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Integrated multi-omics profiling
to establish an IGFBP-based
prognostic score for pancreatic
ductal adenocarcinoma:
unraveling prognostic
biomarkers, immune
microenvironment crosstalk,
and therapeutic implications
Xiao Guan †, Yongrun Mu †, Xin Jin † and Chengfeng Wang*

State Key Lab of Molecular Oncology and Department of Pancreatic and Gastric Surgery, National
Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China
Background: Pancreatic ductal adenocarcinoma (PDAC) is accompanied by

endocrine dysfunction, particularly involving dysregulation of the insulin and

insulin-like growth factor (IGF) signaling pathways. Clinical manifestations such as

hyperglycemia and insulin resistance are common and have been linked to aberrant

expression of insulin-like growth factor-binding proteins (IGFBPs). However, the

specific roles and mechanisms of IGFBP family genes in PDAC remain unclear.

Method: We conducted a multi-dimensional integrative analysis using publicly

available PDAC cohorts, stratifying patients based on IGFBP gene expression

profiles. A prognostic model was constructed to classify patients into risk groups.

To explore the biological mechanisms underlying IGFBP involvement in PDAC,

we further incorporated single-cell transcriptomic sequencing and spatial

transcriptomic data to investigate the relationship between IGFBP expression

and the tumor immune microenvironment.

Result:Our prognostic model effectively stratified PDAC patients into distinct risk

categories with significant survival differences. High-risk patients demonstrated

specific IGFBP expression patterns associated with aggressive tumor biology.

Single-cell and spatial transcriptomic analyses revealed that IGFBP family genes

modulate immune cell infiltration and spatial immune heterogeneity within the

tumor microenvironment.

Conclusion: This study identified the IGFBP family genes as key modulators of

PDAC progression and immune landscape remodeling. These findings supported

the potential of IGFBP family genes as prognostic biomarkers and therapeutic

targets, offering new insights into PDAC biology and opportunities for

personalized treatment strategies.
KEYWORDS
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most

lethal malignancies, characterized by a high mortality rate and rapid

progression (1–4). Current projections estimate that PDAC will

become the second leading cause of cancer-related deaths worldwide

by 2030 (5–7). A major clinical challenge lies in the fact that most

PDAC patients are diagnosed at advanced stages, often beyond the

optimal window for surgical intervention, rendering curative resection

infeasible (8). The disease’s insidious onset, absence of early symptoms,

aggressive invasiveness, and high metastatic potential significantly

hinder early diagnosis and effective treatment (9). Compounding the

difficulty, PDAC shows limited responsiveness to immunotherapy and

inherent resistance to radiotherapy, contributing to poor clinical

outcomes and dismal prognosis (10).

Currently, carcinoembryonic antigen (CEA) and carbohydrate

antigen 19-9 (CA19-9) are the most commonly used clinical

biomarkers for pancreatic cancer. However, their limited sensitivity

and specificity, especially for early-stage disease, reduce their diagnostic

utility (11). These markers often remain within normal ranges during

the early phases of PDAC and only exhibit abnormal elevations at

advanced disease stages (12). Thus, to improve the prognosis and

overall quality of life for PDAC patients, it is imperative to investigate

the molecular mechanisms underlying disease progression and to

identify novel therapeutic targets and biomarkers.

The pancreas, uniquely composed of both endocrine and

exocrine compartments (13, 14), exhibits anatomical and

functional integration through overlapping blood supply and

paracrine signaling (15, 16). Accumulating evidence suggests that

interactions between these two systems may play a pivotal role in

PDAC initiation and progression (17–19). For instance, in obese

individuals, pancreatic b-cells have been shown to secrete

cholecystokinin, which promotes tumor development (16).

Conversely, PDAC cells release adrenomedullin-rich exosomes

that induce b-cell apoptosis, contributing to endocrine

dysfunction (20). Additionally, endocrine-disrupting compounds

and hormones secreted by pancreatic endocrine cells have been

implicated in the pathogenesis of PDAC (17, 21).

