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Introduction: The existing Interferon g release assay (IGRA) tests for TB infection,

lacks utility in discriminating between active TB (ATB) and latent TB infection (LTBI).

This study evaluated the potential of eight serum cytokines/chemokines in

differentiating LTBI from ATB and as a surrogate marker for TB treatment response.

Methods: We quantified and compared the serum levels of pro-inflammatory

cytokines (TNF-a, IFN-g, IL-12p70, IL-17A, Granzyme B) and anti-inflammatory

cytokines (IL-10, IL-6, IL-4) among LTBI, ATB, and healthy controls using the

Human Magnetic Luminex™ 200 system. Serum cytokine/chemokine levels

were also assessed at four timepoints before and during TB treatment.

Results: Among ATB cases, there were twice as many males (69%) as females

(30%), with infectivity spanning a wide age range. IFN-g, IL-6, IL-10, IL-4, and IL-

17A levels were higher in LTBI compared to ATB. IL-12p70 was found to be a

good discriminant between ATB and LTBI (21-fold increase in ATB compared to

LTBI, p < 0.05) but it did not have a good predictive potential for treatment (follow

up). The predictive potential of TNF-a, IL-6, IL-10, IFN-g, IL-4, IL-17A, Granzyme

B and IL-12p70 to differentiate between ATB and LTBI using AUROC was 57%, 98

%, 91%, 100%, 100%, 97%, 66% and 100% respectively.

Discussion: These findings confirm reports from other studies in different

settings that LTBI and ATB express differential cytokine profiles that can be

exploited as diagnostic biomarkers. Of note, the quantitative estimation of IL-

12p70 may serve as a valuable marker for monitoring disease progression and

treatment success in tuberculosis.
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1 Introduction

Tuberculosis is a chronic infectious disease usually caused by

the bacteria Mycobacterium tuberculosis (MTB), one of the seven

closely related members of the Mycobacterium tuberculosis

complex. The bacteria usually persist in its host in an

asymptomatic state of latency aptly described as latent

tuberculosis infection (LTBI). Favored by immunosuppressive

factors such as age, drugs as well as diseases from infectious and

non-infectious agents, LTBI may progress to active tuberculosis

(ATB) over a month to several decades (1).

Current efforts to control tuberculosis include enhanced

diagnostics, access to screening tools, and successful patient care

(2). Tuberculosis transmission mathematical models show that the

effectiveness of active case finding as a strategy for control of TB

depends on the ability to detect TB at the early or subclinical phase

of infection (3). Furthermore, it is recognized that early diagnosis is

the most successful method for the management of ATB, because

early TB therapy accelerates bacilli clearance in infected individuals

to non-infectious, therefore blocking the chain of tuberculosis

transmission (4). Diagnosing and treating latent tuberculosis (TB)

infection (LTBI) is an important strategy to accelerate the decline in

global TB burden and achieve TB elimination by 2030 (5).

Treatment with INH is limited by the perception that the risk of

toxicity for treating latent tuberculosis is greater than the

reactivation to ATB (6).

With no Gold standard test for LTBI, the diagnostic methods

for LTBI are old tuberculin skin test (TST) (7), and the relatively

new interferon-g release assays (IGRA), commercially available as

QuantiFERON-TB and the T-SPOT.TB assay. The IGRA assay has

a higher sensitivity compared to the TST, especially in Bacillus

Calmette–Guerin (BCG) vaccinated individuals (8, 9). These assays

detect prior immune response to M. tb antigens and do not directly

detect the presence of viable bacilli (10). QuantiFERON Gold test

(QFT) based on the whole blood aided enzyme-linked

immunosorbent assay (ELISA) and the T-SPOT.TB test based on

the peripheral blood mononuclear cell (PBMC) aided enzyme-
Abbreviations: MTB, Mycobacterium tuberculosis; TB, Tuberculosis; ATB,

