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Comprehensive analysis
of single-cell and bulk
transcriptomes reveals
key B-cell genes and
immune microenvironment
regulation in bladder cancer
Lijun Wang1†, Juan Yang1,2†, Zhangxiao Xu1,2†, Bo Tao1,
Yunpeng He1, Yuan Zhao1, Jian Wu1, Yiran Ma1, Zitao Zhong2*

and Lin Ye1*

1Faculty of Life Science and Technology & The Affiliated Anning First People’s Hospital, Kunming
University of Science and Technology, Kunming, China, 2Faculty of Life Science and Technology,
Kunming University of Science and Technology, Kunming, Yunnan, China
Background: Bladder cancer is a significant malignancy, for which prognostic

prediction and understanding of the tumor immune microenvironment are

crucial. B cells play a key regulatory role in this environment, making their

study essential for advancing bladder cancer research.

Methods: In this study, a multi-omics analysis strategy combining single-cell

RNA sequencing (scRNA-seq) and bulk RNA-seq was used to establish single-cell

transcriptome profiles of tumor tissues from bladder cancer patients, focusing on

B-cell populations and their interactions with other cell types in the tumor

microenvironment. Large public databases were used to screen for key

prognostic genes associated with bladder cancer B cells, and their biomarker

expression was verified by in vitro experiments.

Results: Based on tumor samples from eight patients with bladder cancer and

four normal samples, we selected 84, 967 cells for single-cell sequencing

analysis. From these, we identified 10, 967 B cells and identified 508 key genes

associated with B cells in bladder cancer from five different B cell subtypes. By

integrating a large amount of RNA sequencing data, we identified VCL, FLNA,

TAGLN, ACTA2, COL6A2, and CALD1 as potential biomarkers for B-cell-

associated bladder cancer, and experimentally verified that these markers were

significantly lower in bladder cancer patients than in the normal group, and were

effective in predicting the survival rate of the patients and the status of the tumor

immune microenvironment.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1600254/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1600254/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1600254/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1600254/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1600254/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1600254/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1600254&domain=pdf&date_stamp=2025-10-17
mailto:zzitao@kust.edu.cn
mailto:7937589@qq.com
https://doi.org/10.3389/fimmu.2025.1600254
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1600254
https://www.frontiersin.org/journals/immunology


Wang et al. 10.3389/fimmu.2025.1600254

Frontiers in Immunology
Conclusions: Using a combination of transcriptomic and experimental validation

at single-cell and batch levels, this study provides insights into the key gene

signatures of B cells from patients with bladder cancer and their roles in

regulating the tumor immune microenvironment, providing new biomarkers

and potential therapeutic targets for predicting patient’ prognosis and

immunotherapy response.
KEYWORDS
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1 Introduction

Bladder cancer (BCa) is a malignant tumor originating from the

epithelium of the urinary tract, which continues to increase in

morbidity and mortality, and is one of the most common malignant

tumors (1). Epidemiological estimates for 2025 indicate that bladder

cancer is the fourth most common cancer among men in the United

States (n = 65,080), with a total of 84,870 new cases nationwide. The

incidence in men is 3.3 times higher than that in women, showing a

significant difference (2). Bladder cancer is a highly heterogeneous

disease, with many challenges in its classification, staging, and

grading (3, 4). Bladder cancer is characterized by high rates of

recurrence and metastasis. Based on the depth of tumor infiltration,

they can be divided into non-muscle invasive bladder cancer

(NMIBC) and muscle invasive bladder cancer (MIBC) (5). Of

these, 75% of uroepithelial carcinomas of the bladder present as

non-muscle invasive bladder cancer (6), and the other 25% of

urothelial carcinomas of the bladder present as muscle-invasive

bladder cancer with a risk of metastatic spread, with a 5-year

survival rate of approximately 40%-50% (7), approximately 50%

of bladder cancer cases with muscle invasive bladder cancer

eventually metastasize, and the 5-year survival rate for muscle

invasive bladder cancer with distant metastases is only 10% (8),

which is the main cause of death in bladder cancer patients.

Currently, radical cystectomy (RC) combined with chemotherapy

or immunotherapy is the first-line treatment for BCa (9). Although

chemotherapy and immunotherapy can improve survival to some

extent, a subset of patients respond poorly to these therapies,

resulting in missed opportunities for RC and reduced survival

(10, 11). However, in some cases, it may not be effective in

preventing cancer recurrence and metastasis (12). Therefore,

recurrence, metastasis, and spread of cancer have become one of

the biggest resistances to cancer treatment, and it is extremely

important to study the mechanism of bladder cancer development,

metastasis, and spread, and to find new targets for bladder

cancer treatment.

The tumor microenvironment (TME) has been a hotspot in

cancer biology research and is a relevant therapeutic target for drug

discovery. Notably bladder cancer is one of the cancers with the
02
least immune infiltration (13), This may account for the poor

response to anti-PD1 therapy. Molecular subtypes of bladder

cancer show different cell type-specific expression patterns (14),

suggesting that the heterogeneity of BCa is, at least in part, due to

the different cell type components of the microenvironment.

However, until recently, relevant studies have been scarce.

Previous studies have shown that the abundance of B cells in

cancer is positively correlated with a favorable clinical outcome,

whereas others have shown that they promote tumors, implying

that the biological function of B cells is a complex landscape (15).

Relatively little is known about comprehensive molecular analyses

of B cells in bladder cancer. Therefore, the biological functions of B

cells in bladder cancer remain to be explored.

The rise in single-cell RNA sequencing (scRNA-seq) technology

has provided an unprecedented opportunity to resolve the

molecular signatures of different immune cell populations in the

TME (16). The scRNA-seq provides more precise and detailed

analyses at the single-cell level than traditional bulk RNA-

sequencing methods (17). In this study, we innovatively

combined bulk RNA seq and scRNA-seq data to systematically

reveal the infiltration pattern of B cells in the microenvironment of

bladder cancer, and successfully identified seven bladder cancer

markers with potential clinical applications. In this study, the

molecular features of tumor-infiltrating B cells were explored in

depth and their specific marker genes were identified through

single-cell RNA sequencing analysis of bladder cancer samples.

