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Background: Bladder cancer is a significant malignancy, for which prognostic
prediction and understanding of the tumor immune microenvironment are
crucial. B cells play a key regulatory role in this environment, making their
study essential for advancing bladder cancer research.

Methods: In this study, a multi-omics analysis strategy combining single-cell
RNA sequencing (scRNA-seq) and bulk RNA-seq was used to establish single-cell
transcriptome profiles of tumor tissues from bladder cancer patients, focusing on
B-cell populations and their interactions with other cell types in the tumor
microenvironment. Large public databases were used to screen for key
prognostic genes associated with bladder cancer B cells, and their biomarker
expression was verified by in vitro experiments.

Results: Based on tumor samples from eight patients with bladder cancer and
four normal samples, we selected 84, 967 cells for single-cell sequencing
analysis. From these, we identified 10, 967 B cells and identified 508 key genes
associated with B cells in bladder cancer from five different B cell subtypes. By
integrating a large amount of RNA sequencing data, we identified VCL, FLNA,
TAGLN, ACTA2, COL6A2, and CALD1 as potential biomarkers for B-cell-
associated bladder cancer, and experimentally verified that these markers were
significantly lower in bladder cancer patients than in the normal group, and were
effective in predicting the survival rate of the patients and the status of the tumor
immune microenvironment.
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Conclusions: Using a combination of transcriptomic and experimental validation
at single-cell and batch levels, this study provides insights into the key gene
signatures of B cells from patients with bladder cancer and their roles in
regulating the tumor immune microenvironment, providing new biomarkers
and potential therapeutic targets for predicting patient’ prognosis and
immunotherapy response.

bladder cancer, B cells, immune microenvironment, single-cell RNA-seq analysis,

biomarkers, RT-gPCR

1 Introduction

Bladder cancer (BCa) is a malignant tumor originating from the
epithelium of the urinary tract, which continues to increase in
morbidity and mortality, and is one of the most common malignant
tumors (1). Epidemiological estimates for 2025 indicate that bladder
cancer is the fourth most common cancer among men in the United
States (n = 65,080), with a total of 84,870 new cases nationwide. The
incidence in men is 3.3 times higher than that in women, showing a
significant difference (2). Bladder cancer is a highly heterogeneous
disease, with many challenges in its classification, staging, and
grading (3, 4). Bladder cancer is characterized by high rates of
recurrence and metastasis. Based on the depth of tumor infiltration,
they can be divided into non-muscle invasive bladder cancer
(NMIBC) and muscle invasive bladder cancer (MIBC) (5). Of
these, 75% of uroepithelial carcinomas of the bladder present as
non-muscle invasive bladder cancer (6), and the other 25% of
urothelial carcinomas of the bladder present as muscle-invasive
bladder cancer with a risk of metastatic spread, with a 5-year
survival rate of approximately 40%-50% (7), approximately 50%
of bladder cancer cases with muscle invasive bladder cancer
eventually metastasize, and the 5-year survival rate for muscle
invasive bladder cancer with distant metastases is only 10% (8),
which is the main cause of death in bladder cancer patients.
Currently, radical cystectomy (RC) combined with chemotherapy
or immunotherapy is the first-line treatment for BCa (9). Although
chemotherapy and immunotherapy can improve survival to some
extent, a subset of patients respond poorly to these therapies,
resulting in missed opportunities for RC and reduced survival
(10, 11). However, in some cases, it may not be effective in
preventing cancer recurrence and metastasis (12). Therefore,
recurrence, metastasis, and spread of cancer have become one of
the biggest resistances to cancer treatment, and it is extremely
important to study the mechanism of bladder cancer development,
metastasis, and spread, and to find new targets for bladder
cancer treatment.

The tumor microenvironment (TME) has been a hotspot in
cancer biology research and is a relevant therapeutic target for drug
discovery. Notably bladder cancer is one of the cancers with the
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least immune infiltration (13), This may account for the poor
response to anti-PD1 therapy. Molecular subtypes of bladder
cancer show different cell type-specific expression patterns (14),
suggesting that the heterogeneity of BCa is, at least in part, due to
the different cell type components of the microenvironment.
However, until recently, relevant studies have been scarce.
Previous studies have shown that the abundance of B cells in
cancer is positively correlated with a favorable clinical outcome,
whereas others have shown that they promote tumors, implying
that the biological function of B cells is a complex landscape (15).
Relatively little is known about comprehensive molecular analyses
of B cells in bladder cancer. Therefore, the biological functions of B
cells in bladder cancer remain to be explored.

The rise in single-cell RNA sequencing (scRNA-seq) technology
has provided an unprecedented opportunity to resolve the
molecular signatures of different immune cell populations in the
TME (16). The scRNA-seq provides more precise and detailed
analyses at the single-cell level than traditional bulk RNA-
sequencing methods (17). In this study, we innovatively
combined bulk RNA seq and scRNA-seq data to systematically
reveal the infiltration pattern of B cells in the microenvironment of
bladder cancer, and successfully identified seven bladder cancer
markers with potential clinical applications. In this study, the
molecular features of tumor-infiltrating B cells were explored in
depth and their specific marker genes were identified through
single-cell RNA sequencing analysis of bladder cancer samples.
RNA sequencing data from large databases were integrated and
analyzed to screen and validate potential key genes associated with
cancer immune responses. The workflow of this study is illustrated
in Figure 1.