Active tuberculosis; LTB, Latent tuberculosis; LTBI, Latent tuberculosis

infection; HC/no TB, Healthy tuberculosis control; INH, Isoniazid; IL,

Interleukin; IGRA, Interferon-gamma Release Assays; IFN, Interferon; TNF,

Tumor Necrosis Factor; CI, Confidence interval; P, Level of significance; NS,

No significant difference; DNA, Deoxyribonucleic acid; TLR, Toll-like receptor;

MHC, Major Histocompatibility complex; RD, Region of difference; CD, Codon

of differentiation; ESAT, Early secretory antigenic target; CFP, Culture fluid

protein; ROC, Receiver Operating Characteristic; AUC, Area Under ROC curve;

SD, Standard Deviation; TST, Tuberculin Skin Test; PPD, Purified Protein

Derivative; Ag, Antigen; Ab, Antibody; KO, Knock off; NK cell, Natural killer

cell; PRR, Pattern Recognition Receptor; BCG, Bacillus Calmette–Guerin; ELISA,

Enzyme-linked immunosorbent assay; PBMC, Peripheral blood mononuclear

cell; CFP, Culture filtrate protein; RD 1, Region of difference 1; NAA, Nucleic acid

amplification; LAMP, Loop-mediated isothermal amplification; WHO, World

Health Organisation; QFT-GIT, QuantiFERON tuberculosis gold-in-tube; HIV/

AIDS, Human Immunodeficiency Virus/Acquired Immunodeficiency syndrome.
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linked immunospot assay are the two IGRAs identified

commercially. Both IGRAs use the 6 kDa early secretory antigen

target (ESAT-6) and 10 kDa culture filtrate protein (CFP-10)

encoded region of difference 1 (RD1) as antigens (11).

Mycobacterial culture or nucleic acid amplification (NAA),

including Xpert MTB/RIF and loop-mediated isothermal

amplification (LAMP) assays are currently the gold standard tests

for diagnosing active tuberculosis (12–14). Acid-fast bacillus smear

-negative patients who cannot produce sputum spontaneously are

usually diagnosed by sputum induction and/or bronchoscopy (15).

However, as a limitation, IGRAs do not distinguish between ATB

and LTBI especially in children (16, 17). Furthermore, there is

decreased sensitivity and specificity for IGRAs, showing that a

single biomarker IFN-g may not be likely to fulfill the urgent

criteria for accurate distinction between ATB and LTBI (18).

Therefore, in addition to IFN-g, it is imperative to identify other

cytokines/chemokines that can discriminate between ATB and

LTBI as well as expand existing immune-based diagnostic tests

for ATB (19).

In 2022, the WHO Africa region reported the second largest

number of new cases of TB (23%) after South-East Asia (46%) (20).

In addition, TB prevalence in Ghana currently stands at 286 per

100,000 population (21), a threefold increase from the previous

estimate of 90 per 100,000 population. However, case detection in

Ghana remains low and active case finding would be much easier

with a screening assay that can distinguish between active and latent

TB. Previous studies among 100 household contacts of TB cases in

Accra reported a prevalence of 65% using the QuantiFERON

tuberculosis gold-in-tube (QFT-GIT) test indicating a high TB

infection prevalence (22).

This study aimed to evaluate the diagnostic potential of eight

serum cytokines/cytokines in differentiating LTBI from ATB cases

in Ghana.
2 Materials and methods

2.1 Study participants and sampling

Serum samples from 71 participants comprising 46 active TB

cases, 13 latent TB cases and 12 healthy controls with no TB

infection were used. The latent and active TB cases were recruited

from two primary health care facilities in Ghana: The Achimota and

Maamobi General Hospital by convenient sampling. Newly

diagnosed TB patients at the two facilities were introduced to the

study before initiation of TB treatment. The study was explained to

them in the local language or in English using the information sheet

from the consent form. Those who consented to participate in the

study were then asked to fill the consent form and append their

signature or thumb print. The form was also witnessed by a relative

of the participant. The first sample was taken prior to initiation of

anti TB therapy. Household contacts of active TB cases were invited

and informed about the study and those who met the edibility

criteria and agreed to participate were also recruited into the study

using written informed consent. All active TB cases were confirmed
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by a positive sputum smear microscopy using the auramine stained

