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Gastric cancer (GC) is one of the primary contributors to cancer-relatedmortality

on a global scale. It holds a position within the top five most prevalent

malignancies both in terms of occurrence and fatality rates. Immunotherapy,

as a breakthrough cancer treatment, brings new hope for GC patients. Various

biomarkers, such as the expression of programmed death ligand-1 (PD-L1), the

microsatellite instability (MSI) status, tumor mutational burden (TMB), and

Epstein–Barr virus (EBV) infection, demonstrate potential to predict the

effectiveness of immunotherapy in treating GC. Nevertheless, each biomarker

has its own limitations, which leads to a significant portion of patients continue to

be unresponsive to immunotherapy. With the understanding of the tumor

immune microenvironment (TIME), genome sequencing technology, and

recent advances in molecular biology, new molecular markers, such as POLE/

POLD1mutations, circulating tumor DNA, intestinal flora, lymphocyte activation

gene 3 (LAG-3), and lipid metabolism have emerged. This review aims to

consolidate clinical evidence to offer a thorough comprehension of the

existing and emerging biomarkers. We discuss the mechanisms, prospects of

application, and limitations of each biomarker. We anticipate that this review will

open avenues for fresh perspectives in the investigation of GC immunotherapy

biomarkers and promote the precise choice of treatment modalities for gastric

cancer patients, thereby advancing precision immuno-oncology endeavors.
KEYWORDS

biomarker, gastric cancer, immune checkpoint inhibitor, immunotherapy,
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1 Introduction

Gastric cancer (GC) is prevalent worldwide, consistently

ranking among the top five most lethal cancers in terms of both

occurrence and fatality rates (1). National cancer statistics released

by China’s National Cancer Centre show that in the year 2022, GC

accounted for 358,700 new cases, with a mortality rate of 26.04 per

100,000 in China (2). Early GC can be effectively treated after

surgery and the five-year survival rate can reach 90 to 100%.

Nonetheless, owing to the subtle onset and rapid progression of

the illness, almost all GC patients are diagnosed at an advanced

stage. Traditional therapy for advanced GC typically involves

chemotherapy. However, the clinical benefits of these therapies

remain severely constrained. The median overall survival (OS) with

conventional chemotherapy in advanced GC is merely 8

months (3).

The advent of immune checkpoint inhibitors (ICIs) presents

novel therapeutic avenues for solid tumors that have notably

enhanced cure rates. This strategy finds strong support in the

scientific community as it is based on the principle that ICIs

primarily activate the body’s immune cells to target tumor cells,

thereby acting to either remove these or reduce the tumor cell load

(4). Currently, immune combination therapy is gradually becoming

a treatment modality for GC, of which the most commonly used is

the combination of chemotherapy and ICIs. Research has reported

the safety and efficacy of ICIs in neoadjuvant therapy for GC (5);

their application is gradually expanding from back-line to first-line
Frontiers in Immunology 02
therapy. Currently, biomarkers, including programmed death

ligand 1 (PD-L1), the microsatellite instability (MSI) status,

Epstein–Barr virus (EBV) infection and tumor mutational burden

(TMB), are often applied clinically to predict immunotherapy

efficacy (Figure 1). However, a considerable portion of patients

fail to derive benefits from immunotherapy and encounter adverse

effects linked with its use. Therefore, further research on biomarkers

related to GC immunotherapy is particularly important for the

accurate selection of appropriate cohorts for this treatment.

The current clinical evidence, mechanisms and limitations of

existing biomarkers for predicting immunotherapy efficacy are

discussed. This review aims to open avenues for new directions in

research on biomarkers for GC immunotherapy.
2 Positive biomarkers

2.1 Programmed death ligand 1

PD-L1 is overexpressed in 25-65% of GC. In general, the PD-

L1/PD-1 axis is recognized as an important factor for the poor

prognosis of patients with different GC types. Firstly, PD-L1

expressed on GC cell surfaces inhibit anti-tumor immunity via

multiple pathways. For example, over-expression of PD-L1 prevents

the body’s immune system from recognizing GC cells; effector T

cells are unable to target GC cells, leading to suppressing the anti-

tumor immune response (6–8). Secondly, PD-L1 also binds to the
FIGURE 1

Classic biomarkers predicting the efficacy of neoadjuvant immunotherapy for gastric cancer (GC) include programmed death ligand 1 (PD-L1), the
microsatellite instability (MSI) status, Epstein–Barr virus (EBV) infection and tumor mutational burden (TMB).
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epidermal growth factor receptor (EGFR) and activates it to

promote GC progression (9). In addition to GC cells, PD-L1 is

highly expressed on immune cell surfaces in the tumor immune

microenvironment, including lymphocytes, neutrophils,

macrophages, and mast cells (10).

2.1.1 PD-L1 as an effective predictive marker
CPS (combined positive score) is defined as the ratio of PD-L1-

positive tumor cells and immune cells to the total number of viable

tumor cells. TAP (tumor area positivity) refers to the proportion of

PD-L1-positive tumor and immune cell area relative to the total

tumor area (viable tumor cells + stroma) (11). These two metrics are

currently the most widely used quantitative indicators for assessing

PD-L1 expression levels in clinical and research settings. While PD-

L1 expression demonstrates a positive association with response to

ICIs, the optimal predictive thresholds (CPS/TAP) for clinical

benefit continue to be debated. For example, in the KEYNOTE-

059 Cohort 1 trial, patients with PD-L1-positive (CPS ≥ 1) G/GEJ

adenocarcinoma who received pembrolizumab monotherapy

showed significantly higher objective response rates (ORR) and

improved overall survival (OS) compared to PD-L1-negative

patients (CPS < 1) (12). Promising follow-up data from the

CheckMate-649 trial were presented at the 2024 ASCO GI

Conference: patients with CPS ≥ 5 who received nivolumab in

combination with chemotherapy continued to demonstrate

clinically meaningful improvements in OS and progression-free

survival (PFS) compared to those receiving chemotherapy alone in

the randomized cohort (13). Additionally, for GC patients with

TAP ≥ 5%, those treated with tislelizumab in combination with

chemotherapy achieved longer median PFS, median OS, and

duration of response (DoR) compared to those receiving placebo

plus chemotherapy (14). Furthermore, in the KEYNOTE-062 trial,

in patients with CPS ≥ 10, pembrolizumab monotherapy

demonstrated significantly longer median OS compared to

chemotherapy alone. However, when using a CPS cutoff of 1, no

significant survival benefit was observed between the treatment

groups (15). PD-1 inhibitors used in Phase III clinical trials are

shown (12–20) (Table 1). Phase II and I clinical trials are shown (12,

21–38) (Table 2).

Initial studies have demonstrated the potential predictive value

of PD-L1 expression thresholds (CPS ≥ 1, CPS ≥ 5, TAP ≥ 5%, and

CPS ≥ 10) for immunotherapy efficacy. However, due to variations

in patient cohort sizes and differences in study endpoint definitions

across clinical trials, further large-scale prospective studies are

needed to optimize these cutoff values and improve their

predictive accuracy and consistency.

2.1.2 Mechanism
The mechanism by which PD-1 inhibitors can effectively kill

tumor cells is closely related to the TIME. Wei et al. found that

patients with GC treated with chemotherapy combination and

neoadjuvant PD-1 inhibitors had increased CD8+ T-cell counts

and M1/M2 macrophage ratios (39). Using a GC mouse model,

Tang et al. demonstrated that mice achieving a major response to

neoadjuvant PD-1 inhibitors plus chemotherapy exhibited
Frontiers in Immunology 03
significant infiltration of anti-tumor immune cells, including

CD8+ CD44+ CD62L- effector T cells and CD8+ T cells, along

with a high M1/M2 macrophage ratio (40). Avgustinovich et al.

found that GC patients with CPS ≥ 10 who were sensitive to

neoadjuvant immune-combination chemotherapy showed

activation of autophagy, which is involved in the activation of

tumor immunity (41, 42). Autophagy can not only directly down-

regulate PD-L1 through the p62/SQSTM1-NF-kB pathway (43), but

also down-regulate PD-L1 by reducing the expression of histone

deacetylase (HDAC) (44), participating in the activation of tumor

immunity. Therefore, activation of autophagy may be an important

factor for their sensitivity to immunotherapy.

