:' frontiers ‘ Frontiers in Immunology

@ Check for updates

OPEN ACCESS

Jibin Liu,
Nantong Tumor Hospital, China

Fangdie Ye,

Fudan University, China

Xiaokun Zhao,

Second Affiliated Hospital of Nanchang
University, China

Yinteng Wu
wyt19970928gk@163.com

Shijian Zhao
zhaoshijian1025@163.com

"These authors have contributed
equally to this work and share
first authorship

25 March 2025
29 May 2025
16 June 2025

He H, Zhao X, Zhang B, Zhao S and Wu Y
(2025) Integrated multi-omics and machine
learning reveals immune-metabolic
signatures in osteoarthritis: from bulk RNA-
seq to single-cell resolution.

Front. Immunol. 16:1599930.

doi: 10.3389/fimmu.2025.1599930

© 2025 He, Zhao, Zhang, Zhao and Wu. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Immunology

Original Research
16 June 2025
10.3389/fimmu.2025.1599930

Integrated multi-omics and
machine learning reveals
Immune-metabolic signatures in
osteoarthritis: from bulk RNA-
seq to single-cell resolution

Hui He™, Xiumei Zhao?!, Bo Zhang™,
Shijian Zhao* and Yinteng Wu™

‘Department of Orthopedic and Trauma Surgery, The Third Affiliated Hospital of Guangxi Medical
University, Nanning, Guangxi, China, ?School of Clinical Medicine, Youjiang Medical University for
Nationalities, Baise, Guangxi, China, *Graduate School, Kunming Medical University, Kunming,
Yunnan, China

Purpose: The aim of this study was to investigate the activation of immune-
metabolic pathways in osteoarthritis (OA) and their role in disease progression.
We employed differential expression analysis and Gene Set Enrichment Analysis

Materials and methods: Gene set enrichment analysis (GSEA) to identify
activated immune-metabolism pathways in OA. Subsequently, Weighted gene
co-expression network analysis (WGCNA) was used to identify gene modules
associated with OA and immune-metabolism scores, followed by enrichment
analysis to reveal the functional characteristics of these modules. To identify
immune-metabolism related differentially expressed genes (DEGs), we utilized
seven machine learning methods, including lasso regression, random forest,
bagging, gradient boosting machines (GBM), Xgboost-xgbLinear, Xgboost-
xgbtree, and decision trees, to construct predictive models and validate their
reliability. Based on the expression profiles of hub immune-metabolism related
DEGs, we stratified OA patients into two immune-metabolism related subgroups
and deeply investigated the differences in immune profiles, drug responses,
functions, and pathways between these subgroups. Additionally, we analyzed the
expression and pseudotime trajectories of hub immune-metabolism related
DEGs at the single-cell level. Through genome-wide association studies
(GWAS), we explored the mechanisms of action of hub immune-metabolism
related DEGs. Finally, real-time polymerase chain reaction (RT-PCR) was utilized
to verify the expression of hub immune-metabolism related DEGs.

Results: Immune-metabolism related pathways were significantly activated
during the development of OA. Thirteen central immune metabolism-related
genes (CX3CR1, ADIPOQ, IL17RA, APOD, EGFR, SPP1, PLA2G2A, CXCL14, RARB,
ADM, CX3CL1, TNFSF10, and MPO) were identified. Predictive modeling by
constructing these genes has good predictive power for identifying OA. These
genes are mainly associated with endothelial cells. Single-cell analysis showed
that they were all expressed in single cells and varied with cell differentiation. RT-
PCR results suggested that they were all significantly expressed in OA.
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Conclusion: Our findings indicate that immune metabolism plays a key role in
the development of OA and provide new perspectives for future
therapeutic strategies

osteoarthritis (OA), immune-metabolism, weighted gene co-expression network
analysis (WGCNA), machine learning, genome-wide association studies

Introduction

Osteoarthritis (OA) is a chronic, multifaceted joint disease
characterized primarily by the progressive degradation of articular
cartilage. This condition can lead to significant joint dysfunction
and persistent pain (1). Statistics indicate that over 500 million
individuals worldwide are affected by osteoarthritis, making it a
leading cause of disability among the elderly population (2).
Currently, there is no definitive cure for OA, partly due to a lack
of comprehensive understanding regarding the pathological
mechanisms underlying its onset and progression. Therefore,
elucidating the critical pathological signaling pathways and key
molecular players involved in the pathogenesis of OA is essential for
the design of targeted therapies and the development of novel
pharmacological interventions.

Currently, many of humanity’s persistent ailments are closely
linked to dysregulation of the immune system. The immune system
is tightly regulated by metabolic processes, which can influence
disease progression through alterations in metabolism (3).
Immunometabolism has emerged as a significant and burgeoning
field of study. Cellular metabolism plays a crucial role in guiding
and modulating the differentiation and functionality of immune
cells. It is not only a fundamental process that sustains cellular life
but also serves as a critical determinant of cellular adaptability (4).
Recent research indicates that metabolism plays a pivotal role in
inflammatory arthritic diseases. In particular, metabolic alterations
and aberrant immunometabolism may represent key characteristics
of the various phenotypes of OA (5). Additionally, metabolism is
vital for the functionality of cartilage and synovial joints. Under
pathological conditions, cells transition from a quiescent state to a
highly metabolically active state to maintain energy homeostasis.
This phenomenon also leads to the production of inflammatory and
catabolic proteins, which subsequently activate essential
transcription factors and increase the biosynthetic metabolites
involved in inflammatory signaling pathways, thereby propelling
the ongoing progression of the disease. Abnormal chondrocyte
metabolism is a response to changes in the immune
microenvironment and may play a significant role in cartilage
degradation and the progression of OA (6). Therefore, alterations
in the immune microenvironment and changes in chondrocyte
metabolism may serve as distinctive features of the different OA
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phenotypes. Future research should place greater emphasis on the
interplay between immune and metabolic pathways to enhance our
understanding of the pathophysiology of OA. Such insights will be
instrumental in identifying therapeutic targets associated with OA
and metabolic pathways, potentially facilitating the development of
novel pharmacological agents for the treatment of this condition.
This study employed differential expression analysis and gene
set enrichment analysis (GSEA) to investigate the activation of
immune-metabolic pathways in OA. Subsequently, we applied
weighted gene co-expression network analysis (WGCNA) to
identify gene modules associated with OA and immune-metabolic
scores, followed by enrichment analyses to elucidate the functional
characteristics of these modules. To identify differentially expressed
genes (DEGs) associated with immuno-metabolism, we used seven
machine learning methods including lasso regression, random
forest, Bagging, GBM, Xgboost-xgbLinear, Xgboost-xgbtree, and
Decision Tree, and constructed the prediction models and verified
their reliability. Based on the expression profiles of hub immune-
metabolic related DEGs, we classified OA patients into two distinct
immune-metabolic subgroups and conducted an in-depth
exploration of the differences between these subgroups in terms
of immune landscape, drug response, functionality, and pathway
involvement. Additionally, we analyzed the expression and
pseudotemporal dynamics of hub immune-metabolic related
DEGs at the single-cell level. Finally, through genome-wide
association studies (GWAS), we investigated the mechanisms
underlying the role of hub immune-metabolic related DEGs.

