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Cathepsin S: molecular 
mechanisms in inflammatory and 
immunological processes 
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1College of Pharmacy, Jilin University, Changchun, Changchun, China, 2Department of Clinical 
Pharmacy, the First Hospital of Jilin University, Changchun, China, 3Department of Pharmacy, Lequn 
Branch, the First Hospital of Jilin University, Changchun, China 
Cathepsin S (CTSS), a lysosomal cysteine protease predominantly expressed in 
immune cells, governs inflammatory and immunological cascades through 
proteolytic activity. Beyond maintaining lysosomal proteostasis through protein 
degradation, CTSS executes dual immunomodulatory functions: intracellularly 
processing antigen-presenting molecules and modulating inflammatory 
signaling cascades; extracellularly activating protease-activated receptors 
(PARs) and remodeling the extracellular matrix (ECM). Its dysregulation drives 
pathology in autoimmune disorders, chronic inflammation, and neoplasia, 
establishing CTSS as a multifaceted therapeutic target. This review 
comprehensively explores the contributions of CTSS signaling in immune-

mediated inflammatory diseases, critically evaluates its therapeutic potential, 
high l ight ing  i t s  s ign ifi cance  in  the  deve lopment  of  innovat ive  
treatment strategies. 
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1 Introduction 

Inflammation represents a critical pathophysiological response to diverse stimuli 
including infections, tissue injury, cellular stress, and chemical agents. Immune cells 
orchestrate inflammatory processes through coordinated mechanisms: circulating 
leukocytes infiltrate damaged tissues, while resident macrophages modulate local 
inflammatory dynamics (1). Pathological inflammation underlies diseases, ranging from 
immune-mediated disorders (such as multiple sclerosis and Crohn’s disease) to

cardiovascular pathologies (e.g., atherosclerosis), neurodegenerative conditions (e.g., 
Alzheimer’s disease), and psychiatric disorders (e.g., generalized anxiety disorder) (2–9). 
Within cellular microenvironments, inflammatory signaling is regulated by lysosome­

dependent mechanisms, where macrophages and dendritic cells (DCs) employ lysosomal 
enzymes as key effectors (10). Among these, cathepsins (CTSs) mediate inflammatory 
signal transduction through their proteolytic processing of intracellular and 
extracellular proteins. 
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Cathepsin S (CTSS), a lysosomal cysteine protease, uniquely 
maintains enzymatic activity at neutral pH (≤7) due to its histidine-
rich propeptide domain, distinguishing it from acid-dependent 
cathepsins (e.g., Cathepsin B/L/K) (11). This property enables 
CTSS to perform both intra- and extracellular functions. 
Intracellularly, lysosomal membrane permeabilization (LMP) 
releases CTSS into the cytosol, triggering lysosome-dependent cell 
death (12, 13). Extracellularly, lysosomal exocytosis facilitates CTSS 
secretion, enabling ECM remodeling, receptor activation (e.g., 
PAR2), and cytokine release (14, 15). Recent studies highlight 
CTSS as a central regulator of inflammatory pathways. CTSS is 
required for Major Histocompatibility Complex class II (MHC-II) 
maturation in antigen-presenting cells (including DCs), activating 
adaptive immunity (16–18). In addition, CTSS deficiency disrupts 
autophagic flux, leading to autophagosome accumulation and pro-
inflammatory signaling that amplifies inflammatory responses (18– 
21). Crucially, extracellular CTSS activates Protease-activated 
receptor 2 (PAR2) and fractalkine (FKN) —key mediators in 
autoimmune disease pathogenesis (22, 23). The mechanisms 
contributing to anti-inflammatory effects are manifold. Despite 
these multifaceted roles, a systematic discussion of CTSS-
mediated signaling networks remains lacking. 

In this paper, we summarized upstream regulators of CTSS 
signaling, downstream inflammatory mediators and associated 
Frontiers in Immunology 02 
diseases. We then evaluate CTSS as a therapeutic target to inform 
novel treatment strategies for inflammatory disorders. 
2 Stress factors upregulating CTSS 
expression 

Stress conditions act as pathological factors which contribute to 
inflammation micro-environment and promote immunological 
diseases progression (Figure 1). CTSS overexpression induced by 
psychological, metabolic, or infectious stress correlates with disease 
progression, reinforcing its therapeutic relevance. 