RNA sequencing data from large databases were integrated and

analyzed to screen and validate potential key genes associated with

cancer immune responses. The workflow of this study is illustrated

in Figure 1.
2 Methods

2.1 Data source and preprocessing

In this study, a multi-omics integration analysis strategy was

used to integrate four independent datasets from The Cancer

Genome Atlas (TCGA) (https://www.cancer.gov/ccg/research/
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genome-sequencing/tcga) bladder cancer dataset, and the

Comprehensive Gene Expression Database (GEO) (https://

www.ncbi.nlm.nih.gov/) (Table 1). Eight bladder cancer tissue

samples and four normal tissue samples from nine patients in the

GSE222315 dataset were selected for the scRNA-seq study. The

selection criteria were as follows:(a) each sample should contain no

less than 300 and no more than 7000 cells; (b) each cell should

express more than 300 (250) genes; (c) each gene should be

expressed in at least three cells; and (d) the mitochondrial RNA

content in each cell should be less than 20% (18). Finally, we

screened using the R package Seurat and obtained 84, 967 cells for

subsequent analysis. Differentially expressed genes (DEGs) were

identified from TCGA bladder cancer dataset using the DESeq,

limma, and Wilcoxon function packages of the R package.

Specifically, we applied a threshold of |log2 FoldChange| > 2 with

an adjusted P < 0.05 to select DEGs for subsequent analysis (19).

The GSE37815 dataset was used for marker gene validation.
2.2 Data integration

After data integration and filtering, the Seurat package was used

for data normalization and integration analyses. First, the gene

expression values were normalized using the ‘NormalizeData’

function. Specifically, the expression value of each gene was

multiplied by the total gene expression of the cell, and the scaling

factor (10,000) and the natural logarithmic transformation (log(x

+1)) were performed to avoid a zero logarithm. Next, 2000–3000

highly variable genes were identified by the ‘FindVariableFeatures’
Frontiers in Immunology 03
function and centered using the ‘ScaleData’ function. To eliminate

technical differences between batches of samples (due to the

inability to sequence samples simultaneously), we used the

‘FindIntegrationAnchors’ or ‘RunHarmony’ function to set up

2000 anchors for data integration. This anchor-based integration

strategy can effectively map homologous cell types from different

datasets to a small number of key anchors, thereby reducing the

batch effect and improving the comparability and reliability of data.
2.3 Dimensionality reduction and data
clustering

Dimensionality Reduction and Data Clustering: Considering

that each gene in the sample exists as a dimension, high-

dimensional data becomes difficult to visualize. Therefore,

dimensionality reduction techniques must be employed to

represent the true data structure by using a reduced number of

dimensions (20). First, the highly variable set of genes obtained was

downscaled using the ‘RunPCA’ function in the Seurat package.

Subsequently, data integration was performed by setting 2000

anchors using the ‘FindIntegrationAnchors’ (or ‘RunHarmony’)

function. This ‘anchor’ based integration strategy effectively

converts the same cell types from different datasets into a small

number of key anchors, thus mitigating batch effects. Next, the

‘FindNeighbors’ and ‘FindClusters’ functions in the Seurat package

were used to perform cluster analysis of the downscaled data. To

enhance the visual presentation of the clustering results, the t-

distributed stochastic nearest neighbor embedding (t-SNE) method
FIGURE 1

Research design.
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was applied. Specifically, a clear visualization of the cell population

was achieved by the ‘RunTSNE’ function of the Seurat package with

the parameters dims=1:15 and resolution=1.0.
2.4 Cell annotation, DEGs, and marker
genes identification

Cellular annotation, DEG and marker gene identification were

performed by reviewing relevant literature and websites and

manually searching for cellular marker genes for cell-type

annotation. This approach effectively correlates gene expression

in different cell types with that in cells. The weakest correlation for

each cell type was eliminated through iterations and the

corresponding cell types were identified (21). In this study,

samples were manually annotated for cell types using literature

and web resources. Subsequently, DEG were identified using the

‘FindAllMarkers’ function in the Seurat software package. A

threshold value of |log2FoldChange| > 2 (0.25 between cells and

between groups) was set and adjusted to P < 0.05. Finally, marker

genes specific to each cell type were identified using the

‘FindAllMarkers’ function of the Seurat software package. This

series of analyses provides an important basis for precise

annotation and functional study of cell types.
2.5 GO enrichment analysis and KEGG
pathway enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses were performed

using the David and Metascape databases (clusterProfler packages,

version 3.14.3). The analysis revealed functional enrichment of

genes and related signalling pathways. All the results were

visualized using the ggplot2 software package (22, 23).
2.6 Cell trajectory analysis

Cells constantly undergo dynamic changes, transforming from

one cell type to another, which leads to changes in gene expression

and functional state (24). Each cell was arranged along a

corresponding cell track, representing a pseudotemporal order,

and cells were grouped into different differentiated states by
Frontiers in Immunology 04
employing gene expression profiles. We used the Monocle2

package for the pseudotemporal analysis of B-cell subtypes (25).

To explore the differentiation trajectories of B cell subtypes and

related genes in different states, we used the ‘plot_cell_trajectory’

function to sort the cells according to their pseudotimes. The

‘BEAM’ function was used to identify genes responsible for cell

branching and differentiation. The ‘plot_genes_branched_heatmap’

function was used to visualize the results.
2.7 Cell-cell communication analysis

The analysis of cell-cell communication is based on the

interaction of ligands and receptors on the cell surface, and this

intercellular communication plays a key role in a variety of

biological processes. To investigate the interaction patterns

between different cell types, the CellChat software package was

used to construct cellular communication networks. The software

simulates the communication between cells by constructing an

interaction network of ligands, receptors, and their related factors.