2 Methods
2.1 Data source and preprocessing
In this study, a multi-omics integration analysis strategy was

used to integrate four independent datasets from The Cancer
Genome Atlas (TCGA) (https://www.cancer.gov/ccg/research/
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Research design.

genome-sequencing/tcga) bladder cancer dataset, and the
Comprehensive Gene Expression Database (GEO) (https://
www.ncbi.nlm.nih.gov/) (Table 1). Eight bladder cancer tissue
samples and four normal tissue samples from nine patients in the
GSE222315 dataset were selected for the scRNA-seq study. The
selection criteria were as follows:(a) each sample should contain no
less than 300 and no more than 7000 cells; (b) each cell should
express more than 300 (250) genes; (c) each gene should be
expressed in at least three cells; and (d) the mitochondrial RNA
content in each cell should be less than 20% (18). Finally, we
screened using the R package Seurat and obtained 84, 967 cells for
subsequent analysis. Differentially expressed genes (DEGs) were
identified from TCGA bladder cancer dataset using the DESeq,
limma, and Wilcoxon function packages of the R package.
Specifically, we applied a threshold of |log2 FoldChange| > 2 with
an adjusted P < 0.05 to select DEGs for subsequent analysis (19).
The GSE37815 dataset was used for marker gene validation.

2.2 Data integration

After data integration and filtering, the Seurat package was used
for data normalization and integration analyses. First, the gene
expression values were normalized using the ‘NormalizeData’
function. Specifically, the expression value of each gene was
multiplied by the total gene expression of the cell, and the scaling
factor (10,000) and the natural logarithmic transformation (log(x
+1)) were performed to avoid a zero logarithm. Next, 2000-3000
highly variable genes were identified by the ‘FindVariableFeatures’
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function and centered using the ‘ScaleData’ function. To eliminate
technical differences between batches of samples (due to the
inability to sequence samples simultaneously), we used the
‘FindIntegrationAnchors’ or ‘RunHarmony’ function to set up
2000 anchors for data integration. This anchor-based integration
strategy can effectively map homologous cell types from different
datasets to a small number of key anchors, thereby reducing the
batch effect and improving the comparability and reliability of data.

2.3 Dimensionality reduction and data
clustering

Dimensionality Reduction and Data Clustering: Considering
that each gene in the sample exists as a dimension, high-
dimensional data becomes difficult to visualize. Therefore,
dimensionality reduction techniques must be employed to
represent the true data structure by using a reduced number of
dimensions (20). First, the highly variable set of genes obtained was
downscaled using the ‘RunPCA’ function in the Seurat package.
Subsequently, data integration was performed by setting 2000
anchors using the ‘FindIntegrationAnchors’ (or ‘RunHarmony’)
function. This ‘anchor’ based integration strategy effectively
converts the same cell types from different datasets into a small
number of key anchors, thus mitigating batch effects. Next, the
‘FindNeighbors” and ‘FindClusters’ functions in the Seurat package
were used to perform cluster analysis of the downscaled data. To
enhance the visual presentation of the clustering results, the t-
distributed stochastic nearest neighbor embedding (t-SNE) method
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TABLE 1 Grouping information.

10.3389/fimmu.2025.1600254

Grouping information
Purpose

Experimental group

Database Dataset
TCGA 431 sample
GSE222315

GEO GSE13507
GSE37815

was applied. Specifically, a clear visualization of the cell population
was achieved by the ‘RunTSNE’ function of the Seurat package with
the parameters dims=1:15 and resolution=1.0.

2.4 Cell annotation, DEGs, and marker
genes identification

Cellular annotation, DEG and marker gene identification were
performed by reviewing relevant literature and websites and
manually searching for cellular marker genes for cell-type
annotation. This approach effectively correlates gene expression
in different cell types with that in cells. The weakest correlation for
each cell type was eliminated through iterations and the
corresponding cell types were identified (21). In this study,
samples were manually annotated for cell types using literature
and web resources. Subsequently, DEG were identified using the
‘FindAllMarkers’ function in the Seurat software package. A
threshold value of [log2FoldChange| > 2 (0.25 between cells and
between groups) was set and adjusted to P < 0.05. Finally, marker
genes specific to each cell type were identified using the
‘FindAllMarkers’ function of the Seurat software package. This
series of analyses provides an important basis for precise
annotation and functional study of cell types.

2.5 GO enrichment analysis and KEGG
pathway enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses were performed
using the David and Metascape databases (clusterProfler packages,
version 3.14.3). The analysis revealed functional enrichment of
genes and related signalling pathways. All the results were
visualized using the ggplot2 software package (22, 23).

2.6 Cell trajectory analysis

Cells constantly undergo dynamic changes, transforming from
one cell type to another, which leads to changes in gene expression
and functional state (24). Each cell was arranged along a
corresponding cell track, representing a pseudotemporal order,
and cells were grouped into different differentiated states by
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employing gene expression profiles. We used the Monocle2
package for the pseudotemporal analysis of B-cell subtypes (25).
To explore the differentiation trajectories of B cell subtypes and
related genes in different states, we used the ‘plot_cell_trajectory’
function to sort the cells according to their pseudotimes. The
‘BEAM’ function was used to identify genes responsible for cell
branching and differentiation. The ‘plot_genes_branched_heatmap’
function was used to visualize the results.

2.7 Cell-cell communication analysis

The analysis of cell-cell communication is based on the
interaction of ligands and receptors on the cell surface, and this
intercellular communication plays a key role in a variety of
biological processes. To investigate the interaction patterns
between different cell types, the CellChat software package was
used to construct cellular communication networks. The software
simulates the communication between cells by constructing an
interaction network of ligands, receptors, and their related factors.
Based on the gene expression profiles of ligands and receptors in
different cell types, CellChat was able to infer the strength of cellular
interactions and reveal the rich patterns of ligand-receptor
interactions between different cell types. This analysis provides an
important basis for a deeper understanding of intercellular
signalling and functional regulation (26).