Among these molecular mediators, the insulin-like growth factor-

binding protein (IGFBP) family has emerged as a crucial modulator.

IGFBPs influence tumor growth, metastasis, and therapeutic resistance

through both IGF-dependent and IGF-independent pathways, thereby

contributing to PDAC progression (22, 23). These findings underscore
Abbreviations: PDAC, Pancreatic ductal adenocarcinoma; IGF, onsulin-like

growth factor; IGFBP, IGF-binding protein; CEA, Carcinoembryonic antigen;

CA19-9, Carbohydrate antigen 19-9; TCGA, The Cancer Genome Atlas; PCA,

Principal Component Analysis; TME, Tumor microenvironment; DEGs,

Differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto

Encyclopedia of Genes and Genomes; GSVA, Gene Set Variation Analysis;

LASSO, Least Absolute Shrinkage and Selection Operator; TMB, Tumor

mutation burden; IC50, Half-maximal inhibitory concentration; ROC, Receiver

operating characteristic; DCA, Decision curve analysis; MIA, Multimodal

Intersection Analysis; HR, Hazard ratio; CI, Confidence interval; mIHC, Multi-

color immunohistochemistry; CM, Conditioned medium.
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the biological complexity of PDAC and highlight the potential

importance of the IGFBP family in tumor biology.

In this study, we conducted a comprehensive bioinformatics

analysis of IGFBP family genes in PDAC. Based on IGFBP

expression profiles, we established novel molecular subtypes of

PDAC and stratified patients into risk-based categories. Furthermore,

we integrated data from the tumor immune microenvironment,

revealing immunological mechanisms potentially influenced by

IGFBP activity. Taken together, our findings provide new insights

into the role of IGFBPs in PDAC and lay the groundwork for

developing more precise diagnostic tools and therapeutic strategies

for this highly aggressive cancer.
Methods

Data collection

Gene expression profiles and clinical data for PDAC were

obtained from The Cancer Genome Atlas (TCGA) and GSE62452

datasets. All non-PDAC pathological subtypes were excluded. Gene

expression data were standardized, and patients lacking complete

survival or clinical information were removed from the analysis.

GSE202051 and GSE235315 were used for single-cell RNA

sequencing and spatial transcriptomics analyses and were sourced

from the Gene Expression Omnibus database.
Clustering analysis based on IGFBP family
genes

Seven IGFBP family genes were selected for analysis. Patients were

stratified into molecular subgroups using a consensus unsupervised

clustering algorithm implemented in the “ConsensusClusterPlus” R

package. We determined the optimal number of clusters using the

elbow method. Clusters with high intra-group correlation and low

inter-group correlation were retained for further analyses.
Multi-omics characterization of IGFBP-
based subtypes

To validate the clustering results, Principal Component Analysis

(PCA) was performed. Clinical characteristics were compared across

subtypes, followed by Kaplan-Meier survival analysis to assess

prognostic differences. The tumor microenvironment (TME) was

analyzed across subtypes using various immune-related scores, and

box plots were generated to visualize TME score distributions.
Differential analysis and functional
enrichment

Differentially expressed genes (DEGs) between subtypes were

identified. Functional enrichment analyses, including Gene

Ontology (GO), Kyoto Encyclopedia of Genes and Genomes
frontiersin.org
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(KEGG), and Gene Set Variation Analysis (GSVA), were conducted

to explore the biological differences among subtypes.
Clustering based on prognostic genes and
risk model construction

Univariate Cox regression was applied to screen for

prognostically relevant DEGs. Clustering analysis was repeated

using these genes, and survival differences were reassessed. Least

Absolute Shrinkage and Selection Operator (LASSO) regression was

applied in the TCGA cohort to construct a prognostic model, which

was validated using the GSE62452 cohort. Patients were divided

into high-risk and low-risk groups based on the median risk score,

and their association with IGFBP-based subtypes was evaluated.
Multi-omics analysis of the prognostic
model

We assessed correlations between risk scores and clinical

variables, and further analyzed TME characteristics using

immune cell infiltration data. Patients were classified into

immune subtypes to explore the relationship between risk score

and immune phenotype. Tumor mutation burden (TMB) was

calculated using somatic mutation data, and survival analyses

were conducted after stratifying patients by TMB and risk score.

