as

well as 1,028 GO items (Supplementary File 3).

In the GO analysis (Figure 2B), we found that in the Biological

Process (BP) category, the DEGs were mainly enriched in key

immune response pathways such as regulation of innate immune

response, lymphocyte differentiation, regulation of immune effector

process, and immune response−regulating cell surface receptor

signaling pathway. In the Cellular Component (CC) category, the

DEGs were significantly enriched in structural components such as

endocytic vesicles, secretory granule membrane, and ribosome. In

the Molecular Function (MF) category, the DEGs were mainly

involved in important functions such as ubiquitin−like protein

ligase binding, ubiquitin protein ligase binding, andstructural

constituent of ribosome.

The KEGG pathway analysis (Figure 2C) indicated that these

DEGs were significantly enriched in various pathways, especially

those related to immune responses and cell signaling, including the

NOD-like receptor signaling pathway, DNA replication, Apoptosis,

T cell receptor signaling pathway, Th17 cell differentiation,

NF-kappa B signaling pathway, Autophagy–animal, as well as

infectious diseases such as Coronavirus disease (COVID-19),

Epstein-Barr virus infection, Tuberculosis, etc.

To further explore the role of immune cells in the occurrence of

ATB, we used the CIBERSORT algorithm to evaluate the infiltration

status of immune cells in the ATB and LTBI groups (Figure 2D).

According to the results (Figure 2D), patients with LTBI exhibited

higher levels of CD8+ T cells, naïve CD4+ T cells, resting memory

CD4+ T cells, activated memory CD4+ T cells, gamma delta T cells,

and resting natural killer (NK) cells. In contrast, patients with ATB

showed significantly higher levels of monocytes and neutrophils.

Analyses in two validation datasets, GSE62525 (Figure 2E) and

GSE28623 (Figure 2F), further confirmed the high infiltration of

neutrophils in patients with ATB.
Identification of NETs-related hub genes in
ATB

To identify the DE-NRGs closely associated with the occurrence

of ATB, we performed an intersection analysis between the DEGs

and the known NRGs, obtaining 88 DE-NRGs (Figure 3A).

Subsequently, we used three machine learning algorithms (SVM-

RFE, LASSO, and RF) to screen key genes from these DE-NRGs.

In the LASSO algorithm (Figure 3B), with the best lambda of

0.0220116, 21 key genes were identified. In the RF algorithm

(Figure 3C), by setting the optimal number of trees to 65, we

conducted an intersection analysis of the top 30 genes ranked by

“mean decrease Accuracy” and “mean decrease Gini”, ultimately

screening out 24 key genes (Figure 3D). The SVM-RFE algorithm

(Figure 3E) identified 7 key genes.
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Finally, through the intersection of the results from the three

algorithms, we identified 3 key hub genes: CD274, IRF1, and HPSE

(Figure 3F). These genes are considered NETs-related hub genes

and may play important roles in the pathogenesis of ATB.
Identification and validation of the
diagnostic value of NETs-related hub
genes

To determine the diagnostic value of the above three hub genes

in ATB, first, this study analyzed the correlations between the three

genes and immune cells. As shown in Figure 4A, in the training

dataset GSE19491, CD274, IRF1, and HPSE were significantly

positively correlated with neutrophils. Then, a nomogram model

was constructed based on the three genes. The relative expression

level of each gene corresponded to a score, and the total score was

calculated by adding up the scores of each gene (Figure 4B).

ROC curve analysis indicated that all three genes had good

diagnostic performance. Figure 4C shows that for CD274 (AUC:

0.901, 95% CI: 0.84 - 0.962), IRF1 (AUC: 0.93, 95% CI: 0.886 - 0.975),

HPSE (AUC: 0.865, 95% CI: 0.798 - 0.933), and the Nomoscore

(AUC: 0.949, 95% CI: 0.908 - 0.99). Surprisingly, it could be inferred

from the AUC values that CD274 and IRF1 had outstanding

diagnostic efficiency, while HPSE also had good diagnostic value.