While most clinical trials have demonstrated that gastric/

gastroesophageal junction cancer (G/GEJC) patients with high

PD-L1 expression benefit from immunotherapy, a minority of

studies have failed to achieve satisfactory outcomes. In

KEYNOTE-061 (CPS ≥ 1), pembrolizumab failed to improve OS

as second-line therapy for advanced G/GEJC than paclitaxel (19).

Similarly, avelumab (JAVELIN Gastric 100) (18)and nivolumab

(ATTRACTION-4) (17)showed no OS/PFS benefits over

chemotherapy in later-line settings. Therefore, it is essential to

investigate the mechanisms underlying resistance to ICIs in GC.

There is little exploration on the mechanism of resistance to PD-1

inhibitor, and it has been clear that differences in immune cells in TME

are related to PD-1 inhibitor resistance. In high-CPS G/GEJ

adenocarcinoma patients failing to respond to therapy, Verschoor

et al. found a low degree of CD8+ PD-1+ T-cell infiltration, as well as

a TME with high regulatory T (Treg) cell infiltration, which may be the

cause of immune checkpoint blocking (ICB) treatment failure (21). Of

course, there are even worse cases. Approximately 10% of patients with

GC receiving PD-1 blockade progress rapidly (45), to hyper-progressive

disease, which is related to Treg cell proliferation in tumor tissue (46), an

increase in immunosuppressive CD4+ T cell subset that hinders effective

anti-tumor immunity (47–52). In addition to differences in immune-

infiltrating cells in TME, the spatiotemporal heterogeneity of PD-L1

expression (53, 54), the accuracy of PD-L1 assessment, including sample

collection and assay methodology (55), and the complexity of the

immunotherapy mechanism (56) can lead to the failure of PD-L1 to

effectively predict immunotherapy efficacy. Therefore, more research is

required to explore immunotherapy resistance mechanisms in GC

patients and identify suitable alternative strategies. Current studies

have identified USP7 inhibitors, which are new anti-proliferative

agents that inhibit GC cell proliferation and down-regulate PD-L1

expression both in vivo and in vitro (57). Thus, with more research,

more targets could be developed to overcome immunotherapy-related

drug resistance (Figure 2).
2.2 Microsatellite instability–high/deficient
mismatch repair

Microsatellite instability–high/deficient mismatch repair (MSI-

H/dMMR) represents a specific subtype of tumor that accounts for

8–10% of GC characterized by high tumor immunogenicity and

dense immune cell infiltration (58, 59). Given relatively low MSI-H
frontiersin.org
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TABLE 1 Phase III trials of immunotherapy for G/GEJ adenocarcinoma.

ical efficacy
Statistical
evidence

Primary
endpoint

≥3
Grade
TRAEs

PS≥1): 12.5 vs 11.1m;
PS≥10): 12.3 vs
;
PS≥1): 6.9 vs 6.4m;
n PFS (MSI-H): 11.2
m; ORR (MSI-H):
vs 36.8%; median OS
≥10mut/Mb): 31.6 vs
;
n PFS (TMB≥10mut/
1.1 vs 7.0m;
TMB≥10mut/Mb):
vs 41.2%

OS (CPS≥1): HR
0.85, 95% CI 0.70-
1.03, p=0.05;
OS (CPS≥10): HR
0.85, 95% CI 0.62-
1.17, p=0.16;
PFS (CPS≥1): HR
0.84, 95% CI 0.70-
1.02, p=0.04;
median OS
(TMB≥10mut/Mb):
HR, 0.34; 95% CI:
0.14–0.82, p<0.05;
median PFS
(TMB≥10mut/Mb):
HR, 0.52; 95% CI:
0.24–1.13, p<0.05;
ORR (TMB≥10mut/
Mb): p<0.05

OS and PFS
73%
vs 69%

n PFS: 10.45 vs
;
n OS: 17.45
5m

median PFS: HR
0.68, 98.51% CI
0.51-0.90, p=0.0007;
median OS: HR 0.90,
95% CI 0.75-
1.08, p=0.26

PFS and OS
29%
vs 25%

n OS: 12.9 vs 11.5m;
n OS (CPS≥1): 13.0
m; median OS
10): 15.7 vs 11.8m

median OS: HR 0.78,
95% CI 0.70–0.87,
p<0.0001;
median OS (CPS≥1):
p<0.0001;
median OS
(CPS≥10): p<0.0001

OS
22%
vs 18%

PS≥5): 14.4 vs 11.1m;
PS≥5): 7.7 vs 6.05m;
n OS (MSI-H): 38.7
.3m; ORR (MSI-H):
s 39%

OS (CPS≥5): HR
0.71, 98.4% CI 0.59-
0.86,p<0.0001;
PFS (CPS≥5): HR
0.68,98% CI 0.56-
0.81, p<0.0001;
median (MSI-H):
HR 0.38, 95% CI
0.17-0.84;

OS (CPS≥5)
and
PFS (CPS≥5)

59%
vs 44%
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Trial Phase Line Ref. Patient Selection Number Intervention
Immunotherapy
agent

Clin

NCT02494583
(KEYNOTE-
062)

III
First-
line

(15)
CPS≥1,untreated, advanced G/GEJ
adenocarcinoma

763

PEM + cisplatin +
fluorouracil +
capecitabine/P +
chemotherapy
(SAA)

PEM

OS (C
OS (C
10.8m
PFS (
media
VS 3.
64.7%
(TMB
13.4m
media
Mb):
ORR
55.6%

NCT02746796
(ATTRACTION-
4)

III
First-
line

(17)
HER2-negative, unresectable,
advanced or recurrent G/GEJ
adenocarcinoma

724
NIVO +(SOX or
CAPOX)/P +(SOX
or CAPOX)

NIVO

media
8.34m
media
vs 17

NCT03675737
(KEYNOTE-
859)

III
First-
line

(20)
locally advanced or metastatic
HER2-negative G/GEJ
adenocarcinoma

1579

PEM +
(fluorouracil
+cisplatin or
capecitabine
+oxaliplatin)/P +
chemotherapy
(SAA)

PEM

media
media
vs 11
(CPS≥

NCT02872116
(CheckMate-
649)

III
First-
line

(13)
unresectable, HER2-negative G/GEJ
adenocarcinoma

1581

NIVO + (XELOX
or FOLFOX)/
(XELOX
or FOLFOX)

NIVO

OS (C
PFS (
media
VS 12
55% v
C

6

1
(

.1

.4

C
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efficacy
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TRAEs

median (MSI-H):
95% CI 32-77

NCT03777657
(Rationale 305

: 17.2 vs 12.6m
median OS: HR 0.74;
95% CI 0.59-0.94;
one-sided p=0.0056

OS
64.7%
vs 62.9%

NCT02370498
(KEYNOTE-
061)

M

: 9.1 vs 8.3m;
S (CPS≥1): 1.5 vs
ian PFS (MSI-H):
m; ORR (MSI-
vs 16.7%

OS: HR 0.82, 95% CI
0.66-1.03, one-sided
p=0.0421;
median PFS
(CPS≥1): HR 1.27,
95% CI 1.03-1.57

OS and
PFS(CPS≥1)