The “pRRophetic” package was used to estimate the half-maximal

inhibitory concentration (IC50) of various chemotherapeutic agents

across the risk groups (24, 25).
Nomogram construction and validation

A prognostic nomogram integrating clinical variables and risk

scores was developed. Calibration curves, receiver operating

characteristic (ROC) curves, and decision curve analysis (DCA)

were used to assess the nomogram’s predictive performance and

clinical utility.
Single-cell and spatial transcriptomic
analyses

For single-cell analysis, we used the Scanpy toolkit (26). Genes

expressed in fewer than three cells and cells with <200 or >10,000

genes, fewer than 1000 total counts, or >20% mitochondrial/ribosomal

content were excluded. SCVI (https://github.com/scverse/scvi-tools)

was used to correct for batch effects. IGFBP gene expression

levels were visualized across cell types using bar plots.

For spatial transcriptomic data, the Seurat package was used for

preprocessing, including normalization, feature selection,

dimensionality reduction, and clustering. Multimodal Intersection

Analysis (MIA) was employed to infer cell type distributions across

tissue regions. Cell types were annotated based on differentially
Frontiers in Immunology 03
expressed genes in each cluster (27). CellChat was used to infer cell-

cell communication networks (28).
Statistical analysis

Continuous variables were expressed as means ± standard

deviation and compared using Student’s t-test or Mann-Whitney

U test. Univariate and multivariate Cox regression analyses were

conducted to identify independent prognostic factors, with

variables showing P < 0.05 in univariate analysis entered into

multivariate models. Hazard ratios (HRs), 95% confidence

intervals (CIs), and P-values were reported. Nomogram

performance was evaluated using ROC, calibration plots, and

DCA. All statistical analyses were conducted using R software

(version 4.3.2), and P < 0.05 was considered statistically significant.

Multi-color immunohistochemistry
Briefly, 4mm FFEP slides was de-paraffinized in the 100%

ethanol (2×2min),95% ethanol (2×2min) and rinsed in distilled

water, and immersed in citrate buffer after heat-induced epitope

retrieval. After incubation of BSA. the AlphaTSAMultiplex IHC Kit

(AXT36100031, AlphaX) was used for staining according to the

manufacturer’s Guidelines. The primary antibody and the matching

secondary antibody coupled with horseradish peroxidase (HRP)

were incubated on the slides. Primary antibodies were IGFBP3 (Cell

Signaling, Cat<ns/> <ns/>64143, 1:800), CD8 (ZSGB-BIO, Cat<ns/

> <ns/> ZA-0508, 1:600), CD68 (Abcam, Cat<ns/> <ns/> ab192847,

1:200, a-SMA (Cell Signaling, Cat<ns/> <ns/>19245, 1:1200) and

PANCK (Abcam, Cat<ns/> <ns/> ab7753, 1:200). Fluorescent

images were collected using the ZEISS Axioscan7 microscope and

analyzed by ZEISS ZEN (v3.2). The Cancer Hospital Chinese

Academy of Medical Science granted approval for the research.
CD8+ T cell migration assays

PANC-1 with IGFBP3-knockdown generated via siRNA (Santa

cruz biotechnology, sc-39587) were cultured in DMEM

supplemented with 10% fetal bovine serum under standard

conditions (37°C, 5% CO2). When cells reached 70% confluency,

the culture medium was replaced with fresh serum-free DMEM.