The major stress conditions (psychological, metabolic, 
environmental and infectious stress) converge to promote 
pathological overexpression of CTSS. This upregulation establishes a 
pro-inflammatory microenvironment characterized by dysregulated 
immune responses, protease activation, and tissue damage. 
2.1 Psychological Stress 

Chronic psychological stress (CPS) refers to persistent 
physiological dysregulation induced by exogenous stressors (e.g., 
occupational or social pressures), which can trigger systemic 
FIGURE 1 

Stress-induced upregulation of CTSS drives inflammatory disease progression. 
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chronic inflammation (24, 25). CTSS upregulation correlates with 
CPS progression, driving pathologies like atherosclerosis and 
muscle atrophy. Notably, CTSS promotes upregulation of 
inflammatory factors (mTOR, Akt, TLR-2, TLR-4, Bcl-2, SOD, 
Caspase-3, MMP-2, MMP-9, MCP-1, and p-GSK3a/b), 
enhancing apoptosis, oxidative stress, and macrophage infiltration 
(26–28). Moreover, depending on the type of inflammation, CTSS 
can induce unique pathological changes. In stress-aggravated 
atherosclerosis, it promotes plaque elastin disruption, smooth 
muscle cell proliferation/migration, and neointimal hyperplasia. 
Conversely, stress-related thrombosis events involve endothelial 
loss and the activation of pro-coagulation factors (PAI-1, 
ADAMTS13, and vWF) (26, 27). For chronic stress-induced 
muscle atrophy and dysfunction, CTSS contributes to the loss of 
myotube myosin heavy chain content and the upregulation of 
Muscle RING-finger protein-1 (MuRF1) and Insulin Receptor 
Substrate 2 (IRS-2) (28). These distinct mechanisms demonstrate 
how CTSS upregulation advances CPS-related inflammation 
through pro-inflammatory effects and tissue-specific actions,

establishing its role as a critical therapeutic target. 
2.2 Metabolic stress 

Hyperglycemia is a well-established risk factor for diabetes and its 
complications, including chronic inflammation and microvascular 
pathologies (29, 30). In diabetic models, it elevates CTSS levels in 
DCs within perivascular adipose tissue, which subsequently drive T 
helper 17 cell (Th17) differentiation and pro-inflammatory cytokine 
production (e.g., IL-6). Conversely, CTSS knockdown mitigates 
hyperglycemia-induced carotid restenosis, confirming immune cell-
mediated CTSS involvement in microvascular complications (30). 
Hyperglycemia also directly upregulates CTSS in endothelial cells. 
CTSS activates nuclear factor kB (NF-kB) signaling and then 
triggering inflammatory cytokine release (TNF-a, IL-1b, IL-6), 
angiogenic factor overexpression (MCP-1, VEGFA, VCAM-1), and 
complement system activation (C3a, C5a) (29). These synergistic effects 
exacerbate endothelial injury, establishing CTSS as a dual mediator of 
hyperglycemia-induced vascular damage. Clinically, the association has 
been proved in a study of investigating CTSS and type 2 diabetes. Each 
baseline CTSS standard deviation increase correlates with 41- 48% 
higher diabetes risk across multivariable models (31). CTSS inhibition 
could alleviate hyperglycemia-induced endothelial inflammation in 
vitro, and reduce hepatic glucose production in murine models, 
while maintaining unaltered glucose metabolism in skeletal myotubes 
and adipocytes (29, 32). In summary, CTSS emerges as a critical 
molecular link between hyperglycemia and complications, positioning 
it as a promising target for both hyperglycemia prevention and 
complication management. 
2.3 Environmental stress 