14%
vs 35%

NCT02625610
(JAVELIN
Gastric 100)

lumab
OS rate: 22.1% vs
ian OS (CPS≥1):
6m

24-month OS rate:
HR 0.91; 95% CI
0.74-1.11; p=0.1779

OS
61.3%
vs 77.3%

NCT02267343
(ATTRACTION
2)

VO
: 5.26 vs 4.14m;
OS rate: 26.2%

median OS: HR 0.63,
95% CI 0.51–
0.78; p<0.0001

OS
10%
vs 4%

NCT02335411
(KEYNOTE-
059)-
cohort1

M

;
≥1): 15.5% vs

-H): 57.1%
NA ORR 18%
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vs 9.0%
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First-
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(14)
TAP≥5% and unresectable locally
advanced or metastatic GC/
GEJ cancer

546
TIS + ICC/P
+ ICC

TI

III
Second-
line

(19)
unresectable advanced G/GEJ
adenocarcinoma

592 PEM/paclitaxel PE

III
Second-
line

(18)
unresectable advanced or
metastatic G/GEJ
adenocarcinoma

499
avelumab/
oxaliplatin plus
a fluoropyrimidine

av

III
Third-
line

(16)
unresectable recurrent or
metastatic G/GEJ
adenocarcinoma

493 NIVO/P NI

III
Third-
line

(12)
recurrent or metastatic G/GEJ
adenocarcinoma

259 PEM PE
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TABLE 2 Phase II and I trials of immunotherapy for G/GEJ adenocarcinoma.

Immunotherapy
ficacy

Statistical
evidence

Primary
endpoint

≥3 Grade TRAEs

R
NA ORR 76%

NA ORR 23%

to <10):

): 71.0%

NA ORR 59.30%

NA ORR 78.30%

% NA pCR 57.10%

%;
%

NA
pCR
and MPR

13.90%

PS≥1) vs
); MPR:
) vs 36.4%
66.7%
.0%
: 100.0%

)

pCR (CPS≥1 vs
<1): p=0.246; MPR
(CPS≥1 vs <1):
p=0.047; pCR
(CPS≥5 vs <5):
p=0.018; MPR
(CPS≥5 vs
<5): p=0.011

pCR
and MPR

9.90%

vs 15%;
≥10):

pCR rate: one-
sided p=0 .032

pCR 69% vs 66%

7.4% pCR: p=0.03 pCR NA

NA pCR NA

% NA pCR 19.00%
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Trial Phase Line Ref. Patient Selection Number Intervention
agent

Clinical e

NCT02335411
(KEYNOTE-059)-
cohort2

II
First-
line

(12)
recurrent or metastatic
G/GEJ adenocarcinoma

25
PEM + cisplatin
+ (5-fluorouracil
or capecitabine)

PEM
ORR: 60%; O
(CPS≥1): 68.8
vs 37.5%

NCT02335411
(KEYNOTE-059)-
cohort3

II
First-
line

(12)
CPS≥1 and recurrent or
metastatic G/
GEJ adenocarcinoma

31 PEM PEM ORR: 25.8%

NCT03382600
(KEYNOTE-659)-
cohort1

IIb
First-
line

(23)
CPS≥1 and advanced G/
GEJ cancer

54 PEM + SOX PEM

ORR: 72.2%;
ORR (CPS ≥1
73.9% ;
ORR (CPS≥10

NCT03382600
(KEYNOTE-659)-
cohort2

IIb
First-
line

(23,
31)

CPS≥1 and advanced G/
GEJ cancer

46 PEM + SP PEM ORR: 80.4%

NCT02918162 II
First-
line

(33)
resectable G/
GEJ adenocarcinoma

36 PEM + XELOX PEM pCR rate: 20.6

NCT04065282 II
First-
line

(35)
resectable G/GEJ
adenocarcinoma stage
cT3-4NanyM0

36 SIN + XELOX SIN
pCR rate: 19.4
MPR rate: 47.

ChiCTR2000030414 II
First-
line

(25) locally advanced GC 30 SIN + XELOX SIN

pCR: 42.1% (C
18.2% (CPS<1
78.9% (CPS≥1
(CPS<1); pCR
(CPS≥5) vs 19
(CPS<5); MPR
(CPS≥5) vs
47.6% (CPS<5

NCT03421288
(Dante)

II
First-
line

(26)
G/GEJ adenocarcinoma
with a clinical stage
≥cT2 and/or cN1

295
ATZ +
FLOT/FLOT

ATZ
pCR rate: 24%
pCR rate (CP
33% vs 12%

NCT04250948
(NEOSUMMIT-01)

II
First-
line

(36)
resectable G/GEJ cancer
clinically staged as
cT3-4aN +M0

108

toripalimab +
(SOX or
XELOX)/SOX
or XELOX

toripalimab pCR: 22.2% v

NCT03399071
(ICONIC)

II
First-
line

(28) early stage OGA 34 avelumab+FLOT avelumab pCR rate: 15%

NCT04006262
(NEONIPIGA)

II
First-
line

(27)
locally advanced
resectable dMMR/MSI-

32 NIVO + IPI NIVO and IPI pCR rate: 58.6
f
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TABLE 2 Continued

Immunotherapy
Clinical efficacy

Statistical
evidence

Primary
endpoint

≥3 Grade TRAEs

pCR rate: 70%;
MPR rate: 45%

NA
pCR
and MPR

10%

pCR rate: 9.1% NA pCR 51%

pCR rate: 33.3% NA pCR 69.40%

MPR: 53.1% NA MPR 65.60%

ORR: 46.7%;
median DoR: 12.8m;
DCR: 80%

NA
ORR,DoR
and DCR

ORR: 45.8% NA ORR 15.00%

ORR: 12.1% vs 66.7% NA ORR 22.4% vs 38.9%

ORR: 33% NA ORR 13%

ORR: 12% vs 24% vs
8%;
ORR (MSI-H): 29% vs
11%, 50% vs 19%, 50%
vs 18%

NA ORR 17% vs 47% vs 7%

R, disease control rate; DoR, duration of response; P, placebo; PEM, pembrolizumab; NIVO, nivolumab;
vorin + oxaliplatin + docetaxel ; ATZ, atezolizumab; FOLFOX, oxaliplatin + fluorouracil + folinic acid.
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Trial Phase Line Ref. Patient Selection Number Intervention
agent

H G/
GEJ adenocarcinoma

NCT03448835
(PANDA)

II
First-
line

(21)
resectable G/
GEJ adenocarcinoma

21
ATZ + docetaxel
+ oxaliplatin
+ capecitabine.

ATZ

NCT03939962 II
First-
line

(22)
resectable locally
advanced G/
GEJ adenocarcinoma

42
camrelizumab
+ FLOFOX

camrelizumab

NCT03631615
(Neo-PLANET)

II
First-
line

(38)
resectable locally
advanced G/
GEJ adenocarcinoma

36
camrelizumab +
capecitabine
+ oxaliplatin

camrelizumab

NCT04890392
(WuhanUHGI001)

II
First-
line

(37)
resectable locally
advanced HER2-
negative G/GEJ cancer

32 TIS + SOX TIS

NCT03469557 II
First-
line

(34)
locally advanced or
metastatic G/
GEJ adenocarcinoma

15 TIS + XELOX TIS

NCT02628067
(Keynote-158)

II
Second-
line

(30)
unresectable and
advanced MSI-H/
dMMR GC

24 PEM PEM

NCT02915432 Ib/II
Second-
line

(32)
unresectable and
advanced G/
GEJ adenocarcinoma

76

toripalimab/
toripalimab +
oxaliplatin
+ capecitabine

toripalimab

NCT01848834
(KEYNOTE-012)

Ib
Third-
line

(29)
CPS≥1 and recurrent or
metastatic G/
GEJ adenocarcinoma

39 PEM PEM

NCT01928394
(CheckMate-032)

I/II
Third-
line

(24)

locally advanced or
metastatic gastric,
esophageal, or
GEJ adenocarcinoma

160
NIVO3/NIVO1 +
IPI3/NIVO3
+ IPI1

NIVO and IPI

OGA, oesophagogastric adenocarcinoma; pCR, pathological complete response; MPR, major pathological response; EFS, event-free survival; OS, overall survival; D
IPI, ipilimumab; SOX, oxaliplatin + S-1; SP, S-1 + cisplatin; TIS, tislelizumab; SIN, sintilimab; XELOX, capecitabine + oxaliplatin; FLOT, 5-fluorouracil + leuco
C
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incidences, no targeted Phase III clinical trials have been conducted.