After 12 hours of incubation, the conditioned medium (CM) was

collected and filtered through a 0.45mm sterile filter to remove

cellular debris. The filtered CM was added to the lower chamber of a

24-well Transwell system (Corning Inc., pore size 8 mm). CD8+ T

cells were resuspended in RPMI-1640 medium at a density of 2×105

cells/200 mL and seeded into the upper chamber. The plate was

incubated for 24 hours under standard conditions to allow

chemotactic migration toward CM-derived factors. Migrated cells

on the lower membrane surface were fixed with 4% methanol-free

formaldehyde (Beyotime Biotechnology) for 30 minutes at room

temperature. Fixed cells were stained with 1% ammonium oxalated

crystal violet (Solarbio) for 30 minutes, followed by three washes

with PBS to remove excess dye.
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Results

Supplementary Figure S1 showed the flowchart of this study.
Classification of PDAC into
immunologically distinct subtypes based
on IGFBP-based clustering analysis

A total of 309 PDAC patients from the GSE62452 and TCGA

cohorts were included for further analysis. Using a consensus clustering

approach based on IGFBP family gene expression, we identified two

distinct molecular subtypes (Supplementary Figure S2), with the

optimal number of clusters determined to be k=2 (Figure 1A). These

subtypes were designated as Subtype A and Subtype B. PCA confirmed

a clear separation between the two subtypes (Figure 1B). Kaplan–Meier

survival analysis revealed that patients in Subtype A had significantly

longer overall survival than those in Subtype B (Figure 1C). However,

no significant differences in clinicopathological variables were observed

between the subtypes (Figures 1D, E).

We next assessed immune cell infiltration characteristics between the

subtypes. Subtype A exhibited a higher level of immune cell infiltration

compared to Subtype B (Figure 1F). GO enrichment analysis showed

that DEGs between the subtypes were mainly associated with

extracellular matrix organization, membrane-bound organelles, and

protein binding functions (Figure 2A). KEGG analysis indicated
Frontiers in Immunology 04
enrichment in pathways related to cell adhesion, protein processing,

and ECM-receptor interactions (Figure 2B). GSVA revealed enrichment

in apoptosis-related and immune signaling pathways (Figure 2C).
Subtype re-classification based on
differentially expressed genes

Univariate and differential expression analyses identified 1303

DEGs among the IGFBP-related subtypes. Using these genes, we re-

clustered the patients with the same consensus clustering method

(Supplementary Figure S3), determining that three clusters (k=3)

were optimal (Figure 3A). These new gene expression-based

subtypes also showed significant survival differences (Figure 3B).

Notably, the expression patterns of IGFBP family genes varied

significantly among the three subtypes (Figure 3C).
Construction and evaluation of the
prognostic model

Eight prognostic genes were selected using LASSO regression

(Figures 4A, B). Based on the median risk score calculated from the

TCGA cohort, patients were stratified into high- and low-risk groups.

Figure 4C shows the distribution of patient risk scores, IGFBP subtypes,

gene expression-based subtypes, and survival status. Subtype A (from
FIGURE 1

IGFBP subtypes and clinical evaluation. (A) Two subtypes and their associated regions. (B) PCA analysis. There was a significant difference between
the two subtypes. (C) Survival analysis. Subtype A had a poorer prognosis. (D, E) There was no difference in clinical factors between the two subtypes
in the TCGA (D) and GEO (E) datasets. (F) The two subtypes differed significantly in the invasion of immune cells. **p < 0.01; ***p < 0.001.
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IGFBP-based clustering) was enriched in high-risk patients, while

Subtype B (from gene expression-based clustering) had lower risk

scores (Figures 4D, E). A positive correlation was observed between risk

scores and RNAss values (Figure 4F), and IGFBP3 expression was

positively associated with higher risk scores (Figure 4G).