Based on the gene expression profiles of ligands and receptors in

different cell types, CellChat was able to infer the strength of cellular

interactions and reveal the rich patterns of ligand-receptor

interactions between different cell types. This analysis provides an

important basis for a deeper understanding of intercellular

signalling and functional regulation (26).
2.8 Construction of weighted gene co-
expression network

Weighted gene co-expression networks were constructed using

the R package ‘WGCNA’ (27). Sample analyses were initiated by

screening for outlier samples using clustering methods.

Subsequently, the gene expression matrix was converted into a

similarity matrix by calculating the Pearson correlation value (cmn)

and adjacency (amn) between genes, where parameter b served as a

soft threshold that could modulate the correlation between genes.

Based on the assessment of scale independence and average

connectivity, the soft threshold power was set to 8 (b = 8, R2 =

0.9). The neighbor-joining matrix was further transformed into a

topological overlap matrix so that the gene interactions conformed

maximally to the scale-free distribution characteristics. Hierarchical

clustering was performed using the dynamic tree-cutting algorithm
TABLE 1 Grouping information.

Database Dataset
Grouping information

Purpose
Experimental group Control group

TCGA 431 sample 412 19 Differential Analysis

GEO

GSE222315 8 4
Single-cell Transcriptome

Analysis

GSE13507 187 9 WGCNA

GSE37815 18 6 Validation Set
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with the unsigned network construction type, which was set to two

to determine the module division, and the minimum module size of

the gene dendrograms was set to 30. The module difference degree

(MES) of the module dendrograms was calculated, and modules

with a difference degree of less than 0.3 were merged to construct

the final network structure.
2.9 Differentially expressed genes for
bladder cancer-related genes

412 bladder cancer gene expression data and 19 paraneoplastic

tissue gene datasets were downloaded from TCGA database. The

downloaded gene datasets were integrated into a matrix using Perl

(command line) software. Screening criteria for identifying DEGs

were established using the R packages DESeq, limma, and

Wilcoxon. Specifically, we applied a threshold of |log2 fold

change | > 2 with an adjusted P < 0.05. The DEGs were selected

for subsequent analyses. A Venn diagram was used to analyze the

intersection of three sets of gene sets: sc-seq tagged genes from

bladder cancer-associated B cells, high ESTIMATEScore-related

genes obtained from WGCNA analysis, and differentially

expressed genes screened by the TCGA database using the three

methods to identify core overlapping genes.
2.10 Integrated survival, ROC, and PPI
network analyses for the identification of
bladder cancer biomarkers

To select the core genes with prognostic value, Kaplan-Meier

survival analysis was performed on these key genes using the R

software package ‘survivalPath’ (28), and survival differences were

evaluated using the log-rank test. Genes with P < 0.05 were

considered to have prognostic significance and were subjected to

further in-depth analysis. Assessment of the diagnostic significance

of hub genes. To investigate whether prognostic genes could

distinguish tumor samples from non-tumor samples, we used the

R package ‘survival ROC’ (29) and ROC analyses were performed

on the hub genes. To elucidate the interaction network of

infiltrating immune cell-associated genes at the protein level,

protein-protein interaction (PPI) network mapping was

constructed using the STRING database (https://string-db.org/).

The interactions were visualized using the Cytoscape 3.7.1

platform to clearly demonstrate the functional association

patterns among the genes.
2.11 Core gene database and protein
validation

The expression levels of the core genes in tumor and non-tumor

samples were compared in TCGA and GSE37815 datasets.

Additionally, the protein expression of these genes in bladder
Frontiers in Immunology 05
cancer was validated using the Human Protein Atlas (HPA)

database (https://www.proteinatlas.org/).
2.12 Validation of core genes in cells and
clinical samples by RT-qPCR

A normal human uroepithelial cell line (SV-HUC-1) and three

human bladder cancer cell lines (5637, T24, and HT1376) were

obtained from Yunnan Tengyue Biotech Co. E2112), 5637 cells, and

HT1376 cells were cultured in RPMI-1640 medium (Gibco,

C11875500BT), T24 cells were cultured in McCoy’s 5A medium

(EvaCell, E2110), and the above cells were cultured in medium

supplemented with 10% FBS (Gibco, A5256701) and 1% penicillin-

streptomycin (Gibco,15140122). Cells were cultured at 37 °C, 5%

CO2 cell culture incubator. Total RNA was extracted using the

RNAfast200 kit (Shanghai Feijie Biotechnology Co., Ltd.), and

mRNA was reverse-transcribed into cDNA using the Evo M-

MLV Reverse Transcription Reagent Pre-mix (Hunan Acres Bio,

AG11706). RT-qPCR was performed using the SYBR Green Pro

Taq Hs Pre-mixed qPCR Kit (Hunan Acres Bio, AG11701). RT-

qPCR was performed to verify the expression of the biomarkers in

normal human uroepithelial cells (SV-HUC-1) and human bladder

cancer cell lines (5637, T24, and HT1376). To further validate the

experimental results, we also collected tumor tissues and adjacent

normal tissues from seven bladder cancer patients at the First

People’s Hospital of Anning, Affiliated Hospital of Kunming

University of Science and Technology. All participants provided

written informed consent, and the study was approved by the Ethics

Committee of the First People’s Hospital of Anning, Affiliated

Hospital of Kunming University of Science and Technology. The

sequences of all primers are listed in Table 2.
2.13 Data processing

Statistical analysis was performed using the Statistical Analysis

R software (version 4.4.3) and GraphPad Prism 9.0 (GraphPad

Software, USA). Differences between samples were assessed using

the Wilcoxon rank-sum test, and statistical significance was

determined using Student’s t-test. Experimental results are

expressed as the mean ± standard deviation (mean ± SD), with all

data derived from at least three independent experiments.