Cigarette smoke contains multiple pro-inflammatory 
constituents, including nicotine, which induces systemic 
Frontiers in Immunology 03 
inflammatory damage across respiratory and cardiovascular 
systems, thereby promoting pathogenesis of chronic obstructive 
pulmonary disease (COPD) and atherosclerosis (33). Nicotine 
activates CTSS-dependent inflammatory pathways through 
distinct tissue-specific mechanisms. In pulmonary tissues, 
nicotine triggers Transient Receptor Potential Vanilloid 1/4 
(TRPV1/4) receptors on alveolar macrophages, inducing P2X 
purinoceptor 7 (P2X7)-dependent intracellular calcium influx that 
stimulates p38/MAPK phosphorylation and enhances lysosomal 
CTSS production. The CTSS Overexpression amplifies oxidative 
stress, promotes macrophages recruitment, and disrupts proteases/ 
anti-proteases balance, collectively damaging lung homeostasis to 
drive COPD onset and progression (34). CTSS-deficient mice 
demonstrated protection against smoke-induced pathologies 
including pulmonary inflammation, airway hyperresponsiveness, 
emphysema, and lung function decline, while Protein Phosphatase 
2A (PP2A) activation suppresses CTSS-driven pulmonary disorders 
(35). Notably, endogenous nitrated fatty acids (NFAs) exhibit 
therapeutic potential by activating Peroxisome Proliferator-
Activated Receptor g (PPARg) signaling and Cys25 S-alkylation 
modification of CTSS, effectively reversing nicotine-induced 
inflammation (36). In the cardiovascular system, nicotine inhibits 
the Mechanistic Target of Rapamycin Complex 1 (mTORC1) to 
promote Mitochondrial Transcription Elongation Factor B (TEFB) 
nuclear translocation and CTSS transcription. Conversely, nicotine-
mediated mTORC1 inhibition also contributes to CTSS secretion by 
enhancing the Ras-related protein Rab-10-mTORC1 interactions to 
facilitate lysosomal exocytosis. CTSS overactivity disrupts vascular 
smooth muscle cell migration, contributing critically to 
atherosclerotic plaque formation (37). This mechanistic analysis 
identifies CTSS as a central mediator linking cigarette smoke to 
multi-organ inflammation. Though pharmacological CTSS 
inhibition represents a promising therapeutic strategy, smoking 
cessation remains the most effective preventive measure against 
CTSS-mediated systemic damage. 
2.4 Infectious stress 

CTSS drives viral-associated inflammatory diseases progression 
through  pathogen-specific  proteolytic  mechanisms.  In  
neuroinflammatory disorders, human herpesvirus-6A (HHV-6A) 
induces CTSS release from neural cells, directly degrading myelin 
basic protein to initiate demyelination cascades characteristic of 
multiple sclerosis (38). Respiratory syncytial virus (RSV) synergizes 
with cigarette smoke in COPD pathogenesis by coordinated 
upregulating CTSS expression, exacerbating airway inflammation 
via ECM remodeling (39). Similarly, hepatitis C virus (HCV) 
employs its NS5A core protein to disrupt Interferon-g (IFN-g)/ 
(interferon regulatory factor 1 (IRF-1) signaling, inducing CTSS 
dysregulation that impairs MHC-II-mediated antigen presentation 
in hepatic DCs (40). These findings establish CTSS as a 
common pathogenic effector across diverse viral infections, with 
therapeutic implications for attenuating infection-associated 
immunopathology. Divergently, bacterial pathogens like Brucella 
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abortus employ distinct mechanisms, suppressing MHC-II 
maturation through lipoprotein-dependent impairment of early 
antigen-presenting complex formation via CTSS-independent 
pathways (41). Collectively, CTSS emerges as a mediator of viral-
associated inflammation and chronic disease transformation, 
though its pathogenic role in bacterial infections warrants 
systematic investigation. 
3 CTSS mediated inflammatory 
signaling pathways 

3.1 CTSS regulation in response to 
inflammatory transcriptional factors 
upstream 

CTSS is a central mediator bridging upstream transcriptional 
regulators and downstream inflammatory outputs (Figure 2). Some 
Frontiers in Immunology 04
transcription factors upregulate CTSS expression (IRF-1, PU.1, 
TFEB), while others perform as the downregulator (TGF-b/ 
Smad). However, there are also some regulatory signals (Signal 
Transducer and Activator of Transcription 3, STAT3 etc.) with both 
the potential effects. The regulation of CTSS by these transcription 
factors depends on the pro/anti-inflammatory properties of 
upstream cytokines (IL-6, IL-10 etc.) or other signaling molecules 
(H2S etc.). 

3.1.1 IRF-1 
IRF-1 is a member of the interferon regulatory factor (IRF) 

family, critically promotes CTSS transcription (42). Its activity is 
tightly regulated by upstream cytokines, particularly IFN-g. The 
IFN-g/IRF-1/CTSS axis has been extensively studied in 
inflammatory pathologies including bronchial inflammation, 
radiation-induced oxidative stress, and hepatitis C (43). 
Specifically, IFN-g upregulates IRF-1 expression, activating CTSS 
transcription via binding to the interferon-responsive sequence 
RE 2 