As ICIs have revolutionized the therapy of MSI-H/dMMR

malignancies, their potential in neoadjuvant therapy is receiving

more attention. MSI-H GC, characterized by defective DNA

mismatch repair, exhibits a high frequency of somatic mutations,

leading to the generation of abundant neoantigens (60). These

neoantigens can activate robust anti-tumor T-cell responses and

are associated with increased infiltration of anti-tumor immune

cells within the tumor microenvironment, thereby rendering MSI-

H tumors particularly sensitive to ICIs (61).

2.2.1 Advanced unresectable G/GEJ
adenocarcinoma

In the KEYNOTE-062 trial, a subgroup analysis of 7% of

patients with MSI-H G/GEJ adenocarcinoma (15) showed that

ORR and PFS outcomes in patients receiving pembrolizumab

alone and pembrolizumab combined chemotherapy were

significantly better than those receiving chemotherapy alone (62).

An analysis of 3% of 1581 advanced unresectable HER2-negative

GC/GEJC patients (with MSI-H status) in the CheckMate649 study

showed that regardless of PD-L1 expression status, MSI-H

subgroup patients had higher OS benefits when compared to

patients who had chemotherapy alone (63). KEYNOTE-061 is a

phase III clinical trial where randomized patients with advanced

unresectable G/GEJC were evaluated in terms of pembrolizumab

effectiveness and safety as a second-line treatment. An analysis of 27

patients (5.3%) with MSI-H status showed that (62) when

compared to the chemotherapy group, median PFS and ORR

outcomes in the pembrolizumab monotherapy group were

significantly improved. By comparing early survival curves in

patients with MSI-H tumors treated with pembrolizumab with

patients with MSI-H tumors treated with chemotherapy alone in

KEYNOTE-061 and KEYNOTE-062 trials, respectively (15), early

pembrolizumab administration in GC patients with the MSI-H

subtype gained benefits. Marabelle et al., examined the efficacy and

safety profiles of second-line pembrolizumab in 223 patients with

advanced MSI-H/dMMR cancer and failed to respond to

chemotherapy, of whom, 10.3% had GC. The ORR in patients

with MSI-H/dMMR GC was 45.8%, which was higher than the

overall 34.3% ORR; the number of patients with complete responses

(4) was second only to endometrial cancer. More importantly,

tumor responses were long-lasting, with > 75% of respondents

showing durable responses of ≥ 24 months in Kaplan–Meier

analyses (30). In terms of third-line treatment results in patients

with MSI-H G/GEJ adenocarcinoma: 7/259 patients registered in

the KEYNOTE-059 cohort 1 had MSI-H GC and received

pembrolizumab monotherapy (62). When compared to non-MSI-

H patients, the ORR was higher in these seven patients (57.1%

versus 9.0%) (64). One patient in Cohort 3 had an MSI-H tumor

and experienced a partial response (12). In the CheckMate032 trial,

the proportion of patients with MSI-H status (28%) was higher in

the NIV03 group when compared to any combination group

(NIVO1 + IPI3: MSI-H, 9% or NIV03 + IPI1: MSI-H, 8%). This

was possibly why the median OS across groups was not very

different. Also, by comparing MSI-H with non-MSI-H patients in
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groups, the results found that whether it is ORR, 12-month OS rate,

or 18-month OS rate, the values of MSI-H patients are better (24).

2.2.2 Locally progressive dMMR/MSI-H G/GEJ
adenocarcinoma (neoadjuvant)

Pembrolizumab, ipilimumab, nivolumab, and atezolizumab also

demonstrated favorable clinical activity in patients with resectable

dMMR/MSI-H G/GEJ adenocarcinoma. Building on previous

KEYNOTE-062 data, Liu et al., incorporated pembrolizumab into

neoadjuvant chemotherapy to treat six patients with advanced non-

metastatic MSI-H GC, and all patients showed good pathological

responses (65). In another Phase II clinical trial (NCT02918162),

three patients with advanced resectable G/GEJ who received

pembrolizumab in combination with chemotherapy had an MSI-H

status (33). One patient achieved pathological complete response (pCR).

Based on previous CheckMate649 data, the recent NEONIPIGA trial

treated patients with locally advanced dMMR/MSI-H G/GEJ

adenocarcinoma with neoadjuvant ipilimumab + nivolumab during

the perioperative period (27). Of the 29 patients who received an R0

resection, 17 (58.6%) achieved pCR (pathological T0N0) and had no

unexpected immune-related adverse events, postoperative morbidity, or

death. The other four with locally advanced resectable MSI-H G/GEJ

adenocarcinoma who received neoadjuvant ipilimumab + nivolumab

had pathological reactions, three achieved pCR, and the other was

confirmed with a reduced the tumor-node-metastasis (TNM) stage (27).

In the DANTE study (26), the pCR rate in patients with MSI-H GC

treated with the 5-fluorouracil + leucovorin + oxaliplatin + docetaxel

(FLOT) and atezolizumab (ATZ) (63%) combination was significantly

better versus patients treated with FLOT (27%). In the PANDA trial,

patients with treatment-naïve resectable G/GEJ tumors (n = 20) with

neoadjuvant treatment with atezolizumab in combination with

chemotherapy and subsequent surgical resection. Both dMMR

patients in this trial achieved pCR (21).

A number of other PD-1 inhibitors are available as

combinations of neoadjuvant chemotherapy for people with

resectable G/GEJ adenocarcinoma with an MSI-H/dMMR status.

Two (5.6%) patients with a dMMR were included in a phase II

clinical trial (NCT04065282) aimed to evaluate sintilimab plus

chemotherapy (CapeOx) as a neoadjuvant therapy protocol for

people with advanced resectable G/GEJ adenocarcinomas (35). In

one case their CPS = 68; this patient received a pCR. Another

individual, whose PD-L1 expression status was unknown, did not

exhibit major pathological response (MPR). A phase II trial

investigating the efficacy of camrelizumab + FLOFOX (oxaliplatin

+calcium folinate+5-fluorouracil) (NCT03939962) included cases

with locally advanced resectable GC/GEJ adenocarcinoma,

including one patient with an MSI-H status who achieved a

pCR (66).