2.8 Construction of weighted gene co-
expression network

Weighted gene co-expression networks were constructed using
the R package ‘WGCNA’ (27). Sample analyses were initiated by
screening for outlier samples using clustering methods.
Subsequently, the gene expression matrix was converted into a
similarity matrix by calculating the Pearson correlation value (cmn)
and adjacency (amn) between genes, where parameter f3 served as a
soft threshold that could modulate the correlation between genes.
Based on the assessment of scale independence and average
connectivity, the soft threshold power was set to 8 (8 = 8, R? =
0.9). The neighbor-joining matrix was further transformed into a
topological overlap matrix so that the gene interactions conformed
maximally to the scale-free distribution characteristics. Hierarchical
clustering was performed using the dynamic tree-cutting algorithm
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with the unsigned network construction type, which was set to two
to determine the module division, and the minimum module size of
the gene dendrograms was set to 30. The module difference degree
(MES) of the module dendrograms was calculated, and modules
with a difference degree of less than 0.3 were merged to construct
the final network structure.

2.9 Differentially expressed genes for
bladder cancer-related genes

412 bladder cancer gene expression data and 19 paraneoplastic
tissue gene datasets were downloaded from TCGA database. The
downloaded gene datasets were integrated into a matrix using Perl
(command line) software. Screening criteria for identifying DEGs
were established using the R packages DESeq, limma, and
Wilcoxon. Specifically, we applied a threshold of |log2 fold
change | > 2 with an adjusted P < 0.05. The DEGs were selected
for subsequent analyses. A Venn diagram was used to analyze the
intersection of three sets of gene sets: sc-seq tagged genes from
bladder cancer-associated B cells, high ESTIMATEScore-related
genes obtained from WGCNA analysis, and differentially
expressed genes screened by the TCGA database using the three
methods to identify core overlapping genes.

2.10 Integrated survival, ROC, and PPI
network analyses for the identification of
bladder cancer biomarkers

To select the core genes with prognostic value, Kaplan-Meier
survival analysis was performed on these key genes using the R
software package ‘survivalPath’ (28), and survival differences were
evaluated using the log-rank test. Genes with P < 0.05 were
considered to have prognostic significance and were subjected to
further in-depth analysis. Assessment of the diagnostic significance
of hub genes. To investigate whether prognostic genes could
distinguish tumor samples from non-tumor samples, we used the
R package ‘survival ROC’ (29) and ROC analyses were performed
on the hub genes. To elucidate the interaction network of
infiltrating immune cell-associated genes at the protein level,
protein-protein interaction (PPI) network mapping was
constructed using the STRING database (https:/string-db.org/).
The interactions were visualized using the Cytoscape 3.7.1
platform to clearly demonstrate the functional association
patterns among the genes.

2.11 Core gene database and protein
validation

The expression levels of the core genes in tumor and non-tumor

samples were compared in TCGA and GSE37815 datasets.
Additionally, the protein expression of these genes in bladder
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cancer was validated using the Human Protein Atlas (HPA)
database (https://www.proteinatlas.org/).

2.12 Validation of core genes in cells and
clinical samples by RT-gPCR

A normal human uroepithelial cell line (SV-HUC-1) and three
human bladder cancer cell lines (5637, T24, and HT1376) were
obtained from Yunnan Tengyue Biotech Co. E2112), 5637 cells, and
HT1376 cells were cultured in RPMI-1640 medium (Gibco,
C11875500BT), T24 cells were cultured in McCoy’s 5A medium
(EvaCell, E2110), and the above cells were cultured in medium
supplemented with 10% FBS (Gibco, A5256701) and 1% penicillin-
streptomycin (Gibco,15140122). Cells were cultured at 37 °C, 5%
CO2 cell culture incubator. Total RNA was extracted using the
RNAfast200 kit (Shanghai Feijie Biotechnology Co., Ltd.), and
mRNA was reverse-transcribed into ¢cDNA using the Evo M-
MLV Reverse Transcription Reagent Pre-mix (Hunan Acres Bio,
AGI11706). RT-qPCR was performed using the SYBR Green Pro
Taq Hs Pre-mixed qPCR Kit (Hunan Acres Bio, AG11701). RT-
qPCR was performed to verify the expression of the biomarkers in
normal human uroepithelial cells (SV-HUC-1) and human bladder
cancer cell lines (5637, T24, and HT1376). To further validate the
experimental results, we also collected tumor tissues and adjacent
normal tissues from seven bladder cancer patients at the First
People’s Hospital of Anning, Affiliated Hospital of Kunming
University of Science and Technology. All participants provided
written informed consent, and the study was approved by the Ethics
Committee of the First People’s Hospital of Anning, Affiliated
Hospital of Kunming University of Science and Technology. The
sequences of all primers are listed in Table 2.

2.13 Data processing

Statistical analysis was performed using the Statistical Analysis
R software (version 4.4.3) and GraphPad Prism 9.0 (GraphPad
Software, USA). Differences between samples were assessed using
the Wilcoxon rank-sum test, and statistical significance was
determined using Student’s t-test. Experimental results are
expressed as the mean + standard deviation (mean * SD), with all
data derived from at least three independent experiments.
Significance was denoted as follows: NS: p > 0.05, *: p < 0.05, **:
p < 0.01, **: p < 0.001, and ***: p < 0.0001.

3 Results

3.1 Single-cell transcriptome profiles of
bladder cancer

Twelve samples (including tumors and paired normal tissues)
from nine patients in the GSE222315 dataset were analyzed in this
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TABLE 2 Primers of hub genes.