fl fl

FIGU

CTSS regulation by upstream in ammatory transcriptional factors. CTSS expression is dynamically modulated by in ammatory transcription factors 
with opposing regulatory effects: IRF-1, PU.1 and TFEB act as transcriptional activators, whereas TGF-b/Smad function as repressors. STAT3 exerts 
context-dependent effects, influenced by upstream signals (e.g., IL-6/IL-10 pro-/anti-inflammatory cytokines or H2S). 
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element (IRSE) promoter. Radiation-induced oxidative stress 
enhances IFN-g release (44), whereas the HCV core protein 
N5SA suppresses IFN-g activity (40), thereby modulating IRF-1/ 
CTSS signaling. Conversely, in Brucella abortus-infected 
monocytes, bacterial lipoproteins downregulate IRF-1 through IL­
6 signaling activation, reducing CTSS levels (41). Beyond cytokines, 
microRNAs have been implicated in the modulation of IRF-1 
expression. In cystic fibrosis lung tissues, miR-31 expression is 
significantly reduced. Treatment with miR-31 analogs suppresses 
both IRF-1 expression and CTSS secretion, confirming miR-31­

mediated negative regulation the IRF-1/CTSS signaling axis (45). 
Pharmacological agents also modulate this axis. Oxaliplatin 
upregulates IRF-1 expression in peripheral nerves, activating 
CTSS/store-operated calcium entry (SOCE) signaling to drive 
neuroinflammation (46). Thus, the IRF-1/CTSS pathway could be 
modulated by cytokines, microRNAs, and pharmaceuticals, which 
mediates inflammatory pathology in radiation injury, infections, 
genetic disorders, and pharmacogenetic diseases. 

3.1.2 PU.1 
PU.1, an E26 transformation-specific sequence (ETS) family 

transcription factor, is essential for the development and 
differentiation of immune cells, including B cells, macrophages, 
and neutrophils while disrupting fibrotic networks to promote 
multi-organ fibrosis regression (47). PU.1 enhances antigen 
presentation in macrophages, DCs, and B lymphocytes by 
upregulating CTSS expression, which is critical for MHC-II 
activity. In the periodontitis model, PU.1-mediated CTSS 
regulation in macrophages correlates with inflammatory pathway 
activation (e.g., p38 and NF-kB signaling) and elevated levels of 
inflammatory factors (e.g., IL-6) (48). PU.1 initiates CTSS 
transcription through direct binding to ETS motifs in its 
promoter (49), with all three protein domains driving promoter 
activity—explaining reduction in CTSS levels observed in PU.1­
knockdown macrophages (50). Notably, PU.1 and IRF-1 exhibit co-
regulatory behaviors in CTSS expression. Both transcription factors 
are upregulated by IFN-g and possess binding sites on the CTSS 
promoter. Additionally, PU.1 can interact with other transcription 
factors, including IRF-1, IRF-4, and IRF-8, forming complexes that 
synergistically enhance CTSS expression (51). Thus, PU.1 drives 
CTSS expression both directly through promoter binding and 
cooperatively via transcription factor partnerships. Critically, 
PU.1-dependent CTSS induction mediates periodontitis 
progression, underscoring its pathogenic role in inflammatory 
disease mechanisms. 

3.1.3 STAT3 
STAT3 is a pivotal regulator of inflammatory pathologies, 

exerting context-dependent effects on disease progression. Under 
pro-inflammatory conditions (e.g., IL-6/JAK signaling), STAT3 
phosphorylates and dimerizes (p-STAT3), translocating to the 
nucleus to upregulate CTSS expression while suppressing cystatin 
C transcription. This dual regulation amplifies CTSS activity, as 
demonstrated in DCs (52). Conversely, anti-inflammatory signals 
differentially modulate the STAT3/CTSS axis: IL-10 enhances 
Frontiers in Immunology 05 
STAT3 activation via a non-canonical pathway but inhibits IFN-
g-driven CTSS upregulation in macrophages. While both IL-6 and 
IL-10 upregulate STAT3 activity, they exert different effects on 
CTSS expression through distinct pathways (53). Notably, 
endogenous hydrogen sulfide (H2S) suppresses this axis through 
dual mechanisms (1): Cys-259 persulfidation of STAT3 impairs 
phosphorylation-dependent activation, indirectly reducing CTSS 
expression (2); Direct Cys-25 persulfidation of CTSS attenuates its 
enzymatic activity (54, 55). These regulatory networks are 
functionally validated in models spanning arterial calcification, 
elastin degradation, and neuroinflammation (54–56). In 
addition, the STAT3/CTSS signaling axis is implicated in 
diseases such as Alzheimer’s disease, diabetic nephropathy, and 
vascular calcification, highlighting its therapeutic potential in 
cardiovascular and neurological disorders (57–59). 

