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Integrated multi-omics and
machine learning reveals
immune-metabolic signatures in
osteoarthritis: from bulk RNA-
seq to single-cell resolution
Hui He1†, Xiumei Zhao2†, Bo Zhang1†,
Shijian Zhao3* and Yinteng Wu1*

1Department of Orthopedic and Trauma Surgery, The Third Affiliated Hospital of Guangxi Medical
University, Nanning, Guangxi, China, 2School of Clinical Medicine, Youjiang Medical University for
Nationalities, Baise, Guangxi, China, 3Graduate School, Kunming Medical University, Kunming,
Yunnan, China
Purpose: The aim of this study was to investigate the activation of immune-

metabolic pathways in osteoarthritis (OA) and their role in disease progression.

We employed differential expression analysis and Gene Set Enrichment Analysis

Materials and methods: Gene set enrichment analysis (GSEA) to identify

activated immune-metabolism pathways in OA. Subsequently, Weighted gene

co-expression network analysis (WGCNA) was used to identify gene modules

associated with OA and immune-metabolism scores, followed by enrichment

analysis to reveal the functional characteristics of these modules. To identify

immune-metabolism related differentially expressed genes (DEGs), we utilized

seven machine learning methods, including lasso regression, random forest,

bagging, gradient boosting machines (GBM), Xgboost-xgbLinear, Xgboost-

xgbtree, and decision trees, to construct predictive models and validate their

reliability. Based on the expression profiles of hub immune-metabolism related

DEGs, we stratified OA patients into two immune-metabolism related subgroups

and deeply investigated the differences in immune profiles, drug responses,

functions, and pathways between these subgroups. Additionally, we analyzed the

expression and pseudotime trajectories of hub immune-metabolism related

DEGs at the single-cell level. Through genome-wide association studies

(GWAS), we explored the mechanisms of action of hub immune-metabolism

related DEGs. Finally, real-time polymerase chain reaction (RT-PCR) was utilized

to verify the expression of hub immune-metabolism related DEGs.

Results: Immune-metabolism related pathways were significantly activated

during the development of OA. Thirteen central immune metabolism-related

genes (CX3CR1, ADIPOQ, IL17RA, APOD, EGFR, SPP1, PLA2G2A, CXCL14, RARB,

ADM, CX3CL1, TNFSF10, and MPO) were identified. Predictive modeling by

constructing these genes has good predictive power for identifying OA. These

genes are mainly associated with endothelial cells. Single-cell analysis showed

that they were all expressed in single cells and varied with cell differentiation. RT-

PCR results suggested that they were all significantly expressed in OA.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1599930/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1599930/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1599930/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1599930/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1599930/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1599930&domain=pdf&date_stamp=2025-06-16
mailto:wyt19970928gk@163.com
mailto:zhaoshijian1025@163.com
https://doi.org/10.3389/fimmu.2025.1599930
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1599930
https://www.frontiersin.org/journals/immunology


He et al. 10.3389/fimmu.2025.1599930

Frontiers in Immunology
Conclusion: Our findings indicate that immune metabolism plays a key role in

the development of OA and provide new perspectives for future

therapeutic strategies
KEYWORDS

osteoarthritis (OA), immune-metabolism, weighted gene co-expression network
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Introduction

Osteoarthritis (OA) is a chronic, multifaceted joint disease

characterized primarily by the progressive degradation of articular

cartilage. This condition can lead to significant joint dysfunction

and persistent pain (1). Statistics indicate that over 500 million

individuals worldwide are affected by osteoarthritis, making it a

leading cause of disability among the elderly population (2).

Currently, there is no definitive cure for OA, partly due to a lack

of comprehensive understanding regarding the pathological

mechanisms underlying its onset and progression. Therefore,

elucidating the critical pathological signaling pathways and key

molecular players involved in the pathogenesis of OA is essential for

the design of targeted therapies and the development of novel

pharmacological interventions.

Currently, many of humanity’s persistent ailments are closely

linked to dysregulation of the immune system. The immune system

is tightly regulated by metabolic processes, which can influence

disease progression through alterations in metabolism (3).

Immunometabolism has emerged as a significant and burgeoning

field of study. Cellular metabolism plays a crucial role in guiding

and modulating the differentiation and functionality of immune

cells. It is not only a fundamental process that sustains cellular life

but also serves as a critical determinant of cellular adaptability (4).

Recent research indicates that metabolism plays a pivotal role in

inflammatory arthritic diseases. In particular, metabolic alterations

and aberrant immunometabolism may represent key characteristics

of the various phenotypes of OA (5). Additionally, metabolism is

vital for the functionality of cartilage and synovial joints. Under

pathological conditions, cells transition from a quiescent state to a

highly metabolically active state to maintain energy homeostasis.

This phenomenon also leads to the production of inflammatory and

catabolic proteins, which subsequently activate essential

transcription factors and increase the biosynthetic metabolites

involved in inflammatory signaling pathways, thereby propelling

the ongoing progression of the disease. Abnormal chondrocyte

metabolism is a response to changes in the immune

microenvironment and may play a significant role in cartilage

degradation and the progression of OA (6). Therefore, alterations

in the immune microenvironment and changes in chondrocyte

metabolism may serve as distinctive features of the different OA
02
phenotypes. Future research should place greater emphasis on the

interplay between immune and metabolic pathways to enhance our

understanding of the pathophysiology of OA. Such insights will be

instrumental in identifying therapeutic targets associated with OA

and metabolic pathways, potentially facilitating the development of

novel pharmacological agents for the treatment of this condition.