fluorescence microscopy technique in addition to clinical

manifestations. Latent TB cases were defined as asymptomatic

household contacts of recruited active TB patients with

QuantiFERON-TB positive results. QuantiFERON-TB negative

participants were considered as healthy controls (no TB infection)

using the QuantiFERON-TB Gold test (Cellestis) and the QFT-GIT

Analysis Software according to manufacturer’s instructions. In

summary blood samples (2–5 ml) were collected in plain tubes.

After 30–60 minutes at room temperature, samples were

centrifuged at 1,500 rpm for 15 minutes and the resulting sera

was stored at -80°C until analysis. Blood samples of ATB patients

were taken at four (4) different time points. Serum samples were

taken at baseline (before initiation of anti-TB therapy), at two weeks

after initiation of therapy, at the end of the second month (intensive

phase) of treatment and after 6 months or upon completion of anti-

TB therapy. Of 46 active TB cases sampled at baseline, all 46 were

available for sampling at (two) 2 weeks after TB treatment.

However, the number reduced to 31 at two months after TB

treatment and 30 were lost to follow-up at TB treatment

completion. Samples from LTBI and healthy controls were taken

once. ATB and LTBI participants were enrolled from a TB case-

contact study (Study Number: 114/15-16). Participants less than 18

years old, relapse and ATB patients undergoing retreatment, HIV/

AIDS, cancer and patients on steroid therapy were excluded from

the study. Samples were blinded for all patient information except

study number and sampling day until after testing. The recruitment

and sampling process and timelines are shown in the flow

chart (Figure 1).
2.2 Quantification of serum cytokines

Cytokine quantification was performed by multiplexing using

the Luminex™ 200 system (Luminex, Austin, TX, USA) following

manufacturer’s instructions.

In summary, all reagents were brought to room temperature. All

standards and samples were assayed in duplicate. Microparticles

(microspheres or beads) and Streptavidin-Phycoerythrin

(streptavidin-PE) were always protected from light. All reagents,

standards, and samples were prepared as directed by the instruction

manual prior to use. A 96-well plate template was prepared for the

blank, standards, and the unknown samples. Fifty microliters

(50µL) of blank, standards or samples were added per well

according to the prepared plate template (attachment) after which

50µL of the diluted microparticle cocktail was added to each well of

the plate after vortexing. The 96-well plate was securely covered

with a foil plate sealer. The plate was incubated for 2 hours at room

temperature on a horizontal orbital microplate shaker set at 800

revolution per minute (rpm). With reference to the magnetic device

user manual for proper washing technique, the 96-well plate was

washed three times using a magnetic device designed to

accommodate a microplate after 2 hours incubation. After

washing, 50µL of diluted biotin-detection antibody cocktail was

added to each well of the plate. The plate was securely covered with
Frontiers in Immunology 03
a foil plate sealer and was incubated for one hour at room

