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Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China, 3Department of
Pathology, Shandong Provincial Hospital, Shandong University, Jinan, China, 4Department of
Oncology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine,
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Purpose: To investigate the functions of lung TRM cells in the development and

treatment of lung adenocarcinoma (LUAD).

Methods: R-language bioinformatics analysis was applied to obtain differentially

expressed (DE) lung TRM cell-specific genes and a related prognostic signature,

which were further validated using external datasets, immunohistochemical

staining images, and biological experiments.

Results: A total of 130 DE lung TRM cell-specific genes were identified, 14 of which

were involved in the prognostic signature, including SLC16A3, ARHGAP11A, PTTG1,

DTL, GPRIN1, EXO1, GAPDH, TYMS, DAPK2, CCL20, HLA-DQA1, ADAM12,

ALOX5AP and OASL. The signature was efficient and robust in predicting the

overall survival and anti-PD-1/PD-L1 immunotherapeutic outcomes of patients

with LUAD. The AUCs for predicting the 1-, 3-, and 5-year survival rates were

0.688, 0.698, and 0.648, respectively, in the training cohort, and were 0.867,

0.662, and 0.672, respectively, in the validation cohort. The signature also had

predictive value for the sensitivity of patients to chemical drugs. TYMS was a hub

gene in the prognostic signature, and was strongly associated with LUAD

progression and cell proliferation in the experimental validation.

Conclusions: The lung TRM cell-related prognostic signature is an effective tool

for predicting the prognosis and therapeutic outcomes of patients with LUAD.
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1 Introduction

Tissue-resident memory T (TRM) cells are a special

subpopulation of memory T cells that were recently discovered to

reside in non-lymphoid tissues without entering the bloodstream

(1). TRM cells can reside in a wide range of tissues, including

epithelial barrier tissues, such as the lungs, gastrointestinal tract,

and skin, as well as non-barrier tissues, such as the brain, kidneys,

and joints (2–4). TRM cells are also found in many types of tumor

tissues, such as lung cancer, breast cancer, intestinal cancer, ovarian

cancer, and melanoma tissues, and they play important roles in

anti-tumoral immunology (5–9). The infiltration of TRM cells is a

favorable factor for the prognosis of cancer patients, and the

abundance of CD103+CD8+T cells in tumor tissues is correlated

with increased disease-free survival and overall survival in patients

with lung, breast, endometrial, and ovarian cancers (10). However,

the underlying mechanisms are not well understood.

Recently, it has been demonstrated that TRM cells in different

organs and tissue sites are specific and play different roles (11).

Through the integration of single-cell protein and transcriptome

analyses, TRM cell-specific genes associated with major barrier sites in

the human body, such as the lungs, skin, and jejunum, were identified,

and these TRM cell-specific genes were closely related to the specific

functions of each organ (11). Whether the TRM cell-specific genes of an

organ can regulate TRM cells to exert specific immune responses against

tumors at that tissue site is a question that needs to be addressed.

Lung cancer remains one of the most prevalent cancers worldwide

and causes the most cancer-related deaths (12). Lung adenocarcinoma

(LUAD) is a type of non-small-cell lung cancer that accounts for the

highest percentage of lung cancer cases. LUAD is often accompanied

by both genomic and morphological abnormalities. However, its

pathogenesis is not well understood, and more effective treatments

are currently being explored (13, 14). The tumor immune

microenvironment (TME) is an important cause of heterogeneity in

lung adenocarcinoma and can influence disease progression and the

response to therapy (15). TRM cells are important components of the

tumor microenvironment, and the infiltration of CD103+CD8+TRM

cells into the tumor microenvironment has been reported to be a

favorable prognostic factor for patients with LUAD (16–20). However,

the underlying mechanisms have not yet been elucidated.

Although the role of TRM cells in lung cancer immunomodulation

and immunotherapy has been partially reported in some studies,

research methods have been limited mostly to experiments on cells

and animals, and there are few reports on the use of bioinformatics

methods to explore novel biomarkers that can regulate the functions

of TRM cells and potentially become predictive and therapeutic

biomarkers. In this study, the lung TRM cell-specific genes identified

in previous studies were subjected to bioinformatics analysis in many

LUAD samples to identify novel potential biomarkers related to the

prognosis, TME landscape, and immunotherapy of patients with

LUAD. The functions of key genes in LUAD were validated using

in vitro experiments. These findings may help elucidate the roles of

TRM cells in LUAD and identify novel biomarkers for personalized

prediction and treatment of LUAD.
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2 Materials and methods