This study employed differential expression analysis and gene

set enrichment analysis (GSEA) to investigate the activation of

immune-metabolic pathways in OA. Subsequently, we applied

weighted gene co-expression network analysis (WGCNA) to

identify gene modules associated with OA and immune-metabolic

scores, followed by enrichment analyses to elucidate the functional

characteristics of these modules. To identify differentially expressed

genes (DEGs) associated with immuno-metabolism, we used seven

machine learning methods including lasso regression, random

forest, Bagging, GBM, Xgboost-xgbLinear, Xgboost-xgbtree, and

Decision Tree, and constructed the prediction models and verified

their reliability. Based on the expression profiles of hub immune-

metabolic related DEGs, we classified OA patients into two distinct

immune-metabolic subgroups and conducted an in-depth

exploration of the differences between these subgroups in terms

of immune landscape, drug response, functionality, and pathway

involvement. Additionally, we analyzed the expression and

pseudotemporal dynamics of hub immune-metabolic related

DEGs at the single-cell level. Finally, through genome-wide

association studies (GWAS), we investigated the mechanisms

underlying the role of hub immune-metabolic related DEGs.
Materials and methods

Data acquisition and preprocessing

In this study, we initially downloaded osteoarthritis-related

microarray datasets from the Gene Expression Omnibus (GEO)

database (https://www.ncbi.nlm.nih.gov/geo/), including

GSE117999, GSE12021, GSE51588, GSE55235, GSE55457,

GSE57218, GSE82107, and GSE98918. Additionally, we retrieved

single-cell sequencing data related to osteoarthritis from the GEO

database under the accession number GSE104782. During the

processing of the microarray datasets, we matched probes to gene
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names based on the annotation information for each GPL platform,

prioritizing the probes with the highest expression levels to ensure

accuracy and consistency. Subsequently, we employed the

“normalizeBetweenArrays” function to standardize the expression

matrix and processed the datasets requiring log2 transformation.

We then compiled a list of common genes across these eight

datasets to serve as the foundation for our subsequent analyses.

To address the discrepancies in expression values stemming

from different batches or platforms, we utilized the ComBat

method from the “sva” package (7) in R for normalization.

Principal component analysis (PCA) was conducted to evaluate

the success of batch effect removal, thereby ensuring the reliability

of the data. We obtained immune-related genes from the Immport

database (https://www.immport.org/) and metabolic-related genes

from the Harmonizome database (https://maayanlab.cloud/

Harmonizome/). By intersecting these two gene sets, we identified

immune-metabolic related genes, which were subsequently utilized

for further analyses.
Differential expression analysis

DEGs between OA samples and normal samples was conducted

using the “limma” R package (8), specifically focusing on the

identification of immune-metabolic related DEGs. The selection

criterion for significant DEGs was set at a p-value threshold of

<0.05. To visualize the differential expression of immune-metabolic

related DEGs, we employed volcano plots, which effectively

illustrate the significance and magnitude of changes in gene

expression. Additionally, heatmaps were utilized to display the

expression levels of these DEGs across each sample, providing a

clear comparative overview. Furthermore, we analyzed the

correlation among immune-metabolic related DEGs and

employed the “wilcox.test” algorithm to assess their differential

expression levels between OA and normal samples. This

comprehensive analysis allowed us to elucidate the specific

contributions of immune-metabolic pathways in the context of OA.
Enrichment analysis

Initially, immune-metabolic related DEGs were compiled into a

gene set, which was then subjected to GSEA using the

“clusterProfiler” R package (9) to explore their activation or

inhibition status in the context of OA. This analysis aimed to

elucidate the functional implications of these genes within the

disease milieu. Additionally, we employed the “clusterProfiler” R

package to conduct gene ontology (GO) (10) and kyoto

encyclopedia of genes and genomes (KEGG) (11) analyses on the

immune-metabolic related DEGs. This approach allowed us to

uncover the functional characteristics and pathway information

associated with these genes, providing deeper insights into their

roles in OA pathology and the underlying immune-

metabolic interactions.
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Enrichment landscape of immune-
metabolic related DEGs in immune and
metabolic pathway

We first analyzed the upregulation or downregulation of

immune-related and metabolic pathways in OA samples

compared to control samples. Following this, we employed the

single-sample gene set enrichment analysis (ssGSEA) method to

calculate the activity scores for each pathway. To further elucidate

the relationship between immune-metabolic related DEGs and

these pathways, we utilized the Spearman correlation algorithm to

assess the correlation between each DEG and the respective

pathway activity scores. This comprehensive analysis provided

insights into the involvement of immune-metabolic related DEGs

in specific immune and metabolic signaling pathways within the

OA context.
WGCNA analysis

In this study, immune-metabolic related DEGs were utilized as

the background gene set. We calculated the gene set variation

analysis (GSVA) scores for each sample and used these scores as

traits for the WGCNA (12). After selecting the top 5000 highly

variable genes, we determined the soft thresholding power for the

scale-free network to achieve the maximum R² value (power = 4).

To ensure that each module contained a sufficient number of genes,

we set a minimum requirement of at least 30 genes per module. We

assessed the distances between genes using the topology overlap

matrix similarity. Hierarchical clustering analysis was performed

using both average linkage and dynamic tree cut methods to

construct a clustering dendrogram, thereby classifying genes into

distinct modules and merging them based on their similarities.

Subsequently, we selected the modules most strongly correlated

with the GSVA scores for enrichment analysis. This analysis was

conducted using the Metascape database for GO and KEGG

pathway analyses, providing insights into the functional roles of

the identified gene modules within the context of osteoarthritis.
Identification of hub immune-metabolic
related DEGs

To identify hub immune-metabolic related DEGs, this study

employed the Lasso algorithm as a primary method. Additionally,

we utilized several other machine learning techniques, including

Random Forest, Bagging, Gradient Boosting Machine (GBM),

Xgboost (both xgbLinear and xgbtree variants), and Decision Tree

methods to rank the importance of genes. These combined

approaches enabled us to filter and prioritize the top 40 most

significant genes based on their importance scores. The consensus

from these methods established robust criteria for the identification

of hub immune-metabolic related DEGs, facilitating further analysis

and insights into their roles within OA.
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Development and evaluation of machine
learning models

