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Non-alcoholic fatty liver disease (NAFLD) is a widespread chronic liver disorder,

affecting nearly a quarter of the global population. It progresses from simple

steatosis to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and

hepatocellular carcinoma (HCC). The gut-liver axis is crucial in NAFLD

progression, driven by intestinal barrier dysfunction, microbial translocation,

and immune dysregulation. Neutrophil extracellular traps (NETs)—web-like

structures of DNA, histones, and inflammatory proteins—promote chronic

inflammation and liver injury. This review examines the role of NETs in gut-liver

axis crosstalk and NAFLD progression. It explores how NETs amplify

inflammation, contribute to fibrosis, and facilitate the progression from NAFLD

to HCC by interacting with gut microbiota and immune signaling pathways.

Therapeutic strategies targeting NETs, such as reducing their formation,

enhancing degradation, and modulating the gut microbiota, offer promising

approaches to mitigate disease progression. This review sheds light on the

interplay between NETs and the gut-liver axis, offering new insights into

NAFLD pathophysiology and potential therapeutic strategies to improve

patient outcomes.
KEYWORDS

inflammation, liver disease, gut microbiota, pathophysiological progression,
immune dysregulation
1 Introduction

Non-alcoholic fatty liver disease (NAFLD) is now one of the most common chronic

liver diseases, affecting one billion people worldwide (1). It ranges from non-alcoholic

fatty liver (NAFL) to the more severe non-alcoholic steatohepatitis (NASH), which can

progress to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC) (2). Intestinal

barrier dysfunction and bacterial translocation through the gut-liver axis drive liver

disease progression (3). This bidirectional network connects the liver and intestine via
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the biliary tract, portal circulation, and systemic circulation,

interacting closely with the immune system and gut microbiota

(4, 5). Its dysfunction disrupts immune balance, worsening liver

disease (6, 7).

Over the past two decades, the role of immune cells in NAFLD

progression and fibrosis has gained increasing attention (8, 9). Early

studies identified inflammation as a key driver of NAFLD leading to

extensive research on the contributions of immune cell types and

inflammatory factors (10–16).

Neutrophils, the most abundant immune cells, constitute about

70% of circulating leukocytes and serve as the first line of defense in

innate immunity (17). They rapidly migrate to sites of infection or

injury, but their persistent activation and excessive recruitment

contribute to various inflammatory diseases (18). Neutrophils

promote tissue damage by releasing proteases such as matrix

metalloproteinases and neutrophil elastase and generating

oxidative bursts that disrupt cell membranes (19). They also form

neutrophil extracellular traps (NETs), web-like structures of DNA,

histones, and inflammatory proteins that drive chronic

inflammation and cancer progression (20, 21). Emerging evidence

links NETs to the gut-liver axis, highlighting their role in sustaining

inflammation and promoting the progression of NAFLD to

advanced liver disease, including HCC (22, 23).

This review examines the role of NETs in NAFLD

pathophysiology, focusing on their interactions with the gut-

liver axis and how these contribute to disease onset and

progression. In addition, we will explore NETs’ involvement in

the transition from normal liver to NAFLD, NASH, liver fibrosis,

and ultimately HCC. Additionally, it discusses potential

therapeutic strategies targeting NETs and intestine, including

inhibiting their formation, promoting degradation, modulating

the gut microbiota, and employing multi-targeted combination

therapies. By elucidating the crosstalk between NETs and the gut-

liver axis, this review aims to uncover novel pathophysiological
Frontiers in Immunology 02
mechanisms and therapeutic opportunities for NAFLD and

its complications.
2 NET formation and functional roles

2.1 Formation of NETs

NETs are highly negatively charged, web-like structures

released by activated neutrophils (24). The process of their

formation, termed NETosis, has been the subject of extensive

research in recent years. It is now understood that NETosis

occurs through three distinct mechanisms (Table 1).

Suicidal NETosis, the first type of NETosis, is NADPH oxidase-

dependent and results in neutrophil death, typically occurring

within 2–4 hours of neutrophil activation. Stimulation by Phorbol

Myristate Acetate (PMA) (25), ionomycin (26), crystals (27),

CXCL8 (28), Fc receptors (29, 30) and pathogens activates the

NADPH oxidase complex via the PKC-Raf-MERK-ERK pathway

(31). This activation generates reactive oxygen species (ROS), which

promote chromatin decondensation and facilitate the transfer of

neutrophil elastase (NE) and myeloperoxidase (MPO) to the

nucleus (32). Additionally, extracellular Ca2+ influx activates

peptidylarginine deaminase 4 (PAD4), leading to histone

citrullination, which weakens the electrostatic bond between

histones and DNA, further promoting chromatin decondensation

(26, 33). Ultimately, the nuclear membrane ruptures, expelling

nuclear contents that fuse with cytoplasmic granules to form NETs.

The second type of NETosis, termed vital NETosis, occurs

independently of NADPH oxidase and does not involve

neutrophil death. It is typically induced within 5–60 minutes

following neutrophil activation. This process is triggered by Toll-

like receptor 2 (TLR2), Toll-like receptor 4 (TLR4), and the

complement protein C3 in response to S. aureus (34, 35), as well
TABLE 1 Three mechanisms for the formation of NETs.

Type Occurrence Stimuli Main processes DNA for the for-
mation of NETs

Dependency Accompanied
by cell death
or not

Suicidal NETosis
2–4 h
after activation

PMA, ionomycin,
crystals, CXCL8,
Fc-receptors, pathogens

1. Activates protein kinase
C (PKC) and the Raf-
MEK-ERK-MAP kinase
pathway, generating ROS
to transfer NE and MPO
to the nucleus;
2. Ca2+ activates PAD4
which induces chromatin
decondensation

Nuclear DNA NOX-dependent Yes

Vital NETosis
5–60 min
after activation

S. aureus, LPS, GM-CSF
and C5a, conditioned
media of thyroid cancer,
immune complexes

Nuclear DNA fuses with
cytoplasm followed by the
budding of vesicles

Nuclear DNA NOX-independent No

Mitochondrial
NETosis

15 min
after activation

GM-CSF, LPS,C5a
Mitochondrial DNA is
released to form NETs

Mitochondrial DNA
Mitochondria-
dependent

No
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as by lipopolysaccharides (LPS) (32, 36–40), granulocyte/

macrophage colony-stimulating factor (GM-CSF) and

complement factor 5a (C5a) (41, 42), conditioned media from

thyroid cancer cells (43), and immune complexes (42, 44, 45).

During vital NETosis, nuclear DNA merges with the cytoplasm and

is subsequently released via vesicle budding. Despite nuclear

extrusion, these neutrophils retain their phagocytic capacity, and

their lifespan remains unaffected by DNA loss (46).