Materials and methods
Data acquisition and preprocessing

In this study, we initially downloaded osteoarthritis-related
microarray datasets from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/), including
GSE117999, GSE12021, GSE51588, GSE55235, GSE55457,
GSE57218, GSE82107, and GSE98918. Additionally, we retrieved
single-cell sequencing data related to osteoarthritis from the GEO
database under the accession number GSE104782. During the
processing of the microarray datasets, we matched probes to gene
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names based on the annotation information for each GPL platform,
prioritizing the probes with the highest expression levels to ensure
accuracy and consistency. Subsequently, we employed the
“normalizeBetweenArrays” function to standardize the expression
matrix and processed the datasets requiring log2 transformation.
We then compiled a list of common genes across these eight
datasets to serve as the foundation for our subsequent analyses.
To address the discrepancies in expression values stemming
from different batches or platforms, we utilized the ComBat
method from the “sva” package (7) in R for normalization.
Principal component analysis (PCA) was conducted to evaluate
the success of batch effect removal, thereby ensuring the reliability
of the data. We obtained immune-related genes from the Immport
database (https://www.immport.org/) and metabolic-related genes
from the Harmonizome database (https://maayanlab.cloud/
Harmonizome/). By intersecting these two gene sets, we identified
immune-metabolic related genes, which were subsequently utilized
for further analyses.

Differential expression analysis

DEGs between OA samples and normal samples was conducted
using the “limma” R package (8), specifically focusing on the
identification of immune-metabolic related DEGs. The selection
criterion for significant DEGs was set at a p-value threshold of
<0.05. To visualize the differential expression of immune-metabolic
related DEGs, we employed volcano plots, which effectively
illustrate the significance and magnitude of changes in gene
expression. Additionally, heatmaps were utilized to display the
expression levels of these DEGs across each sample, providing a
clear comparative overview. Furthermore, we analyzed the
correlation among immune-metabolic related DEGs and
employed the “wilcox.test” algorithm to assess their differential
expression levels between OA and normal samples. This
comprehensive analysis allowed us to elucidate the specific
contributions of immune-metabolic pathways in the context of OA.

Enrichment analysis

Initially, immune-metabolic related DEGs were compiled into a
gene set, which was then subjected to GSEA using the
“clusterProfiler” R package (9) to explore their activation or
inhibition status in the context of OA. This analysis aimed to
elucidate the functional implications of these genes within the
disease milieu. Additionally, we employed the “clusterProfiler” R
package to conduct gene ontology (GO) (10) and kyoto
encyclopedia of genes and genomes (KEGG) (11) analyses on the
immune-metabolic related DEGs. This approach allowed us to
uncover the functional characteristics and pathway information
associated with these genes, providing deeper insights into their
roles in OA pathology and the underlying immune-
metabolic interactions.
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Enrichment landscape of immune-
metabolic related DEGs in immune and
metabolic pathway

We first analyzed the upregulation or downregulation of
immune-related and metabolic pathways in OA samples
compared to control samples. Following this, we employed the
single-sample gene set enrichment analysis (ssGSEA) method to
calculate the activity scores for each pathway. To further elucidate
the relationship between immune-metabolic related DEGs and
these pathways, we utilized the Spearman correlation algorithm to
assess the correlation between each DEG and the respective
pathway activity scores. This comprehensive analysis provided
insights into the involvement of immune-metabolic related DEGs
in specific immune and metabolic signaling pathways within the
OA context.

WGCNA analysis

In this study, immune-metabolic related DEGs were utilized as
the background gene set. We calculated the gene set variation
analysis (GSVA) scores for each sample and used these scores as
traits for the WGCNA (12). After selecting the top 5000 highly
variable genes, we determined the soft thresholding power for the
scale-free network to achieve the maximum R” value (power = 4).
To ensure that each module contained a sufficient number of genes,
we set a minimum requirement of at least 30 genes per module. We
assessed the distances between genes using the topology overlap
matrix similarity. Hierarchical clustering analysis was performed
using both average linkage and dynamic tree cut methods to
construct a clustering dendrogram, thereby classifying genes into
distinct modules and merging them based on their similarities.
Subsequently, we selected the modules most strongly correlated
with the GSVA scores for enrichment analysis. This analysis was
conducted using the Metascape database for GO and KEGG
pathway analyses, providing insights into the functional roles of
the identified gene modules within the context of osteoarthritis.