To identify the optimal machine learning model for predicting

OA, we selected input variables from the expression profiles of 13

immune-metabolic related genes and their corresponding grouping

information. Utilizing the “mlr3verse” R package, we established

seven different machine learning models, including Logistic

Regression, Support Vector Machine (SVM), k-Nearest Neighbors

(kknn), Random Forest, Linear Discriminant Analysis (LDA),

Naive Bayes, Decision Tree. To validate the reliability of these

models, we performed a model performance evaluation using the

GSE48556 validation dataset. In addition to the above models, we

also constructed a Convolutional Neural Network (CNN) using the

“keras” R package. The performance of this CNN model was

similarly assessed using the GSE48556 validation set, allowing us

to compare its predictive capabilities against the traditional

machine learning models.
Construction and validation of the
nomogram

This study employed multivariate logistic regression analysis to

evaluate 13 immune-metabolic related genes. The “ROCR” package

was utilized to compute the area under the receiver operating

characteristic curve (AUC), thereby assessing the diagnostic value

of these genes in OA. We constructed a nomogram to predict the

probability of OA occurrence and generated calibration curves and

decision curves to analyze the stability and reliability of the model.
Non-negative matrix factorization
algorithm

Based on the expression profile data of immune-metabolic

genes, we employed the Non-negative Matrix Factorization

(NMF) algorithm to decompose the matrix for OA samples,

resulting in a coefficient matrix for each sample and a

contribution matrix for each gene set. These matrices elucidate

the relationships between the samples and gene sets. Utilizing

clustering algorithms, we assigned the samples to distinct clusters

and provided annotations for each cluster. In selecting the optimal

value of (k), we assessed various metrics including cophenetic

correlation, dispersion, and silhouette scores. Ultimately, using

the aforementioned algorithms along with the optimal (k) value,

we classified OA samples into different molecular clusters.
Characterization of subtype features

We employed ssGSEA to assess the activity levels of Subtype 1

and Subtype 2. Additionally, we analyzed the differential expression

levels of hub immune-metabolic related DEGs and immune cells

between these subtypes. Variations in immune and metabolic
Frontiers in Immunology 04
pathways within the subtypes were also examined. To identify

potential therapeutic agents for patients with Subtype 1 and

Subtype 2, we utilized the Connectivity Map (cMAP) database.

Furthermore, we conducted protein annotation and functional

analysis for Subtype 1 and Subtype 2 using the ProteoMap

database. Finally, GSVA was performed to identify differential

pathways between Subtype 1 and Subtype 2.
WGCNA for subtype analysis

Based on the characteristics of the subtypes, we employed

WGCNA to identify potential functional modules that

characterize the biological functions of each subtype. We selected

the top 5000 highly variable genes and determined the optimal soft

threshold for the scale-free network to achieve the maximum (R^2)

value (power = 4). Each module was required to contain a

minimum of 30 genes. We assessed the distances among gene

pairs using the topology overlap matrix similarity. Subsequently,

we conducted hierarchical clustering analysis using both average

linkage and dynamic tree cutting methods to construct a clustering

dendrogram, thereby categorizing the genes into distinct modules.

For the functional analysis of key modules, we utilized the

“ClusterProfiler” R package to perform GO and KEGG analyses.
Single-cell analysis

We processed single-cell RNA sequencing data using the

“Seurat” R package. Cells expressing more than 200 genes but

fewer than 2500 genes were identified for further analysis. High-

variance genes were detected using the “FindVariableGenes”

function, followed by principal component analysis (PCA). For

dimensionality reduction and visualization of single-cell data, we

employed the Uniform Manifold Approximation and Projection

(UMAP) method. Cell types were annotated. We visualized the

clustering of cells using the “DimPlot” function and illustrated gene

expression patterns with the “FeaturePlot” function.
Pseudotime analysis

A subset of endothelial cells (ECs) was extracted for pseudotime

analysis. We reprocessed the chondrocytes for dimensionality

reduction and clustering. The “Monocle” R package was utilized

to conduct the pseudotime analysis. For subsequent pseudotime

analysis, we selected cells based on the criteria of mean expression

greater than 0.1 and empirical dispersion greater than 1 times the

fitted dispersion. Dimensionality reduction was performed using

the “reduceDimension” function with the “DDRTree” method,

followed by trajectory ordering. The “plot_cell_trajectory”

function was employed to visualize the distribution of cells along

the trajectory. Additionally, we analyzed the expression changes of

hub immune-metabolic related genes among different clusters

throughout the cellular differentiation trajectory.
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Cell communication analysis

A subset of ECs was extracted, and based on the immune-metabolic

gene set scoring, we defined chondrocytes with scores greater than the

fourth quartile as high immune-metabolic scoring ECs. Conversely, ECs

with scores below the fourth quartile were classified as low immune-

metabolic scoring chondrocytes. Cell communication analysis was

conducted using the “CellChat” R package.
GWAS analysis

The Gene Atlas database (http://geneatlas.roslin.ed.ac.uk) is a

comprehensive resource that provides extensive information on

associations between hundreds of traits and millions of variants,

utilizing data from the UK Biobank cohort. This database

encompasses data from 452,264 individuals in the UK Biobank,

covering a wide range of 778 phenotypes and 30 million genetic loci.
RT-PCR validation

Human chondrocytes (Wuhan Saos Technology Co., Ltd.) were

cultured in DMEM/F12 medium containing 10% fetal bovine serum.

To model inflammation, cells in the intervention group were exposed

to interleukin-1b (IL-1b; 10 ng/ml) for 24 hours. Total RNA was

isolated using QIAzol reagent, reverse-transcribed into cDNA with

oligo-dT primers, and amplified by quantitative reverse-transcription

polymerase chain reaction (qRT-PCR) under the following

conditions: initial denaturation at 95°C for 5 minutes; 40 cycles of

denaturation (95°C, 1 minute), annealing (60°C, 30 seconds), and

extension (72°C, 1 minute). Gene expression was quantified via the 2

−DDCt method. Primer sequences are detailed in Table 1.
Results

Identification and enrichment analysis of
immune-metabolic related DEGs

As illustrated in Figure 1A, samples from eight independent

datasets exhibited varying batch effects; however, following the

removal of these effects, the samples clustered together (Figure 1B).

This indicates that cross-platform normalization successfully

mitigated batch processing effects, allowing for subsequent analyses.

We identified a total of 246 immune-metabolic genes using data from

the Harmonizome database and the ImmPort database (Figure 1C).