The third type, mitochondrial NETosis, typically occurs within

15 minutes of neutrophil activation. Upon stimulation by GM-CSF,

LPS, or C5a, neutrophils release mitochondrial, rather than nuclear,

DNA to form NETs without undergoing cell death (41).
2.2 Structure of NETs and its role in NAFLD
progression

Upon activation, neutrophils undergo morphological changes,

becoming flattened as nuclear lobules disappear, chromatin

decondenses, and the inner and outer nuclear membranes separate.

The nuclear membrane then fragments into vesicles, while the

nucleoplasm and cytoplasm merge into homogeneous clumps.

Eventually, the cell condenses, becoming round, and the cytoplasmic

membrane ruptures, releasing intracellular components to form fibrous

bundles (47). NETs display a unique ultrastructure, consisting of a
Frontiers in Immunology 03
chromatin filament framework, 15–17 nm in diameter, primarily

composed of modified nucleosomes (24, 48). This filamentous

network is interspersed with 50 nm globular structures. These

globules are enriched with proteins from primary and secondary

granules, including NE, MPO, cathepsin G, proteinase 3, BPI

(cationic bactericidal/permeability-increasing protein), calgranulin, a-
defensins, lactoferrin, LL-37 (a fragment of cathelicidin hCAP18), and

PTX3. Additionally, tertiary granule components, such as matrix

metalloproteinase-9 (MMP-9) and peptidoglycan recognition

protein-S (PGRP-S), are incorporated (49–51).

The role of NETs in NAFLD progression can be categorized

into two main effects: physiological and pathogenic (Figure 1).

Regarding physiological effects, both in vivo and in vitro studies

have demonstrated that DNA fibrils from NETs can adhere to

gram-negative and gram-positive bacteria, as well as fungi,

significantly limiting pathogen transmission (24, 34, 36, 52).

However, the ability of NETs to kill pathogens remains debated.

While NETs contain bactericidal proteins and enzymes, such as

BPI, LL-37, a-defensins, NE, MPO, protease 3, and cathepsin G,

some studies have shown pathogen death within NETs (34, 53, 54).

Others have not observed such effects, suggesting that plasma

protease inhibitors, which inhibit enzymes like NE, and the

presence of apolipoproteins, which impair the bactericidal activity

of LL-37 and a-defensins, may limit their function (55,

56) (Figure 1).
FIGURE 1

NETs’ structure and two-sided functionality. NETs are web-like structures formed by decondensed chromatin (DNA and histones) decorated with
neutrophil-derived antimicrobial proteins and enzymes, such as NE, lactoferrin, a-defensins, and proteinase 3. NETs play a dual role in physiological
and pathological processes. On the physiological side, NETs trap and kill pathogens, contributing to the immune defense, and induce cancer cell
death. However, on the pathological side, excessive or dysregulated NETs can cause hyperinflammation, hepatocyte injury, promote tumor
metastasis, lead to fibrillation, and obstruct small blood vessels, contributing to thrombotic and inflammatory diseases. NETs, Neutrophil extracellular
traps; NE, Neutrophil elastase.
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In terms of pathogenic effects, excessive NET formation has

been linked to increased liver inflammation, exacerbating NAFLD

progression (57–59). Neutrophils can also mediate hepatocyte

injury via NETs, ROS and inflammatory mediators (60). Primary

tumors trigger neutrophil recruitment and NET release at pre-

metastatic sites, enhancing tumor growth and spread by interacting

with cytokines. This mechanism may explain liver colonization by

colorectal, lung, and breast cancers (61). NET formation by vital

NETosis boosts HMGB1 production in tumor cells, activating

TLR9-dependent pathways (62) and the TLR4/9-COX2 pathway

(63), which improve tumor cell survival and invasion. Some studies

have demonstrated that tumor cells expressing advanced glycation

end-product receptors bind HMGB1, activating nuclear factor

kappa-B (NF-kB) signaling and inducing interleukin-8 (IL-8)

release. This attracts additional neutrophils and promotes NET

formation, thereby facilitating the hepatic spread of colorectal

cancer (64, 65). Other research indicates that NETs contribute to

thrombosis in HCC patients and may worsen liver surgery-induced

distal organ damage by triggering a systemic procoagulant state and

microvascular immune thrombosis (66), as confirmed in a mouse

model of hepatic ischemia-reperfusion injury (IRI) (67). Zermatten

et al. observed elevated NET levels in the plasma of cirrhotic

patients, potentially due to impaired hepatic clearance (68). Zhao

et al. found that S1PR knockdown alleviates liver inflammation and

fibrosis by inhibiting NET formation (69). These findings highlight

the significant role of NETs in promoting the development of

NAFLD (Figure 1).
3 The gut-liver axis and NAFLD

The intestinal barrier is a crucial anatomical and functional

structure that mediates interactions between the gut and liver. It

restricts the spread of microbes and toxins while permitting the

absorption of nutrients into circulation for delivery to the liver. The

“multiple hits” hypothesis explains the pathogenesis of NAFLD,

involving factors such as genetic predisposition, altered

gastrointestinal hormone and adipokine secretion, insulin

resistance, nutritional imbalances, gut microbiota dysbiosis, and

inflammation (7, 70–72). Among these, NAFLD is particularly

associated with increased intestinal permeability and shifts in gut

microbiota, which further exacerbate disease progression (73).

Intestinal vascular barrier dysfunction has been identified as a key

factor in NAFLD development (74, 75). The mechanisms regulating

gut-liver axis homeostasis are complex, involving dietary, genetic,

and microbiota-related factors that collectively influence intestinal

permeability and metabolite levels. The imbalance of gut-liver axis

homeostasis leads to intestinal ecological disorders, and the close

connection between intestinal epithelial cells is destroyed under the

action of various adverse factors, permeability changes or exposure

to toxic bacterial metabolites, and then the intestinal epithelium is

damaged (76). Fatty liver disease, including NAFLD, NASH and the

later stages of development, the pathogenesis of multiple factors

interwoven into a network of different stages, different levels

of interaction.
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3.1 Primary or secondary changes in gut
microbiota

Gut microbiota plays a critical role in maintaining gut-liver axis

homeostasis. Disruptions in its composition and transport to the

liver through the gut-liver axis contribute significantly to the

development of NAFLD. The intestinal microbiota is

predominantly composed of bacterial phyla, with Bacteroidetes

and Firmicutes being the most abundant, as identified through

advanced techniques like shotgun sequencing and ribosomal multi-

site sequencing (77, 78). Studies have shown that gut microbiota

composition is altered in NAFLD patients, with reduced relative

proportions of Alistipes, Odoribacter, Rikenellaceae, Bacteroides,

Oscillibacter, and lactic acid bacteria from Firmicutes, alongside an

increase in Peptiophilus, Escherichia, Enterobacterium, and

anaerobic bacteria (79).