temperature on an orbital plate shaker. The plate was washed

three times after one hour incubation and then 50µL of diluted

streptavidin-PE was added to each well of the plate. The plate was

securely covered with foil plate sealer and incubated for 30 minutes

at room temperature on an orbital plate shaker. After 30 minutes of

incubation, the plate was washed 3 times. The microparticles were

resuspended by adding 100µL of wash buffer to each well of the

microplate well and the microplate was incubated for 2 minutes on

an orbital microplate shaker set at 800 rpm. The plate was read

within 90 minutes using a Luminex 200 analyzer.
2.3 Statistical analysis

Test outcomes were saved in Microsoft Excel 2020 (Microsoft

Corp., Washington, USA) prior to analysis using Prism version

8.4.3 (GraphPad Software, Inc.). To compare the median cytokine/

chemokine levels as well as longitudinal changes in median cytokine

levels, Kruskal–Wallis or One-way ANOVA, was used for data

involving three groups whereas Mann–Whitney U test was used for

data comparison between two groups. Both Kruskal–Wallis and

Mann–Whitney U tests were used to analyze data that were not

normally distributed. To determine the cytokines that can

discriminate active TB cases from latent TB infection, a Receiver

Operating Characteristic (ROC) curve was derived using %

sensitivity and % specificity for each cytokine and the Area Under

the curve was calculated (23). Statistical significance was set at

P-values < 0.05.
2.4 Ethical considerations

This study was approved by the Institutional Review Board of

the Noguchi Memorial Institute for Medical Research (NMIMR-

IRB (number: Study Number: 114/15-16), and the Institutional

Review Board of the School of Biomedical and Allied Health

Sciences, University of Ghana (SBAHS/AA/MLAB/10325639/

2019-2020). The archived samples used for this study were from

consented participants for whom the study was fully explained in a

local dialect and English, and written informed consent was

obtained with the information sheet clearly stating that samples

would be archived for future studies. Anonymized data were used

for analysis.
3 Results

3.1 Characteristics of participants

Serum samples from 71 participants were available for this study,

these comprised 46 active TB cases, 13 latent TB cases

(QuantiFERON TB test-positive) and 12 healthy controls with no

TB infection (QuantiFERON TB test-negative). The 46 active TB

cases included 32 (69.57%) males and 14 (30.4%) females with an
frontiersin.org
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average age of 37.7 ± 12.11 years for males and 34.9 ± 12.34 years for

females. The age range was (18 – 62) years for males and (18 – 55)

years for females. The 12 healthy control cases included 5 (41.67%)

males and 7 (58.33%) females with an average age of 34.75 ± 28.95

years for males and 21.29 ± 8.69 years for females. The age range was

(18 – 78) years for males and 18–41 years for females. The 13 Latent

TB cases comprised of 3 (23.08%) males and 10 (76.92%) females

with an average age of 30 ± 10.58 years for males and 29.33 ± 13.96

years for females. The age range was from 18–38 years for males and
Frontiers in Immunology 04
18–58 years for females. Table 1 shows the age and sex distributions

of the study groups.
3.2 Median cytokine levels among study
cohorts

The levels of each cytokine/chemokine as measured by the

multiplex assay were expressed as median concentration (pg/ml). A
FIGURE 1

Flow chart of participant recruitment and sampling.
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dot plot of each cytokine/chemokine was was generated for the

three independent study cohorts using Graph Pad Prism (v 8.4.3) as

shown in Figure 2. The levels of IFN-g, IL-6, IL-10, IL-4, IL-17A
were significantly higher in LTBI patients compared to ATB cases

(p ≤ 0.0001). Specifically, IFN-g, IL-6, IL-10, IL-4, IL-17A were

respectively 3, 2, 1.8, 3 and 2.5-fold higher in LTB. Only the levels of

IL-12p70 were significantly lower (p ≤ 0.000) in LTBI than ATB. Of
Frontiers in Immunology 05
note, a 21-fold increase in IL-12p70 levels was observed in ATB

compared to LTBI participants.

The ATB patients had significantly lower levels of IL-12p70 (p ≤

0.0001), TNF-a (p ≤ 0.01), IL-6 (p ≤ 0.01), IL-10 (p ≤ 0.01), IL-4

(p ≤ 0.0001) and IL-17A (p ≤ 0.0001) compared to healthy controls

representing a 20, 1.8, 3.5, 1.8, 2.8 and 1.5-fold decrease respectively.