3.1.4 Others 
Lysosomes critically regulate CTSS activity. Nicotine impairs 

mTORC1-mediated autophagy-lysosomal pathway, triggering 
TFEB nuclear translocation that elevates CTSS transcription and 
promotes chronic inflammation in atherosclerosis (37). In lupus 
pathology, Blimp-1 suppresses CTSS expression and inhibits CTSS-
mediated MHC-II activation in DCs, blocking antigen presentation 
to CD4+ follicular helper T cells (60). The TGF-b/Smad pathway 
exhibits different regulation of CTSS: Chen et al. demonstrated that 
TGF-b1/Smad2/Smad3/signaling promotes cardiac fibroblasts 
dedifferentiation via CTSS, upregulating ECM-associated proteins 
to exacerbate post-infarction fibrosis (61). Conversely, Zhang et al. 
found that TGF-b/Smad4 inhibition increases CTSS-dependent 
ECM remodeling, conferring protection against aortic aneurysms 
(62). This dual functionality highlights the TGF-b/Smad/CTSS axis 
complexity, warranting further mechanistic investigation. 
3.2 CTSS passing inflammatory signal to 
targets downstream 

CTSS exerts its hydrolysis ability to regulate the levels of 
proinflammatory transcription (NF-kB etc.), to expose the active 
domain or site of downstream signal proteins (PAR2, MHC-II etc.) 
or to liberate inflammatory factors (FKN etc.) as shown in Figure 3. 
Therefore, CTSS performs as an amplifier to transduce 
inflammatory signals. 

3.2.1 PAR2 
PAR2, a G-protein-coupled receptor, drives inflammation 

progression, immune responses, and angiogenesis. CTSS activates 
PAR2 via cleavage at a specific site (E56-T57), distinct from the 
typical trypsin cleavage site (R36-S37) (63). This unique proteolysis 
generates signaling responses divergent from classical PAR2 
pathways—calcium mobilization, ERK1/2 activation, b-arrestin 
recruitment, and endocytosis (64). The CTSS/PAR2 axis 
exacerbates inflammatory diseases via distinct molecular 
mechanisms. In colitis models, CTSS/PAR2 signaling activates the 
damage sensor transient receptor potential vanilloid 4 (TRPV4), 
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resulting in visceral hypersensitivity (65). During atopic dermatitis, 
CTSS overexpression in DCs upregulates PAR2, enhancing 
secretion of inflammatory cytokines (IL-2, IL-4, IL-10, IFN-g, and 
MCP-1) by Th1 cells and triggering scratching behavior (66). In 
desiccated ocular surfaces and cystic fibrosis lungs, CTSS/PAR2 
signaling elevates pro-inflammatory mediators (IL-6, IL-8, TNF-a, 
IL-1b, and MMP-9) and mucins, respectively (67, 68). These 
findings collectively demonstrate that CTSS/PAR2 signaling 
amplifies  inflammatory  phenotypes  through  cytokine  
hypersecretion, receptor overexpression, and pathological 
protein accumulation. 

3.2.2 FKN 
FKN (CX3CL1), a transmembrane chemokine expressed in 

monocytes, NK cells, T cells, and vascular smooth muscle cells, 
undergoes CTSS-mediated proteolytic cleavage to generate soluble 
monomer (sFKN). The sFKN activates the G protein-coupled 
receptor CX3CR1, regulating immune homeostasis (69, 70). In 
rheumatoid arthritis models (collagen-induced arthritis, 
temporomandibular arthritis, and desiccation syndrome), CTSS is 
Frontiers in Immunology 06
essential for sustaining inflammatory pain (23, 69, 71, 72). 
Mechanistically, peripheral nerve injury triggers microglial CTSS 
secretion. CTSS hydrolyzes membrane-anchored FKN from dorsal 
horn neurons, releasing sFKN that activates microglial CX3CR1 to 
induce p38/MAPK phosphorylation. This cascade upregulates 
nociceptive mediators (TRPV1, P2X4, BDNF, a2d calcium 
channels, and activating transcription factor 3), amplifying pain 
signaling (57, 73, 74). Notably, P2X7 receptor-dependent CTSS 
upregulation establishes the P2X7/CTSS/FKN axis as a therapeutic 
target for inflammatory pain (75). In desiccation syndrome, CTSS/ 
FKN signaling drives dacryoadenitis by recruiting T cells and 
macrophages into lacrimal gland—blocked by CTSS or FKN 
inhibition (76). Similarly, neuronal CTSS accelerates Alzheimer’s 
pathogenesis in murine models by driving microglial M1 
polarization, activating the FKN-CX3CR1 axis, and enhancing 
JAK2-STAT3 signaling. Elevated CTSS in human Alzheimer brains 
and the therapeutic efficacy of CTSS inhibitor LY3000328 confirm its 
clinical relevance (57). In summary, the CTSS/FKN axis sustains 
chronic pain in arthritis and drives autoimmune inflammation 
through immune cell recruitment across multiple pathologies. 
FIGURE 3 