Survival analysis demonstrated that the high-risk group had

significantly worse overall survival than the low-risk group

(Figure 5A). A higher proportion of deaths was observed in the

high-risk group (Figure 5B). Time-dependent ROC analysis showed

strong predictive accuracy of the model, with AUCs of 0.783, 0.949,

and 0.922 at 1, 3, and 5 years, respectively (Figure 5D).
IGFBP-based prognostic score shows
immune landscape and tumor mutational
burden analysis of PDAC

Immune correlation analysis revealed that risk scores were

significantly associated with the infiltration of various immune cells,

including macrophages, T cells, B cells, and dendritic cells (Figure 6A,
Frontiers in Immunology 05
Supplementary Figure S4). Differential expression of immune checkpoint

genes between the risk groups further highlighted distinct immune

microenvironmental features (Figure 6B). TMB analysis identified

TP53, TTN, and MUC1 as the most frequently mutated genes in both

groups (Figures 6C, D). Survival analysis indicated that patients with low

TMB and low-risk scores had the best prognosis (Figures 6E, F).
Drug sensitivity analysis

To identify potential therapeutic agents, drug sensitivity analysis

was performed. High-risk patients were more sensitive to paclitaxel,

epothilone B, and bleomycin (Figures 7A–C), while low-risk patients

showed greater sensitivity to olaparib and veliparib (Figures 7D, E).
Nomogram development and validation

A nomogram integrating clinical variables and risk scores was

constructed (Figure 8A). Calibration curves demonstrated strong
FIGURE 2

Enrichment analysis. (A) GO enrichment analysis revealed that these genes are primarily associated with extracellular matrix, membranous organelle,
and binding protein. (B) KEGG enrichment analysis indicated that these genes were mainly related to the ECM−receptor interaction, protein
processing and cell adhesion. (C) GSVA enrichment analysis demonstrated that these genes were predominantly involved in the immune cell
signaling pathway and apoptosis. ***p < 0.001.
FIGURE 3

Cluster analysis. (A) Dividing patients into three subtypes was optimal. (B) Survival analysis. (C) The IGFBP family genes exhibit significant differences
among the various subtypes.
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agreement between predicted and observed outcomes (Figure 8B),

and decision curve analysis confirmed the clinical utility of the

nomogram (Figure 8C).
Integration of single-cell and spatial
transcriptomic analysis shows the
spatiotemporal mapping of IGFBP family in
PDAC unveils IGFBP3 hubs driving immune
evasion

Using the GSE202051 dataset, we analyzed untreated single-cell

RNA sequencing data. After batch normalization, malignant epithelial

cells were found to express elevated levels of most IGFBP genes, except

IGFBP5 and IGFBP7 (Figure 9, Supplementary Figure S5).

Following rigorous quality control, dimensionality reduction,

and clustering, we identified 18 distinct cellular subpopulations

within the spatial transcriptomic landscape (Figure 10A). IGFBP3

was consistently highly expressed across seven spatial samples

(Figure 10B). Cell types identified in the single-cell dataset were

projected onto the spatial transcriptomic data using Multimodal

Intersection Analysis (MIA), allowing the localization of specific

cell populations within tumor regions (Figure 10C). IGFBP3-high

cells were predominantly localized in epithelial cells, primarily

within the tumor core of PDAC. These IGFBP3-high regions

exhibited significant enrichment of fibroblasts and B cells in their

microenvironment. Cell–cell communication analysis revealed
Frontiers in Immunology 06
robust interactions between fibroblasts and Schwann cells via the

IGF signaling axis (Figures 10D, E).

Among the IGFBP familymembers, IGFBP3 had the highest hazard

ratio in univariate Cox regression (HR = 1.205), was highly expressed in

high-risk patients, and was thus selected for further investigation.

Interestingly, we found a significant negative correlation

between the risk score of the model and CD8+ T cell infiltration

(Figure 6A, Supplementary Figure S4). Consistent with single-cell

RNA sequencing and spatial transcriptomics data, mIHC confirmed

the presence of IGFBP3 in both tumor cells and cancer-associated

fibroblasts within the TME of PDAC (Figure 11). Since the spatial

transcriptomics platform used in this research was the 10x Visium

Cytassist version, with a resolution of 55mm, we conducted mIHC

analysis to visually demonstrate the distance between high IGFBP3-

expressing tumor cells and CD8+ T cells. Meanwhile, a higher

expression of IGFBP3 indicates a worse prognosis (Supplementary

Figure S6C) (HR 4.18 (95 CI 1.68-10.39)).