These microbiota changes are influenced by factors such as

mode of delivery, diet, lifestyle, drug use, and host genetics. Gut

microbiota plays an essential role in immunity, digestion, endocrine

functions, neurotransmission, drug metabolism, and endotoxin

clearance. In NAFLD, alterations in gut microbiota are primarily

driven by genetic and metabolic abnormalities (80). These

disruptions exacerbate NAFLD progression by increasing

intestinal permeability, releasing bacterial toxins, and causing

metabolic disorders. Additionally, altered gut microbiota can

reach the liver via the gut-liver axis, creating an inflammatory

environment that promotes hepatic steatosis (6). Some studies have

targeted the detrimental effects of gut dysbiosis in NAFLD by using

microbiota-regulating drugs, such as glucagon-like peptide-1

receptor agonists (GLP-1 RAs) for type 2 diabetes (81). These

treatments have shown effectiveness in reversing hepatocyte

autophagy and reducing NAFLD-associated dysbiosis, further

supporting the need to explore the role of gut microbiota in

NAFLD (79).

There is bidirectional crosstalk between the gut microbiota and

the liver through the gut-liver axis. The liver influences the gut

microbiota by releasing hormones, bile, and antibodies into the

intestine (7). In NAFLD, the accumulation of fat in the liver leads to

lipotoxicity, disrupting metabolic processes. The regulating effect of

substances secreted by the diseased liver on intestinal microbes

causes changes in intestinal microbial structure, which can act on

the liver again through various ways as secondary factors, causing

further development or remission of NAFLD.
3.2 Increased intestinal permeability

Impairment of the intestinal barrier is a key factor in disrupting

the gut-liver axis. The intestinal barrier comprises several

components: the mechanical, biochemical, microbial, and

immune barriers, which include intestinal epithelial cells,

secretions, gut microbiota, gut-associated lymphoid tissue

(GALT), and diffuse immune cells (82). The permeability of the

intestinal barrier is influenced by various factors, such as the

protective mucosal layer produced by goblet cells, antimicrobial
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peptides from Paneth cells, tight junction proteins maintaining

epithelial integrity, and immune cell activation. The tight junctions,

located at the apical end of epithelial cells, are critical for regulating

intestinal mucosal permeability. Under pathological conditions,

disruption of tight junction structure and function leads to

impaired intestinal barrier function (83). Environmental factors,

such as pollution (84), and dietary changes can exacerbate NAFLD

by compromising the barrier, which allows the inappropriate

transport of nutrients, bacteria, and toxins to the liver (85). In

NAFLD patients, dysregulation of the microbiota results in a

thinner mucosal layer, decreased antimicrobial peptide

production, reduced tight junction protein levels, and changes in

immune cell populations in the lamina propria (86). Macrophage

activation triggers pro-inflammatory cytokine production and

amplifies neutrophil responses, further increasing intestinal

permeability and disrupting entero-hepatic axis homeostasis.
3.3 Increased metabolic endotoxin

Increased intestinal barrier permeability can induce metabolic

endotoxemia, which in turn contributes to the development of

steatohepatitis. Additionally, altered absorption of various

metabolites can affect liver metabolism, promoting liver steatosis

and fibrosis. In NAFLD patients, dysregulation of gut microbiota

and heightened intestinal permeability result in greater liver

exposure to bacterial products, thereby triggering metabolic

endotoxemia and disrupting gut-liver axis function (87). A

dysfunctional gut microbiota with increased intestinal

permeability exposes the liver to bacterial compounds, including

ethanol, short-chain fatty acids (SCFAs), pathogen-associated

molecular patterns (PAMPs), and damage-associated molecular

patterns (DAMPs) (88). These compounds, particularly DAMPs

released from the compromised intestine, activate neutrophils and

induce the formation of NETs through synergistic mechanisms

(89–91).
3.4 Vicious cycle of NETs in intestinal
diseases

The pathogenesis of various intestinal diseases involves multiple

factors that promote excessive production of pro-inflammatory

substances and immune responses, leading to pathological

changes in the intestinal wall. Colorectal biopsies from patients

with Crohn’s disease and ulcerative colitis revealed increased

expression of NETs-associated proteins, such as PAD4, compared

to healthy controls (92). Furthermore, treatment with infliximab, a

high-affinity monoclonal antibody targeting tumor necrosis factor-

a (TNF-a), resulted in elevated expression of these proteins (93).

Studies demonstrated that inhibition of TNF-a reduced both NETs

levels and PAD4 expression in patients with intestinal diseases,

indicating elevated NETs in these conditions (93). Additionally,

research using a mouse model showed that treatment with

deoxyribonuclease I (DNase I) reduced NET release and
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alleviated colitis, as well as the development of colitis-related

tumors (94). These findings suggest that NETs play a catalytic

role in intestinal disease progression, forming a vicious cycle of

mutual causality.
4 NETs-gut-liver axis interaction

The gut and liver engage in a dynamic relationship, influenced by

both organs, the microbiome, diet, and environmental factors. This

interconnection is referred to as the gut-liver axis (95). The liver

receives blood from the intestine through the portal vein, which

supplies most of the venous and arterial blood to the liver. From a

pathophysiological perspective, the intestinal mucosal barrier and the

portal vein regulate the exchange of toxins and microorganisms

between the gut and liver, allowing nutrients to enter circulation

and reach the liver (7, 96). This portal vein-mediated interaction

facilitates the transfer of bacterial metabolites from the intestine to the

liver, potentially contributing to various liver diseases (95). Numerous

studies have highlighted the gut-liver axis’ pivotal role in NAFLD

progression (7). NASH patients, in particular, exhibit higher levels of

intestinal microbiota imbalance, along with intestinal inflammation

and barrier damage. Disruption of the mucosal transport and

permeability, particularly at the tight junctions between intestinal

endothelial cells (e.g., occludin and claudin), is observed (97).

Dysfunction of the gut-vascular barrier is considered a key factor in

NAFLD development (98, 99). Several studies indicate that gut

dysbiosis can impair the intestinal epithelium, weaken tight

junctions, increase intestinal permeability, and expose the liver to

harmful bacterial metabolites (90, 100, 101). Both NAFLD and

NASH are associated with increased intestinal barrier permeability

and the translocation of bacteria or their products into the

bloodstream (102–104). Given the crucial role of NETs in both

processes, further investigation into their involvement in the gut-

liver axis and NAFLD is warranted (Figure 2).

NETs are recognized as a key mechanism through which the

gut-liver axis influences the progression of liver diseases, including

NAFLD. The impairment of the intestinal epithelial barrier,

triggered by factors such as diet, genetics, and gut microbiota

dysbiosis, leads to the release of cytokines from various immune

cells in an inflammatory environment (105). The dysregulated gut

microbiota acts as a major trigger for the overactivation of

neutrophils in the intestinal wall, resulting in NET formation.

Recent studies have shown that microorganisms such as

adherent-invasive Escherichia coli (AIEC) and Entamoeba

histolytica can stimulate NETs (106, 107). Mouries et al. observed

an initial disruption of the intestinal epithelial and gut vascular

barriers (GVB) in NASH (3). During diet-induced dysbiosis, the gut

vascular barrier becomes compromised (3). Gao et al. demonstrated

that neutrophils infiltrate and release NETs in the gut of LPS-

induced endotoxemic rats, and that DNase I administration, which

disrupts NETs, alleviated intestinal epithelial cell apoptosis,

intestinal damage, and the systemic inflammatory response (108).