In addition, to further evaluate the accuracy of the above results,

this study conducted validation in two training datasets (GSE62525,

GSE28623). Consistent with the previous results, in the training

dataset GSE28623, CD274, IRF1, and HPSE were significantly

positively correlated with neutrophils (Figure 5B). In the validation

dataset GSE62525, CD274 and HPSE were significantly positively

correlated with neutrophils. However, unfortunately, there was no

significant correlation between IRF1 and neutrophils (Figure 5A).

Moreover, the nomogram model and ROC curve analysis confirmed

the good diagnostic value of the three genes (Figures 5C–F).

We further validated the diagnostic performance of the three

hub genes (CD274, IRF1, HPSE) using precision-recall (PR) curves

across all datasets (Supplementary Figures 2–4). The area under the

PR curve (AUPR) for CD274, IRF1, and HPSE ranged from 0.875 to

0.971 in the cohorts (GSE62525: CD274 AUPR = 0.901, IRF1 AUPR

= 0.859, HPSE AUPR = 0.896; GSE28623: CD274 AUPR = 0.859,

IRF1 AUPR = 0.971, HPSE AUPR = 0.978; GSE19491: CD274

AUPR = 0.915, IRF1 AUPR = 0.875, HPSE AUPR = 0.948). The

Nomoscore, integrating all three genes, achieved AUPR values

exceeding 0.93 in all datasets (Supplementary Figures 2–4). These

results corroborate the high diagnostic accuracy observed in ROC

analyses. Table 1 summarizes the specificity, sensitivity, F1 score,

and 95% confidence intervals (CIs) for the hub genes across

discovery and validation datasets.
Identification of drug-gene interactions

In this study, the DGIdb database was utilized to predict potential

drugs that could interact with the hub genes related to NETs. A total of
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FIGURE 2

(A)The volcano plot of DEGs between ATB and LTBI groups in GSE19491. (B) The bubble plots of the GO enrichment analysis results for DEGs,
which show Top 10 GO BPs; Top 10 GO CCs; Top 10 GO MFs. (C) Bubble plot of KEGG pathway analysis results for DEGs, showing Top 30 KEGG
pathways. The size of the bubbles correlates with the number of genes enriched in the pathway, while the color indicates the magnitude of the
adjusted p-value, with red indicating a smaller adjusted p-value and blue indicating a larger adjusted p-value. (D-F) Comparison of immune cell
infiltration profiles between active tuberculosis (ATB) and latent tuberculosis infection (LTBI) patients across three datasets. Relative proportions of 22
immune cell subtypes in ATB and LTBI groups were estimated using the CIBERSORT algorithm in (D) GSE19491, (E) GSE62525, and (F) GSE28623
datasets. Bar plots illustrate the mean infiltration levels of immune cell subtypes (e.g., neutrophils, monocytes, cluster of differentiation 8-positive T
cells [CD8+ T cells], natural killer [NK] cells, and memory CD4+ T cells) in ATB (red) and LTBI (blue). Statistical significance was assessed using the
student’s t test (*p < 0.05, **p < 0.01, ***p < 0.001). Error bars represent standard deviation.
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46 potential drugs were screened out, including AMOPYROQUINE,

RECOMBINANT CYTOKINE, PACMILIMAB, ENVAFOLIMAB,

PIXATIMOD, and other drugs (Supplementary File 4). Additionally,

in this study, Cytoscape 3.10.3 was employed to visualize the gene-drug

interactions (Figure 6A).
Construction of gene-TFs and gene-
miRNAs interaction networks