Significance was denoted as follows: NS: p > 0.05, *: p < 0.05, **:

p < 0.01, ***: p < 0.001, and ****: p < 0.0001.
3 Results

3.1 Single-cell transcriptome profiles of
bladder cancer

Twelve samples (including tumors and paired normal tissues)

from nine patients in the GSE222315 dataset were analyzed in this
frontiersin.org
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study. After rigorous quality control screening, 84,967 high-quality

cells were obtained for subsequent analysis. After eliminating the

batch effect using the ‘anchor’ integration strategy, the data were

normalized, centered and downscaled by principal component

analysis (PCA) to retain the top 30 principal components.

Subsequent clustering visualization using the t-SNE algorithm

classified the cell population into 23 cell clusters (Figure 2A),

which were grouped into seven major cell types by manual

annotation (Figure 2B). Figure 2C shows the single-cell

transcriptome profiles of the normal and tumor samples.

Figure 2D shows single-cell transcriptome profiles of different

samples using manual cellular annotation revealing seven cell

types (Figure 2E): CD3D, CD3E, CD2, GNLY, KLRD1 high-

expressing T cells, EPCAM high-expressing epithelial cells,

CD79A, MZB1, MS4A1 high-expressing B cells, FCGR3A,

TYROBP-overexpressing NK cells, COL3A1, COL1A1, DCN, C1R-

overexpressing Fibroblast cells, PECAM1, CD34, CDH5, VWF-

overexpressing Endothelial cells, and KIT, TPSAB1, and TPSB2-

overexpressing Mast cells. Differential gene expression heatmaps

(Figure 2F) and UMAP maps (Figure 2G) were used to visualize the

transcriptional features and marker gene expression patterns of the

seven cell types. In addition, we analyzed the proportional

distribution of each cell type in the normal and tumor

tissues (Figure 2H).
3.2 Single-cell transcriptome mapping of B
cells in scRNA-seq

ScRNA-seq analysis of bladder cancer revealed a high

abundance of B cells in all samples. In total, 10,967 B cells were

extracted for clustering and annotation. Secondary clustering

divided these cells into four clusters (Figure 3A), which were

manually annotated based on marker gene expression patterns

(Figure 3B). A comparison of UMAP clustering between normal

and tumor tissues revealed significant differences (Figure 3C).

Figure 3D illustrates the transcriptomic features of B cells across

samples, which were classified into three identifiable B cell subtypes

and one unannotated subtype: plasma cells with high CD38

expression, mature B cells with high CD19/CD22 expression, and

memory B cells with high CD27 expression (Figure 3E). Further

analysis demonstrated that these five B cell subtypes exhibited
Frontiers in Immunology 06
significant differences in gene expression between normal and

tumor tissues (Figure 3F), and the UMAP plots visually depicted

the expression of marker genes across the subtypes (Figure 3G).

Overall, this single-cell transcriptomic study provides a

comprehensive characterization of abundant B cell populations in

the bladder tumor microenvironment, offering insights into their

potential roles in tumor immune regulation.
3.3 Enrichment analyses associated with B
cells

To investigate specific gene expression among the different cell

subtypes, we first performed a volcano plot analysis of the seven cell

subtypes (Figure 4A). To elucidate the biological functions of the

marker genes in B cells, KEGG and GO enrichment analyses were

performed. KEGG results showed that marker genes were mainly

enriched in pathways activated to function in B cells, including

ribosome, coronavirus disease-COVID-19, intestinal immune

network for lgA production, B cell receptor signalling pathway,

hematopoietic cell lineage, Leishmaniasis, Antigen processing and

presentation, Toxoplasmosis, Allograft rejection, and Type I

diabetes mellitus (Figure 4B). GO enrichment results showed that

biological processes (BP) were mainly associated with cytoplasmic

translation, immunoglobulin production, production of molecular

mediators of immune response, B cell-mediated immunity, and

immunoglobulin-mediated immune response. Cellular Component

(CC) is mainly related to immunoglobulin complexes, cytosolic

ribosomes, ribosomal subunits, ribosomes, and cytosolic large

ribosomal subunits. Molecular function (MF) was associated with

antigen-binding and structural constituents of ribosomes

(Figures 4C, D). We also mapped the differential gene scatter

plots (Figure 4E) and volcano plots (Figure 4F) of B cells between

tumor and normal tissues and performed differential gene

enrichment analyses (Figure 4G) to further explore the changing

characteristics of B cells in the tumor microenvironment.
3.4 pseudotemporal analysis

Pseudotemporal analysis, also known as cell trajectory analysis,

simulates developmental trajectories of different cells based on the
TABLE 2 Primers of hub genes.

Genes Forword Reverse

VCL CTGCAGACCAAAACCAACCG GGTCACACTTGGCGAGAAGA

FLNA CTGCTCGGTCGAGTACATCC TCACATCATGCACAGGGACC

TAGLN AGGTCTGGCTGAAGAATGGC CACCTGCTCCATCTGCTTGA

ACTA2 ACTGCCTTGGTGTGTGACAA TCCCAGTTGGTGATGATGCC

COL6A2 AGCCTACGGAGAGTGCTACA AGCTTGCCCTTCTGTCCATC

CALD1 TTTGAGCGTCGCAGAGAACT TTCTGGGCATTCACCTCCAC

GADPH CAGGAGGCATTGCTGATGAT GAAGGCTGGGGCTCATTT
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expression patterns of temporal genes in single-cell samples. B-cell

maturation trajectories were analyzed in real time using the

Monocle software package for tumor-associated B cells. We

extracted B cells to demonstrate their developmental trajectories,
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revealing five branches of B cell subtype (Figure 5A). As shown in

Figures 5B, C, B cells exhibited five differentiation states during

development. Figure 5B depicts the chronological order of cell

subtype differentiation, with darker colored cells gradually
FIGURE 2

Overview of single-cell mapping of normal and tumor samples from bladder cancer cancer patients. (A) Umap plot depicting single cell samples
clustered into 23 clusters. (B) Identification of 7 cell types based on marker gene expression. (C) Umap clustering diagram comparing normal and
tumor tissues. (D) Umap clustering diagram of 12 samples. (E) Bubble plots showing marker gene expression of 7 cell types across cells. (F) Heatmap
showing differential gene expression across 7 cell types. (G) Umap plot highlighting expression patterns of marker genes across 7 cell types. (H) Cell
type sections of normal and tumor samples in the scRNA-seq dataset.
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transforming into lighter colored ones. The results showed

progression from Branch 3 to Branch 5, Branch 1, and Branch 2.