The formation and clearance of NETs is a dynamic process, and if

this balance is disrupted, excessive NETosis can contribute to
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FIGURE 2

Interaction of NETs with gut-liver axis. Triggers such as diet, genetic factors, and gut microbiota dysbiosis impair the intestinal epithelial barrier,
allowing neutrophil infiltration and promoting the formation of NETs. The resulting ROS and inflammatory environment further disrupt the intestinal
barrier and portal vein. Concurrently, bacterial dysbiosis and barrier dysfunction enable bacterial products like PAMPs, DAMPs, ethanol, and SCFAs to
enter the portal vein. These signals activate liver inflammation, trigger platelet aggregation via TLR4 and TLR9, and cause thrombosis and liver injury.
NETs, Neutrophil extracellular traps; ROS, Reactive Oxygen Species; PAMPs, Pathogenetic associated molecular patterns; DAMPs, Damage-
associated molecular patterns; SCFAs, Short-chain fatty acids; TLR, Toll-like receptor.
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chronic inflammation (109), further damaging the intestinal barrier.

NETs generate high levels of reactive oxygen species (ROS), leading

to epithelial damage, activating redox-sensitive inflammatory

pathways, and promoting bacterial translocation, which can

damage the vascular barrier and lead to the release of TH/AJ

(110). These factors contribute to the transport of bacteria to the

liver via the gut-liver axis/portal vein. On one hand, enteric-derived

NETs exacerbate intestinal barrier damage, while on the other,

NETs travel to the liver via the portal vein, where they synergize

with NETs produced by liver neutrophils, causing liver injury. As a

bridge between gut microbiota and liver inflammation, NETs can

directly stimulate liver immune cells by carrying microbial

components, driving further hepatic inflammation (58). Thus, the

imbalance of gut microbiota, excessive NET activation, and

intestinal barrier dysfunction create a vicious cycle (Figure 2).
5 NETs in NAFLD-HCC

5.1 NAFL

NAFL is characterized by hepatic fat accumulation accounting

for 5–10% of liver weight and represents the early stage of NAFLD.

The primary pathological feature is macrovesicular steatosis

involving more than 5% of hepatocytes. Both genetic and

environmental factors contribute to NAFLD development, with

the gut-liver axis playing a critical role. Disruption of the intestinal

barrier and gut microbiota imbalance lead to immune activation,

triggering the release of inflammatory cytokines that recruit

immune cells, including neutrophils, to the intestine and

subsequently to the liver. Neutrophil infiltration has been

observed in hepatic lobules during NAFL (111–113).

Obesity and metabolic disorders further exacerbate NAFLD

through NET formation. The chronic inflammatory state associated

with obesity promotes innate immune activation, enhancing NETosis,

which in turn contributes to immune dysregulation, oxidative stress,

and metabolic dysfunction. Studies have demonstrated increased

spontaneous NET formation in mice on a high-fat diet compared to

controls, with obese patients exhibiting elevated plasma NET markers,

such as MPO-DNA complexes (113–115). Immunohistochemical

analysis has confirmed neutrophil infiltration in the hepatic lobules of

STAM mice, and DNase treatment reduced hepatic citH3 expression,

suggesting that NET degradation alleviates neutrophil infiltration and

hepatic injury. Chronic inflammation, neutrophil activation, NET

accumulation, and ROS production form a pathological loop that

exacerbates obesity-related liver damage. Increased NET in obese

individuals contribute to NAFLD progression by maintaining

inflammation, disrupting hepatic energy homeostasis, and promoting

hepatocyte lipid accumulation and toxicity.

Metabolic disorders, driven by genetic and lifestyle factors, also

modulate NETosis. Patients with type 2 diabetes exhibit increased

NETs formation, primarily in response to pro-inflammatory

cytokines rather than hyperglycemia itself (116). However, in
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vitro studies suggest hyperglycemia may impair and delay

NETosis (117). Hyperlipidemia induces neutrophilia, which

correlates with atherosclerosis and related cardiovascular diseases

(118, 119). In atherosclerotic mouse models, cholesterol crystals

directly induce NETosis or are engulfed by macrophages, triggering

cytokine release—particularly interleukin-1b (IL-1b), a key NET

inducer. The intracellular mechanisms of neutrophil-cholesterol

crystal interaction involve ROS bursts and NE translocation to

the nucleus (120). In diabetic and high-fat diet conditions, PAD4

deficiency appears to increase susceptibility to hepatic steatosis,

suggesting a potential metabolic role for PAD4. In hyperglycemic

patients, glucose may synergize with other stimuli, such as LPS, to

enhance NETosis (121). DAMPs released during hepatic ischemia-

reperfusion injury promote NET formation via TLR signaling,

exacerbating liver damage and inflammation (122).

Regulatory proteins involved in lipid metabolism and

inflammation further influence NET formation in NAFLD.

Overexpression of Pleckstrin homology-like domain, family A,

member 1 (PHLDA1) negatively regulates sterol regulatory element-

binding protein 1 (SREBP-1), a key regulator of triglyceride synthesis.

Reduced hepatic levels of T cell death-associated gene 51 (TDAG51)

correlate with obesity, hepatic steatosis, and insulin resistance (IR),

while restoring TDAG51 expression mitigates NAFLD in mice.

Machine learning identified activated T cells, macrophages, and

neutrophils might play roles in the progression of liver disease

(123). TDAG51 also enhances FoxO1 activity in LPS-induced

inflammatory responses and promotes NETs release via the TLR4-

JNK axis (124). Dysregulated TLR4-mediated inflammation is

implicated in various chronic inflammatory diseases, including

autoimmune disorders, cancer, and metabolic syndromes (125–127).

Steatosis is linked to cytokine signaling, extracellular matrix

interactions, and key inflammatory pathways, including NF-kB,
MAPK, and JAK-STAT. NF-kB activation induces NLRP3

inflammasome formation, leading to IL-1b production in

response to DAMPs such as cholesterol crystals, ROS, and fatty

acids (128–130). These mechanisms activate TLRs, promoting

inflammation and fibrosis through NF-kB and MAPK signaling

(128–130). Recent studies highlight the JAK-STAT pathway’s role

in inflammation, cancer, and neurodegenerative diseases, linking

cytokine release and immune regulation to NAFLD pathogenesis

(131). The JAK-STAT pathway has also been implicated in NASH

progression. Additionally, Wohlmann et al. identified thymic

stromal lymphopoietin (TSLP) as an inflammatory mediator in

atopic diseases via JAK-STAT signaling (132). Given these findings,

pivotal genes such as PHLDA1 and zinc finger protein 36-like 2

(ZFP36L2) may contribute to NAFLD through TLR, MAPK, and

JAK-STAT pathways, representing potential therapeutic targets.