Furthermore, we designed a co-culture experiment, in which PANC-

1 cells were co-cultured with CD8+ T cells. The results showed that after

knocking down IGFBP3 in the PANC-1, the degree of CD8+ T cell

infiltration significantly increased (Supplementary Figure S6D).

In terms of spatial distance, we statistically assessed the relationship

between the expression of IGFBP3 in epithelial cells (PANCK) and the

number of infiltrating CD8+ T cells within a 200mm radius

(Supplementary Figures S6A, B). We found that tumor cells with

high IGFBP3 expression were surrounded by significantly fewer CD8+

T cells (Supplementary Figures S6A, B). In addition, spatial
FIGURE 4

Construction of the predictive model. (A, B) LASSO regression analysis. (C) Distribution of different subtypes, risk groups, and survival outcomes.
(D, E) Risk score distribution across different subtypes. (F) RNAss values are positively correlated with risk scores. (G) Relationship between IGFBP
family genes and risk scores. **p < 0.01; ***p < 0.001.
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transcriptome analysis also confirmed that CD8+T cells around tumor

cells with high IGFBP3 expression were significantly reduced

(Supplementary Figure S7). Taken together, these findings suggest

that patients with high-risk scores based on the IGFBP3-based

prognostic score could be categorized as the immune exhaustion

group, indicating that these high-risk patients may have limited

benefit from immune therapy.
Discussion

The prognosis for pancreatic cancer remains exceedingly poor. A

variety of prognostic markers have been developed, incorporating

clinical parameters, laboratory indices, and molecular biomarkers (24,

29, 30). In this study, we systematically explored the role of the IGFBP

family in PDAC through comprehensive bioinformatics analysis.

We first classified PDAC patients into two subtypes based on

IGFBP family gene expression. Subtype A was associated with a worse

prognosis. Notably, significant differences in immune cell infiltration
Frontiers in Immunology 07
and immune-related functions were observed between the subtypes.

We further identified three gene-based subtypes, and correlation

analysis revealed that these gene signatures could reflect both patient

prognosis and the characteristics of the TME. On this basis, we

constructed a prognostic model using differentially expressed genes.

The model’s predictive performance was validated by survival analysis

and ROC curves. Importantly, the risk score showed meaningful

associations with TMB, immune-related signatures, clinical features,

and drug sensitivity. We further developed a nomogram that integrated

clinical variables and risk scores, demonstrating good performance in

stratifying patients and supporting clinical decision-making.

Previous studies have highlighted the involvement of various

IGFBP family members in the progression of PDAC. IGFBP1 has

been found to be highly expressed in PDAC livermetastases, suggesting

its potential as a clinical biomarker. Due to its role in tumor

progression, IGFBP2 has also been studied extensively as a tumor

biomarker (31). Xu et al. reported that plasma IGFBP2 levels in PDAC

patients were significantly higher than those in patients with chronic

pancreatitis, adenitis, or healthy individuals, and this elevation was
FIGURE 5

Model evaluation. (A) The median risk score was used to categorize the patients into high- and low-risk groups. (B) The percentage of PDAC
patients who passed away rose in tandem with the risk value. (C) Patients with high-risk scores had a poorer prognosis. (D) ROC curve. The 1-, 3-,
and 5-year AUC were 0.783, 0.949, and 0.922, respectively.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1600527
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Guan et al. 10.3389/fimmu.2025.1600527
FIGURE 6