Identification of hub immune-metabolic
related DEGs

To identify hub immune-metabolic related DEGs, this study
employed the Lasso algorithm as a primary method. Additionally,
we utilized several other machine learning techniques, including
Random Forest, Bagging, Gradient Boosting Machine (GBM),
Xgboost (both xgbLinear and xgbtree variants), and Decision Tree
methods to rank the importance of genes. These combined
approaches enabled us to filter and prioritize the top 40 most
significant genes based on their importance scores. The consensus
from these methods established robust criteria for the identification
of hub immune-metabolic related DEGs, facilitating further analysis
and insights into their roles within OA.
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Development and evaluation of machine
learning models

To identify the optimal machine learning model for predicting
OA, we selected input variables from the expression profiles of 13
immune-metabolic related genes and their corresponding grouping
information. Utilizing the “mlr3verse” R package, we established
seven different machine learning models, including Logistic
Regression, Support Vector Machine (SVM), k-Nearest Neighbors
(kknn), Random Forest, Linear Discriminant Analysis (LDA),
Naive Bayes, Decision Tree. To validate the reliability of these
models, we performed a model performance evaluation using the
GSE48556 validation dataset. In addition to the above models, we
also constructed a Convolutional Neural Network (CNN) using the
“keras” R package. The performance of this CNN model was
similarly assessed using the GSE48556 validation set, allowing us
to compare its predictive capabilities against the traditional
machine learning models.

Construction and validation of the
nomogram

This study employed multivariate logistic regression analysis to
evaluate 13 immune-metabolic related genes. The “ROCR” package
was utilized to compute the area under the receiver operating
characteristic curve (AUC), thereby assessing the diagnostic value
of these genes in OA. We constructed a nomogram to predict the
probability of OA occurrence and generated calibration curves and
decision curves to analyze the stability and reliability of the model.

Non-negative matrix factorization
algorithm

Based on the expression profile data of immune-metabolic
genes, we employed the Non-negative Matrix Factorization
(NMF) algorithm to decompose the matrix for OA samples,
resulting in a coefficient matrix for each sample and a
contribution matrix for each gene set. These matrices elucidate
the relationships between the samples and gene sets. Utilizing
clustering algorithms, we assigned the samples to distinct clusters
and provided annotations for each cluster. In selecting the optimal
value of (k), we assessed various metrics including cophenetic
correlation, dispersion, and silhouette scores. Ultimately, using
the aforementioned algorithms along with the optimal (k) value,
we classified OA samples into different molecular clusters.

Characterization of subtype features

We employed ssGSEA to assess the activity levels of Subtype 1
and Subtype 2. Additionally, we analyzed the differential expression
levels of hub immune-metabolic related DEGs and immune cells
between these subtypes. Variations in immune and metabolic
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pathways within the subtypes were also examined. To identify
potential therapeutic agents for patients with Subtype 1 and
Subtype 2, we utilized the Connectivity Map (cMAP) database.
Furthermore, we conducted protein annotation and functional
analysis for Subtype 1 and Subtype 2 using the ProteoMap
database. Finally, GSVA was performed to identify differential
pathways between Subtype 1 and Subtype 2.

WGCNA for subtype analysis

Based on the characteristics of the subtypes, we employed
WGCNA to identify potential functional modules that
characterize the biological functions of each subtype. We selected
the top 5000 highly variable genes and determined the optimal soft
threshold for the scale-free network to achieve the maximum (RA2)
value (power = 4). Each module was required to contain a
minimum of 30 genes. We assessed the distances among gene
pairs using the topology overlap matrix similarity. Subsequently,
we conducted hierarchical clustering analysis using both average
linkage and dynamic tree cutting methods to construct a clustering
dendrogram, thereby categorizing the genes into distinct modules.
For the functional analysis of key modules, we utilized the
“ClusterProfiler” R package to perform GO and KEGG analyses.

Single-cell analysis

We processed single-cell RNA sequencing data using the
“Seurat” R package. Cells expressing more than 200 genes but
fewer than 2500 genes were identified for further analysis. High-
variance genes were detected using the “FindVariableGenes”
function, followed by principal component analysis (PCA). For
dimensionality reduction and visualization of single-cell data, we
employed the Uniform Manifold Approximation and Projection
(UMAP) method. Cell types were annotated. We visualized the
clustering of cells using the “DimPlot” function and illustrated gene
expression patterns with the “FeaturePlot” function.

Pseudotime analysis

A subset of endothelial cells (ECs) was extracted for pseudotime
analysis. We reprocessed the chondrocytes for dimensionality
reduction and clustering. The “Monocle” R package was utilized
to conduct the pseudotime analysis. For subsequent pseudotime
analysis, we selected cells based on the criteria of mean expression
greater than 0.1 and empirical dispersion greater than 1 times the
fitted dispersion. Dimensionality reduction was performed using
the “reduceDimension” function with the “DDRTree” method,
followed by trajectory ordering. The “plot_cell_trajectory”
function was employed to visualize the distribution of cells along
the trajectory. Additionally, we analyzed the expression changes of
hub immune-metabolic related genes among different clusters
throughout the cellular differentiation trajectory.
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Cell communication analysis

A subset of ECs was extracted, and based on the immune-metabolic
gene set scoring, we defined chondrocytes with scores greater than the
fourth quartile as high immune-metabolic scoring ECs. Conversely, ECs
with scores below the fourth quartile were classified as low immune-
metabolic scoring chondrocytes. Cell communication analysis was
conducted using the “CellChat” R package.

GWAS analysis

The Gene Atlas database (http://geneatlas.roslin.ed.ac.uk) is a
comprehensive resource that provides extensive information on
associations between hundreds of traits and millions of variants,
utilizing data from the UK Biobank cohort. This database
encompasses data from 452,264 individuals in the UK Biobank,
covering a wide range of 778 phenotypes and 30 million genetic loci.