Limited research exists on the mechanisms of efficacy of

immunotherapy for MSI-H tumors. One study applied an

exploratory multiple fluorescence analysis to show that in patients

with MSI-H, immune-combination chemotherapy increased tumor

CD3+ and CD8+ T-cell densities, and that the degree of a

pathological response was associated with increased clustering of

CD3+ cells to panCK+ cells (33). Kwon et al., reported that increased
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PD-1+ CD8+ T cells were associated with lasting therapeutic benefit

in patients with MSI-HGC (67). Additionally, patients with up-

regulated PD-L1 expression in MSI-H GC showed a good clinical

prognosis (68–72). But approximately 50% of patients with MSI-H

tumors also exhibit intrinsic resistance to PD-1 inhibitors. Ongoing

research is actively investigating primary resistance to ICIs in

people with advanced MSI-H GC/GEJC. Evidence from the

KEYNOTE-059, -061, and -062 trials indicates that the loss of

heterogeneity in mismatch repair enzymes within tumors may

underlie diminished response to treatment with pembrolizumab

alone (73). Future studies should integrate multi-omics approaches
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(e.g., single-cell sequencing, spatial transcriptomics) with functional

experiments to systematically uncover immunotherapy resistance

mechanisms in MSI-H GC.
2.3 EBV

Epstein-Barr virus–associated GC (EBVaGC) accounts for 2-

10% of all GC cases (74). Epstein-Barr virus (EBV) can cause a local

immune response (75, 76). Analysis of tumor genomic profiles

shows that EBV+ tumors are often microsatellite-stable (MSS) (77).
FIGURE 2

A summary diagram illustrating PD-L1-related immune sensitivity and resistance mechanisms in GC. (A) The mechanisms of sensitivity to
immunotherapy. A favorable response to neoadjuvant PD-1 inhibitor combined with chemotherapy is associated with increased infiltration of CD8+

T cells and CD8+ CD44+ CD62L- effector T cells, as well as an elevated M1/M2 macrophage ratio. Autophagy regulates PD-L1 expression in cancer
cells. Autophagy inhibition leads to upregulation of p62/SQSTM1, which translocates into the nucleus and then activates NF-kB signaling pathway,
ultimately upregulating PD-L1 expression. Autophagy activation attenuates PD-L1 expression via histone deacetylase (HDAC) downregulation, with
subsequent complex mechanism such as epigenetic remodeling. (B) The mechanisms of resistance to immunotherapy. Low pre-treatment levels of
CD8+ PD-1+ T-cell infiltration and high levels of Treg cell infiltration may contribute to immunotherapy failure. Patients exhibiting hyper-progressive
disease (HPD) following immunotherapy demonstrate increased Treg cell infiltration and expansion of immunosuppressive CD4+ T-cell subsets
within tumor tissues.
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Evidence exists of a low tumor mutational burden and stronger

immune infiltration in EBV+ tumors compared to MSI-H tumors.

In addition, EBV+ tumors showed higher expression of immune

checkpoint pathway (PD-1, CTLA-4) genes and higher infiltration

of lymphocytes (e.g., follicular helper T cells and CD8+ T cells (78))

in their RNA sequence data compared to MSS tumors. Therefore,

the use of anti-PD-1 and anti–CTLA-4 monoclonal antibodies in a

neoadjuvant setting is possible for patients with EBV+ GC.

2.3.1 Unresectable advanced G/GEJ
adenocarcinoma

A phase II trial by An et al. involved 47 treatment-naïve patients

with advanced gastroesophageal adenocarcinoma (GEA) who were

treated with first-line pembrolizumab in combination with

chemotherapy, including two (4.3%) EBV+ patients who achieved

a CR and PR, respectively. Bai et al. analyzed 66 people with

unresectable GC managed with ICB at a proficient mismatch

repair and showed that compared to EBV- patients, 22 EBV+

patients exhibited a better ORR. Survival analysis revealed that

EBV+ cases had better PFS and OS compared to EBV- cases. The

EBV status is a strong prognostic factor for PFS in patients with GC

after ICB (79). What is clear is that, as with performance in

neoadjuvant therapy, patients with advanced EBVaGC have

varying rates of efficacy for immunotherapy. Based on the results

of the above clinical trials, re-screening of patients with EBVaGC

before applying immunotherapy appears to be crucial.

Kim et al. analyzed patients with metastatic GC treated with

second-line pembrolizumab monotherapy following first-line

chemotherapy failure. It was found that six patients who were

EBV+ GC had an ORR of 100% and were all positive for PD-L1

expression (CPS ≥ 1) (73). Wang et al. conducted a phase Ib/II

clinical trial aimed at assessing the safety and effectiveness of

toripalimab for treating advanced GC. Four EBV+ patients

participated in this trial, of which one patient with a positive CPS

≥ 1 achieved a PR; the other three EBV+ patients who did not

achieve a PR were all negative for PD-L1 expression (32). These

results demonstrate that testing for PD-L1 in patients with EBVaGC

is necessary and that patients with positive CPS values (CPS ≥ 1)

may be better suited for immunotherapy.

2.3.2 Untreated, resectable locally advanced
EBVaGC

The Neo-PLANET phase II study evaluated first-line

neoadjuvant camrelizumab in combination with chemotherapy to

36 patients with resectable T3-4N+M0 G/GEJ adenocarcinoma.

One of the patients with EBV+ had 80% residual tumor cells (38).

One of the six patients in the PANDA trial who did not respond to

neoadjuvant atezolizumab was EBV+, and this patient had up to 60-

70% residual tumor cells (21). The expression of PD-L1 in the two

EBV+ patients in these two clinical trials is undetermined. In an

analysis of 77 patients with locally advanced GC who underwent

neoadjuvant therapy followed by D2 radical surgery, three EBV+

patients were in the PD-1 blockade plus chemotherapy group; one

patient with a CPS of 70 achieved a pCR, and two others with CPSs

of 10 and 1 achieved anMPR (80). In view of these results, Wei et al.
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included 159 cases with EBVaGC for PD-L1 immunohistochemical

analysis in order to explore the effect of PD-L1 expression in

EBVaGC on patient outcomes and prognosis. Patients with CPS

≥ 1 had a greater objective efficacy rate than those who were

negative (P = 0.001); ORR values of 83.3% and 100.0% were

found for patients with CPS ≥ 10 and CPS ≥ 50, respectively. In

terms of prognosis, cases with CPS ≥ 1 showed greater survival (P ≤

0.001) and longer disease-free survival compared to cases with CPS

< 1 (81). These results suggest that PD-L1 is an effective marker for

screening the benefit of immunotherapy in EBVaGC.

In addition to PD-L1, Bai et al. analyzed differences in the TME

and genomic characteristics distinguishing patients with EBVaGC

who responded to ICB therapy from those who did not respond to

screen people for EBVaGC immunotherapy. In the group of

responders, a notably higher frequency of SMARCA4 gene

mutations were found compared to the non-responder group,

which may be linked with higher TMB levels in cases with

SMARCA4 variants compared to those with wild-type SMARCA4

(79). These findings indicate that TMB and mutations in SMARCA4

may serve as promising predictive biomarkers for the effectiveness

of ICB therapy in EBVaGC.

Studies have also shown that EBV+ GC cells not only promoted

CD274 (the gene that encodes PD-L1) amplification by activating

the IRF3/CD274 axis, but also up-regulated constitutive PD-L1

expression (82). EBV infection stimulated increased interferon

(IFN)-g levels in GC and induced adaptive PD-L1 expression

(82–84). In addition, Bai et al. analyzed the TME differences

between ICB responders and non-responders in EBVaGC and

found that the level of intratumoral CTLA-4 and the density of

T-cell immunoglobulin-3 (TIM-3)+ cells exhibited a notable

elevation in the group of patients who did not respond to ICB

therapy, compared to those who showed a positive response.

The above studies can explain to some extent the mechanism by

which EBVaGC benefits from immunotherapy, but there are still

many EBVaGC patients who are ineffective to neoadjuvant

immunotherapy. Therefore, it is necessary to clarify the exact

impact and potential mechanisms of EBV infection on the

efficacy of ICB.
2.4 TMB

The TMB was defined as the count of non-synonymous

mutations per megabase of the tumor genome reflecting tumor

immunogenicity (85). The somatic TMB may lead to the formation

of new antigens, and the presence of additional antigens enhances

the probability that tumor cells will be detected by immune cells

that infiltrate the tumor (86), thereby activating T-cell-mediated

anti-tumor responses (87). Thus, medications stimulating T-cell

activation, such as monoclonal antibodies targeting PD-1 or PD-L1,

might offer potent anticancer treatment, especially for individuals

with an elevated TMB. Several studies have demonstrated a

favorable association between TMB levels and response to ICIs in

different types of tumors (88–90). As a result, in June 2020,

pembrolizumab was approved by the FDA for all solid tumors
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with high tumor mutational load (TMB-H). However, the TMB

threshold used to screen for immunotherapy efficacy has led to

different results in different clinical trials.