There were differences in the expression of model genes at different

developmental stages of eutrophication. During the development of

tumor-associated B cells, the expression of DERL3, FKBP11, FKBP2,
Frontiers in Immunology 08
ITM2C, MZB1, PRDX4, RRBP1, and XBP1 gradually increases.

Subsequently, the temporal gene expression of the four branches

was presented as a heatmap using the BEAM function. BPs were

explored by performing GO enrichment analysis, which showed

that branch 1 was mainly associated with the immune response-
FIGURE 3

Single-cell transcriptome mapping of B cells in scRNA-seq. (A) Umap plot of B cells in scRNA-seq, clustered into 5 different clusters. (B) Sequence-
based identification of B based on 5 cell types. (C) Umap clustering plot comparing normal and tumor tissues. (D) Umap clustering plot of 12
samples. (E) Bubble map showing marker genes for 5 B-cell subtypes. (F) Heatmap showing differential gene expression for 5 cell types. (G) Umap
plot highlighting the expression patterns of marker genes for the 5 cell types. (H) River bar stack plot of cell types for normal and tumor samples in
the scRNA-seq dataset.
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activating signalling pathway, B cell activation, B cell receptor

signalling pathway, B cell proliferation, B cell differentiation, and

B cell-mediated immunity. Branch 2 is mainly involved in B-cell

activation, homeostasis, proliferation, and differentiation. Branch 3
Frontiers in Immunology 09
is mainly related to the cellular response to tumor necrosis factor,

the response to tumor necrosis factor, and positive regulation of the

humoral immune response. Finally, branch 4 was mainly related to

the cellular response to tumor necrosis factor, response to tumor
FIGURE 4

Enrichment analyses between cells of specific subpopulations and between groups. (A) Overall cell subpopulation intercellular differential analysis
volcano plot (red dots are genes specific to cell clusters relative to other cell clusters). (B) B-cell intercellular differential gene KEGG functional
enrichment map. (C) Functional enrichment of the B cell intercellular differential gene GO. (D) B-cell intercellular differential gene GO functional
enrichment map (faceted to show the enrichment of BP, MF, and CC in GO entries). (E) Scatter plot of B-cell intergroup difference analysis. (F)
Volcano plot of B-cell intergroup difference analysis. (G) Bar graph of differential gene enrichment between B-cell groups.
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5FIGURE

Pseudotime analysis of specific subpopulations. (A) Position of different subpopulations in the pseudotime (stim). (B) Differentiation of different
subpopulations in the pseudotime (Pseudotime). (C) Position of cells in different pseudotime stages in the pseudotime (State). (D) Heatmap of
distribution of genes with differences in the pseudotime as well as the enrichment situation (Heatmap of genes with changes in differences in the
pseudotime is shown in four clusters; text in the left bar is the enrichment pathway). (E) Scatterplot of gene changes in the pseudotime.
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necrosis factor, and positive regulation of the humoral immune

response (Figure 5E). These pathways are mainly involved in B cell

differentiation and immune responses.
3.5 Analysis of cell-cell interactions
associated with B cells

To explore the communication properties of B cells with other

cell types, the Cellchat function was used to detect ligand-receptor

and molecular interactions between different cells. The results

showed that the interactions between the seven cell types (T cells,

B cells, NK cells, fibroblast cells, endothelial cells, and mast cells)

were stronger in bladder cancer tissues than in normal tissues

(Figures 6A, B). The FN1 signalling pathway was upregulated in

tumor samples and was widely present in ligand-receptor

interactions in various cell types (Figures 6C-E). Among these,

the ligand-receptor pair FN1-CD44 contributed the most to the FN1

pathway (Figure 6F), and SCD1 and ITGB1 showed higher

expression levels in multiple cell types (Figures 6G, H).
3.6 Identification of the hub gene in
bladder cancer

WGCNA-based identification of infiltrative immune cell-

related genes to screen infiltrative immune cell-related genes, we

performed WGCNA assays on the GSE13507 dataset. First, sample

clustering analysis showed that all 197 samples in the GSE13507

dataset could be used to construct weighted gene co-expression

networks (Figure 7A). Subsequently, a weighted gene co-expression

network containing eight modules was constructed when b was set

to 5 (R2 = 0.85), and modules with module feature gene dissimilarity

less than 0.3 were merged (Figures 7B, C). The associations between

these eight modules and the four algorithms (StromalScore,

ImmuneScore, ESTIMATEScore, and TumorPurity) are shown in

Figure 7D. We found that the MEred module was associated with

the ImmuneScore (Figure 7D). In addition, we calculated the

correlation between the genes in the MEred module and

ImmuneScore and identified 1390 infiltrating immune cell-

associated genes by setting the correlation coefficient.

Gene expression datasets of 412 bladder cancer tissues and 19

paracancerous tissues were obtained from TCGA database.