RT-PCR validation

Human chondrocytes (Wuhan Saos Technology Co., Ltd.) were
cultured in DMEM/F12 medium containing 10% fetal bovine serum.
To model inflammation, cells in the intervention group were exposed
to interleukin-1B (IL-1fB; 10 ng/ml) for 24 hours. Total RNA was
isolated using QIAzol reagent, reverse-transcribed into cDNA with
oligo-dT primers, and amplified by quantitative reverse-transcription
polymerase chain reaction (qRT-PCR) under the following
conditions: initial denaturation at 95°C for 5 minutes; 40 cycles of
denaturation (95°C, 1 minute), annealing (60°C, 30 seconds), and
extension (72°C, 1 minute). Gene expression was quantified via the 2
—AACt method. Primer sequences are detailed in Table 1.

Results

Identification and enrichment analysis of
immune-metabolic related DEGs

As illustrated in Figure 1A, samples from eight independent
datasets exhibited varying batch effects; however, following the
removal of these effects, the samples clustered together (Figure 1B).
This indicates that cross-platform normalization successfully
mitigated batch processing effects, allowing for subsequent analyses.
We identified a total of 246 immune-metabolic genes using data from
the Harmonizome database and the ImmPort database (Figure 1C).
The differential expression analysis revealed a total of 67 Immune-
metabolic related DEGs, comprising 31 upregulated and 36
downregulated genes (Figure 1D). A heatmap displayed the
expression levels of these Immune-metabolic related DEGs across
each sample (Figure 1E). Furthermore, rank sum test analysis
confirmed that the Immune-metabolic related DEGs exhibited
statistically significant expression differences (Figure 1F). GSEA
indicated that the immune-metabolic gene set was significantly
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TABLE 1 Primers used in this study.

Primer Sequence

CX3CRI-F ACTTTGAGTACGATGATTTGGCT
CX3CRI1-R GGTAAATGTCGGTGACACTCTT
IL17RA-F AGTTCCACCAGCGATCCAAC
IL17RA-R GTCTGAGGCAGTCATTGAGGC
APOD-F GAATCAAATCGAAGGTGAAGCCA
APOD-R ACACGAGGGCATAGTTCTCAT
EGFR-F AGGCACGAGTAACAAGCTCAC
EGFR-R ATGAGGACATAACCAGCCACC
SPP1-F CTCCATTGACTCGAACGACTC
SPP1-R CAGGTCTGCGAAACTTCTTAGAT
PLA2G2A-F ATGAAGACCCTCCTACTGTTGG
PLA2G2A-R GCTTCCTTTCCTGTCGTCAACT
RARB-F TCCGAAAAGCTCACCAGGAAA
RARB-R GGCCAGTTCACTGAATTTGTCC
ADM-F ATGAAGCTGGTTTCCGTCG
ADM-R GACATCCGCAGTTCCCTCTT
ADIPOQ-F TGCTGGGAGCTGTTCTACTG
ADIPOQ-R TACTCCGGTTTCACCGATGTC
CX3CL1-F GCCACAGGCGAAAGCAGTA
CX3CL1-R GGAGGCACTCGGAAAAGCTC
TNESF10-F TGCGTGCTGATCGTGATCTTC
TNESF10-R GCTCGTTGGTAAAGTACACGTA
MPO-F CCAGATCATCACTTACCGGGA
MPO-R CACTGAGTCATTGTAGGAACGG
CXCL14-F CGCTACAGCGACGTGAAGAA
CXCL14-R GTTCCAGGCGTTGTACCAC
GAPDH-F TCAAGATCATCAGCAATGCC
GAPDH-R CGATACCAAAGTTGTCATGGA

activated in OA (Figure 1G). Enrichment analysis demonstrated
that the Immune-metabolic related DEGs were notably enriched in
the following pathways: regulation of inflammatory response, positive
regulation of cytokine production, regulation of lipid metabolic
processes, PI3K-Akt signaling pathway, and cytokine-cytokine
receptor interaction (Figure 1H).

Correlation analysis of immune-metabolic
related DEGs with immune and metabolic
pathways

Figures 2A, C illustrate a significant increase in the activity of
most immune-related pathways and metabolic pathways in OA.
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Figures 2B, D present the results of the correlation analysis between
immune-metabolic related genes and both immune-related and
metabolic pathways, respectively. These analyses underscore the
interconnectedness of differential gene expression and pathway
activation in the context of OA.

Frontiers in Immunology

06

Function; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Construction of co-expression network
We established an optimal soft threshold of 5 to construct a

scale-free network (Figure 3A). Using the optimal dynamic tree cut
method and hierarchical clustering, we merged similar modules
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FIGURE 2

Pathway correlation analysis. (A) Differential analysis of immune-related pathways in OA and control. (B) Correlation analysis of immune-
metabolism-related differentially expressed genes and immune-related pathways. (C) Differential analysis of metabolism-related pathways in OA
and control. (D) Correlation analysis of immune-metabolic related differentially expressed genes and metabolism-related pathways. (*p < 0.05,

**p < 0.01, ***p < 0.001, ****p < 0.0001).

(Figure 3B). Correlation analysis between modules and traits
revealed that the red module had the strongest association with
the immune-metabolic GSVA score (Figure 3C). Subsequently, we
performed enrichment analysis on the genes within the red module
using the “Metascape” database. In terms of Biological Processes
(BP), the genes in the red module were significantly enriched in
circulatory system processes, monocarboxylic acid metabolic
processes, regulation of lipid metabolic processes, and organic
hydroxy compound metabolic processes (Figure 3D). For Cellular
Components (CC), the red module genes were notably enriched in
dendrites, lipid droplets, and cell bodies (Figure 3E). In terms of
Molecular Functions (MF), these genes showed significant
enrichment in amide binding, protein homodimerization activity,
and monocarboxylic acid binding (Figure 3F). Lastly, in the KEGG
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pathway analysis, the red module genes were significantly enriched
in neuroactive ligand-receptor interaction, AMPK signaling
pathway, and regulation of lipolysis in adipocytes (Figure 3G).