A TMB ≥ 10 mutations/megabase is a clinically significant cut-

off point (91). In the Keynote-158 study, investigators used

pembrolizumab to treat people with solid tumors showing an

advanced high-TMB (TMB ≥ 10 mut/Mb). Twenty-four (10.3%)

patients with GC were included. The results of the study found an

ORR of 29% in patients with TMB-H tumors, compared to only 6%

in patients who were non-TMB-H. Exploratory outcome analysis

showed a correlation between TMB, and the clinical results of first-

line pembrolizumab treatment and pembrolizumab combination

chemotherapy after adjusting for CPS (ORR, PFS, and OS; all P <

0.05); those cases that had a TMB ≥ 10 mut/Mb and were managed

with pembrolizumab demonstrated better clinical benefits (ORR,

PFS, and OS) (92). Two additional studies reached the same

conclusion, but with different TMB thresholds of 12 mut/Mb and

20 mut/Mb, respectively. A phase Ib/II clinical trial conducted by F.

Wang et al. revealed that for AGC patients who failed first-line

chemotherapy receiving Toripalimab monotherapy, regardless of

the expression level of PD-L1, the OS of patients with ≥ 12 mut/Mb

was significantly better than that of patients with < 12 mut/Mb (32).

The findings of Zhang et al. showed that in advanced, resectable

MSI-H gastrointestinal tumors, patients with a high TMB (TMB ≥

20 mut/Mb) responded well to neoadjuvant ICIs, regardless of PD-

L1 levels. In the KEYNOTE-061 trial, pembrolizumab improved

outcomes in patients with TMB ≥ 175 mutations/exome (whole

exome sequencing assessment) compared to chemotherapy (19).

The TMB exhibited significant associations with ORR, PFS, and OS

(all, P < 0.05) in the pembrolizumab group, whereas no notable

correlations were detected in the chemotherapy group.

The above experimental data suggest that the TMB status in GC

may serve as a predictive biomarker for pembrolizumab efficacy.

However, several factors limit its reliability. Heterogeneity: it should

be noted that the TMB cutoff value varies across different tumor

types. Therefore, it is necessary to determine the TMB cutoff in GC

to establish its value as a predictive biomarker. Gene fusion:

conventional TMB assays, such as whole exome sequencing

(WES) or targeted panels, may not effectively capture gene fusion

events, especially those in non-coding regions or involving complex

rearrangements. Gene fusions may serve as oncogenic drivers in

tumor progression (e.g., CLDN18-ARHGAP fusion in GC) (93) and

can generate neoantigens. However, the impact of gene fusions on

immunotherapy response is not captured by TMB (94), which may

lead to an underestimation of immunogenic potential. Moreover,

fusion-driven tumors (e.g., NTRK fusions) exhibit a distinct

immune microenvironment, where high TMB may not reliably

predict treatment efficacy but instead shows stronger correlation

with targeted therapy response. Clonality: TMB only reflects the

total mutational burden, encompassing both clonal (truncal) and

subclonal mutations, yet clonal mutations alone may more reliably

indicate immunogenicity. Subclonal mutations may contribute to

immune escape due to spatial heterogeneity. The heterogeneity of

mutational profiles between primary and metastatic sites may

compromise the accuracy of TMB assessment based on a single
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biopsy. Quality of mutations: not all mutations are capable of

generating effective immunogenicity. Both nonsynonymous

mutations (which may generate neoantigens) and synonymous

mutations (which do not alter the amino acid sequence and lack

immunogenicity) are counted in TMB, yet only the former may

influence immunotherapy response (95). Driver mutations (e.g.,

TP53, KRAS) may indirectly modulate immune response by altering

the tumor microenvironment (96, 97). Although passenger

mutations inflate TMB values, most fail to elicit effective immune

responses due to issues such as protein stability or impaired MHC

binding. TMB cannot distinguish their respective contributions.

Mutation type: indels and frameshift mutations may generate

highly immunogenic neoantigens, but certain detection methods

(e.g., targeted panels) exhibit limited sensitivity for these mutation

types. Logistic issue: the TMB is also affected by a variety of factors,

such as tumor type, detection method, and analysis technique. For

instance, WES covers the entire exonic region but is costly, while

targeted panels only interrogate a limited set of genes (98),

potentially leading to TMB underestimation. In bioinformatics

analysis, both variant calling algorithms and germline mutation

filtering criteria can significantly impact the final TMB calculation.

Currently, research is gradually emerging on combining TMB

with other biomarkers to predict the effectiveness of immunotherapy.

For instance, recent studies suggest that combining TMB with T-cell-

inflamed gene expression profile (GEP) can achieve superior

predictive performance. In the KEYNOTE clinical dataset, it has

been demonstrated that patients with solid tumors, including GC,

who exhibit both high TMB (TMB-H) and high GEP (GEP-H),

achieve the highest ORR (99). The combination of TMB and TIDE

has demonstrated robust predictive efficacy in breast cancer, lung

adenocarcinoma, and hepatocellular carcinoma (100–103), with

future studies planned to explore its predictive potential for

immunotherapy response in GC. Moreover, genomic and

transcriptomic factors, such as novel antigen presentation by MHC-

I and II complexes, can predict ICI outcomes (87, 104). Currently,

there is a lack of validation for suchmodels in GC-specific cohorts. For

GC patients who have completed immunotherapy clinical trials (e.g.,

ATTRACTION-4, KEYNOTE-062), retrospective extraction of

transcriptomic data from archived samples can be performed to

validate the predictive efficacy of the aforementioned models.

Additionally, prospective randomized controlled clinical trials can

be conducted to further evaluate the predictive capability of these

models. It is important to note that the molecular heterogeneity of GC

(e.g., EBV-positive type, genomically stable type) may affect the

generalizability of the models. Subgroup analyses (e.g., stratified by

PD-L1 CPS, MSI, and EBV status) can be conducted to validate the

universality of the models. The results are promising, as they may

provide new directions for the development of biomarkers for

GC immunotherapy.
3 Novel biomarkers

A lack of reliable predictive biomarkers is one of the biggest

issues in ICI therapeutics. In the past, a single immune-specific
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marker has been the focus of biomarker research, but the approved

PD-L1, TMB and MSI-H cannot completely screen out all people

who benefit from new adjuvant immunotherapy. Therefore, novel

and reliable biomarkers for population screening are urgently

required (Figure 3).
3.1 POLE/POLD1mutations

POLE/POLD1 mutations are thought to be linked to a high TMB,

an enhanced tumor immune reaction and a better response to ICIs

(105). It has been shown that POLE and POLD1 mutations are able to

be used as stand-alone biomarkers for anticipating the efficacy of pan-

cancer immunotherapy, and that they are also markers of a poor

prognosis (106–108). Zhu et al. found that patients with GC and POLE/

POLD1 mutations typically exhibit an acquired immune resistance to

the TME, with an increase in PD-L1 expression and an elevation of

TMB (109). The above suggests that mutations of the POLE/POLD1

gene can be used as a biomarker to improve the clinical efficacy of

neoadjuvant immunotherapy in people with GC; identical results were

obtained in NCT03012581. In this trial, Rousseau et al. prospectively

evaluated the efficacy of nivolumab monotherapy in patients with

advanced POLE/POLD1mutated solid tumors. Two patients (9%) with

GC were included in this trial. It was found that only tumors with

selective pathogenic mutations in the catalytic site of the DNA-binding

or nucleic acid exonuclease structural domains exhibited high

mutational loads, high T-cell infiltration, and high response rates to

anti-PD1 monotherapy (110).
3.2 Circulating tumor DNA

Given the variation in time and space of GC, blood-based

predictive biomarkers from liquid biopsies have surfaced as a

hopeful strategy for anticipating responses to immunotherapy

(111). Circulating tumor DNA (ctDNA) is one widely studied

biomarker in liquid biopsies (112). Jin et al. performed next-

generation sequencing testing on 46 patients with metastatic GC

treated with neoadjuvant PD-1 inhibitor immunotherapy. They

showed that patients with a > 25% decrease in the frequency of the

largest variant allele in the ctDNA assay had a longer median PFS

(7.3 m vs. 3.6 m; P = 0.0011) and higher ORR (53.3% vs. 13.3%).