The differential expression analysis revealed a total of 67 Immune-

metabolic related DEGs, comprising 31 upregulated and 36

downregulated genes (Figure 1D). A heatmap displayed the

expression levels of these Immune-metabolic related DEGs across

each sample (Figure 1E). Furthermore, rank sum test analysis

confirmed that the Immune-metabolic related DEGs exhibited

statistically significant expression differences (Figure 1F). GSEA

indicated that the immune-metabolic gene set was significantly
Frontiers in Immunology 05
activated in OA (Figure 1G). Enrichment analysis demonstrated

that the Immune-metabolic related DEGs were notably enriched in

the following pathways: regulation of inflammatory response, positive

regulation of cytokine production, regulation of lipid metabolic

processes, PI3K-Akt signaling pathway, and cytokine-cytokine

receptor interaction (Figure 1H).
Correlation analysis of immune-metabolic
related DEGs with immune and metabolic
pathways

Figures 2A, C illustrate a significant increase in the activity of

most immune-related pathways and metabolic pathways in OA.
TABLE 1 Primers used in this study.

Primer Sequence

CX3CR1-F ACTTTGAGTACGATGATTTGGCT

CX3CR1-R GGTAAATGTCGGTGACACTCTT

IL17RA-F AGTTCCACCAGCGATCCAAC

IL17RA-R GTCTGAGGCAGTCATTGAGGC

APOD-F GAATCAAATCGAAGGTGAAGCCA

APOD-R ACACGAGGGCATAGTTCTCAT

EGFR-F AGGCACGAGTAACAAGCTCAC

EGFR-R ATGAGGACATAACCAGCCACC

SPP1-F CTCCATTGACTCGAACGACTC

SPP1-R CAGGTCTGCGAAACTTCTTAGAT

PLA2G2A-F ATGAAGACCCTCCTACTGTTGG

PLA2G2A-R GCTTCCTTTCCTGTCGTCAACT

RARB-F TCCGAAAAGCTCACCAGGAAA

RARB-R GGCCAGTTCACTGAATTTGTCC

ADM-F ATGAAGCTGGTTTCCGTCG

ADM-R GACATCCGCAGTTCCCTCTT

ADIPOQ-F TGCTGGGAGCTGTTCTACTG

ADIPOQ-R TACTCCGGTTTCACCGATGTC

CX3CL1-F GCCACAGGCGAAAGCAGTA

CX3CL1-R GGAGGCACTCGGAAAAGCTC

TNFSF10-F TGCGTGCTGATCGTGATCTTC

TNFSF10-R GCTCGTTGGTAAAGTACACGTA

MPO-F CCAGATCATCACTTACCGGGA

MPO-R CACTGAGTCATTGTAGGAACGG

CXCL14-F CGCTACAGCGACGTGAAGAA

CXCL14-R GTTCCAGGCGTTGTACCAC

GAPDH-F TCAAGATCATCAGCAATGCC

GAPDH-R CGATACCAAAGTTGTCATGGA
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Figures 2B, D present the results of the correlation analysis between

immune-metabolic related genes and both immune-related and

metabolic pathways, respectively. These analyses underscore the

interconnectedness of differential gene expression and pathway

activation in the context of OA.
Frontiers in Immunology 06
Construction of co-expression network

We established an optimal soft threshold of 5 to construct a

scale-free network (Figure 3A). Using the optimal dynamic tree cut

method and hierarchical clustering, we merged similar modules
FIGURE 1

Data preprocessing and enrichment analysis. principal component analysis of six dataset batches before (A) and after (B) correction. (C) Wayne plot
showing common intersecting genes of immune-related and metabolism-related genes. (D) Volcano plot showing the results of differential
expression analysis of immune-metabolism-related genes. (E) Heatmap of immune-metabolism-related genes. (F) wilcox.test analysis of expression
levels of immune-metabolism-related genes (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). (G) GSEA showed that the immune-metabolism-
related gene set was significantly activated in OA. (H) Results of GO and KEGG enrichment analysis of immune-metabolic related genes. GO, Gene
Ontology; BP, Biological Process; CC, Cellular Component; MF, Molecular Function; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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(Figure 3B). Correlation analysis between modules and traits

revealed that the red module had the strongest association with

the immune-metabolic GSVA score (Figure 3C). Subsequently, we

performed enrichment analysis on the genes within the red module

using the “Metascape” database. In terms of Biological Processes

(BP), the genes in the red module were significantly enriched in

circulatory system processes, monocarboxylic acid metabolic

processes, regulation of lipid metabolic processes, and organic

hydroxy compound metabolic processes (Figure 3D). For Cellular

Components (CC), the red module genes were notably enriched in

dendrites, lipid droplets, and cell bodies (Figure 3E). In terms of

Molecular Functions (MF), these genes showed significant

enrichment in amide binding, protein homodimerization activity,

and monocarboxylic acid binding (Figure 3F). Lastly, in the KEGG
Frontiers in Immunology 07
pathway analysis, the red module genes were significantly enriched

in neuroactive ligand-receptor interaction, AMPK signaling

pathway, and regulation of lipolysis in adipocytes (Figure 3G).
Screening of immune-metabolic related
hub genes

Lasso analysis identified a total of 38 immune-metabolic related

genes (Figure 4A). Figure 4B shows the coefficient values (coef) of

these 38 genes. Subsequently, we employed several machine learning

approaches—including Random Forest (Figures 4C-D), Bagging

(Figure 4E), Gradient Boosting Machine (GBM) (Figure 4F),

XGBoost with xgbLinear (Figure 4G), and XGBoost with xgbtree
FIGURE 2

Pathway correlation analysis. (A) Differential analysis of immune-related pathways in OA and control. (B) Correlation analysis of immune-
metabolism-related differentially expressed genes and immune-related pathways. (C) Differential analysis of metabolism-related pathways in OA
and control. (D) Correlation analysis of immune-metabolic related differentially expressed genes and metabolism-related pathways. (*p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001).
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(Figure 4H)—to identify the top 40 important immune-metabolic

related genes. Additionally, a decision tree analysis revealed 19

significant immune-metabolic related genes (Figure 4I). Through

the integration of results from these seven algorithms, we collectively

identified 13 immune-metabolic related hub genes (Supplementary

Figure 2). Furthermore, Friends analysis indicated that these 13 hub

genes exhibit functional similarities (Figure 4J).
Frontiers in Immunology 08
Establishment and validation of machine
learning models and convolutional neural
networks