In this study, we also constructed the gene-TFs and gene -

miRNAs interaction networks to further explore the regulatory

mechanisms of NETs-related hub genes. TFs and miRNAs have

shown nonnegligible roles in the occurrence of diseases. Existing

studies have demonstrated that TFs and miRNAs play crucial roles in

the occurrence and development of TB (39–42). Therefore, in this

study, we constructed the Gene-TFs and Gene-miRNAs interaction

networks. According to the results (Figures 6B, C), FOXC1, GATA2,

and hsa-miR-106a-5p interacted with the three hub genes, indicating

that they may be the common regulatory factors of the three hub

genes. FOXC1, GATA2, and hsa-miR-106a-5p may be the key core

regulatory factors for the expression of the three hub genes.
Discussion

TB remains a major global public health challenge. ATB is the

most infectious form of TB, and the early detection of ATB and

LTBI is crucial for the control and cure of TB. The IGRA and the

TST are currently the most commonly used methods for TB

diagnosis. However, unfortunately, neither of these two methods

can distinguish between ATB and LTBI (13, 14). This diagnostic

gap urgently requires the identification of reliable biomarkers that

can accurately distinguish between these two states. In this study,

we aimed to identify NETs- related biomarkers for ATB and LTBI

through bioinformatics analysis and machine - learning algorithms.

The identified hub genes, CD274, IRF1, and HPSE, exhibited

significant diagnostic performance, which provides a potential

breakthrough for the diagnosis of TB.

Neutrophils are a key cell type in the host immune response to

TB, and their role in TB has gradually received increasing attention.

They have both protective effects and potential hazards (15, 43–47).

In this study, we identified 88 DE - NRGs associated with ATB.

Through machine learning algorithms, including the least absolute

shrinkage and LASSO, RF, and SVM-RFE, CD274, IRF1, and HPSE

were screened as key hub genes. These genes exhibited powerful

diagnostic performance in differentiating ATB from LTBI, and the

ROCcurve analysis confirmed their high accuracy.

CD274, also known as programmed death - ligand 1 (PD - L1), is

involved in immune regulation. Previous studies have shown (48) that

it plays a crucial role in immune regulation and immune escape

mechanisms of various diseases. In the context of TB, previous

studies (49, 50) have demonstrated its involvement in immune

regulation and its potential role in host pathogen interactions.

Research has shown (49) that MTB infection can induce high
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expression of CD274 in macrophages and neutrophils, thereby

weakening the host’s anti - TB immune response. This phenomenon

is closely related to the activation of the NF-kB signaling pathway,

which drives the release of inflammatory factors (such as TNF-a, IL-6)
in TB and simultaneously promotes the expression of CD274 (50).

Additionally, The upregulation of CD274 may contribute to the

progression from latent infection to ATB by inhibiting T-cell

proliferation (49). Therefore, CD274 not only serves as a diagnostic

biomarker, but the immune checkpoint pathway it regulates may also

provide a new target for TB immunotherapy. In our study, the

expression of CD274 in ATB was significantly higher than that in

LTBI (Supplementary Figure 1), with an AUC value of 0.901 in the

training set, further emphasizing its diagnostic value. The upregulation

of CD274 in ATB may reflect an adaptive immune escape strategy

adopted by MTB. By interacting with receptors on immune cells,

CD274 may inhibit the immune response and promote the survival

and reproduction of pathogens. The high diagnostic accuracy of

CD274, as well as its biological significance, make it a promising

therapeutic target and object for diagnostic development.

IRF1, a key transcription factor in immune responses (51, 52).

regulates genes critical for host defense against MTB (53). Moreover,

IRF1 is involved in the regulation of the Th1-type immune response,

and IFN-g secreted by Th1 cells is a key factor in controlling MTB

infection (52). However, overactivation of IRF1 may trigger an

excessive inflammatory response, leading to lung tissue damage, a

phenomenon particularly prominent in the pathological process of

ATB patients (53). IRF1 showed significant differential expression

between ATB and LTBI (Supplementary Figure 1). The high

diagnostic accuracy of IRF1 (AUC: 0.93) highlights its potential as

a biomarker. Notably, the expression of IRF1 was positively

correlated with the abundance of neutrophils, further supporting its

role in NET formation and immune regulation. Dysregulated IRF1

activity may lead to the excessive inflammatory response observed in

ATB, exacerbating tissue damage and disease severity. Targeting the

IRF1-related pathway may thus emerge as a novel therapeutic

strategy to mitigate TB-related inflammation.