Differential expression analysis between bladder cancer and

paracancerous tissues was performed to screen for genes related

to bladder carcinogenesis and progression. Three methods, R

package DESeq, limma, and Wilcoxon, were used to identify

DEGs, and the screening criteria were set as |log2 fold change | >

2 and a corrected P < 0.05. A total of 3104, 2563, and 2836

differentially expressed genes were identified using these three

methods, respectively (Figure 7E). This study investigated bladder

cancer B-cell marker genes, immune-related genes screened using

WGCNA, and bladder cancer-related genes obtained by differential

analysis (Figure 7E). A total of 43 shared genes were identified. To
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explore the interaction network of core genes at the protein level,

the PPI network was constructed using the STRING database and

visualized using Cytoscape 3.7.1 (Figure 7F) Ten core genes were

obtained by screening based on BC values: VCL, DUSP1, FLNA,

THBS1, TAGLN, ACTA2, COL6A2, VWF, CXCR4, and CALD1.
3.7 Evaluating the prognostic and
diagnostic value of key genes

To assess the association between core genes and bladder cancer

prognosis, we systematically evaluated ten candidate genes using

Kaplan-Meier survival analysis combined with the log-rank test.

The results of the analysis showed that seven genes (VCL, FLNA,

THBS1, TAGLN, ACTA2, COL6A2, and CALD1) were significantly

correlated (P < 0.05) with the prognosis of bladder cancer patients,

and these genes were included in the subsequent in-depth study

(Figure 8A). To further validate the diagnostic value of these core

genes in distinguishing between rejected and non-rejected samples,

we performed subject work characteristic (ROC) curve analyses in

the TCGA training and GSE37815 validation sets. The results

showed that the area under the curve (AUC) for all seven core

genes exceeded 0.7 in both independent datasets (Figure 8B),

strongly suggesting that these genes may serve as potential

biomarkers for bladder cancer diagnosis.
3.8 Key gene database and protein
expression results

We then performed an in-depth analysis of the expression

patterns of these key genes in the TCGA and GSE37815 datasets,

focusing on comparing the expression differences between tumor

tissues and paired non-tumor tissue samples. The results showed

that, except for THBS1, the remaining six genes exhibited

statistically significant differential expression in both the training

and validation sets (P < 0.05); therefore, THBS1 was excluded from

subsequent analyses (Figures 9A, B). Ultimately, six genes—VCL,

FLNA, TAGLN, ACTA2, COL6A2, and CALD1—were identified as

potential marker genes. To investigate protein-level interactions

between these six candidate markers and FN1, a protein-protein

interaction (PPI) network was constructed. As shown in

Supplementary Figure 1, FN1 displayed strong interactions with

all the six marker proteins. As shown in Figure 9C, compared to

normal tissues, VCL, FLNA, TAGLN, ACTA2, COL6A2, and CALD1

were significantly downregulated in BLCA tissues.
3.9 RT-qPCR results of key genes in cell
lines and clinical samples

To validate the expression differences of the six potential

biomarkers, further experiments were performed on bladder

cancer cells and normal bladder cells. RT-qPCR results showed
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that compared with normal bladder epithelial cells SV-HUC-1, the

expression levels of six biomarkers, namely VCL, FLNA, TAGLN,

ACTA2, COL6A2 and CALD1, the expression levels of all six

biomarkers were significantly down-regulated (P < 0.05), a result
Frontiers in Immunology 12
that was highly consistent with the results of our pre-biomarker

analysis (Figure 10). Further validation was performed in tumor

tissues and adjacent normal tissues from seven bladder cancer

patients, and the results showed that the expression changes of
FIGURE 6

Cell–cell communication analysis. (A) Circos plots of intercellular interactions in normal and tumor groups. (B) Comparison of the number and
strength of cell–cell communications between tumor and normal tissues. (C) Differential signaling pathway-related communications between tumor
and normal tissues. (D) Communication probabilities of macrophages with other cell types mediated by ligand–receptor pairs. (E) Heatmap of FN1
signaling interactions among different cell types in tumor and normal groups. (F) Relative contribution of ligand–receptor pairs within the FN1
pathway in tumors. (G) Cell–cell communication mediated by the FN1–CD44 ligand–receptor pair. (H) Expressiondifferences of FN1 pathway
molecules between tumor and normal samples.
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the six downregulated genes were consistent with bioinformatics

analysis and cell experiments (Figure 11). Overall, Alterations in the

expression of VCL, FLNA, TAGLN, ACTA2, COL6A2, and CALD1

may play important roles in the development of bladder cancer,

suggesting their potential value in early detection, molecular

subtyping, and targeted therapy.
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4 Discussions

Despite advances in preclinical and clinical studies, the

prognosis of bladder cancer remains unclear. scRNA-seq

technology can reveal cellular features at single-cell resolution and

elucidate the regulatory mechanisms of RNA expression in
FIGURE 7

Identification of modules associated with bladder cancer using WGCNA. (A) Sample clustering plot; (B) Scale-free index and average connectivity
analysis for different soft threshold powers. (C) Dendrogram of all differentially expressed genes clustered according to the heterogeneity measure
(1-TOM). Ribbons show results from automated single-block analysis; (D) Heatmap of correlation between module signature genes and bladder
cancer immune-related traits. (E) Venn plot showing the results of the intersection analysis of b-cell related differentially expressed genes in single
cell samples and bladder cancer TCGA dataset, showing a total of 43 immune-related bladder cancer b-cell key genes. (F) Protein interactions
network graph constructed by the identified 43 key genes, in which the red nodes marked the core genes with the top ten BC values. TOM:
topological overlap matrix, ME: module eigengene; BC: betweenness centrality.
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pathological states (30, 31), offering the possibility of accurately

identifying prognostic features associated with germinal centres. As

important participants in the antitumor immune response, B cells

play a key role in the presentation of tumor antigens to T cells (32).

In this study, we explored the B cell-associated differentially

expressed gene profiles based on scRNA-seq technology and

preliminarily explored the potential clinical application value of

these genes in early bladder cancer screening and molecularly

targeted therapies by integrating TCGA and GEO datasets.

In this study, 52,721 single-cell transcriptomes from bladder

cancer and normal samples were analyzed to construct a complete
Frontiers in Immunology 14
map of the TME of bladder cancer. Seven cell types were identified

by annotation: T cells, B cells, endothelial cells, epithelial cells,

fibroblasts, NK cells, and mast cells. Cell type identification revealed

the presence of 10,967 B cells. Notably, the analysis showed that the

expression level of B cells was significantly lower in tumor tissues

than in normal tissues. It has been shown that B cells perform

differentiated functions in different cancer types (33). B cells secrete

immunoglobulins, which in turn inhibit tumor growth (34).