Model multi-omics analysis. (A) The infiltration levels of immune cells exhibited significant differences. (B) Variations in checkpoint gene expression
levels between the two groups. (C, D) The frequency of gene mutations in the high (C) and low (D) risk groups. (E, F) Survival analysis. H-TMB had a
poor prognosis. * p < 0.05; ** p < 0.01; *** p < 0.001.
FIGURE 7

Drug sensitivity analysis. Sensitive drugs in high (A–C) and low (D, E) risk groups.
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associated with poor overall survival (32). Huang et al. demonstrated

that pancreatic cancer cells secrete IGFBP3 to induce muscle atrophy,

which may contribute to cancer cachexia in patients with advanced

PDAC (33). IGFBP5, a potential regulator of cell proliferation, is

overexpressed in PDAC and may play a critical role in the malignant

transformation of normal pancreatic epithelial cells (34). In another

study, Han et al. found that GSG2 knockout upregulated IGFBP6

expression, thereby inhibiting the proliferation, colony formation, and

migration of pancreatic cancer cells (35). IGFBP7, which is

downregulated in PDAC, functions as a tumor suppressor in various

cancers. Its low expression has been linked to increased cellular

proliferation and poor postoperative outcomes (36). In our study, we

comprehensively integrated all IGFBP family genes to develop a

prognostic model, offering new insights into their collective role in

PDAC progression and prognosis.

Although the IGFBP family was initially believed to function

merely as passive carriers of free IGFs, emerging evidence suggests
Frontiers in Immunology 09
that their biological roles extend beyond the endocrine transport of

IGFs. Several IGFBPs have been reported to exhibit IGF-independent

cellular functions, such as promoting cell migration without activating

the IGF1 receptor (37). For instance, exogenous IGFBP3 has been

shown to significantly inhibit the growth of human breast cancer cells

through unique interactions with cell surface proteins (38). In

pancreatic cancer, the abundant stromal compartment plays a pivotal

role in regulating IGFBP expression (39). This stroma is rich in

proteases capable of degrading IGFBPs, leading to elevated levels of

free IGFs in the tumormicroenvironment and consequently enhancing

oncogenic IGF signaling (40). These biological insights underscore the

rationale for incorporating IGFBP family genes into our prognostic

model, aiding in the understanding of tumor biology in PDAC.

Tumor immune evasion is a well-recognized hallmark of cancer

progression (41). The dynamic interaction between the immune

system and tumor cells plays a crucial role in determining disease

outcome (42). Factors such as tumor-infiltrating lymphocytes, TMB,
FIGURE 8

Nomogram construction and evaluation. (A) Nomogram. (B) Calibration curve. (C) DCA curve.
FIGURE 9

Single cell analysis. Cell Annotation and expression of IGFBP family genes in 12 cell types.
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and immune checkpoint receptor expression are considered key

predictors of immunotherapy efficacy (43). The PDAC TME is

characterized by high immunogenicity but low immunoreactivity,

marked by inadequate immune activation and pronounced immune

suppression (44). Immunotolerance can arise during any stage of

tumor development and is maintained or intensified via various
Frontiers in Immunology 10
mechanisms, serving as a major obstacle to effective tumor immunity

(45, 46). In our study, immune cell infiltration analysis revealed that

immune activity was predominantly associated with the low-risk

group. Furthermore, the risk score demonstrated a positive

correlation with tumor purity and a negative correlation with

mutational load. We also observed that several key immune
FIGURE 10

Spatial transcriptome analysis. (A) Cell clustering. (B) Expression of IGFBP3 across 7 samples. (C) Cell annotation. (D, E) Cell communication analysis.
(F) IGF pathway analysis.
FIGURE 11

The multiplex immunohistochemistry staining demonstrated the distribution of IGFBP3 in the tumor immune microenvironment of PDAC, showing
its presence in both cancer-associated fibroblasts and tumor cells.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1600527
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Guan et al. 10.3389/fimmu.2025.1600527
checkpoint genes were upregulated in the low-risk group, suggesting a

more immunogenic profile that may benefit more from immune

checkpoint blockade therapies. These findings highlight the potential

of our model to guide immunotherapy strategies in PDAC patients.