Approximately 20% of NAFLD cases progress to NASH, which

carries a higher risk of advancing to fibrosis and hepatocellular

carcinoma (133). However, with the rising prevalence of metabolic

syndrome and its strong association with NAFLD, the global

burden of NASH and its complications is increasing at an

alarming rate, necessitating urgent attention (Figure 3).
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5.2 NASH

NASH is a more severe form of NAFLD characterized by liver

inflammation and hepatocellular injury (steatohepatitis). Unlike

NAFL, NASH exhibits both metabolic and inflammatory

dysregulation, with pathological hallmarks including hepatocyte

ballooning, chronic hepatic inflammation, and progressive

fibrosis. It can lead to severe liver complications such as cirrhosis,

liver failure, and HCC and may also increase the risk of extrahepatic

adverse outcomes. The transition from NAFL to NASH is driven by

abnormal lipid metabolism, excessive fat accumulation, and

lipotoxicity, with neutrophil infiltration playing a key role in

inflammation-induced liver injury. Diets rich in carbohydrates

and cholesterol exacerbate neutrophil-driven liver inflammation

and are linked to NASH severity.

NETosis is pivotal in the progression from NAFLD to NASH.

While blocking NETs does not prevent hepatic steatosis or exsiting

free fatty acid (FFA) accumulation caused by factors such as diet, it

significantly reduces macrophage infiltration and shifts the

inflammatory environment to a less tumor-promoting state.

Elevated serum levels of NET markers in NASH patients further

highlight the clinical relevance of NETs in NAFLD. Targeting NETs
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may be a promising strategy for reducing HCC risk in fatty liver

disease (134).

NAFLD is associated with increased hepatic FFA levels (135,

136). FFAs are major activators of inflammatory pathways in

NAFLD progression, and lipotoxicity-induced lipid accumulation

is a key event in hepatic steatosis. Studies have shown that FFAs,

such as linoleic and palmitic acid, can stimulate neutrophils to

undergo NETosis, while inhibition of fatty acid synthase in human

liver tissue prevents hepatic steatosis (137, 138). Experimental

models indicate that blocking NET formation does not prevent

fat accumulation in the liver, suggesting that NETs are a

consequence rather than a cause of hepatic lipid overload. In

addition to hepatocyte toxicity, FFAs have been shown to impair

CD4+ T cells in NASH (139, 140). Several FFAs commonly elevated

in NAFLD act as NET stimulators, promoting inflammation,

recruiting immune cells such as macrophages and regulatory T

cells (Tregs), and driving NASH progression toward HCC

(137, 141).

NETosis is an early event in NASH pathogenesis, primarily by

shaping the inflammatory microenvironment through monocyte-

derived macrophage recruitment. NETs also interact with immune

cells to release cytokines, and NET components themselves can
FIGURE 3

NETs in NAFLD-HCC. The NETs and gut-liver interactions in the progression from a health liver to NAFL, NASH, cirrhosis, and HCC. Normal Liver:
Under healthy conditions, the intestinal barrier is intact, preventing endotoxin and metabolite translocation to the liver. Genetic factors, obesity, and
hypertension may predispose individuals to liver dysfunction, initiating lipotoxicity and triggering NET formation. NAFLD, Dysbiosis and increased
intestinal permeability allow endotoxins, DAMPs, and metabolites to reach the liver via the portal vein. NETs contribute to hepatic inflammation by
amplifying lipotoxicity and activating inflammatory pathways like JNK, ERK, and AKT. NASH, With the progression to NASH, NETs exacerbate liver
damage by interacting with gut-derived signals. Inflammatory cytokines (e.g., IL-17 and IL-22) activate HSCs, promoting fibrosis. MicroRNA-233
dysregulation further drives hepatocyte injury. Cirrhosis: Kupffer cells and HSCs engage in NET-mediated pathways. Fibrosis progresses due to
sustained inflammation and immune activation. HCC: NETs facilitate tumor progression and contribute to HCC cells by activating CD4+ Tcells
followed by T-reg. NETs, Neutrophil extracellular traps; HCC: Hepatocellular carcinoma; HSCs, Hepatic stellate cells; NAFL, Non-alcoholic fatty liver;
NASH, Non-alcoholic steatohepatitis.
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directly stimulate hepatocytes, exacerbating NASH. Notably,

preoperative serum MPO-DNA levels in NASH patients are

significantly elevated compared to individuals with normal liver

function. NETs contribute to disease progression by increasing liver

macrophage infiltration, as infiltrating macrophages—derived from

monocytes recruited in response to inflammation—serve as key

effectors in NASH, amplifying cytokine-driven inflammation

(142, 143).

Neutrophil infiltration and NET formation occur early in

NASH, preceding macrophage accumulation. Blocking NETs

significantly alters liver inflammation by reducing monocyte-

derived macrophage infiltration, although the precise mechanisms

driving neutrophil recruitment into the liver remain unclear (144).

NETs themselves may promote neutrophil infiltration, while

excessive NET formation and its major component, ROS,

contribute to hepatocyte injury. Additionally, reduced miR-223

expression enhances IL-6 production, further exacerbating liver

damage and increasing susceptibility to infections in advanced liver

disease (145, 146). By establishing a chronic inflammatory liver

microenvironment, NETs play a crucial role in NASH progression

and HCC development (Figure 3).
5.3 Fibrosis

Fibrosis represents the next stage in NAFL progression, with

epidemiological studies indicating that approximately 20% of

NASH patients develop fibrosis annually. As cirrhosis advances,

hepatic immune function progressively declines, leading to

complications such as portal hypertension, intestinal barrier

dysfunction, and bacterial translocation, which can ultimately

result in liver failure. During the development of NASH and liver

fibrosis, the gut-liver axis, adipose-liver axis, and renin-angiotensin

system (RAS) may be dysregulated and impaired (147).

Myofibroblasts, pro-fibrogenic mechanisms and cell interactions

in progressive NAFLD (9). Hepatic stellate cells (HSCs) and Kupffer

cells are the primary mediators of liver fibrosis. MPO has been

shown to activate HSCs, thereby promoting fibrotic progression

(148). Kupffer cells, the liver-resident macrophages, interact with

neutrophils through NETs, exhibiting a dual regulatory effect.