CTSS-driven inflammatory signal transduction. CTSS acts as a proteolytic hub to amplifies inflammatory responses through modulation of 
transcriptional activators (e.g., NF-kB activation), exposure of cryptic signaling domains (e.g., PAR2, MHC-II) and release of bioactive inflammatory 
factors (e.g., FKN/CX3CL1). 
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3.2.3 MHC-II 
MHC-II complexes on antigen-presenting cells (APCs) enable 

immune recognition by presenting processed antigens to CD4+ T 
cells (77, 78). CTSS, the primary invariant chain (li)-processing 
enzyme, is highly expressed in MHC-II-positive APCs, including 
DCs, monocytes, lymphocytes, and splenocytes (79). This protease 
selectively cleaves the li chain within the MHC-II precursor 
complex (abli trimer), generating mature ab-CLIP complex that 
Frontiers in Immunology 07 
load exogenous antigens for CD4+ T cell activation and humoral 
immunity. Beyond antigen presentation, CTSS-mediated li 
degradation enhances DC motility by disrupting interactions with 
myosin II, thereby increasing migration speed and directional 
persistence for efficient antigen detection (18). Targeting CTSS 
has emerged as a therapeutic strategy for autoimmune diseases 
(e.g., rheumatoid arthritis, asthma, desiccation syndrome, multiple 
sclerosis) due to its dual role in MHC-II maturation and DC 
TABLE 1 A list of CTSS inhibitors at different stages of clinical trials. 

S/N Drug Name Company Indication Phase Clinical Trial 
Identifier 

Reference 

1 Petesicatib 
(RO5459072) 

Hoffmann-
La Roche 

Sjogren’s syndrome phase II NCT02701985 Study Details | A Study to Assess the 
Efficacy of RO5459072 in Participants 
With Primary Sjogren’s Syndrome | 
ClinicalTrials.gov, (n.d.) 
https://clinicaltrials.gov/study/ 
NCT02701985 (94) 

celiac disease phase I NCT02679014 Study Details | A Study to Investigate the 
Pharmacokinetics, Pharmacodynamic 
Effects, Safety and Tolerability of Repeated 
Dosing of RO5459072 in Volunteers With 
Celiac Disease | ClinicalTrials.gov, (n.d.) 
https:// 
clinicaltrials.gov/studyNCT02679014 

2 RO5459072 Hoffmann-
La Roche 

Celiac Disease Phase I NCT02679014 Study Details | A Study to Investigate the 
Pharmacokinetics, Pharmacodynamic 
Effects, Safety and Tolerability of Repeated 
Dosing of RO5459072 in Volunteers With 
Celiac Disease | ClinicalTrials.gov, (n.d.) 
https://clinicaltrials.gov/ 
study/NCT02679014 

3 VBY-036 Virobay Inc. Nerve pain Phase I NCT01911637 Study Details | Safety Study of VBY-036 
in Healthy Volunteers After 7 Days of 
Oral Dosing | ClinicalTrials.gov, (n.d.) 
https://clinicaltrials.gov/study/ 
NCT01892891? 
term=NCT01892891&rank=1 

4 VBY-891 Virobay Inc. Psoriasis 
(inflammatory 
autoimmune 
disease) 

Phase II NCT01947738 Study Details | Safety Study of VBY-891 
in Healthy Volunteers After Single or 
Multiple (7 Days) of Oral Dosing 
(VBY891P1) | ClinicalTrials.gov, (n.d.) 
https://clinicaltrials.gov/ 
study/NCT01947738 