There was no significant difference in cytokine levels between LTBI,

and healthy controls as shown in Figure 2.
3.3 Longitudinal changes in median
cytokine levels during TB treatment

IL-4 levels decreased significantly (p=0.0079) from baseline to

week two and remained low up to month two before increasing

significantly at month 6. There was a steady increase in median IL-

17 levels from baseline to week two (p= 0.8486), week two to month

two (p= 0.4478), month 2 to month 6 (p= 0.0024), however only the

increase between baseline and month 6 and that from week two to

month 6 were significant (p= 0.0073 and p= 0.0301) respectively.

Similarly, IL-12p70 levels increased steadily during treatment,

however only the increase from baseline to month 6 (p <0.0001),

week two to month 6 (p= 0.0020) and month 2 to month 6 (p=
FIGURE 2

Scatter plots showing median cytokine levels (pg/ml) of the three groups; The levels of cytokines were determined in the serum of individuals with
Active TB (ATB) n=46, Latent tuberculosis infection (LTBI) n=13 and healthy controls (No TB) n=12 in an 8-plex Luminex assay. Scatter plots
represent median serum concentrations of cytokines (A–H) in participants with ATB (green circle), LTBI (yellow square), and No-TB (red triangle).
Statistical differences between two groups were analyzed using Mann−Whitney U test *P < 0.05, **P < 0.01, and ****P < 0.0001.
TABLE 1 Age and sex characteristics of study participants.

Groups n (%) Age range Mean Age

Active TB (Years)

Male 32 (69.57) 18-62 37.7 ± 12.11

Female 14 (30.43) 18-55 34.9 ± 12.34

Latent TB

Male 3 (23.08) 18-38 30 ± 10.58

Female 10 (76.92) 18-58 29.33 ± 13.96

No TB

Male 5 (41.67) 18 – 78 34.75 ± 28.95

Female 7 (58.33) 18 – 41 21.29 ± 8.69
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0.0425) were significantly different. Granzyme B levels increased 4-

fold from baseline (p <0.0001) and 3.8-fold from week two (p=

0.0019) and 3.3-fold from month 2 (p=0.0052) to end of treatment.

The representative bar graphs showing error bars for comparing

cytokine levels at the different treatment time points are shown

in Figure 3.
3.4 Diagnostic value of multiple cytokines/
chemokines as differential biomarkers for
active and latent TB

A ROC curve analysis was performed to determine the

diagnostic value of the eight cytokines/chemokines for ATB and

LTB using % sensitivity and % specificity. The diagnostic potential

was calculated from the Area Under ROC (AUROC) Curve on a

scale of 0-1 (expressed as a percentage) using Graph Pad Prism (v

8.4.3) as shown in Figure 4. The AUROC values indicates a strong

diagnostic value for IL-6, IL-10, IFN- g, IL-4, IL-17A and IL-12p70

at 98%, 91%, 100%, 100%, 97%, 100% respectively. The ROC curve

for TNF-a and Granzyme B showed a moderate predictive value

with an AUROC of 56% (p< 0.4589, 95% CI: 0.3793 – 0.7562) and

66% p<0.0873 95% CI: 0.5250 – 0.7877).
Frontiers in Immunology 06
4 Discussion

Due to the asymptomatic nature of latent tuberculosis,

production of sputum for diagnosis is virtually impractical. The

introduction of blood-based immunoassays, Interferon Gamma

Release Assays (IGRAs) to detect latent TB infections have been

useful. However, IGRAs with their detection of a single cytokine, fall

short of discriminating between ATB and LTBI. We conducted this

study to identify other blood-based analytes that may have this

ability by comparing the levels among a cohort of ATB and LTBI

cases. Among the ATB cases, there were twice as many males (69%)