In addition, TMB has been reported as a predictive marker for

response to immune checkpoint inhibitors (47). Mutations in TP53,

often induced by carcinogenic exposures, are independently associated

with poor clinical outcomes (48). Consistent with previous reports, our

analysis showed a significantly higher TP53 mutation rate in the high-

risk group, further reinforcing the model’s prognostic validity and its

potential to inform treatment selection.

One of the long-standing challenges in PDAC treatment is drug

resistance, particularly in advanced-stage disease. To address this, we

investigated potential therapeutic agents based on the risk

stratification provided by our prognostic model, aiming to improve

drug sensitivity and treatment efficacy. Recent advances in single-cell

sequencing and spatial transcriptomics have revolutionized cancer

research by enabling high-resolution exploration of gene expression.

In our study, we identified considerable heterogeneity in IGFBP gene

expression at the single-cell level, revealing complex expression

patterns within different cell populations. Spatial transcriptomics

further demonstrated that IGFBP3 expression varies across tumor

subregions and microenvironmental contexts, indicating its

regulation by diverse cellular components.

Notably, IGFBP3 appears to be a promising therapeutic target

due to its high expression in PDAC. IGFBP3 is the most abundant

IGFBP in adult serum, yet its role in PDAC has not been fully

elucidated. Our integrated analysis using TCGA and GEO datasets

revealed that IGFBP3 exhibited the highest tumor-specific

expression and prognostic relevance among all IGFBP family

members. Subsequent evaluation of the tumor immune

microenvironment showed that IGFBP3 is primarily expressed in

tumor cells and cancer-associated fibroblasts. This finding is

consistent with our single-cell sequencing data, which also

revealed that IGFBP3-high tumor cells tend to be spatially distant

from CD8+ T cells, implying potential involvement in immune

evasion mechanisms.

Despite the promising findings, our study has certain

limitations. The prognostic model was developed and validated

using retrospective public datasets, and prospective clinical

validation is needed to confirm its generalizability. Moreover,

functional validation was limited to the cellular level. In future

work, we aim to expand upon these findings through in vivo

experiments and clinical studies to further substantiate the role of

IGFBP3 and refine its application in PDAC management.
Conclusion

Based on the IGFBP family, we developed a robust prognostic

model for PDAC and further integrated clinical parameters to

construct a nomogram, which demonstrated strong predictive

performance. This model enables accurate estimation of patient

prognosis and characterization of TME. Moreover, the insights

gained from our study may provide a foundation for novel
Frontiers in Immunology 11
therapeutic strategies and contribute to the advancement of

personalized treatment in PDAC.
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Cluster analysis. Heatmap of cellular senescence genes using cluster analysis

(k = 3-9).
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Cluster analysis.Heatmapofcellular senescencegenesusingcluster analysis (k=2, 4-9).
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Immunoassay of the model.

SUPPLEMENTARY FIGURE 5

Single cell analysis. IGFBP family genes expression in 12 cell types.

SUPPLEMENTARY FIGURE 6

Tumor cells with high IGFBP3 expression were surrounded by significantly fewer
CD8+ T cells. A and B, mIHC analysis demonstrated that there was a relatively low

level of CD8+ T cell infiltration around the IGFBP3-high epithelium. C, Kaplan-

Meier survival analysis suggested that a high expression of IGFBP3 was associated
with a poor prognosis. D, Knocking down IGFBP3 in the Panc1 cell line

significantly increased the infiltration level of CD8+ T cells.

SUPPLEMENTARY FIGURE 7

CD8+T cells around tumor cells with high IGFBP3 expression were

significantly reduced.
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Niewiński A, et al. Expressions of Matrix Metalloproteinases 2, 7, and 9 in
Carcinogenesis of Pancreatic Ductal Adenocarcinoma. Dis Markers. (2016)
2016:9895721. doi: 10.1155/2016/9895721
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