Conversely, NETs also influence Kupffer cell function, suggesting

a bidirectional interaction. This interplay indicates that NETs may

drive liver fibrosis by sustaining a self-amplifying cycle following

activation by a priming factor (Figure 3).
5.4 HCC

HCC represents the terminal stage of NAFLD, with strong

epidemiological associations linking NAFLD to primary liver

tumors, including NAFLD-related HCC, HCC of other etiologies,

and liver metastases from extrahepatic malignancies. HCC accounts

for 21–22% of all liver tumors, and the global proportion of HCC

cases attributed to NAFLD ranges from 1% to 38%, with the highest

risk observed in patients with NAFLD-related cirrhosis (149). In
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recent years, the increasing prevalence of NASH has contributed to

a rapid rise in NAFLD-associated HCC (150). However, because

NASH is often undiagnosed or misclassified as “cryptogenic

cirrhosis,” and in some cases progresses directly to HCC without

an intermediate cirrhotic stage, HCC is frequently detected as an

initial clinical manifestation (~35–50%) with rapid disease

progression (151). Notably, the stagewise progression of NASH to

HCC occurs more frequently than liver cancer arising from other

etiologies, suggesting the involvement of systemic or metabolic risk

factors unique to NASH (152). Unlike other malignancies, HCC

primarily develops in a chronic inflammatory microenvironment

(153). Established risk factors for NAFLD-associated HCC include

advanced age, male sex, Latino ethnicity, cirrhosis, obesity, and type

2 diabetes, all of which significantly elevate the risk of NASH-

related HCC (149). Additionally, emerging evidence implicates gut

microbiota dysbiosis and inflammation as key contributors to HCC

development in NAFLD (140).

NASH promotes HCC by impairing immune surveillance

through the suppression of CD4+ and CD8+ T cells, increasing

intestinal inflammation, and disrupting gut microbiota homeostasis

—processes that are pivotal in hepatocarcinogenesis (154). Several

recent studies indicate that chronic steatosis induces auto-aggressive

CD8+CXCR6+PD1+ T cells that eliminate parenchymal and non-

parenchymal cells in an antigen-independent manner promotes

chronic liver damage and a pro-tumorigenic environment (155).

Under the stimulation of the tumor inflammatory microenvironment

(IM), the reprogramming of Treg cells, as members of CD4+ T cells,

enhances their suppression of immune responses, ultimately

promoting tumor immune escape or tumor progression (156).

NETs play a central role in shaping the chronic inflammatory liver

microenvironment that fosters HCC development. Beyond

accelerating NASH progression via the gut-liver axis, NETs are

intrinsically involved in HCC pathogenesis. Elevated GM-CSF, a

feature of many solid tumors, and LPS released from HCC and

intestinal tumors via complement activation contribute to systemic

neutrophil activation and NET formation. Increased NETosis, in

turn, enhances tumor-associated thrombosis and worsens clinical

outcomes. Additionally, NETs act as metastatic scaffolds, facilitating

the aggregation of circulating tumor cells in peripheral tissues and

“reawakening” dormant cancer cells through NET-associated

proteins (157). Experimental studies suggest that DNase treatment

exerts antitumor effects by disrupting NETosis.

Metabolic disorders and obesity further contribute to HCC

pathogenesis through NET-mediated mechanisms, including DNA

damage and oxidative stress. Obesity is a recognized risk factor for

HCC in both cirrhotic and non-cirrhotic NAFLD patients, and

countries with a rising prevalence of NAFLD-associated HCC

typically exhibit higher obesity rates (158). Obesity-driven

inflammation promotes liver tumorigenesis by increasing levels of

pro-tumor cytokines such as IL-6 and TNF (159). Chronic low-

grade inflammation resulting from lipid accumulation induces IL-6

and TNF release, which in turn stimulate NET formation. IL-6

activates the STAT3 pathway, promoting hepatocyte proliferation

and malignant transformation (160). However, no definitive

evidence links obesity to altered prognosis in NAFLD-related HCC.
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Diabetes mellitus is another independent risk factor for HCC, as

demonstrated in a large European cohort study involving 136,703

NAFLD patients, where diabetes emerged as the strongest predictor

of HCC development (161). While hyperglycemia exacerbates

NET-associated inflammation in NASH and HCC, its effects on

HCC progression are not exclusive to NAFLD. Additional

metabolic alterations in diabetes likely contribute to the elevated

HCC risk. Moreover, NAFLD frequently coexists with other liver

diseases, such as viral hepatitis and alcoholic fatty liver disease,

acting as both a complicating factor and a promoter of occult liver

malignancies. Compared to HCC from other etiologies, NAFLD-

related HCC is characterized by an older age of onset (median: 73

years), larger tumor size, more aggressive progression, and limited

eligibility for curative interventions (162). Epidemiological studies

estimate a median overall survival of only 10.7 months for HCC

patients (162).

Neutrophils are highly abundant within the HCCmicroenvironment

and display significant heterogeneity. While neutrophils possess

antimicrobial, immunoregulatory, and tissue-repair functions, they can

also drive tissue damage, immune suppression, and tumor metastasis

under specific conditions. In addition to their role inHCC progression via

the gut-liver axis, metabolic syndrome, and NASH-HCC, tumor-

associated neutrophils (TANs) further contribute by releasing NETs,

which promote HCC progression (137). NETs exacerbate the

hypercoagulable state associated with cancer by inducing tumor-

associated thrombosis, thereby increasing the risk of tumor-related

complications, such as organ failure (163, 164). Animal studies have

demonstrated that NET depletion slows tumor growth in mice (137).

The liver is also a common site for metastases from colorectal

and breast cancer. During gut-liver axis-mediated metastasis,

NAFLD facilitates tumor cell dissemination, while the tumor

microenvironment reciprocally promotes NAFLD progression. In

vitro studies indicate that NETs facilitate the invasion and

infiltration of metastatic cancer cells into the liver. Clinically,

NETs are more frequently observed in colorectal and breast

cancer patients with liver metastases than in those without, and

elevated NET markers in patient serum serve as potential

biomarkers for predicting early liver metastasis in breast cancer

(165) (Figure 3).
6 NETs as a therapeutic target for
NAFLD

NETs are closely associated with the conversion of NAFLD to

more severe forms of NASH and have been shown to be associated

with the development of liver fibrosis, cirrhosis and HCC. Targeted

inhibition of the interaction between NETs and the gut-liver axis to

suppress the onset and progression of NAFLD is a promising

direction for the treatment of NAFLD. Potential therapeutic

strategies for targeting the interaction of NETs with the gut-liver

axis in NAFLD are summarized below (Table 2).
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6.1 Reduction of NET formation

In recent years, several therapeutic strategies have emerged that

target and inhibit the formation of NETs. In a clinical trial,

metformin was found to reduce PMA-induced NETs formation

(166). Tradition Chinese medicine preparations such as Re-Du-

Ning (RDN) injection have also been shown to meliorate LPS-

induced ALI through suppressing MAPK pathway to inhibit the

formation of NETs (170). The study found that in septic mice,

Hesperetin treatment reduced PMA-induced ROS production and

NET formation, thereby attenuating sepsis-induced intestinal barrier

damage (169). Simvastatin reduced hyperlipidemia-induced hepatic

IRI by inhibiting the formation of NETs through the regulation of the

oxLDL/Mac-1 pathway (168). Cyclosporine A (CsA) may reduce the

severity of colitis by reducing the formation of NETs in vivo. In vitro,

CsA reduces the release of ROS-dependent NETs by directly

decreasing G6PD activity through activation of p53 protein, which

downregulates PPP and cellular ROS levels (167). Antioxidant drugs,

such as resveratrol, have been shown to be effective in reducing NETs

produced by neutrophils in severely COVID-19-infected individuals

by decreasing the neutrophil activation state and free DNA release

(172). Inhaled corticosteroids (ICS) have also been shown to

significantly reduce the formation of NETs, and in asthmatics,

plasma NET levels were significantly lower in patients treated daily

with ICS than in patients who used no or little ICS, but the

mechanism by which they inhibit NETs formation is unknown

(173). In another study, a significant reduction in reactive oxygen

species production was observed in neutrophils after intravenous

dexamethasone administration in human healthy subjects (174). And

it’s well known that NETosis depends on the production of reactive

oxygen species (182). Some studies have shown that anti-

inflammatory drugs also have the ability to lower NETs (181).