as females (30%) with infectivity spanning a wide age range

(Table 1). This finding supports the view that, globally men are

significantly more at risk of contracting tuberculosis than women

(24). In 2022, about 5.8 million adult men were infected with

tuberculosis compared to an estimated 3.5 million adult women

(24). TB and its products induce the production of pro-

inflammatory cytokines TNF-a and IFN-g after stimulation of

macrophages (25), and dendritic cells (26). However, TNF-a and

IFN-g are known for their auto-induction of MTB-infected

macrophages and dendritic cells which, may initiate a cascade of

events including chemotaxis, initiation of adaptive immunity

leading to antigen-specific T cell response and subsequent
FIGURE 3

A box plot showing longitudinal changes in median cytokine levels (pg/ml) during four phases of TB treatment. Newly diagnosed TB patients (n=46)
were recruited, and serum samples were taken before initiation of TB treatment, at the second week of TB treatment (n=46), at month two of TB
treatment (n=31), and after completion of TB treatment (n=16). In an 8-plex Luminex assay, cytokine levels were determined for each patient at each
of the four points. For each cytokine (A–H) median levels at each of the four time points were compared using, Kruskal–Wallis or One-way ANOVA.
The box plots show the 25th, 50th, and 75th percentiles, and the whiskers represent the minimum and maximum levels of cytokine (pg/ml). Data
denoting median (+IQR) values *P < 0.05, **P < 0.01 and ****P < 0.0001.
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granuloma formation and containment or killing of MTB. Findings

of this study (Figure 2) suggest that TNF-a and IFN-g responses

might be useful tools for predicting active TB and as the current

IGRAs are based on IFN-g response, adding TNF-a may improve

the ability for discriminating LTBI and ATB during close household

contact investigation (27). Several antagonistic inflammatory

cytokines: IL-6, IL-10, IL-4, IL-17A levels were higher in LTBI

compared to ATB patients (Figure 2). The simultaneous presence

suggests a coordinated response to TB infection and a possible

heightened immune response during the period of dormancy than

in active tuberculosis (28). IL-6 has both pro- and anti-

inflammatory properties (29) and it is produced early during

infection with mycobacteria which, can be found mainly at an

infection site (30, 31). Thus, decreased IL-6 expression may lead to

an increased susceptibility during experimental M. tuberculosis

infection which shows that IL-6 influences the protective immune

response of the host (32). IL-10 is well characterized and known for

its immunoregulatory effect as an anti-inflammatory cytokine that

inhibits the actions of pro-inflammatory cytokines (33). The IFN-g
levels were expected to correlate with the high levels of IL-12p70

because it is a key activator of interferon-g producing type 1 helper
(Th1) T cells (34). IL-12p70 plays a pivotal role in regulating the

Th1/Th2 balance in the initial stage of immune responses. This may

explain the higher levels of IL-12p70 in ATB at baseline compared

to LTBI and healthy controls.

Active TB cohorts were followed at four different phases:

baseline (before ATB treatment), two weeks after initiation of TB

treatment, two months after initiation of TB treatment phase

(intensive phase) and six months after initiation of TB treatment

(completion phase). We encountered significant losses to follow up
Frontiers in Immunology 07
leading to only 16 of 46 ATB participants retained at the end point

of treatment completion. While this may affect the generalizability

of the analysis, the results provide some insights into cytokine

dynamics over the course of TB treatment. From the longitudinal

analysis of the levels of eight analytes in the serum during ATB,

significant changes were observed for only IL-12p70 and Granzyme

B (Figure 3). IL-12 is produced by activated macrophages and

dendritic cells after MTB infection (35). However, increased levels

of IL-12, IL-15 and IL-18 results in the stimulation of IFN-g
producing cells to produce sufficient IFN-g (36). This initiates the
auto-induction of MTB-infected macrophages and dendritic cells to

activate a cascade of events including chemotaxis, initiation of

adaptive immunity leading to antigen-specific T cell response

(37). These series of events result in granuloma formation and

containment or killing of MTB. The presence of adequate amounts

of IL-12p70 in the lymph nodes ensures a sufficient production of

Th1 and production of INF-g. Effective treatment inhibits the

growth of MTB in the lung thereby reducing the stimulation of

inflammatory response of host to TB infection (38). More of the IL-

12p70 produced is thus released into peripheral blood as the MTB is

cleared in the lungs. This supports the significant increase in IL-

12p70 in the plasma of the ATB cohort from baseline up to the 6

months of treatment completion observed in this study (Figure 3).