Kroeger et al. found clonal B-cell expansion and increased

plasmoblastoid infiltration in the tumor tissues of patients with

bladder cancer, and B cells, as antigen-presenting cells, activated
FIGURE 8

Assessment of the value of hub gene diagnosis. (A) Survival curves of 8 genes with prognostic value (B) Receiver Operating Characteristic (ROC)
curves of hub genes in the TCGA dataset.
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tumor-specific T-cell responses (35). These studies revealed an

immune-mediated relationship between B cells and the

pathogenesis of bladder cancer and that downregulation of B cell

expression in the tumor microenvironment may lead to a reduction

in the production of immune proteins, which in turn exacerbates

tumor progression. The association between downregulated B cell

expression in bladder cancer and increased bladder cancer risk

observed in this study is consistent with the above findings. This
Frontiers in Immunology 15
study provides new insights into the future development of tumor

immunotherapy and highlights the importance of fully considering

the role of B cells in tumors.

In addition, GO enrichment analysis showed that B cell marker

genes were significantly enriched in five immune-related pathways:

immunoglobulin production, production of molecular mediators of

the immune response, B cell-mediated immunity, B cell-mediated

immunity, immunoglobulin-mediated immune response, and
FIGURE 9

(A) TCGA dataset showed that the expression of VCL, FLNA, THBS1, TAGLN, ACTA2, COL6A2, and CALD1 were down-regulated in the tumor samples
as compared to normal samples. (B) Analysis of the GSE37815 dataset revealed that VCL, FLNA, TAGLN, ACTA2, COL6A2, and CALD1 was
downregulated in tumor samples compared to normal tissues, whereas THBS1 showed no significant difference. The Wilcoxon rank-sum test was
used to assess discrepancies between the different samples. Each p-value is written above the box plots (NS: p > 0.05, *: p < 0.05, **: p < 0.01, ***:
p < 0.001, and ****: p < 0.0001). (C) Validation of the expression of the six genes in the Human Protein Atlas (HPA) database showed that their
expression levels were significantly lower in the tumor samples than in the normal group.
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immunoglobulin complex. KEGG results showed that marker genes

were significantly enriched in the B-cell receptor signalling

pathway, a pathway in which B cells are activated to function. B-

cell pseudotemporal trajectory analyses revealed dynamic changes

in gene expression over time. These genes were classified into four

functional clusters involved in lymphocyte-mediated immunity,

protein folding, immunoglobulin, and cytoplasmic translation

processes. Intercellular communication network analysis revealed

a close association between ligands and receptors in different cells,

in which cytokines mainly interact through the FN1 (Fibronectin 1)

signalling pathway, a finding that highlights the value of FN1 as a

potential biomarker for bladder cancer. Heat map analysis further

showed that the expression of genes related to the FN1 signalling

pathway was mainly reflected in the interaction between fibroblasts

and epithelial cells.

Evidence suggests that FN1 positively regulates the proliferation

and migration of a variety of cancer cells and has been identified as a

biomarker for a number of cancers, including gastric cancer (36)

and cervical cancer (37). Targeted inhibition significantly reduces

the proliferation, invasive ability, and metastatic potential of cancer

cells. Zhang et al. revealed that FN1 may be involved in the

development and progression of bladder cancer and has potential

as a prognostic marker and therapeutic target for bladder cancer

(38). In this study, we confirmed the critical role of FN1 in bladder

cancer through in-depth analyses, identified it as a potential

oncogenic pathway in bladder cancer, and elucidated its

functional mechanism in fibroblasts. Additionally, our study

found that FN1 exhibits strong protein-protein interactions with
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six proteins, including VCL, FLNA, TAGLN, ACTA2, COL6A2, and

CALD1. Previous studies have also reported an interaction between

FN1 and VCL, consistent with our findings (39). Based on the above

findings, the protein-protein interactions between FN1 and these six

identified biomarkers require further experimental validation.

These findings not only open a new direction for FN1-targeted

therapy but also show important research and clinical application

prospects in enhancing the effectiveness of cancer immunotherapy

and deepening the knowledge of the dynamic role and molecular

mechanisms of FN1 in cancer.

Next, the TCGA bladder cancer dataset was analyzed for

differences. Subsequently, immune-related genes were screened

using WGCNA in the GEO dataset. Finally, six B-cell marker

genes (VCL, FLNA, TAGLN, ACTA2, COL6A2, and CALD1) that

were downregulated in bladder cancer were screened using the PPI

network, survival curves, ROC curve analysis, and expression

validation. Previous studies have shown that Vinculin (VCL)

expression is downregulated in bladder cancer with tumor

suppressor gene properties (40), which is consistent with the

results of the present study. Wu et al. further confirmed that VCL

can be used as a potential protein marker for bladder cancer (41)

and provided strong support for the results of this study. Filament

protein A (FLNA) plays a key role in the development of blood

vessels, heart, and brain organs, particularly in the formation of

intercellular contacts and adherent junctions (42). It has been

demonstrated that the expression level of FLNA is significantly

reduced in bladder cancer tissues and that FLNA overexpression

can effectively inhibit the proliferation, invasion, and metastasis of
FIGURE 10

RT-qPCR validation of six key genes (VCL, FLNA, TAGLN, CALD1, ACTA2, and COL6A2) was performed in cell lines. The results showed that these
genes were significantly downregulated in bladder cancer cells. Statistical significance is indicated above the bars in the histogram (NS: p > 0.05, *: p
< 0.05, **: p < 0.01, ***: p < 0.001, and ****: p < 0.0001).
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bladder cancer cells (43), corroborating the results of the present