Screening of immune-metabolic related
hub genes

Lasso analysis identified a total of 38 immune-metabolic related
genes (Figure 4A). Figure 4B shows the coefficient values (coef) of
these 38 genes. Subsequently, we employed several machine learning
approaches—including Random Forest (Figures 4C-D), Bagging
(Figure 4E), Gradient Boosting Machine (GBM) (Figure 4F),
XGBoost with xgbLinear (Figure 4G), and XGBoost with xgbtree
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Weighted Gene Co-expression Network Analysis. (A) the dendrogram of gene clustering based on topological overlapping. (B) Optimal soft
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(C) Correlation analysis of modules and traits. Enrichment analyses of the red module genes, including BP (D), CC (E), MF (F) and KEGG (Q).

(Figure 4H)—to identify the top 40 important immune-metabolic
related genes. Additionally, a decision tree analysis revealed 19
significant immune-metabolic related genes (Figure 4I). Through
the integration of results from these seven algorithms, we collectively
identified 13 immune-metabolic related hub genes (Supplementary
Figure 2). Furthermore, Friends analysis indicated that these 13 hub
genes exhibit functional similarities (Figure 47).
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Establishment and validation of machine
learning models and convolutional neural
networks

By comparing seven different machine learning models, we
found that the SVM model exhibited the highest AUC value
(Figure 5A). Additionally, the SVM model demonstrated good
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FIGURE 4
Machine learning identification of immune-metabolism related hub genes. (A) The lasso analysis identified 38 immune-metabolism related genes.
Log (Lambda) value of the seven genes in the lasso model (left panel) and the most proper log (Lambda) value in the lasso model (right panel).
(B) The coef values of the 38 immune-metabolism related genes in the lasso model. (C) The random forest model has the lowest error rate when
XX trees are selected. Random forest (D), bagging (E), GBM (F), Xgboost-xgbLinear (G) and Xgboost-xgbtree (H) identified top40 important immune-
metabolic related genes. decision tree identified 19 important immune-metabolic related genes (l). results of Friends analysis (J).

sensitivity and specificity (Figure 5B). The AUC for the SVM model  In constructing the CNN, we observed significant improvements in
was 0.968 (Figure 5C), indicating its strong ability to identify = model accuracy from the initial step to the final step (Figure 5E).
patients with OA. The AUC value for the validation set was  The AUC for the training set reached 0.996 (Figure 5F), while the
0.938, further confirming the reliability of the model (Figure 5D).  AUC for the validation set was 0.87 (Figure 5G).

Frontiers in Immunology 09 frontiersin.org


https://doi.org/10.3389/fimmu.2025.1599930
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

He et al.

Machine Learn model comparison

*W‘#Fﬁi -

A
group

B classif kknn

B3 classiflda

B3 classiflog_reg

B3 classif.naive_bayes
E3 classif.ranger

E3 classif.rpart

B classif.svm

learner_id

— classif.kknn
classif.lda
classif.log_reg
classif.naive_bayes
classif.ranger
classif.rpart
classif.svm

Learn Model

modname

classif.log_reg
classif.Ida
classif.svm
classif.naive_bayes

classif.kknn

0.75

classif.rpart

classif.ranger

Sensitivity
o
o
g

classif.log_reg
classif.Ida
025 classif.svm
classif.naive_bayes

classif.kknn

classif.rpart

0.50 075 1.00 classif.ranger

1 - Specificity

0.00 025

loss

Sensitivity
04

accuracy

100 200

epoch

0 50

FIGURE 5

08 1.0

0.6

0.2

0.0

10.3389/fimmu.2025.1599930

1.00

—
0.75
2
=2 .
£ 050 AUC: 0.968
=
[
7]
0.25
0.00
0.00 0.25 0.50 0.75 1.00
1 - Specificity
D o :
-~ I [
© _|
o
2 9 | g
= © /
= /
2 ~AUC: 0.938
o ¥ _] /
w o
N
o
o ||/
S 1
I I I I I I
1.0 0.8 0.6 0.4 0.2 0.0
Specificity
- o ]
- «© _|
o
- 2 9
= ©
AUC: 0.996 k2 AUC: 0.870
- o T ]
w o
~N
i g
. .
T T T T T T ° N T T T T T
10 08 06 04 02 00 10 08 06 04 02 00
Specificity Specificity

Machine learning models and convolutional neural networks built and validated. (A) Comparison of 7 machine learning models AUC. (B) Comparison
of ROC of 7 machine learning models. (C) AUC of SVM model. (D) AUC of validation set. (E) Accuracy and loss assessment of convolutional neural
network. AUC of convolutional neural networks for training set (F) and validation set (G).

Nomogram model for risk prediction

We constructed a risk prediction nomogram model (Figure 6A).
To internally validate this nomogram model, we employed the
Bootstrap method with 1000 resampling iterations. The results
indicated that the calibration curve of the model closely
approached the ideal line, suggesting a high level of reliability in
the predictions (Figure 6B). Additionally, DCA demonstrated that
the model possesses good predictive ability and clinical
utility (Figure 6C).
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NMF analysis

We employed the Non-negative Matrix Factorization (NMF)
algorithm to perform clustering analysis based on the expression
profiles of 13 immune-metabolic related hub genes across all OA
samples. Comprehensive evaluation using cophenetic, dispersion,
and silhouette metrics led us to determine that (k=2) was the
optimal number of clusters (Figures 7A, B). Consequently, we
classified all OA samples into two distinct clusters according to
the NMF algorithm. Utilizing the single-sample Gene Set
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FIGURE 6

Column-line diagram model. (A) Constructing the column-line diagram. (B) Calibration curve for the diagnostic model. (C) Model evaluation curves.

Enrichment Analysis (ssGSEA) algorithm, we found that subcluster
1 exhibited higher activity compared to subcluster 2 (Figure 7C).
Most immune-metabolic related hub genes were highly expressed in
subcluster 1 (Figures 7D-E). Furthermore, six types of immune cells
showed increased expression levels in subcluster 1 (Figures 7F-G).