By comparing seven different machine learning models, we

found that the SVM model exhibited the highest AUC value

(Figure 5A). Additionally, the SVM model demonstrated good
FIGURE 3

Weighted Gene Co-expression Network Analysis. (A) the dendrogram of gene clustering based on topological overlapping. (B) Optimal soft
threshold screening (The vertical axis of the left panel represents the square of the correlation coefficient between log(k) and log(p(k)) in the
corresponding network, the higher the square of the correlation coefficient, the closer the network is to the distribution without network scales; the
vertical axis of the right panel represents the mean value of the neighbor-joining function of all genes in the corresponding gene module).
(C) Correlation analysis of modules and traits. Enrichment analyses of the red module genes, including BP (D), CC (E), MF (F) and KEGG (G).
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sensitivity and specificity (Figure 5B). The AUC for the SVMmodel

was 0.968 (Figure 5C), indicating its strong ability to identify

patients with OA. The AUC value for the validation set was

0.938, further confirming the reliability of the model (Figure 5D).
Frontiers in Immunology 09
In constructing the CNN, we observed significant improvements in

model accuracy from the initial step to the final step (Figure 5E).

The AUC for the training set reached 0.996 (Figure 5F), while the

AUC for the validation set was 0.87 (Figure 5G).
FIGURE 4

Machine learning identification of immune-metabolism related hub genes. (A) The lasso analysis identified 38 immune-metabolism related genes.
Log (Lambda) value of the seven genes in the lasso model (left panel) and the most proper log (Lambda) value in the lasso model (right panel).
(B) The coef values of the 38 immune-metabolism related genes in the lasso model. (C) The random forest model has the lowest error rate when
XX trees are selected. Random forest (D), bagging (E), GBM (F), Xgboost-xgbLinear (G) and Xgboost-xgbtree (H) identified top40 important immune-
metabolic related genes. decision tree identified 19 important immune-metabolic related genes (I). results of Friends analysis (J).
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Nomogram model for risk prediction

We constructed a risk prediction nomogrammodel (Figure 6A).

To internally validate this nomogram model, we employed the

Bootstrap method with 1000 resampling iterations. The results

indicated that the calibration curve of the model closely

approached the ideal line, suggesting a high level of reliability in

the predictions (Figure 6B). Additionally, DCA demonstrated that

the model possesses good predictive ability and clinical

utility (Figure 6C).
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NMF analysis

We employed the Non-negative Matrix Factorization (NMF)

algorithm to perform clustering analysis based on the expression

profiles of 13 immune-metabolic related hub genes across all OA

samples. Comprehensive evaluation using cophenetic, dispersion,

and silhouette metrics led us to determine that (k=2) was the

optimal number of clusters (Figures 7A, B). Consequently, we

classified all OA samples into two distinct clusters according to

the NMF algorithm. Utilizing the single-sample Gene Set
FIGURE 5

Machine learning models and convolutional neural networks built and validated. (A) Comparison of 7 machine learning models AUC. (B) Comparison
of ROC of 7 machine learning models. (C) AUC of SVM model. (D) AUC of validation set. (E) Accuracy and loss assessment of convolutional neural
network. AUC of convolutional neural networks for training set (F) and validation set (G).
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Enrichment Analysis (ssGSEA) algorithm, we found that subcluster

1 exhibited higher activity compared to subcluster 2 (Figure 7C).

Most immune-metabolic related hub genes were highly expressed in

subcluster 1 (Figures 7D-E). Furthermore, six types of immune cells

showed increased expression levels in subcluster 1 (Figures 7F-G).
Immune activity, metabolic activity, and
drug analysis of subtypes

Figures 8A, C present the immune and metabolic pathway

activity scores for the two subclusters. Figure 8B displays the

differential expression levels of immune-related pathway activities

between the two subclusters, indicating that subcluster 1 exhibits

higher immune activity. Similarly, an analysis of metabolic pathway

activities revealed that most metabolic pathways were more

active in subcluster 1 (Figure 8D). Furthermore, the CMap drug

analysis identified the top five drugs for treating patients in

subcluster 1 as MS.275, NU.1025, imatinib, clofibrate, and

arachidonyltrifluoromethane (Figure 8E). In contrast, the top five

drugs for treat ing pat ients in subcluster 2 included

STOCK1N.35696, exisulind, AH.6809, X4.5.dianilinophthalimide,

and fasudil (Figure 8F). These findings highlight notable differences

in immune and metabolic activities between subclusters and suggest

potential therapeutic options tailored to each subtype.
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Protein annotation and functional analysis
of subtypes

Using the Proteomap database, we conducted protein

annotation and functional analysis for both subcluster 1 and

subcluster 2. The analysis encompassed categories such as

environmental information processing, metabolism, genetic

information processing, human diseases, organismal systems, and

cellular processes. Figure 9A illustrates that subcluster 1 is primarily

enriched in environmental information processing and metabolism,

with further details provided on specific functions within these six

categories. Similarly, Figure 9B shows that subcluster 2 is also

mainly enriched in environmental information processing and

metabolism, along with a detailed breakdown of its specific

functions across the six categories.
GSVA of subtypes

In the BP category, several processes showed significant activity

in both subclusters, including Primary Alcohol Metabolic Process,

Renal Protein Absorption, Retinol Metabolic Process, Terpenoid

Metabolic Process, Chondrocyte Development, and Glycoprotein

Metabolic Process (Figure 10A). In terms of CC (Figure 10B),

significant enrichment was observed for components such as the
FIGURE 6

Column-line diagram model. (A) Constructing the column-line diagram. (B) Calibration curve for the diagnostic model. (C) Model evaluation curves.
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T Cell Receptor Complex, Alpha Beta T Cell Receptor Complex,