10.3389/fimmu.2025.1600254

Genes Forword Reverse

VCL CTGCAGACCAAAACCAACCG GGTCACACTTGGCGAGAAGA

FLNA CTGCTCGGTCGAGTACATCC TCACATCATGCACAGGGACC
TAGLN AGGTCTGGCTGAAGAATGGC CACCTGCTCCATCTGCTTGA
ACTA2 ACTGCCTTGGTGTGTGACAA TCCCAGTTGGTGATGATGCC
COL6A2 AGCCTACGGAGAGTGCTACA AGCTTGCCCTTCTGTCCATC
CALD1 TTTGAGCGTCGCAGAGAACT TTCTGGGCATTCACCTCCAC
GADPH CAGGAGGCATTGCTGATGAT GAAGGCTGGGGCTCATTT

study. After rigorous quality control screening, 84,967 high-quality
cells were obtained for subsequent analysis. After eliminating the
batch effect using the ‘anchor’ integration strategy, the data were
normalized, centered and downscaled by principal component
analysis (PCA) to retain the top 30 principal components.
Subsequent clustering visualization using the t-SNE algorithm
classified the cell population into 23 cell clusters (Figure 2A),
which were grouped into seven major cell types by manual
annotation (Figure 2B). Figure 2C shows the single-cell
transcriptome profiles of the normal and tumor samples.
Figure 2D shows single-cell transcriptome profiles of different
samples using manual cellular annotation revealing seven cell
types (Figure 2E): CD3D, CD3E, CD2, GNLY, KLRDI high-
expressing T cells, EPCAM high-expressing epithelial cells,
CD79A, MZBI, MS4A1 high-expressing B cells, FCGR3A,
TYROBP-overexpressing NK cells, COL3A1, COLIA1, DCN, CIR-
overexpressing Fibroblast cells, PECAMI1, CD34, CDH5, VWF-
overexpressing Endothelial cells, and KIT, TPSABI, and TPSB2-
overexpressing Mast cells. Differential gene expression heatmaps
(Figure 2F) and UMAP maps (Figure 2G) were used to visualize the
transcriptional features and marker gene expression patterns of the
seven cell types. In addition, we analyzed the proportional
distribution of each cell type in the normal and tumor
tissues (Figure 2H).

3.2 Single-cell transcriptome mapping of B
cells in scRNA-seq

ScRNA-seq analysis of bladder cancer revealed a high
abundance of B cells in all samples. In total, 10,967 B cells were
extracted for clustering and annotation. Secondary clustering
divided these cells into four clusters (Figure 3A), which were
manually annotated based on marker gene expression patterns
(Figure 3B). A comparison of UMAP clustering between normal
and tumor tissues revealed significant differences (Figure 3C).
Figure 3D illustrates the transcriptomic features of B cells across
samples, which were classified into three identifiable B cell subtypes
and one unannotated subtype: plasma cells with high CD38
expression, mature B cells with high CD19/CD22 expression, and
memory B cells with high CD27 expression (Figure 3E). Further
analysis demonstrated that these five B cell subtypes exhibited
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significant differences in gene expression between normal and
tumor tissues (Figure 3F), and the UMAP plots visually depicted
the expression of marker genes across the subtypes (Figure 3G).
Overall, this single-cell transcriptomic study provides a
comprehensive characterization of abundant B cell populations in
the bladder tumor microenvironment, offering insights into their
potential roles in tumor immune regulation.

3.3 Enrichment analyses associated with B
cells

To investigate specific gene expression among the different cell
subtypes, we first performed a volcano plot analysis of the seven cell
subtypes (Figure 4A). To elucidate the biological functions of the
marker genes in B cells, KEGG and GO enrichment analyses were
performed. KEGG results showed that marker genes were mainly
enriched in pathways activated to function in B cells, including
ribosome, coronavirus disease-COVID-19, intestinal immune
network for 1gA production, B cell receptor signalling pathway,
hematopoietic cell lineage, Leishmaniasis, Antigen processing and
presentation, Toxoplasmosis, Allograft rejection, and Type I
diabetes mellitus (Figure 4B). GO enrichment results showed that
biological processes (BP) were mainly associated with cytoplasmic
translation, immunoglobulin production, production of molecular
mediators of immune response, B cell-mediated immunity, and
immunoglobulin-mediated immune response. Cellular Component
(CC) is mainly related to immunoglobulin complexes, cytosolic
ribosomes, ribosomal subunits, ribosomes, and cytosolic large
ribosomal subunits. Molecular function (MF) was associated with
antigen-binding and structural constituents of ribosomes
(Figures 4C, D). We also mapped the differential gene scatter
plots (Figure 4E) and volcano plots (Figure 4F) of B cells between
tumor and normal tissues and performed differential gene
enrichment analyses (Figure 4G) to further explore the changing
characteristics of B cells in the tumor microenvironment.

3.4 pseudotemporal analysis

Pseudotemporal analysis, also known as cell trajectory analysis,
simulates developmental trajectories of different cells based on the
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FIGURE 2

Overview of single-cell mapping of normal and tumor samples from bladder cancer cancer patients. (A) Umap plot depicting single cell samples
clustered into 23 clusters. (B) Identification of 7 cell types based on marker gene expression. (C) Umap clustering diagram comparing normal and
tumor tissues. (D) Umap clustering diagram of 12 samples. (E) Bubble plots showing marker gene expression of 7 cell types across cells. (F) Heatmap
showing differential gene expression across 7 cell types. (G) Umap plot highlighting expression patterns of marker genes across 7 cell types. (H) Cell

type sections of normal and tumor samples in the scRNA-seq dataset.

expression patterns of temporal genes in single-cell samples. B-cell
maturation trajectories were analyzed in real time using the
Monocle software package for tumor-associated B cells. We
extracted B cells to demonstrate their developmental trajectories,
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revealing five branches of B cell subtype (Figure 5A). As shown in
Figures 5B, C, B cells exhibited five differentiation states during
development. Figure 5B depicts the chronological order of cell
subtype differentiation, with darker colored cells gradually