Immune activity, metabolic activity, and
drug analysis of subtypes

Figures 8A, C present the immune and metabolic pathway
activity scores for the two subclusters. Figure 8B displays the
differential expression levels of immune-related pathway activities
between the two subclusters, indicating that subcluster 1 exhibits
higher immune activity. Similarly, an analysis of metabolic pathway
activities revealed that most metabolic pathways were more
active in subcluster 1 (Figure 8D). Furthermore, the CMap drug
analysis identified the top five drugs for treating patients in
subcluster 1 as MS.275, NU.1025, imatinib, clofibrate, and
arachidonyltrifluoromethane (Figure 8E). In contrast, the top five
drugs for treating patients in subcluster 2 included
STOCKIN.35696, exisulind, AH.6809, X4.5.dianilinophthalimide,
and fasudil (Figure 8F). These findings highlight notable differences
in immune and metabolic activities between subclusters and suggest
potential therapeutic options tailored to each subtype.
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Protein annotation and functional analysis
of subtypes

Using the Proteomap database, we conducted protein
annotation and functional analysis for both subcluster 1 and
subcluster 2. The analysis encompassed categories such as
environmental information processing, metabolism, genetic
information processing, human diseases, organismal systems, and
cellular processes. Figure 9A illustrates that subcluster 1 is primarily
enriched in environmental information processing and metabolism,
with further details provided on specific functions within these six
categories. Similarly, Figure 9B shows that subcluster 2 is also
mainly enriched in environmental information processing and
metabolism, along with a detailed breakdown of its specific
functions across the six categories.

GSVA of subtypes

In the BP category, several processes showed significant activity
in both subclusters, including Primary Alcohol Metabolic Process,
Renal Protein Absorption, Retinol Metabolic Process, Terpenoid
Metabolic Process, Chondrocyte Development, and Glycoprotein
Metabolic Process (Figure 10A). In terms of CC (Figure 10B),
significant enrichment was observed for components such as the
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T Cell Receptor Complex, Alpha Beta T Cell Receptor Complex,
COPI Coated Vesicle Membrane, and Golgi Associated Vesicle
Membrane in both subclusters. For MF (Figure 10C), activities such
as N, N-Dimethylaniline Monooxygenase Activity, Alcohol
Dehydrogenase Activity (Zinc-Dependent), Galactosyltransferase
Activity, and O-Acetyltransferase Activity were notably active in
both subclusters. Finally, in the KEGG pathway analysis
(Figure 10D), immune and metabolic-related pathways were
significantly activated in both subclusters.
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Co-expression network construction of
subtypes

We set the optimal soft threshold to 5, which allowed us to
construct a scale-free network (Figure 11A). Following this, we
merged similar modules together (Figure 11B). Through correlation
analysis between modules and traits, we discovered that the
turquoise module exhibited the strongest correlation with the two
subclusters (Figure 11C). Furthermore, genes within the turquoise
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immunoreactivity of samples from both isoforms. (B) Rank sum

test analyzing the differential expression levels of immune-related pathway activities in the two subtypes. (C) Heatmap showing metabolic activity of
the two subtype samples. (D) Rank sum test analyzing the differential expression levels of metabolism-related pathway activities in the two subtypes.
Results of drug analysis available for treatment of subtype 1 patients (E) and subtype 2 patients (F). (*p < 0.05, **p < 0.01, ***p < 0.001, ****p

< 0.0001).

module were significantly enriched in processes such as
extracellular matrix organization, extracellular structure
organization, and collagen-containing extracellular matrix. Other
notable enrichments included endoplasmic reticulum lumen,
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extracellular matrix structural constituent, signaling receptor
activator activity, as well as pathways like the PI3K-Akt signaling
pathway, Human papillomavirus infection, and Cytokine-cytokine
receptor interaction (Figure 11D).
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Protein annotation and functional analysis. Protein annotation and functional analysis of isoform 1 (A) and isoform 2 (B).

Single-cell data preprocessing results

The expression profiles for each sample are displayed in
Figure 12A. Following this, we identified 2000 highly variable
genes (Figure 12B). Figure 12C illustrates the initial clustering of
cell types. By performing dimensionality reduction clustering on the
cells (Figure 12D), we discovered a total of nine distinct cell
subtypes (Figure 12E). Integrating these findings with previous
research, we characterized the identified subtypes as EC, HomC,
proC, RegC, preHTC, FC, and HTC (Figure 12F). Finally, the
heatmap in Figure 12G presents the highly variable genes
associated with each subtype, providing insights into the gene
expression patterns that distinguish these cellular populations.

Frontiers in Immunology

Subtype1

Subtype2

14

10.3389/fimmu.2025.1599930

Cytokiner
cytokine
ptor

7
interaction

Jak-STAT'
signaling
pathway

Lectins
ion
. L.channels
Peptidases
Rapl
signaling
pathway
signaling
pathway/

Transcription

factors

Amino acid

metolism
| iosy

Lipid and
steroid.
metabolism

Wnt
4 signaling
. pathway
Calcium
signaling
pathway

MAPKS
signaling
pathway
Cytokine
receptors
| signaling
| pathway

Glycan
metabolism
Transport

Purine
metabolism

PPAR
signaling
pathway

Glycolysis

Jak-STAT JER i
signaling siq‘r’!’i"llllg
pathway, Mapk | pathway
signaling 4
pathviay

PI3K-Akt
signaling
pathway

i lon
channels

Chaperones
and folding
catalysts

-

I
Molecules
Transcription
factors
Cytokine
receptors

Glycan

guidance metabolism’

Transport

Glycolysis

Single-cell expression and pseudotime
analysis

Figures 13A, B display the distribution and expression of
immune-metabolic related hub genes across different cell types. In
addition to CX3CRI1 and ADIPOQ, we identified the expression of
IL17RA, APOD, EGFR, SPP1, PLA2G2A, CXCL14, RARB, ADM,
CX3CL1, TNFSF10, and MPO in single cells. Notably, APOD,
SPP1, and PLA2G2A exhibited higher expression levels compared
to other immune-metabolic related genes across all seven cell types.
Given that previous studies indicated high metabolic activity in ECs,
we conducted a simulated analysis of the differentiation trajectories
of all ECs. As shown in Figure 13C, chondrocytes displayed seven
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distinct states of differentiation, each represented by a different
color. We observed that darker shades of blue corresponded to
earlier stages of cell differentiation, indicating that EC cells
differentiate from left to right over time, with the lightest blue
representing the most recently differentiated cells. Throughout the
differentiation process, the expression levels of IL17RA, APOD,
EGFR, SPP1, PLA2G2A, CXCL14, RARB, ADM, CX3CL1,
TNESF10, and MPO exhibited notable changes (Figure 13D).