The study also found that patients with TGFBR2, RHOA, and

PREX2 mutations in the GC had significantly shorter PFS than

those without mutations (113). Results from another study that

included 61 patients with metastatic GC receiving neoadjuvant

therapy with pembrolizumab showed that a decrease in the

concentration of ctDNA in the sixth week of continuous ctDNA

monitoring can be used to predict a benefit from neoadjuvant

immunotherapy (73). Qiao et al. treated patients with unresectable

advanced GC using neoadjuvant dendritic cells mixed with

cytokine-induced killer cells (DC-CIK; an immune cell therapy)

in combination with chemotherapy. They found that the frequency

and number of ctDNA mutations were reduced in 19 patients
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(63.3%) after DC-CIK infusion. Reduced ctDNA mutation

frequency was associated with improved PFS and OS (P = 0.001)

(114). The above suggests that ctDNA testing is useful in

anticipating the performance of individualized neoadjuvant

immunotherapy in patients with GC. A prospective phase II

clinical trial (NCT05594381) is currently underway to investigate

the feasibility of ctDNA for evaluating the performance of PD-1

inhibitors in combination with a SOX regimen as a neoadjuvant

therapy for locally progressive GC. Another aim of this study is to

construct a model for evaluating the efficacy of treatment so as to

clarify the applicability of the neoadjuvant immunotherapy for

locally progressive GC. The results are eagerly anticipated.

Liquid biopsy offers advantages. Compared to other emerging

biomarkers (such as TMB, PD-L1, or immune gene signatures),

ctDNA testing exhibits higher sensitivity, enabling the detection of

minimal residual disease (MRD) tumor burden and early

recurrence. Moreover, from a practical standpoint, ctDNA’s

blood-based detection offers dual advantages: enhanced clinical

accessibility and serial monitoring capacity for tracking disease

progression. However, it also has limitations as a screening

approach for predictive biomarkers in GC immunotherapy. First

of all, technical methods and sample quality limit the sensitivity of

liquid biopsies, which may fail to detect tumor biomarkers that are

at low concentration levels. Second, compared to other biomarkers

such as TMB, PD-L1, or immune gene signature in tumor

specimen, biomarkers in the blood may not be tumor-specific,

leading to false-positive results. Therefore, given the significant

clinical potential of ctDNA, more studies are needed to further

improve the reliability of liquid biopsy, thus contributing to the

screening of a GC population sensitive to immunotherapy.
3.3 Intestinal flora and Helicobacter pylori

Recent studies have begun to focus on the relationship between

the gut microbiota, and tumor progression and treatment

outcomes. This has been proposed as a potential biomarker for

participating in the outcome of immunotherapy in solid tumors

(115, 116). Although specific gut microbes play a role in GC

progression and immunomodulation, insufficient evidence exists

to support their potential as efficacy biomarkers in neoadjuvant

immunotherapy for GC.

Recent research indicates that H. pylori infection may hinder the

growth and anti-tumor functions of CD8+ T cells, foster the

transformation of naive T cells into Tregs, and modulate the

production of inflammatory mediators. These actions influence the

TIME, dampen host immune reactions, and diminish the effectiveness

of immunotherapy for GC (117–119). Therefore, patients with locally

advanced GC should be aware of theirH. pylori infection status before

receiving neoadjuvant immunotherapy. However, forward-looking

research exploring the relationship between H. pylori and prognosis

in GC immunotherapy is lacking. In addition, the use of H. pylori as a

predictive marker of immunotherapy efficacy needs to be thoroughly

demonstrated (120).
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3.4 Lymphocyte activation gene 3

LAG-3 is an inhibitory receptor on cell surfaces, which negatively

regulates both CD8+ and CD4+T cell activity. It maintains immune

system homeostasis under normal physiological conditions (121, 122),

while LAG-3 and Treg cell interactions stimulate Treg activity,

strengthen immune tolerance, and indirectly suppress dendritic cell

(DC) function, thereby facilitating tumor cell immune escape.

Consequently, LAG-3 is a promising therapeutic target in cancer

immunotherapy, complementing the PD-1/PD-L1 pathway (123).

Currently, the joint application of LAG-3 and PD-1 inhibitors is a

topical research field. Kelly et al., in their innovative study, combined
Frontiers in Immunology 13
PD-1 and LAG-3 inhibitors with chemoradiotherapy for the

neoadjuvant treatment of patients with gastroesophageal cancer

(124). The authors reported that higher baseline PD-L1 (CPS ≥ 5)

and LAG-3 expression was associated with superior pathological

responses, with a Phase Ib clinical study also providing safety

insights on combining PD-1 and LAG-3 for gastroesophageal

cancer. But, in a Phase II study (RELATIVITY-060), combined

nivolumab and the LAG-3 inhibitor relatlimab with chemotherapy

for advanced G/GEJC failed to reach its primary endpoint (125).

Therefore, more research is required to test the safety and effectiveness

of PD-1 inhibitors when combined with LAG-3 inhibitors as an

immunotherapy for patients with GC.
FIGURE 3

Novel biomarkers possibly predicting the efficacy of neoadjuvant immunotherapy for GC include POLE/POLD1 mutations, circulating tumor DNA
(ctDNA), intestinal flora/Helicobacter pylori, cytotoxic T lymphocyte antigen-4 (CTLA-4), T cell immunoglobulin and mucin domain-containing
protein 3 (TIM3), alpha fetoprotein (AFP), lysine-specific histone demethylase 1 (LSD-1), lipid metabolism and alternate promoters (AP) and
homologous recombination deficiency (HRD).
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3.5 Cytotoxic T lymphocyte antigen-4

CTLA-4 is a co-inhibitory molecule on activated T and regulatory

T cell surfaces (Tregs). It interacts with B7-1/B7–2 ligands on antigen-

presenting cells, thereby inhibiting CD28-mediated signaling, which is

responsible for T cell activation. Monoclonal antibodies targeting

CTLA-4 have been shown to block its competition with CD28 for

binding to B7, which in turn activates the CD28 signaling cascade and

reduces immunosuppressive Treg cell populations in the TME (126).

As the world’s first PD-1/CTLA-4 bispecific antibody, in the

COMPASSION-15 (AK104-302) Phase III trial, cadonilimab

showed significant efficacy in patients with different PD-L1

expression levels. In the trial, the proportion of individuals with PD-

L1 CPS < 5 and CPS < 1 reached 49.8% and 23%, respectively, which

was better reflected real-world patients. Therefore, these data

confirmed the unique advantages of cadonilimab in individuals with

low PD-L1 expression, and reflecting this, on September 30th, 2024,

the National Drug Administration officially approved its combination

with XELOX for the first-line treatment of unresectable locally

advanced recurrent or metastatic G/GEJ adenocarcinoma.
3.6 T cell immunoglobulin and mucin
domain-containing protein 3

TIM-3 is encoded byHARVCR2 (127) and is an emerging target

for cancer immunotherapy (128). Studies have shown that TIM-3

expression levels in GC tissue are significantly higher than in

normal gastric mucosa tissue (129, 130), and positively correlated

with PD-1/PD-L1 expression levels in GC tissue (131). Chen et al.,

reported that TIM-3 potentially promoted CD8+ T cell dysfunction

in GC, manifested by decreased IFN-g, perforin, and Granzyme B

(GzmB) levels, but increased PD-1 and CTLA-4 levels (132).