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1600254
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wang et al. 10.3389/fimmu.2025.1600254
A 12| B 12 s C
Mac1 12
*5 B cells memory
+ mature B cells
« Plasma cells
.0 * Mact
3 ° ; B cells memory
3
- O umap_1® 10 -5 0 umap_15 10 -5 0 umap_1° 10
D p1_BCal p2_NAT1 p3_BCa2 p3_NAT2 p4_BCa3 p4_NAT3 pb6_BCa4 p5_NAT4 p6_BCab p7_BCaé p8_BCa7 p9_BCa8
. ) ¢
| : Y 3
- ; j i ; i :
]
Ns] 5
o ) ¢ S v
© : 5 Z g © Mac3
g § = Mac4
. ® Macs
% % b =
? 2 % S
= : A ;
-50 510 -50510 -50510 -50510 -50510 -50510 -50 510 -50 510 -50 510 -50 510 -50510 -50510
umap_1
E F
B cells © MS4A1
memory
Average Expression BANKY Identity
mio CD83 - mature B cells
g Macl ° o . Plasma cells
S [ €D69 - Mact
=} Percgt éxpress od B oellé memory
Plasma ® ° - MZzB1 Ex;)resslon
cells LA FKBP11 B
q
mature ° ° DERL3
B cells [Glls
CD38 CD19 CD22 CcD27 CST3
Features
G cD83 SDF2L1 H
1 1 %l
100%
| H
£ - 1
0 0
- ° UmaPSJ © ® - UmaP5_1 1 75%: Cluster
Az CD3E W mature B cells
1 - 1 I Plasma cells
;_' E l % l;.:_' l g = = Mact
E § 1 1 2 50%
11) o g B cells memory
=5 0 5 10 15 =5 5 10 15
umap_1 umap_1
GFHB
25%
1
~ 1.00
: Bis
g 025
0.00
- 0%
=5 0 5 10 15
gt Normal Tumor
FIGURE 3

Single-cell transcriptome mapping of B cells in scRNA-seq. (A) Umap plot of B cells in scRNA-seq, clustered into 5 different clusters. (B) Sequence-
based identification of B based on 5 cell types. (C) Umap clustering plot comparing normal and tumor tissues. (D) Umap clustering plot of 12
samples. (E) Bubble map showing marker genes for 5 B-cell subtypes. (F) Heatmap showing differential gene expression for 5 cell types. (G) Umap
plot highlighting the expression patterns of marker genes for the 5 cell types. (H) River bar stack plot of cell types for normal and tumor samples in

the scRNA-seq dataset.

transforming into lighter colored ones. The results showed
progression from Branch 3 to Branch 5, Branch 1, and Branch 2.
There were differences in the expression of model genes at different
developmental stages of eutrophication. During the development of
tumor-associated B cells, the expression of DERL3, FKBP11, FKBP2,
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ITM2C, MZB1, PRDX4, RRBPI, and XBPI gradually increases.
Subsequently, the temporal gene expression of the four branches
was presented as a heatmap using the BEAM function. BPs were
explored by performing GO enrichment analysis, which showed
that branch 1 was mainly associated with the immune response-
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FIGURE 4
Enrichment analyses between cells of specific subpopulations and between groups. (A) Overall cell subpopulation intercellular differential analysis
volcano plot (red dots are genes specific to cell clusters relative to other cell clusters). (B) B-cell intercellular differential gene KEGG functional
enrichment map. (C) Functional enrichment of the B cell intercellular differential gene GO. (D) B-cell intercellular differential gene GO functional
enrichment map (faceted to show the enrichment of BP, MF, and CC in GO entries). (E) Scatter plot of B-cell intergroup difference analysis. (F)
Volcano plot of B-cell intergroup difference analysis. (G) Bar graph of differential gene enrichment between B-cell groups.

activating signalling pathway, B cell activation, B cell receptor
signalling pathway, B cell proliferation, B cell differentiation, and
B cell-mediated immunity. Branch 2 is mainly involved in B-cell
activation, homeostasis, proliferation, and differentiation. Branch 3

Frontiers in Immunology

is mainly related to the cellular response to tumor necrosis factor,
the response to tumor necrosis factor, and positive regulation of the
humoral immune response. Finally, branch 4 was mainly related to
the cellular response to tumor necrosis factor, response to tumor
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necrosis factor, and positive regulation of the humoral immune
response (Figure 5E). These pathways are mainly involved in B cell
differentiation and immune responses.

3.5 Analysis of cell-cell interactions
associated with B cells

To explore the communication properties of B cells with other
cell types, the Cellchat function was used to detect ligand-receptor
and molecular interactions between different cells. The results
showed that the interactions between the seven cell types (T cells,
B cells, NK cells, fibroblast cells, endothelial cells, and mast cells)
were stronger in bladder cancer tissues than in normal tissues
(Figures 6A, B). The FNI signalling pathway was upregulated in
tumor samples and was widely present in ligand-receptor
interactions in various cell types (Figures 6C-E). Among these,
the ligand-receptor pair FN1-CD44 contributed the most to the FNI
pathway (Figure 6F), and SCDI and ITGBI showed higher
expression levels in multiple cell types (Figures 6G, H).

3.6 ldentification of the hub gene in
bladder cancer

WGCNA-based identification of infiltrative immune cell-
related genes to screen infiltrative immune cell-related genes, we
performed WGCNA assays on the GSE13507 dataset. First, sample
clustering analysis showed that all 197 samples in the GSE13507
dataset could be used to construct weighted gene co-expression
networks (Figure 7A). Subsequently, a weighted gene co-expression
network containing eight modules was constructed when J was set
to 5 (R* = 0.85), and modules with module feature gene dissimilarity
less than 0.3 were merged (Figures 7B, C). The associations between
these eight modules and the four algorithms (StromalScore,
ImmuneScore, ESTIMATEScore, and TumorPurity) are shown in
Figure 7D. We found that the MEred module was associated with
the ImmuneScore (Figure 7D). In addition, we calculated the
correlation between the genes in the MEred module and
ImmuneScore and identified 1390 infiltrating immune cell-
associated genes by setting the correlation coefficient.