COPI Coated Vesicle Membrane, and Golgi Associated Vesicle

Membrane in both subclusters. For MF (Figure 10C), activities such

as N, N-Dimethylaniline Monooxygenase Activity, Alcohol

Dehydrogenase Activity (Zinc-Dependent), Galactosyltransferase

Activity, and O-Acetyltransferase Activity were notably active in

both subclusters. Finally, in the KEGG pathway analysis

(Figure 10D), immune and metabolic-related pathways were

significantly activated in both subclusters.
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Co-expression network construction of
subtypes

We set the optimal soft threshold to 5, which allowed us to

construct a scale-free network (Figure 11A). Following this, we

merged similar modules together (Figure 11B). Through correlation

analysis between modules and traits, we discovered that the

turquoise module exhibited the strongest correlation with the two

subclusters (Figure 11C). Furthermore, genes within the turquoise
FIGURE 7

Non-negative matrix factorization (NMF) analysis for the OA samples. (A) Distribution of cophenetic, residuals, RSS and silhouette with a rank of 2–
10. (B) Consensus map of NMF clustering when k = 2. (C) ssGSEA algorithm showed that subgroup1 and subgroup2 had higher activity. (D) Heatmap
showing the expression landscape of DE-SMRGs of the two clusters. (E) Box plot showing the expression of 13 DE-SMRGs between the two clusters.
(F) Heatmap showing the expression landscape of 9 kinds of immune cells of the two clusters. (G) Box plot showing the expression of 9 kinds of
immune cells between the two clusters (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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module were significantly enriched in processes such as

extracellular matrix organization, extracellular structure

organization, and collagen-containing extracellular matrix. Other

notable enrichments included endoplasmic reticulum lumen,
Frontiers in Immunology 13
extracellular matrix structural constituent, signaling receptor

activator activity, as well as pathways like the PI3K-Akt signaling

pathway, Human papillomavirus infection, and Cytokine-cytokine

receptor interaction (Figure 11D).
FIGURE 8

Comparison of activity and drug analysis of the two isoforms. (A) Heatmap showing immunoreactivity of samples from both isoforms. (B) Rank sum
test analyzing the differential expression levels of immune-related pathway activities in the two subtypes. (C) Heatmap showing metabolic activity of
the two subtype samples. (D) Rank sum test analyzing the differential expression levels of metabolism-related pathway activities in the two subtypes.
Results of drug analysis available for treatment of subtype 1 patients (E) and subtype 2 patients (F). (*p < 0.05, **p < 0.01, ***p < 0.001, ****p
< 0.0001).
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Single-cell data preprocessing results

The expression profiles for each sample are displayed in

Figure 12A. Following this, we identified 2000 highly variable

genes (Figure 12B). Figure 12C illustrates the initial clustering of

cell types. By performing dimensionality reduction clustering on the

cells (Figure 12D), we discovered a total of nine distinct cell

subtypes (Figure 12E). Integrating these findings with previous

research, we characterized the identified subtypes as EC, HomC,

proC, RegC, preHTC, FC, and HTC (Figure 12F). Finally, the

heatmap in Figure 12G presents the highly variable genes

associated with each subtype, providing insights into the gene

expression patterns that distinguish these cellular populations.
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Single-cell expression and pseudotime
analysis

Figures 13A, B display the distribution and expression of

immune-metabolic related hub genes across different cell types. In

addition to CX3CR1 and ADIPOQ, we identified the expression of

IL17RA, APOD, EGFR, SPP1, PLA2G2A, CXCL14, RARB, ADM,

CX3CL1, TNFSF10, and MPO in single cells. Notably, APOD,

SPP1, and PLA2G2A exhibited higher expression levels compared

to other immune-metabolic related genes across all seven cell types.

Given that previous studies indicated high metabolic activity in ECs,

we conducted a simulated analysis of the differentiation trajectories

of all ECs. As shown in Figure 13C, chondrocytes displayed seven
FIGURE 9

Protein annotation and functional analysis. Protein annotation and functional analysis of isoform 1 (A) and isoform 2 (B).
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distinct states of differentiation, each represented by a different

color. We observed that darker shades of blue corresponded to

earlier stages of cell differentiation, indicating that EC cells

differentiate from left to right over time, with the lightest blue

representing the most recently differentiated cells. Throughout the

differentiation process, the expression levels of IL17RA, APOD,

EGFR, SPP1, PLA2G2A, CXCL14, RARB, ADM, CX3CL1,

TNFSF10, and MPO exhibited notable changes (Figure 13D).
Cell communication analysis

Through cell communication analysis, we found that low-

scoring EC (endothelial) cells are associated with various other

cell types (Figure 14A). We further examined the ligands and

signaling pathways that mediate the interactions between low-

scoring EC cells and other cell types (Figure 14B). Ultimately, our

analysis revealed that the signal contributing most significantly to
Frontiers in Immunology 15
both the output and input for the EC cell population is

CHEMEPIN (Figure 14C).
GWAS analysis

By analyzing GWAS data, we identified pathogenic regions

associated with single nucleotide polymorphisms (SNPs) for 13

immune-metabolic related hub genes (Supplementary Figures 3A-

M). Additionally, by examining the chromosomal location

information of these genes, we further elucidated their genetic

context (Supplementary Figure 3N).
RT-PCR validation results

Compared with the0 IL-b(ng/ml) group, the 10 IL-b(ng/ml)

group exhibited higher expression levels of the genes ADIPOQ,
FIGURE 10

Analysis of gene set variants for subtype 1 and subtype 2. (A) BP. (B) CC. (C) MF. (D) KEGG. (Sorted by t-value of GSVA score).
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CX3CL1, CX3CR1, CXCL14, EGFR, IL17RA, MPO, PLA2G2A,

RARB, and SPP1. Conversely, the 10 IL-b(ng/ml) group showed

lower expression levels of the genes ADM, APOD, and TNFSF10

than the 0 IL-b(ng/ml) group (Figure 15).
Discussion

Despite being a prevalent cause of pain and disability in

humans, OA remains inadequately treated for many patients.