study. Transglutamine protein (TAGLN) is an important actin-

associated protein, which has been found to be expressed at

significantly reduced levels in a variety of cancers, including

prostate cancer. Based on this feature, TAGLN is widely

considered to have tumor suppressor effects (44), and further

studies have shown that TAGLN may not only serve as a

potential diagnostic biomarker for bladder cancer (BCa), but may

also be a promising therapeutic target (45). The actin alpha 2

(ACTA2, actin alpha 2) gene is primarily responsible for encoding

smooth muscle alpha-actin, an essential component of the

cytoskeleton, which plays a central role in key biological

processes, such as cell contraction, migration, and signal

transduction (46). Previous studies have shown that ACTA2 is
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one of the pivotal genes closely associated with the immune

response in muscle invasive bladder cancer (MIBC) (47), which

not only reveals the important role of ACTA2 in the development of

MIBC but also provides a new research direction for an in-depth

unders tanding of the mechanism of tumor immune

microenvironment regulation. The collagen type VI alpha 2 chain

(COL6A2) gene is an important component of the three alpha

chains encoding collagen type VI. Recent studies have shown that

COL6A2 plays a key role in many tumors, especially lung

adenocarcinoma, and its expression level can be used as a

prognostic predictor and a potential marker for targeted therapies

(48). Notably, through an in-depth study of bladder cancer tissues,

Piao et al. found that the mRNA expression level of COL6A2 was

significantly downregulated in both non-muscle-invasive bladder
FIGURE 11

RT-qPCR validation of six key genes (VCL, FLNA, TAGLN, CALD1, ACTA2, and COL6A2) was performed in tumor tissues and adjacent normal tissues
from bladder cancer patients. The histogram shows that all six genes were significantly downregulated in tumor tissues. Differences between tumor
and adjacent normal tissues were assessed using the Wilcoxon rank-sum test, and statistical significance is indicated above the bars in the
histogram. (NS:p > 0.05;:p < 0.05;:p < 0.01;:p < 0.001;****:p < 0.0001).
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cancer (NMIBC) and muscle-invasive bladder cancer (MIBC) tissue

samples compared to that in normal bladder tissues (49), which is

consistent with our findings. Caldesmon 1 (CALD1) is an important

cytoskeleton-associated protein that affects cell morphology and

migration capacity by regulating the dynamic balance of actin

filaments (50). Recent studies have revealed that CALD1 not only

serves as a prognostic biomarker for bladder cancer but may also

contribute to its progression of bladder cancer by participating in

the remodelling process of the tumor microenvironment. Further

studies have shown that the expression of CALD1 is significantly

correlated with immune cell infiltration in bladder cancer, which

provides a new perspective for understanding the regulation of the

tumor immune microenvironment (51).

Although the detection of downregulated genes in clinical

practice presents certain challenges, they can still serve as reliable

biomarkers, and their clinical feasibility has been supported by

multiple lines of evidence. First, the principle of “loss indicates

abnormality” suggests that the reduced expression of tumor

suppressor genes itself can indicate pathological changes. This

mechanism is exemplified by classical tumor suppressors such as

TP53, the “guardian of the genome,” which regulates the cell cycle,

DNA damage repair, and apoptosis (52), and whose dysfunction or

downregulation is implicated in over 50% of human tumors (53).

Although the downregulated genes in our study were not classical

tumor suppressors, their reduced expression may similarly contribute

to bladder cancer development, supporting their potential as

diagnostic biomarkers or therapeutic targets. Consistently, previous

studies have shown that downregulated genes can serve as prognostic

biomarkers and immunotherapy targets. For example, SOX7 is

downregulated in colorectal cancer, and its low expression

correlates with poor prognosis (54). Second, the detection of

downregulated genes can be achieved through several approaches,

including: (1) highly sensitive RNA quantification techniques (e.g.,

RT-qPCR), which allow accurate discrimination even at low

expression levels; (2) protein-level assessment of functional loss,

such as immunohistochemistry (IHC) detection of PTEN loss,

which is widely used as a prognostic indicator in prostate cancer

(55, 56); and (3) epigenetic markers such as DNAmethylation, which

provide stable signals, exemplified by the FDA-approved colorectal

cancer screening test Epi proColon®, based on SEPT9 promoter

methylation (57). Collectively, these findings suggest that although

downregulation itself may be difficult to capture directly, its

associated transcriptomic, proteomic, and epigenetic alterations can

be transformed into stable and detectable biological signals.

Therefore, the six genes identified in our study as negatively

associated with bladder tumors may represent promising diagnostic

biomarkers and potential therapeutic targets for clinical application.

This study has made significant progress in constructing a B

cell-based prognostic model for bladder cancer and its tumor

microenvironment. However, this study had limitations. First,

although the B cell prognostic model developed using public

datasets demonstrated good predictive performance, its clinical

utility requires validation through large-scale prospective clinical

studies. Second, due to limitations in data availability, the sample

size included in this study was relatively small; future multi-
Frontiers in Immunology 18
center, large-cohort studies are needed to further assess the

robustness of the model. Finally, although we confirmed the

expression levels of key prognostic genes and their associations

with patient outcomes using public clinical data and RT-qPCR

experiments, in-depth functional studies on these genes have not

yet been conducted. Therefore, in future studies, we plan to

employ systematic gene editing and functional assays to

elucidate the molecular mechanisms of these key genes in

bladder cancer progression, providing a stronger theoretical

foundation for clinical applications.
5 Conclusion

In this study, we constructed single-cell transcriptome profiles of

bladder cancer using scRNA-seq, and explored the role of B cells in

cell trajectories, transcription factor regulatory networks, and

intercellular communication mechanisms. By integrating single-cell

samples with TCGA and GEO data, six immune cell-associated genes

closely related to B cells, with significant differences, were successfully

identified. These findings suggest six potential molecular targets for

bladder cancer treatment. Although the specific mechanisms of

action of these genes need to be validated by further studies, these

results are important for an in-depth understanding of the molecular

mechanisms of bladder cancer pathogenesis.
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