Among mammalian endoglycosidases, heparanase (HPSE) is

currently the only known enzyme capable of cleaving heparan

sulfate (HS). By cleaving heparan sulfate, it can regulate the

remodeling process of the basement membrane and the

extracellular matrix. Additionally, it can also promote the release of

numerous HS-related molecules, including cytokines, growth factors,

and various enzymes. In previous studies (54–58), HPSE has been

shown to contribute to the occurrence, metastasis, drug resistance,

and poor prognosis of various tumors. Some studies have indicated

(54, 59) that HPSE may act as an effector component of NETosis and

be released by neutrophils, leading to tissue damage. Additionally,

HPSE exacerbates the inflammatory response by activating the TLR4/

NF-kB pathway (62), which is associated with the formation of

chronic granulomas in TB. This study shows that HPSE is

significantly positively correlated with Neutrophils, with an AUC

value of 0.865, indicating its diagnostic relevance.

The diagnostic potential of CD274, IRF1 and HPSE in active

tuberculosis (ATB) is supported by their strong positive correlation

with neutrophil infiltration, as shown in validation datasets
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(GSE62525 and GSE28623). These genes maintained their diagnostic

accuracy in the validation datasets, consistent with the discovery

dataset. However, the lack of a significant correlation between IRF1

and neutrophils in GSE62525 indicates potential dataset - specific
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differences and suggests that further validation in larger cohorts is

necessary. While the observed correlations highlight the clinical

relevance of these genes, the observational nature of transcriptomic

data limits causal inference. Emerging mechanistic studies in non-TB
FIGURE 3

(A) The gene overlap between DEGs and NRGs. (B) The LASSO algorithm was used to obtain the hub genes associated with ATB, and the error was
minimized when 21 genes were included. (C) Random forest (RF) algorithm ranked genes by mean decrease accuracy (MDA) and mean decrease
Gini (MDG). Top 30 genes from each metric were intersected. (D) The overlapping genes between the 30 genes with the mean decrease accuracy
and the 30 genes with the mean decrease Gini. (E) Error plot of different number of features in SVM-RFE. The minimum error was obtained for the
inclusion of 7 genes. (F) Venn diagram showing the overlap of candidate genes for the above three machine learning algorithms.
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models provide plausible hypotheses: CD274 (PD-L1) promotes NET

release via PI3K/Akt/mTOR signaling in endotoxin-induced lung

injury (60), IRF1 drives ROS-dependent NETosis in LPS-challenged

neutrophils (61), HPSE facilitates NET extrusion through heparan

sulfate cleavage in cancer-associated inflammation (54, 59). Notably,

whether these pathways operate in MTB-infected neutrophils

remains unproven. The dataset-specific discrepancy in IRF1-

neutrophil correlations further underscores the need for functional

validation in TB-specific contexts. Future studies should integrate

neutrophil-specific gene perturbation (e.g., CRISPR/Cas9 knockout

in primary human neutrophils infected with virulent MTB) with

single-cell transcriptomics to resolve whether these hub genes are

selectively expressed in NETosis-committed subsets. Such

approaches will clarify if these genes act as drivers of NETosis or

merely bystanders marking neutrophil activation, ultimately bridging

the gap between correlation and causality in ATB pathogenesis.

To ensure the robustness of the research results, we validated

the excellent diagnostic performance of CD274, IRF1, and HPSE in

the validation datasets (GSE62525 and GSE28623). Consistent with

the discovery dataset, these hub genes showed a significant positive

correlation with neutrophil abundance in the validation datasets

and maintained their diagnostic accuracy. However, IRF1 did not

show a significant correlation with neutrophils in the GSE62525
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dataset, indicating that there may be dataset - specific differences

and further validation in a larger cohort is needed.