Historically, the therapeutic focus has primarily centered on
Frontiers in Immunology 16
alleviating clinical symptoms. However, early diagnosis and

prompt intervention are crucial for improving the prognosis of

individuals with osteoarthritis. Consequently, there is an urgent

need to identify biomarkers that can facilitate the recognition and

treatment of OA.

An increasing body of research indicates a close relationship

between immune responses, metabolism, and the pathogenesis of

OA. In this study, we employed bioinformatics approaches to

identify immune-metabolic related genes and pinpointed those

exhibiting expression changes in OA. Notably, the gene set

composed of these genes was significantly activated in the context
FIGURE 11

Weighted gene co-expression network analysis of subtypes. (A) Optimal soft threshold screening (The vertical axis of the left panel represents the
square of the correlation coefficient between log(k) and log(p(k)) in the corresponding network; the vertical axis of the right panel represents the
mean of the neighbour-joining function of all genes in the corresponding gene module.). (B) Module clustering analysis. (C) Correlation analysis of
modules and subtypes. (D) Enrichment analysis of turquoise module genes including BP, CC, MF and KEGG.
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of OA. GO and KEGG analyses revealed that these genes were

notably enriched in processes such as the regulation of

inflammatory response, positive regulation of cytokine

production, regulation of lipid metabolic processes, the PI3K-Akt

signaling pathway, cytokine-cytokine receptor interactions, and Ras

signaling pathway. Initially regarded as “wear-and-tear” arthritis,

OA is now understood to involve inflammatory mediators released

by cartilage, bone, and synovium. Recent evidence suggests that

inflammatory mechanisms associated with OA include innate

immunity, metabolic syndrome, and low-grade inflammation
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induced by inflammaging (13). Inflammation is a variable

hallmark of OA, correlating with joint symptoms and disease

progression (14). The elevation of systemic and local

inflammatory cytokines and senescence-associated molecules

promotes cartilage degradation, while antigens from damaged

joints further trigger inflammation through inflammasome

activation (15). Pro-inflammatory cytokines serve as critical

mediators of the metabolic disturbances and enhanced catabolism

observed in OA-related articular tissues. Currently, IL-1b, TNF, and
IL-6 are recognized as the principal pro-inflammatory cytokines
FIGURE 12

Single-cell data preprocessing. (A) The gene counts per cell (nFeature_RNA), number of unique molecular identifiers (UMIs) per cell (nCount_RNA),
and percentage of mitochondrial genes per cell (percent.mt) of the single-cell RNA-seq data. (B) The variance plot showed genes in all cells, red
dots represent the top 2000 highly variable genes. (C) Data before dimensionality reduction. (D) Dimensionality reduction processing of data.
(E) UMAP presentation of the downscaling results. (F) Cellular annotation of subpopulations. (G) Highly variable genes for each subpopulation.
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involved in the pathogenesis of OA; additionally, other factors such

as IL-15, IL-17, IL-18, IL-21, leukemia inhibitory factor (LIF), and

various chemokines have also been implicated in the disease’s onset

(16). Moreover, lipids, including phospholipids and fatty acids

along with their derivatives, have been associated with the

inflammatory processes in OA (17). Dysregulation of extracellular

matrix metabolism, lipid metabolic disorders, and upregulation of

the senescence-associated secretory phenotype are all mechanisms

linked to the pathogenesis of OA (18). In the synovial tissue,

synovial fluid, and peripheral blood of individuals with OA,
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activated macrophages are regulated by mTOR, NF-kB, JNK,
PI3K/Akt, and other signaling pathways, differentiating into M1

or M2 subtypes. The activation state of macrophages and the M1/

M2 ratio are closely related to the severity of OA (19). The RAS

pathway participates in several signaling cascades, including NF-kB,
JNK, VEGFR/Tie-2, and Axna2/Axna2R, which may represent

potential therapeutic targets for OA (20). Through ssGSEA

pathway analysis, we found significant activation of immune and

metabolic pathways in OA. Additionally, WGCNA identified

multiple immune and metabolic biological processes closely
FIGURE 13

Distribution of Immune-metabolism related hub genes in OA based on single-cell RNA sequencing data. feature (A) and violin plots (B) showing the
distribution of 11 Immune-metabolism related hub genes in various celltypes. (C) The 9 states of EC differentiation (left). Differences in the time
series of cell differentiation (middle). Dark blue indicates earlier differentiation and light blue indicates later differentiation. All EC were differentiated
into 8 clusters (right). (D) 11 Immune-metabolism related hub genes produce expression changes in the proposed time series.
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associated with OA, including monocarboxylic acid metabolic

process, regulation of lipid metabolic process, organic hydroxy

compound metabolic process, generation of precursor metabolites

and energy, lipid and atherosclerosis, fatty acid biosynthesis, and

glycine, serine, and threonine metabolism. These findings further

substantiate the reliability of our results.
Frontiers in Immunology 19
In this study, we identified 13 immune-metabolic hub genes

associated with OA, namely CX3CR1, ADIPOQ, IL17RA, APOD,

EGFR, SPP1, PLA2G2A, CXCL14, RARB, ADM, CX3CL1,

TNFSF10, and MPO. Prior research has indicated a potential

association between the rs182052 polymorphism in the ADIPOQ

gene and the risk of knee OA (21). Subsequent studies have
FIGURE 14

Cell communication analysis. (A) Number of interactions or total interaction strength (weights) between cell groups. (B) Intercellular communication
mediated by ligands and signaling pathways. (C) Identification of signals that contribute most to the output and input signals of EC cell taxa.
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demonstrated that the rs1501299 polymorphism within the