Cell communication analysis

Through cell communication analysis, we found that low-
scoring EC (endothelial) cells are associated with various other
cell types (Figure 14A). We further examined the ligands and
signaling pathways that mediate the interactions between low-
scoring EC cells and other cell types (Figure 14B). Ultimately, our
analysis revealed that the signal contributing most significantly to
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both the output and input for the EC cell population is

CHEMEPIN (Figure 14C).

GWAS analysis

By analyzing GWAS data, we identified pathogenic regions
associated with single nucleotide polymorphisms (SNPs) for 13
immune-metabolic related hub genes (Supplementary Figures 3A-
M). Additionally, by examining the chromosomal location
information of these genes, we further elucidated their genetic

context (Supplementary Figure 3N).

RT-PCR validation results

Compared with the0 IL-B(ng/ml) group, the 10 IL-f(ng/ml)
group exhibited higher expression levels of the genes ADIPOQ,
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CX3CL1, CX3CR1, CXCL14, EGFR, IL17RA, MPO, PLA2G2A,
RARB, and SPP1. Conversely, the 10 IL-f(ng/ml) group showed
lower expression levels of the genes ADM, APOD, and TNFSF10
than the 0 IL-B(ng/ml) group (Figure 15).

Discussion

Despite being a prevalent cause of pain and disability in
humans, OA remains inadequately treated for many patients.
Historically, the therapeutic focus has primarily centered on
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alleviating clinical symptoms. However, early diagnosis and
prompt intervention are crucial for improving the prognosis of
individuals with osteoarthritis. Consequently, there is an urgent
need to identify biomarkers that can facilitate the recognition and
treatment of OA.

An increasing body of research indicates a close relationship
between immune responses, metabolism, and the pathogenesis of
OA. In this study, we employed bioinformatics approaches to
identify immune-metabolic related genes and pinpointed those
exhibiting expression changes in OA. Notably, the gene set
composed of these genes was significantly activated in the context
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(E) UMAP presentation of the downscaling results. (F) Cellular annotation of subpopulations. (G) Highly variable genes for each subpopulation.

of OA. GO and KEGG analyses revealed that these genes were
notably enriched in processes such as the regulation of
inflammatory response, positive regulation of cytokine
production, regulation of lipid metabolic processes, the PI3K-Akt
signaling pathway, cytokine-cytokine receptor interactions, and Ras
signaling pathway. Initially regarded as “wear-and-tear” arthritis,
OA is now understood to involve inflammatory mediators released
by cartilage, bone, and synovium. Recent evidence suggests that
inflammatory mechanisms associated with OA include innate
immunity, metabolic syndrome, and low-grade inflammation
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induced by inflammaging (13). Inflammation is a variable
hallmark of OA, correlating with joint symptoms and disease
progression (14). The elevation of systemic and local
inflammatory cytokines and senescence-associated molecules
promotes cartilage degradation, while antigens from damaged
joints further trigger inflammation through inflammasome
activation (15). Pro-inflammatory cytokines serve as critical
mediators of the metabolic disturbances and enhanced catabolism
observed in OA-related articular tissues. Currently, IL-1B, TNF, and
IL-6 are recognized as the principal pro-inflammatory cytokines
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involved in the pathogenesis of OA; additionally, other factors such
as IL-15, IL-17, IL-18, IL-21, leukemia inhibitory factor (LIF), and
various chemokines have also been implicated in the disease’s onset
(16). Moreover, lipids, including phospholipids and fatty acids
along with their derivatives, have been associated with the
inflammatory processes in OA (17). Dysregulation of extracellular
matrix metabolism, lipid metabolic disorders, and upregulation of
the senescence-associated secretory phenotype are all mechanisms
linked to the pathogenesis of OA (18). In the synovial tissue,
synovial fluid, and peripheral blood of individuals with OA,
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activated macrophages are regulated by mTOR, NF-kB, JNK,
PI3K/Akt, and other signaling pathways, differentiating into M1
or M2 subtypes. The activation state of macrophages and the M1/
M2 ratio are closely related to the severity of OA (19). The RAS
pathway participates in several signaling cascades, including NF-«B,
JNK, VEGFR/Tie-2, and Axna2/Axna2R, which may represent
potential therapeutic targets for OA (20). Through ssGSEA
pathway analysis, we found significant activation of immune and
metabolic pathways in OA. Additionally, WGCNA identified
multiple immune and metabolic biological processes closely
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Cell communication analysis. (A) Number of interactions or total interaction strength (weights) between cell groups. (B) Intercellular communication
mediated by ligands and signaling pathways. (C) Identification of signals that contribute most to the output and input signals of EC cell taxa.