Gene expression datasets of 412 bladder cancer tissues and 19
paracancerous tissues were obtained from TCGA database.
Differential expression analysis between bladder cancer and
paracancerous tissues was performed to screen for genes related
to bladder carcinogenesis and progression. Three methods, R
package DESeq, limma, and Wilcoxon, were used to identify
DEGs, and the screening criteria were set as |log2 fold change | >
2 and a corrected P < 0.05. A total of 3104, 2563, and 2836
differentially expressed genes were identified using these three
methods, respectively (Figure 7E). This study investigated bladder
cancer B-cell marker genes, immune-related genes screened using
WGCNA, and bladder cancer-related genes obtained by differential
analysis (Figure 7E). A total of 43 shared genes were identified. To
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explore the interaction network of core genes at the protein level,
the PPI network was constructed using the STRING database and
visualized using Cytoscape 3.7.1 (Figure 7F) Ten core genes were
obtained by screening based on BC values: VCL, DUSPI, FLNA,
THBSI, TAGLN, ACTA2, COL6A2, VWF, CXCR4, and CALDI.

3.7 Evaluating the prognostic and
diagnostic value of key genes

To assess the association between core genes and bladder cancer
prognosis, we systematically evaluated ten candidate genes using
Kaplan-Meier survival analysis combined with the log-rank test.
The results of the analysis showed that seven genes (VCL, FLNA,
THBSI, TAGLN, ACTA2, COL6A2, and CALDI) were significantly
correlated (P < 0.05) with the prognosis of bladder cancer patients,
and these genes were included in the subsequent in-depth study
(Figure 8A). To further validate the diagnostic value of these core
genes in distinguishing between rejected and non-rejected samples,
we performed subject work characteristic (ROC) curve analyses in
the TCGA training and GSE37815 validation sets. The results
showed that the area under the curve (AUC) for all seven core
genes exceeded 0.7 in both independent datasets (Figure 8B),
strongly suggesting that these genes may serve as potential
biomarkers for bladder cancer diagnosis.

3.8 Key gene database and protein
expression results

We then performed an in-depth analysis of the expression
patterns of these key genes in the TCGA and GSE37815 datasets,
focusing on comparing the expression differences between tumor
tissues and paired non-tumor tissue samples. The results showed
that, except for THBSI, the remaining six genes exhibited
statistically significant differential expression in both the training
and validation sets (P < 0.05); therefore, THBS1 was excluded from
subsequent analyses (Figures 9A, B). Ultimately, six genes—VCL,
FLNA, TAGLN, ACTA2, COL6A2, and CALDI—were identified as
potential marker genes. To investigate protein-level interactions
between these six candidate markers and FNI, a protein-protein
interaction (PPI) network was constructed. As shown in
Supplementary Figure 1, FNI displayed strong interactions with
all the six marker proteins. As shown in Figure 9C, compared to
normal tissues, VCL, FLNA, TAGLN, ACTA2, COL6A2, and CALDI
were significantly downregulated in BLCA tissues.

3.9 RT-gPCR results of key genes in cell
lines and clinical samples

To validate the expression differences of the six potential

biomarkers, further experiments were performed on bladder
cancer cells and normal bladder cells. RT-qPCR results showed
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Cell-cell communication analysis. (A) Circos plots of intercellular interactions in normal and tumor groups. (B) Comparison of the number and
strength of cell-cell communications between tumor and normal tissues. (C) Differential signaling pathway-related communications between tumor
and normal tissues. (D) Communication probabilities of macrophages with other cell types mediated by ligand—-receptor pairs. (E) Heatmap of FN1
signaling interactions among different cell types in tumor and normal groups. (F) Relative contribution of ligand—-receptor pairs within the FN1
pathway in tumors. (G) Cell-cell communication mediated by the FN1-CD44 ligand—receptor pair. (H) Expressiondifferences of FN1 pathway

molecules between tumor and normal samples.

that compared with normal bladder epithelial cells SV-HUC-1, the
expression levels of six biomarkers, namely VCL, FLNA, TAGLN,
ACTA2, COL6A2 and CALDI, the expression levels of all six
biomarkers were significantly down-regulated (P < 0.05), a result
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that was highly consistent with the results of our pre-biomarker
analysis (Figure 10). Further validation was performed in tumor
tissues and adjacent normal tissues from seven bladder cancer
patients, and the results showed that the expression changes of
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the six downregulated genes were consistent with bioinformatics
analysis and cell experiments (Figure 11). Overall, Alterations in the
expression of VCL, FLNA, TAGLN, ACTA2, COL6A2, and CALDI
may play important roles in the development of bladder cancer,
suggesting their potential value in early detection, molecular
subtyping, and targeted therapy.
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4 Discussions

Despite advances in preclinical and clinical studies, the
prognosis of bladder cancer remains unclear. scRNA-seq
technology can reveal cellular features at single-cell resolution and
elucidate the regulatory mechanisms of RNA expression in
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curves of hub genes in the TCGA dataset.

pathological states (30, 31), offering the possibility of accurately
identifying prognostic features associated with germinal centres. As
important participants in the antitumor immune response, B cells
play a key role in the presentation of tumor antigens to T cells (32).
In this study, we explored the B cell-associated differentially
expressed gene profiles based on scRNA-seq technology and
preliminarily explored the potential clinical application value of
these genes in early bladder cancer screening and molecularly
targeted therapies by integrating TCGA and GEO datasets.