5 LY3000328. Eli Lilly aortic aneurysm Phase I NCT01515358 (95, 96) 

6 RWJ-445380 Johnson & Johnson Rheumatoid 
Arthritis; psoriasis 

Phase II NCT00425321 Safety and Effectiveness Study of RWJ­
445380 Cathepsin-S Inhibitor in Patients 
With Active Rheumatoid Arthritis Despite 
Methotrexate Therapy, (n.d.) 
https://clinicaltrials.gov/study/ 
NCT00425321?tab=history&a=12 
Study to Investigate the Safety, Tolerability, 
Absorption, Distribution, Metabolism, and 
Elimination of RWJ-445380 Administered 
to Patients With Plaque Psoriasis, (n.d.) 
https://clinicaltrials.gov/study/ 
NCT00396422?tab=history&a=5 

7 SAR-114137 
Sanofi 

Neuropathic 
pain, Pain 

Phase I (92) 

8 CRA-028129 Celera psoriasis phase I (92) 
(Adopted from https://clinicaltrials.gov) (Accessed on 29 May 2025). 
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motility (80–83). Pharmacological inhibition like Clik60 block li 
degradation, causing accumulation of MHC-II-li intermediates and 
impairing MHC-II-peptide complex formation in APCs. This 
compromises antigen presentation while suppressing lymphocyte 
and eosinophil infiltration across multiple tissues. Consequently, 
CTSS inhibition alleviates autoimmune pathology through reduced 
autoantibody production and resolved tissue inflammation. 

3.2.4 NF-kB 
NF-kB, a master transcriptional regulator of inflammation and 

immunity, exhibits complex regulation with CTSS. Emerging 
evidence demonstrates CTSS promotes NF-kB activation in 
autoimmune encephalomyelitis, hepatitis, periodontitis, and 
hyperglycemia-induced endothelial inflammation (19, 29, 84). 
Notably, CTSS and MHC-II collaboratively regulate NF-kB 
activity—combination of both synergistically suppresses NF-kB­
driven inflammation in encephalomyelitis (84). CTSS indirectly 
modulates NF-kB through distinct pathways (1): Degrading silent 
information regulator 1 (SIRT1) (an NF-kB suppressor), where 
CTSS inhibition stabilizes SIRT1 to repress NF-kB in hepatitis (19) 
(2); Activating PU.1/p38-NF-kB signaling in macrophages to drive 
IL-6-mediated periodontitis (48). Paradoxically, CTSS deficiency 
exacerbates angiotensin II-induced cardiac fibrosis by impairing 
lysosomal degradation. This disruption causes mitochondrial 
reactive oxygen species accumulation and subsequent NF-kB 
hyperactivation (85). Collectively, CTSS either amplifies or 
suppresses NF-kB signaling depending on tissue context and 
disease state. 

3.2.5 Other 
Recent studies indicate CTSS regulates additional inflammatory 

signaling pathways beyond established mechanisms, though some 
findings require further validation. In oxaliplatin-induced 
neuroinflammation, CTSS inhibition activates Stromal Interaction 
Molecule 1-mediated SOCE, which upregulates anti-inflammatory 
IL-10 through IRF-1 signaling to alleviate neuropathic pain (46). 
CTSS also contributes to hepatic fibrosis via ECM remodeling: 
Kupffer cell-derived CTSS cleaves collagen 18A1, liberating 
endothelial inhibitory peptides that activate integrin a5b1 on

hepatic stellate cells and accelerate fibrogenesis (86). These 
findings position CTSS as a promising therapeutic target for both 
neuroinflammatory disorders and fibrotic diseases. 
3.3 Clinical application of CTSS inhibitors 