However, Granzyme B levels increased steadily from baseline to

treatment completion suggesting a possible role in host immune

response to tuberculosis (39). A previous study among Ghanaian

TB patients reported a significant increase in Granzyme B levels

during the first two weeks in response to latency related antigen

RV1733 (40). However, both Granzyme B and TNF-a showed an

average predictive potential below 70% (Figure 4) while IL-6, IL-10,
FIGURE 4

Receiver operating characteristic (ROC) curves (A–H) for the baseline cytokine values comparing LTBI with active TB (ATB). The solid line shows the
result of absolute values of each biomarker. The area under the curve (AUC) is indicated.
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IFN- g, IL-4, IL-17A and IL-12p70 had a significant diagnostic

potential to differentiate between ATB and LTB (AUROC. 98.3%,

100%, 96.9%, 100% respectively). IL-12p70 had the highest

diagnostic value (AUC 100%, p=0.0001) for differentiating

between ATB and LTB. However, it may not be ideal as a

biomarker for treatment response due to continuous increase over

the course of treatment. It has been reported (41), that production

of IL-12p70 is one of the earliest events in the activation of cell

mediated immunity hence may not be an excellent predictor in

advanced stages of M. tuberculosis infection such as in the case of

multidrug resistant tuberculosis (41). IL-12p70 is also known to

play a crucial role in immune reconstitution, mainly due to its

ability to stimulate the differentiation of naive T cells into Th1 cells,

which are vital for mounting effective immune responses against

pathogens (42). The restoration of IL-12p70 and IFN-g production
is important for the recovery of the host’s ability to mount a strong

immune response against pathogens and for preventing

opportunistic infections. However, elevated IL-12p70 levels after

treatment as observed in this study may suggest that the infection is

not fully resolved, even though the patient is clinically improving.

This could be due to factors like drug resistance, incomplete

treatment, or the presence of latent TB infection. Further

investigations on IL-12p70 dynamics following completion of TB

treatment may provide more information.

Our study is limited by the small sample size of 71 participants

comprising 46 active TB cases, 13 latent TB cases and 12 healthy

controls hence we acknowledge that even though we have provided

an insight into the performance of these 8 selected cytokine/

chemokines as putative biomarkers for discriminating between

active and latent TB, there is the need to confirm these findings

with a larger and more diverse cohort. We used a longitudinal

approach so we could assess the utility of these eight analytes as

biomarkers for monitoring response to TB treatment, however due

to loss to follow up, as well as other factors such as age, nutritional

status, comorbidities, our data may not fully reflect individual

variability in immune response.

In summary our study shows that active tuberculosis is

associated with significantly higher serum levels of IL-12p70

compared to latently infected individuals and those not infected

with TB. IL-12p70 also has a significant predictive potential to

differentiate ATB from LTB. However, a cocktail of pro and anti-

inflammatory cytokines is produced in response to tuberculosis

infections. Therefore, the utility of serum cytokines in development

of immunodiagnostic assays will depend on validated cut off values

established from specific immune response to purified protein

derivatives of Mycobacterium tuberculosis using a larger study

cohort. We used univariate non-parametric tests due to small

sample size and non-normal distributions which did not allow us

to explore synergistic effects of cytokine combinations. We

recommended that future studies consider using multivariate

modeling to explore synergistic effects of cytokine combinations.

Using a combinatorial biomarker approach (e.g., logistic regression

or machine learning classifier combining multiple cytokines) could

be more diagnostically powerful. Additionally, future studies could
Frontiers in Immunology 08
employ more recent and novel techniques such as the spatial CITE

(co-indexing of transcriptomes and epitopes) sequencing, spatially

resolved in vivo CRISPR screen sequencing via perturb-DBiT

(43, 44).
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