In this study, 46 candidate drugs with potential interactions with

NETs-related hub genes (CD274, IRF1, HPSE) were screened out

through the DGIdb database. Existing evidence shows that Iron

dysregulation plays an important role in the pathogenesis of TB:

hepcidin serum can significantly increase the susceptibility to TB

(62), and the abnormally elevated serum hepcidin levels in patients

coinfected withMTB andHIV are closely related to disease progression

(63, 64). Heparin, as a hepcidin inhibitor, has been confirmed by

research (65) to be able to significantly inhibit the expression of

hepcidin in human macrophages after MTB infection, thereby

effectively inhibiting the replication process of intracellular MTB.

Suramin, as a drug for the treatment of trypanosomiasis, is

considered to enhance the sensitivity of multidrug-resistant (MDR-

TB) and extensively drug-resistant (XDR-TB) strains to existing

antibiotics by inhibiting the SOS repair system mediated by the

RecA protein of MTB (66). Recombinant human interleukin-2 (IL-2)

(67) and interferon-gamma (IFN-g) (68), as recombinant cytokines,

have shown positive effects in the treatment of TB. In the list of

candidate drugs in this study, there are also various monoclonal

antibodies against programmed death receptor 1 (PD-1), such as

Pembrolizumab, Nivolumab, etc. Although these drugs are currently
FIGURE 4

(A) Correlation between immune cells and between NETs-related hub genes and immune cells in the GSE19491 dataset. (B) Nomogram
construction of three NETs-related hub genes in the GSE19491 dataset. (C) ROC curve of the three NETs-related hub genes and nomogram in
discovery datasets for GSE19491.
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FIGURE 5

(A, B) Correlation analysis of neutrophil extracellular traps (NETs)-related hub genes with immune cell infiltration in validation datasets. Spearman’s
rank correlation heatmaps show the association between expression levels of NETs-related hub genes (CD274, IRF1, HPSE) and immune cell
subtypes in (A) GSE62525 and (B) GSE28623 datasets. Correlation coefficients are represented by color gradients (red: positive; blue: negative), and
point sizes indicate statistical significance. Key immune cell subtypes include neutrophils, monocytes, CD8+ T cells, and NK cells. (C, D) Nomogram
construction of three NETs-related hub genes in validation datasets for GSE62525 and GSE2862. (E, F) ROC curve of the three NETs-related hub
genes and nomogram in validation datasets for GSE62525 and GSE2862.
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mainly used in the treatment of cancer, numerous studies (69–74) have

shown that anti-PD-1 therapy has also demonstrated encouraging

positive effects in the treatment of TB. These findings suggest

hypothetical therapeutic potential of candidate drugs, including

heparin and PD-1 inhibitors, for further investigation in tuberculosis,

although their clinical application necessitates rigorous risk-benefit

analysis. For instance, the anticoagulant properties of heparin may

significantly elevate bleeding risk in TB patients with comorbidities

(e.g., cirrhosis or peptic ulcers), and this risk could be synergistically

amplified by first-line anti-TB agents such as rifampicin and isoniazid,

which are known to induce thrombocytopenia (75–77). Additionally,

the immunosuppressive effects of PD-1 inhibitors might compromise

host defense mechanisms against MTB potentially leading to MTB

reactivation or secondary infections (78). Therefore, the hypothetical

anti-TB effects of these candidates would require rigorous validation in

preclinical models to assess efficacy and safety, followed by clinical

trials to systematically assess safety profiles, with particular emphasis

on risk stratification for bleeding complications and

immunosuppression-related adverse events.

We constructed regulatory networks linking genes, transcription

factors (TFs), and miRNAs, identifying FOXC1, GATA2, and hsa-

miR-106a-5p as core regulators (79). FOXC1 and GATA2 are

transcription factors that play crucial roles in cell differentiation

and immune response (80). Regulation of these genes may alter

immune response-related gene expression against MTB. As a

microRNA, hsa-miR-106a-5p may regulate the expression of key

genes at the post-transcriptional level. Understanding these

regulatory mechanisms can provide a deeper insight into the

molecular basis of ATB and contribute to the development of novel

therapeutic strategies targeting these regulators.