In this study, 52,721 single-cell transcriptomes from bladder
cancer and normal samples were analyzed to construct a complete

by annotation: T cells,
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than in normal tissues.

map of the TME of bladder cancer. Seven cell types were identified

B cells, endothelial cells, epithelial cells,

fibroblasts, NK cells, and mast cells. Cell type identification revealed
the presence of 10,967 B cells. Notably, the analysis showed that the
expression level of B cells was significantly lower in tumor tissues
It has been shown that B cells perform
differentiated functions in different cancer types (33). B cells secrete
immunoglobulins, which in turn inhibit tumor growth (34).
Kroeger et al. found clonal B-cell expansion and increased
plasmoblastoid infiltration in the tumor tissues of patients with
bladder cancer, and B cells, as antigen-presenting cells, activated
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(A) TCGA dataset showed that the expression of VCL, FLNA, THBS1, TAGLN, ACTA2, COL6A2, and CALD1 were down-regulated in the tumor samples
as compared to normal samples. (B) Analysis of the GSE37815 dataset revealed that VCL, FLNA, TAGLN, ACTA2, COL6A2, and CALD1 was
downregulated in tumor samples compared to normal tissues, whereas THBS1 showed no significant difference. The Wilcoxon rank-sum test was
used to assess discrepancies between the different samples. Each p-value is written above the box plots (NS: p > 0.05, *: p < 0.05, **: p < 0.01, ***:
p < 0.001, and ****: p < 0.0001). (C) Validation of the expression of the six genes in the Human Protein Atlas (HPA) database showed that their
expression levels were significantly lower in the tumor samples than in the normal group.

tumor-specific T-cell responses (35). These studies revealed an
immune-mediated relationship between B cells and the
pathogenesis of bladder cancer and that downregulation of B cell
expression in the tumor microenvironment may lead to a reduction
in the production of immune proteins, which in turn exacerbates
tumor progression. The association between downregulated B cell
expression in bladder cancer and increased bladder cancer risk
observed in this study is consistent with the above findings. This

Frontiers in Immunology

15

study provides new insights into the future development of tumor
immunotherapy and highlights the importance of fully considering
the role of B cells in tumors.

In addition, GO enrichment analysis showed that B cell marker
genes were significantly enriched in five immune-related pathways:
immunoglobulin production, production of molecular mediators of
the immune response, B cell-mediated immunity, B cell-mediated
immunity, immunoglobulin-mediated immune response, and
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FIGURE 10

RT-qPCR validation of six key genes (VCL, FLNA, TAGLN, CALD1, ACTA2, and COL6A2) was performed in cell lines. The results showed that these
genes were significantly downregulated in bladder cancer cells. Statistical significance is indicated above the bars in the histogram (NS: p > 0.05, *: p

< 0.05, **: p < 0.01, ***: p < 0.001, and ****: p < 0.0001).

immunoglobulin complex. KEGG results showed that marker genes
were significantly enriched in the B-cell receptor signalling
pathway, a pathway in which B cells are activated to function. B-
cell pseudotemporal trajectory analyses revealed dynamic changes
in gene expression over time. These genes were classified into four
functional clusters involved in lymphocyte-mediated immunity,
protein folding, immunoglobulin, and cytoplasmic translation
processes. Intercellular communication network analysis revealed
a close association between ligands and receptors in different cells,
in which cytokines mainly interact through the FNI (Fibronectin 1)
signalling pathway, a finding that highlights the value of FNI as a
potential biomarker for bladder cancer. Heat map analysis further
showed that the expression of genes related to the FNI signalling
pathway was mainly reflected in the interaction between fibroblasts
and epithelial cells.

Evidence suggests that FN1I positively regulates the proliferation
and migration of a variety of cancer cells and has been identified as a
biomarker for a number of cancers, including gastric cancer (36)
and cervical cancer (37). Targeted inhibition significantly reduces
the proliferation, invasive ability, and metastatic potential of cancer
cells. Zhang et al. revealed that FNI may be involved in the
development and progression of bladder cancer and has potential
as a prognostic marker and therapeutic target for bladder cancer
(38). In this study, we confirmed the critical role of FNI in bladder
cancer through in-depth analyses, identified it as a potential
oncogenic pathway in bladder cancer, and elucidated its
functional mechanism in fibroblasts. Additionally, our study
found that FN1 exhibits strong protein-protein interactions with
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six proteins, including VCL, FLNA, TAGLN, ACTA2, COL6A2, and
CALDI. Previous studies have also reported an interaction between
FNI and VCL, consistent with our findings (39). Based on the above
findings, the protein-protein interactions between FNI and these six
identified biomarkers require further experimental validation.
These findings not only open a new direction for FNI-targeted
therapy but also show important research and clinical application
prospects in enhancing the effectiveness of cancer immunotherapy
and deepening the knowledge of the dynamic role and molecular
mechanisms of FNI in cancer.

Next, the TCGA bladder cancer dataset was analyzed for
differences. Subsequently, immune-related genes were screened
using WGCNA in the GEO dataset. Finally, six B-cell marker
genes (VCL, FLNA, TAGLN, ACTA2, COL6A2, and CALDI) that
were downregulated in bladder cancer were screened using the PPI
network, survival curves, ROC curve analysis, and expression
validation. Previous studies have shown that Vinculin (VCL)
expression is downregulated in bladder cancer with tumor
suppressor gene properties (40), which is consistent with the
results of the present study. Wu et al. further confirmed that VCL
can be used as a potential protein marker for bladder cancer (41)
and provided strong support for the results of this study. Filament
protein A (FLNA) plays a key role in the development of blood
vessels, heart, and brain organs, particularly in the formation of
intercellular contacts and adherent junctions (42). It has been
demonstrated that the expression level of FLNA is significantly
reduced in bladder cancer tissues and that FLNA overexpression
can effectively inhibit the proliferation, invasion, and metastasis of
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FIGURE 11