Significant improvement in fibrosis grading was also observed in

the rat model of liver fibrosis in the aspirin and enoxaparin treatment

groups (183).

Vitamin C (VitC), also known as ascorbic acid, is a water-

soluble vitamin that is essential for human health. Studies have

shown that in ascorbic acid deficiency, upregulation of hypoxia-

inducible factor-1a (HIF-1a) blocks neutrophil apoptosis under

normoxic conditions (184). Specifically, VitC may block the

upregulation of PAD4, ER stress, and autophagy signaling genes

by reducing NF-kB activation, thereby attenuating NETosis; in this

way, VitC also significantly attenuated PMA-induced NETosis in

polymorphonuclear (PMN) of healthy human volunteers (175). The

antioxidant properties of VitC help to reduce oxidative stress,

thereby reducing the formation of NETs (185). Interestingly,

studies reporting an efficient neutrophil hijacking nanoplatform

(referred to as APTS) for targeted A151 (a telomerase repeat

sequence) delivery to microglia to dramatically reduce the

formation of NETs by 2.2-fold via reprogramming NETosis to

apoptosis in neutrophils via a reactive oxygen species scavenging-

mediated citrullinated histone 3 inhibition pathway (171).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1599956
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yin et al. 10.3389/fimmu.2025.1599956
6.2 Promoting degradation of NETs

A precl inical study demonstrates the potential of

recombinant human DNase I to treat cancer-related thrombosis

(186). In a mouse model of necrotizing fasciitis, Group A

Streptococcus (GAS) expressing DNase Sda1 has been identified

as a contributor to bacterial virulence. Sda1 efficiently catabolizes

NETs both in vitro and in vivo (54). DNase has shown therapeutic

potential in animal models of NASH-HCC (137). However,

DNase I for NETs alone has limitations. Blood concentrations

of a given DNase I were found to be less stable (187). In addition,
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DNase I disrupts the NET structure but does not completely

degrade the protein components of the NETs, suggesting that it is

less effective in eliminating the inflammatory response triggered

by NETs (58).

The other naturally occurring molecule, reducing pathological

NET activity is alpha-1-antitripsin (AAT), a neutrophil elastase

inhibitor, capable of change the shape and adherence of non-

COVID-19-related NETs (176). AAT binds extracellular IL-8,

reducing the neutrophils’ influx to the inflammatory site and

augments neutrophil superoxide production, inhibiting the

activity of neutrophil elastase (176).
TABLE 2 NETs as a therapeutic target for NAFLD.

Possible therapeutic drugs Mechanism of action Conferences Published

Reduction of NETs formation

Metformin
Decrease NET DNA release and the numbers of
NET mtDNA copies in cultured neutrophils

(166) 2015

Cyclosporine A Regulate pentose phosphate pathway (167) 2023

Simvastatin Regulate of the oxLDL/Mac-1 pathway (168) 2024

Hesperetin
Regulate of the ROS/autophagy

signaling pathway
(169) 2023

Re-Du-Ning injection (RDN) Suppress MAPK pathway (170) 2021

Neutrophil hijacking nanoplatform (APTS)

Reprogram NETosis to apoptosis in neutrophils
via a reactive oxygen species scavenging-

mediated citrullinated histone 3
inhibition pathway

(171) 2024

Resveratrol
Reduce neutrophil activation and free

DNA release
(172) 2022

Inhaled corticosteroids (ICS) Unclear mechanism (173) 2020

Dexamethasone Inhibit ROS production by leukocytes (174) 1999

VitC
Reduction of NF-kB activation to block

upregulation of PAD4, ER stress and autophagy
signaling genes

(175) 2013

Promote degradation of NETs

Dnase I
Recognise and cleave DNA strands in NETs,
thereby disrupting the structural integrity

of NETs
(137) 2018

Alpha-1-antitripsin (AAT)

Change the shape and adherence of non-
COVID-19-related NETs;augments neutrophil
superoxide production, inhibiting the activity of

neutrophil elastase

(176) 2021

Regulating gut microbiota

b-arbutin
Inhibiting the overrecruitment of neutrophils
and the overrelease of NETs by inhibiting the

ErK signaling pathway
(177) 2024

Butyrate Inhibit ROS production by leukocytes (178) 2021

Antibiotics Microbiota depletion (179) 2015

Lactobacillus rhamnosus
Inhibite ROS production and phagocytosis

by neutrophils
(180) 2014

Multi target
combination therapy

Aspirin/hydroxychloroquine in
combination with DNase 1

Block COX2 and upstream TLR4/9 activation
complementary to DNase I

(181) 2020
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6.3 Regulating gut microbiota

Numerous studies have shown that gut microbiota imbalance

disrupts gut homeostasis and increases the risk of advanced

NAFLD, and that this imbalance triggers hepatic inflammation

and injury via the gut-liver axis, which affects bile acid metabolism

and fat accumulation, and exacerbates liver fibrosis (188–193).

Activation of NETs by microbiota has been reported (194). NETs

were observed to be activated in a rat model of LPS-induced sepsis,

and disruption of these NETs was found to attenuate intestinal

damage (108). Microbiota-derived metabolite butyrate was found to

inhibit neutrophil migration and NET formation in patients with

Inflammatory Bowel Disease (IBD) (178). b-arbutin, a glycoside

extracted from the Arctostaphylos uva-ursi leaves has also been

found to contribute to the maintenance of intestinal homeostasis by

inhibiting the formation of NETs, maintaining the integrity of the

mucosal barrier, and shaping the composition of the intestinal

flora (177).

One study focused on the effect of gut microbiota on NETs. It was

found that the use of a combination of antibiotics that included

ampicillin, streptomycin, metronidazole, and vancomycin reduced

the number of microbes in the gut. This reduction correlated with a

decrease in the formation of NETs. This means that by reducing certain

types of bacteria, there may be an indirect reduction in the production

of NETs in the body (179). Certain probiotics such as Lactobacillus

rhamnosus strain GG have also been found to inhibit PMA and S.

aureus-induced NET formation (180). These findings suggest that gut

microbiota-targeted therapies hold promise as potential interventions

to limit the formation of NETs during NAFLD (195, 196).
6.4 Multi target combination therapy

NETs promote HCC metastasis by activating the tumor

inflammatory response, and some researchers have used two anti-

inflammatory drugs, aspirin and hydroxychloroquine, to block the

activation of cyclooxygenase 2 (COX2) and upstream TLR4/9 in

combination with DNase I, and have demonstrated their promising

effects in inhibiting HCC metastasis from multiple perspectives (181).