In conclusion, as a key factor in the pathogenesis of TB, especially

ATB, the study of NETs can not only provide new biomarkers for the
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early diagnosis of TB but also offer a new direction for immunotherapy.

However, there are still some limitations. The three GEO datasets

utilized in this study (GSE19491, GSE62525, GSE28623) exhibit

inherent variability in sample size (e.g., ATB sample sizes: 54, 14, and

49, respectively) and population sources (e.g., geographic and clinical

characteristics, as detailed in Table 2), which may introduce

demographic or clinical heterogeneity into the gene expression

profiles. For instance, GSE62525 has a relatively small sample size,

and the datasets likely derive from distinct patient cohorts. Nevertheless,

despite these differences, the three hub genes (CD274, IRF1, HPSE)

demonstrated consistent diagnostic performance across independent

validation sets (AUC >0.75 for all genes). Prior studies have similarly

shown that biomarker-based diagnostic models maintain robustness

across heterogeneous populations and sample sizes (15, 16). This study

is based on the bioinformatics analysis of existing datasets, and the

results need to be further verified in a larger clinical cohort and through

experimental studies. Future studies could further leverage cutting-edge

spatial omics technologies to deepen our understanding of NETs-related

gene dynamics in TB pathogenesis. For instance, whole transcriptome

co-mapping at cellular resolution with spatial CITE-seq (81) could

validate the spatial expression patterns of CD274, IRF1, and HPSE

within granulomas or inflammatory niches, clarifying their roles in local

immune modulation. Additionally, spatially resolved in vivo CRISPR

screen sequencing via perturb-DBiT (82) would enable functional

dissection of these hub genes in NETosis and bacterial containment,

directly testing their causality in TB progression. Beyond infectious

diseases, integrating multimodal tri-omics mapping (e.g.,

transcriptome-epigenome-proteome) (83) could unravel the spatial

dynamics of these genes in neuroinflammation or brain development,

potentially identifying conserved regulatory networks across

pathologies. These approaches would bridge molecular signatures to

tissue-scale pathophysiology, accelerating therapeutic discovery.
TABLE 1 Diagnostic performance of NETs-related hub genes.

Dataset Gene Specificity Sensitivity F1 Score AUC (95% CI) AUPR

GSE19491 CD274 0.796296296 0.956521739 0.904109589 0.901 (0.84–0.962) 0.913

IRF1 0.833333333 0.898550725 0.885714286 0.930 (0.886–0.975) 0.915

HPSE 0.703703704 0.898550725 0.843537415 0.865 (0.798–0.933) 0.875

Nomoscore 0.87037037 0.971014493 0.937062937 0.949 (0.908–0.99) 0.948

GSE62525 CD274 0.857142857 0.928571429 0.896551724 0.893(0.748−1) 0.933

IRF1 0.857142857 0.857142857 0.857142857 0.903(0.792−1) 0.901

HPSE 0.714285714 1 0.875 0.847(0.687−1) 0.896

Nomoscore 0.857142857 0.928571429 0.896551724 0.913(0.802−1) 0.936

GSE28623 CD274 0.717391304 0.96 0.774193548 0.898(0.826−0.969) 0.948

IRF1 0.760869565 0.68 0.641509434 0.754(0.639−0.869) 0.859

HPSE 0.782608696 1 0.833333333 0.937(0.881−0.992) 0.971

Nomoscore 0.934782609 0.88 0.88 0.954(0.906−1) 0.978
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1599667
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xia et al. 10.3389/fimmu.2025.1599667
FIGURE 6

(A) Drugs-genes network of three hub genes. (B) TFs-genes regulatory network of three hub genes. (C) Genes-miRNAs regulatory network of three hub genes.
TABLE 2 Details regarding the 3 data sets, test platforms, numbers of samples and source documentation.

Data Set Platforms LTBI sample size ATB sample size References (PMID)

GSE19491 (15) GPL6947 69 54 20725040

GSE62525 (16) GPL16951 14 14 26818387

GSE28623 (84) GPL4133 25 49 25895988
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