RT-gPCR validation of six key genes (VCL, FLNA, TAGLN, CALD1, ACTA2, and COL6A2) was performed in tumor tissues and adjacent normal tissues
from bladder cancer patients. The histogram shows that all six genes were significantly downregulated in tumor tissues. Differences between tumor
and adjacent normal tissues were assessed using the Wilcoxon rank-sum test, and statistical significance is indicated above the bars in the

histogram. (NS:p > 0.05;:p < 0.05;:p < 0.01;:p < 0.001;****:p < 0.0001).

bladder cancer cells (43), corroborating the results of the present
study. Transglutamine protein (TAGLN) is an important actin-
associated protein, which has been found to be expressed at
significantly reduced levels in a variety of cancers, including
prostate cancer. Based on this feature, TAGLN is widely
considered to have tumor suppressor effects (44), and further
studies have shown that TAGLN may not only serve as a
potential diagnostic biomarker for bladder cancer (BCa), but may
also be a promising therapeutic target (45). The actin alpha 2
(ACTA2, actin alpha 2) gene is primarily responsible for encoding
smooth muscle alpha-actin, an essential component of the
cytoskeleton, which plays a central role in key biological
processes, such as cell contraction, migration, and signal
transduction (46). Previous studies have shown that ACTA2 is
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one of the pivotal genes closely associated with the immune
response in muscle invasive bladder cancer (MIBC) (47), which
not only reveals the important role of ACTA2 in the development of
MIBC but also provides a new research direction for an in-depth
understanding of the mechanism of tumor immune
microenvironment regulation. The collagen type VI alpha 2 chain
(COL6A2) gene is an important component of the three alpha
chains encoding collagen type VI. Recent studies have shown that
COL6A2 plays a key role in many tumors, especially lung
adenocarcinoma, and its expression level can be used as a
prognostic predictor and a potential marker for targeted therapies
(48). Notably, through an in-depth study of bladder cancer tissues,
Piao et al. found that the mRNA expression level of COL6A2 was
significantly downregulated in both non-muscle-invasive bladder
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cancer (NMIBC) and muscle-invasive bladder cancer (MIBC) tissue
samples compared to that in normal bladder tissues (49), which is
consistent with our findings. Caldesmon 1 (CALDI) is an important
cytoskeleton-associated protein that affects cell morphology and
migration capacity by regulating the dynamic balance of actin
filaments (50). Recent studies have revealed that CALDI not only
serves as a prognostic biomarker for bladder cancer but may also
contribute to its progression of bladder cancer by participating in
the remodelling process of the tumor microenvironment. Further
studies have shown that the expression of CALDI is significantly
correlated with immune cell infiltration in bladder cancer, which
provides a new perspective for understanding the regulation of the
tumor immune microenvironment (51).

Although the detection of downregulated genes in clinical
practice presents certain challenges, they can still serve as reliable
biomarkers, and their clinical feasibility has been supported by
multiple lines of evidence. First, the principle of “loss indicates
abnormality” suggests that the reduced expression of tumor
suppressor genes itself can indicate pathological changes. This
mechanism is exemplified by classical tumor suppressors such as
TP53, the “guardian of the genome,” which regulates the cell cycle,
DNA damage repair, and apoptosis (52), and whose dysfunction or
downregulation is implicated in over 50% of human tumors (53).
Although the downregulated genes in our study were not classical
tumor suppressors, their reduced expression may similarly contribute
to bladder cancer development, supporting their potential as
diagnostic biomarkers or therapeutic targets. Consistently, previous
studies have shown that downregulated genes can serve as prognostic
biomarkers and immunotherapy targets. For example, SOX7 is
downregulated in colorectal cancer, and its low expression
correlates with poor prognosis (54). Second, the detection of
downregulated genes can be achieved through several approaches,
including: (1) highly sensitive RNA quantification techniques (e.g.,
RT-qPCR), which allow accurate discrimination even at low
expression levels; (2) protein-level assessment of functional loss,
such as immunohistochemistry (IHC) detection of PTEN loss,
which is widely used as a prognostic indicator in prostate cancer
(55, 56); and (3) epigenetic markers such as DNA methylation, which
provide stable signals, exemplified by the FDA-approved colorectal
cancer screening test Epi pr0C010n®, based on SEPT9 promoter
methylation (57). Collectively, these findings suggest that although
downregulation itself may be difficult to capture directly, its
associated transcriptomic, proteomic, and epigenetic alterations can
be transformed into stable and detectable biological signals.
Therefore, the six genes identified in our study as negatively
associated with bladder tumors may represent promising diagnostic
biomarkers and potential therapeutic targets for clinical application.

This study has made significant progress in constructing a B
cell-based prognostic model for bladder cancer and its tumor
microenvironment. However, this study had limitations. First,
although the B cell prognostic model developed using public
datasets demonstrated good predictive performance, its clinical
utility requires validation through large-scale prospective clinical
studies. Second, due to limitations in data availability, the sample
size included in this study was relatively small; future multi-
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center, large-cohort studies are needed to further assess the
robustness of the model. Finally, although we confirmed the
expression levels of key prognostic genes and their associations
with patient outcomes using public clinical data and RT-qPCR
experiments, in-depth functional studies on these genes have not
yet been conducted. Therefore, in future studies, we plan to
employ systematic gene editing and functional assays to
elucidate the molecular mechanisms of these key genes in
bladder cancer progression, providing a stronger theoretical
foundation for clinical applications.

5 Conclusion

In this study, we constructed single-cell transcriptome profiles of
bladder cancer using scRNA-seq, and explored the role of B cells in
cell trajectories, transcription factor regulatory networks, and
intercellular communication mechanisms. By integrating single-cell
samples with TCGA and GEO data, six immune cell-associated genes
closely related to B cells, with significant differences, were successfully
identified. These findings suggest six potential molecular targets for
bladder cancer treatment. Although the specific mechanisms of
action of these genes need to be validated by further studies, these
results are important for an in-depth understanding of the molecular
mechanisms of bladder cancer pathogenesis.
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