The ability of these combination therapies to block or break down

NETs and eliminate the metastatic potential of HCC cells trapped by

unresolved NETs demonstrates a new use for old anti-inflammatory

drugs. More strategies for combining with DNase I to combat

metastasis need to be developed in the future. It is difficult to

conclude that one compound works better than another in the

treatment of targeted NETs, so more research is needed.

Management of NETs may require the use of combination therapies

that incorporate conventional treatments (e.g., fluid therapy,

antibiotics, antivirals, and NET-targeting drugs) (111). Another

avenue is integrating NET-targeting agents with antifibrotic
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compounds such as obeticholic acid or selonsertib. Since NETs can

promote hepatic stellate cell activation and fibrogenesis, inhibiting

NET formation while simultaneously targeting fibrogenic signaling

may produce synergistic effects (197, 198).
7 Outlook

With the deepening understanding of the pathogenesis of

NAFLD, it is increasingly recognized that gut microbiota

dysbiosis and gut-liver axis dysfunction are among the important

factors in the development of NAFLD (199, 200). Therefore, future

therapeutic strategies should not only focus on the inflammatory

response of the liver itself, but also consider how to intervene in the

disease process by regulating the intestinal microecological balance.

This provides a wide scope for the development of new therapeutic

approaches. The following aspects deserve special attention:
7.1 Applications of nanomaterials

Nanoparticle delivery systems: Nanotechnology provides a

new platform for drug delivery systems that can improve drug

bioavailability and reduce side effects. The design of targeted

nanoparticles for carrying enzymes or other active ingredients

that degrading NETs promises to be an innovative therapeutic

tool. For example, nanoparticles loaded with DNase I have

shown significant therapeutic effects in animal models (201).

Future research could further optimize the design of

nanocarriers to enable more precise delivery of drugs to the

liver or gut, and thus more effective against NETs-mediated

inflammation and injury.

Multifunctional nanomaterials: In addition to single-function

nanoparticles, multifunctional nanomaterials can be developed to

combine multiple therapeutic mechanisms, such as carrying both

anti-inflammatory drugs and NETs-degrading enzymes, to achieve

synergistic effects.
7.2 Traditional Chinese medicine and
natural products

Traditional Chinese medicine (TCM) has accumulated a wealth

of experience in regulating immune responses and ameliorating

chronic diseases. Some TCM such as Xuanfei Baidu Decoction

(XFBD) have shown potential to regulate NETs formation via

CXCL2/CXCR2 axis. Continued exploration of the active

ingredients of TCM and their mechanisms of action may reveal

more natural products that can be used for the treatment of

NAFLD. For example, herbal components such as baicalein and
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tanshinone have been shown to have anti-inflammatory and

antioxidant effects (202, 203).
7.3 Exosome research

Regulatory role of exosomes: exosomes, as important mediators

of intercellular communication, play an important role in regulating

immune responses and tissue repair processes. Studies have shown

that certain types of exosomes can influence the production and

clearance of NETs (204). Therefore, understanding how exosomes

from different sources affect the function of NETs and how they can

be used to optimize therapeutic regimens will be a key area for

future research. For example, exosomes from stem cells have been

shown to reduce liver inflammation by modulating immune cell

function (205, 206).

Exosomes as therapeutic carriers: Exosomes can be used not

only as therapeutic targets but also as drug delivery carriers. Future

research could explore the use of exosomes to deliver specific drugs

or enzymes to achieve more precise therapeutic effects. For example,

by modifying the surface of exosomes so that they can be specifically

targeted to the liver or intestines, thereby increasing the local

concentration and efficacy of the drug (207, 208).
7.4 Microbiomics and personalized therapy

With the deepening of microbiomics research, there is

increasing evidence of the key role of gut flora in the

pathogenesis of NAFLD. Analysis of patients’ gut flora by high-

throughput sequencing technology can help identify specific

microbial markers and provide a basis for achieving precision

medicine based on individualized characteristics (209). Future

studies could further explore how to improve the metabolic status

and liver health of NAFLD patients by modulating the gut

microecology (e.g., using prebiotics, probiotics, or fecal

bacteria transplantation).

Although the above emerging areas show great potential, it is

difficult for any single approach to comprehensively address the

complexities of NAFLD. Therefore, lifestyle modification, weight

control, and the use of known effective medications should not be

overlooked while exploring new therapies. For example, weight

reduction through exercise and dietary changes, and the use of

medications such as metformin to enhance insulin sensitivity are all

approaches that have been shown to be effective in alleviating

NAFLD symptoms (210–212). Combining these foundational

measures with new strategies for targeting NETs is expected to

have a synergistic effect and significantly improve the overall health

of patients.
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In summary, NETs play an important role in the genesis and

development of NAFLD. The gut-liver axis plays an important role

in the initiation of NAFL, which is mainly caused by the disruption

of the intestinal barrier and the imbalance of the gut microbiota,

and NETs continue to accelerate the process of hepatic fibrosis

through the self-circulation of NETs activated by the stimulation of

the gut-liver axis, gene induction, lipotoxicity accumulation, and the

initiation of metabolic diseases. From healthy liver to NAFLD,

NASH, liver fibrosis and even HCC, the formation and release of

NETs is one of the key factors connecting these pathological stages.

NETs are not only directly involved in hepatic inflammatory

response and tissue injury, but also interact with gut microbiota

through the gut-liver axis, which further promotes the

disease process.

Studies have shown that an imbalance in the gut microbiota is

able to exacerbate the process of liver inflammation and fibrosis by

disrupting the intestinal barrier function and increasing the transfer

of bacterial products to the liver (3, 213). In addition, specific

metabolites in the intestinal microenvironment may regulate the

production and degradation of NETs and influence the progression

of NAFLD (213). Therefore, when treating NAFLD, in addition to

focusing on the inflammatory state of the liver itself, the role of the

gut-liver axis and gut microbiota needs to be considered

comprehensively for a more comprehensive and effective

management strategy.

Targeting NETs as therapeutic targets, approaches to reduce the

formation of NETs, promote their degradation, modulate the gut

microbiota composition, and multi-targeted combination therapies

have demonstrated potential applications. In particular, modulating

the gut microbiota to indirectly alleviate liver inflammation by

improving gut health provides a new therapeutic perspective for

NAFLD patients. Future studies should continue to explore the

specific mechanisms of NETs in different stages of NAFLD-HCC

and develop more new therapeutic approaches based on gut-liver

axis modulation, with the aim of improving the prognosis of

patients and reducing the disease burden.
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