ADIPOQ gene increases the risk of knee OA (22). The anti-

apoptotic peptide ADM promotes apoptosis in inflammatory

arthritis synovial cells and dedifferentiation of chondrocytes by

enhancing oxidative stress and the production of pro-inflammatory

cytokines (23, 24). CX3CL1, a member of the CX3C chemokine

family, has been shown to enhance the production of matrix

metalloproteinase-3 (MMP-3) in OA fibroblasts through the

activation of the CX3CR1, c-Raf, MEK, ERK, and NF-kB
signaling pathways (25). MMP-3 is involved in the processes that

contribute to OA pathogenesis through its role in matrix

degradation (26). In temporomandibular joint OA, chondrocyte

apoptosis, mediated by the activation of the p38-CX3CL1 pathway,

enhances the chemotactic effect of osteoclast precursors towards

osteoblasts, thereby promoting local osteoclast activation (27). The

CX3CL1 receptor, CX3CR1, can promote the proliferation and

apoptosis of OA chondrocytes via the Wnt/b-catenin signaling

pathway (28). Research has indicated that the absence of

epidermal growth factor receptor (EGFR) specifically in cartilage

accelerates the onset of knee OA (29, 30). Inhibition of EGFR

ubiquitination can suppress extracellular matrix degradation while

activating chondrocyte autophagy, thus serving a protective role

against OA progression (31). EGFR signaling is essential for
Frontiers in Immunology 20
maintaining the number and characteristics of superficial

chondrocytes, promoting the expression of proteoglycan 4 (Prg4),

and stimulating the lubricating function of cartilage surfaces.

Furthermore, defects in EGFR significantly disrupt the

arrangement of collagen fibers within joint cartilage and markedly

reduce the surface modulus of cartilage (32). In an OA mouse

model, inhibition of IL-6 through IL-17RA-mediated pathways was

found to suppress synovitis (33). The upregulation of IL-17RA

expression in cartilage and synovium during the later stages of OA

suggests its critical role in the pathophysiology of the disease (34).

Numerous studies have reported elevated expression levels of

SPP1 in both OA cartilage and synovium (35). MicroRNA-186

has been shown to inhibit chondrocyte apoptosis in OA mouse

models by repressing the activation of the PI3K-AKT pathway via

SPP1 (36). Overexpression of TNFSF10 may promote

proliferation and inflammation while inhibiting apoptosis,

thereby facilitating OA progression through regulation of the

miR-376-3p/FGFR1 axis (37). As an immune-related biomarker,

APOD exhibits high diagnostic efficacy for OA (38). Additionally,

increased expression of PLA2G2A in the cartilage of OA patients

indicates its degradative effects on cartilage and suggests it may

serve as a potential therapeutic target for OA (39). Elevated

expression of MPO in the OA synovium could also be utilized
FIGURE 15

Experimental validation of key gene expression. Relative mRNA expression of ADIPOQ, ADM, APOD, CX3CL1, CX3CR1, CXCL14, EGFR, IL17RA, MPO,
PLA2G2A, RARB, SPP1, and TNFSF10.
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as an early diagnostic marker for the condition (38). These

findings robustly support our results, indicating that the

expression levels of CX3CR1, ADIPOQ, IL17RA, APOD, EGFR,

SPP1, PLA2G2A, CXCL14, RARB, ADM, CX3CL1, TNFSF10, and

MPO are significantly correlated with the mechanisms underlying

OA pathogenesis.

In the progression of OA, metabolic regulation plays a crucial

role in maintaining cartilage functionality and self-repair

mechanisms. Abrupt changes in metabolic regulation can lead to

functional abnormalities, such as impaired extracellular matrix

synthesis. Moreover, researchers have identified a newly

discovered cell type known as ECs, characterized by elevated

metabolic rates. These cells are closely associated with processes

involving the tricarboxylic acid cycle, glycolysis, oxidative

phosphorylation, and lipid and amino acid metabolism,

suggesting that effector chondrocytes exhibit enhanced activity in

energy metabolism. Additionally, regulatory chondrocytes express

high levels of specific markers associated with the innate immune

system, indicating that these cells may possess functions related to

immune cell activation. These novel insights into chondrocyte

functionality deepen our understanding of OA. Through high-

resolution single-cell transcriptomic sequencing of samples from

OA patients, researchers have revealed the presence of distinct

functional chondrocyte subtypes within human osteoarthritic

cartilage (40). Utilizing bioinformatics algorithms, we elucidated

the spatial distribution patterns of these cell subtypes within

cartilage tissue, as well as their temporal distribution patterns

throughout the progression of OA. Seven distinct chondrocyte

subtypes were identified, revealing the expression distribution

patterns of hub immune-metabolic-related genes while also

analyzing the pseudotemporal variation characteristics of effector

chondrocytes. Pseudotime trajectory analysis demonstrated that

these hub immune-metabolic-related genes are involved in the

transitions between chondrocyte subpopulations, underscoring

the significant role of immune metabolism in the development

of OA.

Of course, our study has some limitations. First, although we

use publicly available data for analysis, the reliability of the data may

be a potential problem. But we have worked hard to ensure data

quality and consistency. The use of independent datasets or

experimental validation will further ensure the reliability of our

findings. Second, although our prediction model shows promising

results, it needs to be clinically validated in the future. Finally, as this

study focuses on bioinformatics analysis, future experimental

studies should aim to clarify the biological relevance of these

genes, explore their interactions in cellular processes, and

investigate potential therapeutic targets.

In summary, the interplay between immune metabolism and

the pathogenesis of OA is closely intertwined. Our study not only

offers a comprehensive molecular understanding of the immune-

metabolic characteristics associated with OA but also identifies

potential biomarkers and therapeutic targets for future treatment

strategies. These findings may contribute to the development of
Frontiers in Immunology 21
innovative therapeutic approaches aimed at enhancing the

prognosis and quality of life for OA patients.
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SUPPLEMENTARY FIGURE 1

Heatmap of gene correlations.

SUPPLEMENTARY FIGURE 2

Intersection genes identified by machine learning.

SUPPLEMENTARY FIGURE 3

GWAS analysis of chromosomal results for ADIPOQ (A), ADM (B), APOD (C),
CX3CL1 (D), CX3CR1 (E), CXCL14 (F), EGFR (G), IL17RA (H), MPO (I), PLA2G2A
(J), RARB (K), SPP1 (L) and TNFSF10 (M) region. (N) Chromosomal

locus information.
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