Small-molecule CTSS inhibitors have progressed to clinical 
trials  across  autoimmune  and  inflammatory  disorders,  
demonstrating diverse therapeutic potential, as shown in Table 1. 
Petesicatib (RO5459072; Hoffmann-La Roche), a covalent reversible 
inhibitor, achieved phase II efficacy in Sjögren’s syndrome and 
phase I evaluation for celiac disease via a gluten challenge trial 
(NCT02679014), with ongoing exploration for idiopathic 
pulmonary fibrosis (IPF) (87). Another Roche compound, 
RO5461111, a competitive selective CTSS inhibitor, shows 
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promise in systemic lupus erythematosus but awaits clinical entry 
(88, 89). Virobay’s oral inhibitors VBY-036 (phase I, neuropathic 
pain) and VBY-891 (phase II, psoriasis) exhibit tissue-specific 
targeting, with the latter favoring skin CTSS modulation, 
alongside preclinical VBY-825 for neuropathic pain and 
Alzheimer’s disease  (90). Eli Lilly’s non-covalent inhibitor 
LY3000328 reduced plasma CTSS activity in phase I and 
advanced to phase II for aortic aneurysm; its derivatives also 
demonstrate immunomodulatory effects in bladder cancer by 
regulating T-cell activity (91). RWJ-445380 (Johnson & Johnson/ 
Alza) achieved Phase II efficacy in rheumatoid arthritis (with 
methotrexate) and plaque psoriasis, though structural details 
remain undisclosed. Sanofi’s SAR114137 faced limitations due to 
cathepsin K cross-reactivity during phase I osteoarthritis pain trials. 
Celera’s CRA-028129 completed phase I for psoriasis but lacked 
further development (92). Preclinical candidates like AM-3840 
(Amura; neuropathic pain/RA), CZ-007 (Merck; Chagas disease), 
and MIV-247 (Medivir; autoimmune/neuropathic pain) further 
expand the pipeline, alongside novel scaffolds in early discovery 
(90, 93). These efforts underscore the expanding applications of 
CTSS inhibition, from autoimmune diseases (Sjögren’s syndrome) 
to oncology and vascular remodeling, yet highlight critical 
challenges in optimizing selectivity and minimizing off-target 
effects for future candidates. 
4 Discussion 

CTSS, a lysosomal cysteine protease with restricted immune cell 
expression, has evolved from a canonical proteinase to a master 
regulator of inflammatory and immune homeostasis. Unlike 
ubiquitously expressed cathepsins (B, C, F, H, L, O, X), CTSS 
exhibits restricted localization, primarily in antigen-presenting cells 
(B cells, macrophages, DCs) where it drives MHC-II-mediated 
immune responses through antigen processing. It also operates in 
epithelial, smooth muscle, endothelial cells, and neutrophils, 
enabling both intracellular proteolysis and extracellular 
modulation of inflammatory pathways. This unique tissue 
specificity and dual functionality underscore CTSS’s irreplaceable 
role in bridging lysosomal activity with systemic immune 
regulation. Its unique capacity to operate across pH gradients 
enables dual-compartment functionality: intracellularly, it 
processes antigen-presenting molecules and activates NF-kB/ 
MAPK signaling cascades; extracellularly, it cleaves protease-
activated receptors and remodels extracellular matrices. CTSS 
act ivity  is  regulated  by  microenvironment-responsive  
transcription factors (STAT3), distinguishing it from other 
cathepsins. It coordinates immune responses through the 
interconnected pathways: MHC-II antigen presentation, vesicular 
trafficking-dependent cytokine release, receptor proteolysis-driven 
signal amplification, and chemokine-mediated leukocyte 
recruitment.  Additionally,  it  exhibits  novel  regulatory  
mechanisms, including pH-dependent enzymatic state switching, 
redox-sensitive zymogen activation, and miRNA-mediated 
expression tuning during immune differentiation. These pathways 
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link CTSS to diverse clinical conditions spanning chronic 
inflammation, autoimmunity, and immunodeficiencies. Clinically, 
serum CTSS levels serve as biomarkers for interstitial lung disease 
and uveitis, while preclinical studies validate its therapeutic 
targeting in multi-organ pathologies affecting pulmonary, hepatic, 
cardiovascular, and neural systems. 

While foundational insights into CTSS-disease associations 
have been established (97), there remain critical gaps in 
systematically mapping its molecular mechanisms across 
immune-inflammatory pathways. This review fills this gap by 
elucidating the CTSS-mediated signaling networks and 
highlighting CTSS as a central hub for therapeutic targeting in 
immune-related pathologies. The current clinical development of 
CTSS inhibitors shows promise in attenuating inflammatory lesions 
while preserving homeostatic functions, although further 
refinement is needed to optimize therapeutic efficacy. By 
positioning CTSS as a metabolic-inflammatory-immune signaling 
nexus, this review advances its characterization as a unique 
therapeutic node capable of coordinated multi-organ modulation, 
representing a paradigm shift from conventional protease-targeted 
approaches. Additionally, we propose a therapeutic strategy 
targeting CTSS through isoform-specific inhibition, subcellular 
localization control, and activity-state modulation, offering novel 
precision interventions for inflammation-related pathologies. 
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