associated with OA, including monocarboxylic acid metabolic
process, regulation of lipid metabolic process, organic hydroxy
compound metabolic process, generation of precursor metabolites
and energy, lipid and atherosclerosis, fatty acid biosynthesis, and
glycine, serine, and threonine metabolism. These findings further
substantiate the reliability of our results.
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In this study, we identified 13 immune-metabolic hub genes
associated with OA, namely CX3CR1, ADIPOQ, IL17RA, APOD,
EGFR, SPP1, PLA2G2A, CXCL14, RARB, ADM, CX3CL1,
TNFSF10, and MPO. Prior research has indicated a potential
association between the rs182052 polymorphism in the ADIPOQ
gene and the risk of knee OA (21). Subsequent studies have
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demonstrated that the rs1501299 polymorphism within the
ADIPOQ gene increases the risk of knee OA (22). The anti-
apoptotic peptide ADM promotes apoptosis in inflammatory
arthritis synovial cells and dedifferentiation of chondrocytes by
enhancing oxidative stress and the production of pro-inflammatory
cytokines (23, 24). CX3CL1, a member of the CX3C chemokine
family, has been shown to enhance the production of matrix
metalloproteinase-3 (MMP-3) in OA fibroblasts through the
activation of the CX3CRI1, c-Raf, MEK, ERK, and NF-xB
signaling pathways (25). MMP-3 is involved in the processes that
contribute to OA pathogenesis through its role in matrix
degradation (26). In temporomandibular joint OA, chondrocyte
apoptosis, mediated by the activation of the p38-CX3CL1 pathway,
enhances the chemotactic effect of osteoclast precursors towards
osteoblasts, thereby promoting local osteoclast activation (27). The
CX3CLI1 receptor, CX3CR1, can promote the proliferation and
apoptosis of OA chondrocytes via the Wnt/B-catenin signaling
pathway (28). Research has indicated that the absence of
epidermal growth factor receptor (EGFR) specifically in cartilage
accelerates the onset of knee OA (29, 30). Inhibition of EGFR
ubiquitination can suppress extracellular matrix degradation while
activating chondrocyte autophagy, thus serving a protective role
against OA progression (31). EGFR signaling is essential for

Frontiers in Immunology

maintaining the number and characteristics of superficial
chondrocytes, promoting the expression of proteoglycan 4 (Prg4),
and stimulating the lubricating function of cartilage surfaces.
Furthermore, defects in EGFR significantly disrupt the
arrangement of collagen fibers within joint cartilage and markedly
reduce the surface modulus of cartilage (32). In an OA mouse
model, inhibition of IL-6 through IL-17RA-mediated pathways was
found to suppress synovitis (33). The upregulation of IL-17RA
expression in cartilage and synovium during the later stages of OA
suggests its critical role in the pathophysiology of the disease (34).
Numerous studies have reported elevated expression levels of
SPP1 in both OA cartilage and synovium (35). MicroRNA-186
has been shown to inhibit chondrocyte apoptosis in OA mouse
models by repressing the activation of the PI3K-AKT pathway via
SPP1 (36). Overexpression of TNFSF10 may promote
proliferation and inflammation while inhibiting apoptosis,
thereby facilitating OA progression through regulation of the
miR-376-3p/FGFR1 axis (37). As an immune-related biomarker,
APOD exhibits high diagnostic efficacy for OA (38). Additionally,
increased expression of PLA2G2A in the cartilage of OA patients
indicates its degradative effects on cartilage and suggests it may
serve as a potential therapeutic target for OA (39). Elevated
expression of MPO in the OA synovium could also be utilized
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as an early diagnostic marker for the condition (38). These
findings robustly support our results, indicating that the
expression levels of CX3CR1, ADIPOQ, IL17RA, APOD, EGFR,
SPP1, PLA2G2A, CXCL14, RARB, ADM, CX3CL1, TNFSF10, and
MPO are significantly correlated with the mechanisms underlying
OA pathogenesis.

In the progression of OA, metabolic regulation plays a crucial
role in maintaining cartilage functionality and self-repair
mechanisms. Abrupt changes in metabolic regulation can lead to
functional abnormalities, such as impaired extracellular matrix
synthesis. Moreover, researchers have identified a newly
discovered cell type known as ECs, characterized by elevated
metabolic rates. These cells are closely associated with processes
involving the tricarboxylic acid cycle, glycolysis, oxidative
phosphorylation, and lipid and amino acid metabolism,
suggesting that effector chondrocytes exhibit enhanced activity in
energy metabolism. Additionally, regulatory chondrocytes express
high levels of specific markers associated with the innate immune
system, indicating that these cells may possess functions related to
immune cell activation. These novel insights into chondrocyte
functionality deepen our understanding of OA. Through high-
resolution single-cell transcriptomic sequencing of samples from
OA patients, researchers have revealed the presence of distinct
functional chondrocyte subtypes within human osteoarthritic
cartilage (40). Utilizing bioinformatics algorithms, we elucidated
the spatial distribution patterns of these cell subtypes within
cartilage tissue, as well as their temporal distribution patterns
throughout the progression of OA. Seven distinct chondrocyte
subtypes were identified, revealing the expression distribution
patterns of hub immune-metabolic-related genes while also
analyzing the pseudotemporal variation characteristics of effector
chondrocytes. Pseudotime trajectory analysis demonstrated that
these hub immune-metabolic-related genes are involved in the
transitions between chondrocyte subpopulations, underscoring
the significant role of immune metabolism in the development
of OA.

Of course, our study has some limitations. First, although we
use publicly available data for analysis, the reliability of the data may
be a potential problem. But we have worked hard to ensure data
quality and consistency. The use of independent datasets or
experimental validation will further ensure the reliability of our
findings. Second, although our prediction model shows promising
results, it needs to be clinically validated in the future. Finally, as this
study focuses on bioinformatics analysis, future experimental
studies should aim to clarify the biological relevance of these
genes, explore their interactions in cellular processes, and
investigate potential therapeutic targets.

In summary, the interplay between immune metabolism and
the pathogenesis of OA is closely intertwined. Our study not only
offers a comprehensive molecular understanding of the immune-
metabolic characteristics associated with OA but also identifies
potential biomarkers and therapeutic targets for future treatment
strategies. These findings may contribute to the development of
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innovative therapeutic approaches aimed at enhancing the
prognosis and quality of life for OA patients.
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