Although HARVCR2 mRNA is elevated in most GC subtypes, it

is more highly expressed in EBV-positive and MSI subtypes, as

characterized by increased immune characteristics and higher

immunotherapy responsiveness (73). Further research is required

to examine the potential benefits of anti-TIM-3 inhibitors in

patients with GC, and investigate their potential in combination

with anti-PD-1/PD-L1 inhibitors.
3.7 Alpha fetoprotein

AFP has a wide range of biological functions, with previous

research showing that it directly stimulated cancer cell proliferation

and growth while also inhibiting apoptosis (133). AFP also inhibited

monocyte differentiation to fully functional DCs and prevented

them presenting foreign antigens to CD8+ lymphocytes via MHC

signaling (134, 135). Furthermore, AFP down-regulated Toll-like

receptor 4 expression on DCs and inhibited pro-inflammatory

cytokine secretion, including interleukin-12 and tumor necrosis

factor-a. These cytokines were shown to stimulate CD4+ and CD8+

lymphocyte production in immunotherapy (136). Additionally,

AFP also induced ThCD4+ lymphocytes to differentiate into
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Tregs, thus negatively regulating immunotherapy. Zhang et al.,

reported that AFP levels predicted ICI efficacy in treating

advanced GC, i.e., high baseline AFP levels were associated with

reduced disease control rate (DCR) during ICI treatment and also

shortened PFS and OS (137). However, the exact mechanisms

whereby AFP levels affect ICI efficacy in patients with GC remain

unclear and further research is needed.
3.8 Lysine-specific histone demethylase 1

In 2004, LSD-1 was characterized as the first histone demethylase

(138); its expression was significantly elevated in GC and it promoted

GC proliferation and metastasis (139–142). LSD-1 also mediates

epithelial-mesenchymal transition (143) in GC via H3K4me2

demethylation, thereby promoting drug resistance, disease

recurrence, and disease invasion and metastasis (144). Shen et al.,

reported that LSD-1 deletion offset its immunosuppressive functions

by reducing PD-L1 levels in exosomes and inhibiting its transport to

other cancer cells, thereby restoring T cell killing functions in the GC

microenvironment (145). Therefore, LSD-1 may function as a new

immunotherapy target against GC, with the new LSD-1 inhibitor 5ac

inhibiting mouse GC cell growth (146).
3.9 Lipid metabolism

An increasing body of evidence now indicates that

reprogrammed energy metabolism has critical roles in GC

progression (147). Therefore, more in-depth research on the

metabolic changes in the GC TME may provide new markers/

therapeutic targets for neoadjuvant GC immunotherapy. Yang

et al., used database resources to identify eight genes associated

with fatty acid metabolism, which correlated with GC prognosis

outcomes. The authors developed ‘FRAS’, a model whereby FRAS

scores effectively identified patients with GC who were likely to

benefit from anti-CTLA-4 antibody immunotherapy. Among the

eight genes, RGS2 was significantly correlated with the TMB and

CD8+ T cell infiltration in GC, suggesting that RGS2 may be a

potential target for future immunotherapy strategies toward

GC (148).
3.10 Alternate promoters

On the one hand, the results obtained in previous clinical trials

of PD-1/PD-L1 and TMB as screening indicators of whether GC

patients can undergo immunotherapy have not been satisfactory.

On the other hand, MSI-H and EBV GC patient population only

accounts for a small proportion of all GC patients. Therefore,

finding new positive predictive biomarkers and exploring negative

biomarkers (that identify subjects with clear lack of benefit from

specific therapy) are necessary. Promoters are cis-regulatory

elements found upstream of transcription start sites, with > 50%

of human genes having multiple promoters, i.e., AP (149). AP allow
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transcription to start at different transcription start sites, which then

produces different 5’ untranslated regions and first exons, thereby

enhancing mRNA and protein subtype diversity (150). Sundar et al.,

reported that patients with metastatic GC with high AP use

expressed lower CD8A, GZMA, and PFR1 levels (151) (cytolytic

T-cell activity marker (152, 153)), indicating that AP use in

metastatic GC was inversely correlated with anti-tumor

immunity. Subsequent studies reported that patients with

advanced GC with higher AP activity showed higher CD8A and

PRF1 levels (CTL surface markers) and lower LAG-3 and TIM-3

levels, thus creating an inhibitory immune microenvironment and a

mechanism for GC immune escape (154).
3.11 Homologous recombination
deficiency

Homologous recombination (HR) is a highly accurate DNA

repair mechanism (155). On one hand, HRD induces DNA repair

defects, leading to the accumulation of more mutations and the

generation of neoantigens, which enhances tumor response to ICI

(156). On the other hand, HRD may promote the formation of an

anti-tumor immune microenvironment by increasing tumor-

infiltrating lymphocytes (TILs) (157), suggesting its potential as a

biomarker for predicting immunotherapy response. The study by

Fan et al. revealed that HRD-positive GC patients exhibited

significantly longer OS following ICI treatment compared to

other GC patients. More importantly, the study also

demonstrated positive correlations between HRD status and both

TMB-H and MSI-H. Additionally, HRD-positive GC patients

showed increased CD8+ T cell infiltration after ICIs treatment

(158). These findings suggest that HRD has the potential to serve

as a predictive biomarker for immunotherapy efficacy in GC.
4 Prospects

In this comprehensive review, we summarized some of the

diverse markers used to evaluate immunotherapy efficacy, as

documented in several clinical studies, among which,

microsatellite instability and EBV associations were recognized as

GC subtypes that could benefit the most from ICIs. However, few

studies have investigated immunotherapy responses involving two

other GC categories in the GC landscape, namely, chromosomal

instability and genomic stability; therefore, more studies in these

areas are warranted.

Nevertheless, each epitope marker also has its strengths and

limitations. For example, temporal or spatial heterogeneity exists in

PD-L1, delineating risk thresholds for markers whose

measurements are continuous variables (e.g., TMB, PD-L1, etc.) is

problematic, and the standardization of marker measurements or

calculation methods is required. Therefore, it is difficult for a single

biomarker to anticipate the performance of immunotherapy. The

development of a mathematical model that includes all the key
Frontiers in Immunology 15
procedures of anti-tumor immunity to assess the immune status of

an individual is a future trend.

One of the key reasons limiting the efficacy of ICIs in patients

with GC is the immunosuppressive component of their TIME and

the complex immune escape mechanisms involved. However, to

date, little research has been conducted on the relationship between

biomarkers and TIME, and their dynamic evolution during

immunotherapy. An in-depth exploration of the effect of

immunotherapy on GC TIME, an understanding of drug

resistance mechanisms, the discovery of specific regulatory targets

of GC TIME, and searching for more reliable, comprehensive, and

dynamic biomarkers for population screening in an effort to bring

immunotherapy for GC into the era of precision therapy, are

required for the continued development of immunotherapy.
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Phase III trial of avelumab maintenance after first-line induction chemotherapy versus
continuation of chemotherapy in patients with gastric cancers: results from JAVELIN
gastric 100. J Clin Oncol. (2021) 39:966–77. doi: 10.1200/jco.20.00892
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