2.1 Data collection and preprocessing

The R package “TCGAbiolinks” was used to download the log-

transformed FPKM expression profiles and clinical information

from the TCGA-LUAD dataset. A total of 497 tumor samples with

both expression data and survival information were retained for the

construction of the prognostic signature. The GSE41271 and

GSE42127 bulk expression datasets were downloaded from the

Gene Express ion Omnibus (GEO) database (https : / /

www.ncbi.nlm.nih.gov/geo/) and were used to validate the

prognostic signature. The data processing standard of the GEO

bulk expression dataset was as follows: the probes were converted to

gene symbols according to the probe correspondence with the

platform. If one probe corresponded to multiple genes, the probe

was removed, and if multiple probes corresponded to the same

symbol, the median value was taken. Single-cell RNA-seq data were

obtained from the GSE131907 dataset of the GEO database. Fifteen

primary LUAD samples from the GSE131907 dataset were used for

the analyses. The clinical and transcriptomic data of the GSE126044

and GSE135222 cohorts, in which NSCLC patients were treated

with the PD-1/PD-L1 blockade, were downloaded from the GEO

database and used to evaluate the predictive efficacy of the

prognostic signature. A total of 480 lung TRM cell-specific genes

were obtained from a previous publication (11).
2.2 Identification of differentially expressed
lung TRM cell-related genes

The R package “limma” was used to identify the differentially

expressed genes (DEGs) between LUAD and adjacent normal

tissues, with thresholds set at |log2FC|≥1 and FDR<0.05. The

DEGs intersecting with the lung TRM cell-specific genes were

regarded as differentially expressed (DE) TRM cell-related genes

and were chosen for subsequent analysis.
2.3 Construction of protein-protein
interaction networks (PPIs) for DE lung TRM
cell-related genes

The interactive relationships of the lung TRM cell-related genes

were acquired from the STRING database (https://www.string-

db.org/), and a protein-protein interaction (PPI) was constructed

based on this information.
2.4 Functional enrichment of the DE lung
TRM cell-specific genes

The R package “clusterProfiler” was applied for the functional

annotation of the DE lung TRM cell-related genes, with the p-value
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cutoff set at 0.05. Functional enrichment analysis was performed to

predict the potential biological functions of these genes.
2.5 Construction of the lung TRM-related
prognostic signature

Univariate Cox regression analysis was used to determine the

hazard ratios (HR) and prognostic significance. Genes with p values

< 0.05 were prognosis-associated genes. Least Absolute Shrinkage

and Selection Operator (LASSO) regression analysis was applied to

further identify key prognostic factors, and a risk score model for

predicting survival was constructed by weighting the expression of

each key prognostic gene with LASSO regression coefficients (“exp”

represents the expression level of the genes, and “coef” represents

the Cox regression coefficient):

Risk score =oexp ∗ coef

The patients were divided into high-risk and low-risk groups

based on the median risk score. The “Kaplan-Meier” method was

used to generate survival curves for the prognostic analysis, and the

“log-rank” test was used to evaluate the significance of the

differences in overall survival between groups. The receiver

operating characteristic (ROC) curve was used to assess the

predictive efficacy of the prognostic models. The R package

“timeROC” was used to visualize the “area under the curve”

(AUC). Univariate and multivariate Cox regression analyses were

performed to evaluate the independent predictive value of the

prognostic model.
2.6 Evaluation of the TME landscape

The “ESTIMATE” algorithm was used to calculate the

immunity score, stroma score, and tumor purity for each tumor

sample, and then the “Wilcoxon” test was subsequently used to

compare the differences in the immunity score, stroma score, and

tumor purity among different subgroups of samples. The

correlations between the risk score and the immunity score,

stroma score, and tumor purity were calculated using Spearman

analysis. Single-sample gene set enrichment analysis (ssGSEA) was

used to evaluate the relative abundance of each infiltrating cell in the

TME. The gene sets of the 28 types of immune cells used in the

analysis were obtained from a previous publication (21). The R

packages “GSVA” and “GSEABase” were used to compare the

differences in biological pathways and immune functions.
2.7 Prediction of drug sensitivity

The “calcPhenotype” function of the R package “oncoPredict”

was used to assess the IC50 values of the samples for the drugs. The

correlation coefficients between the risk score, the expression of

genes included in the prognostic model, and the drug IC50 values

were calculated using Spearman analysis.
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2.8 Quality control for the scRNA-seq data

The R package “Seurat” (version 4.1.0) was used for quality

control of the scRNA-seq data. To exclude some low-quality cells and

genes expressed at low levels, we set the thresholds as follows (1): each

gene was expressed in at least three cells (2); the number of features

per cell was between 500 and 6000, and the number of counts per cell

was between 1000 and 20,000; and (3) the number of mitochondrial

and erythrocyte genes was less than 20% of the total number of genes

in each cell. Next, the “NormalizeData” function was used for

normalization, and the “FindVariableFeatures” function was used

to identify highly variable genes on the basis of their average

expression values (greater than 0.1 and less than 3) and dispersion

(greater than 0.5). The R package “Harmony” was used to perform

batch correction between the samples to avoid batch effects

interfering with downstream analysis. The data were then scale

transformed and downscaled via principal component analysis

(PCA), and the top 50 principal components were selected for

downstream analysis and visualized via the “RunTSNE” function.
2.9 Identification of the subtypes of
malignant tumor cells

Malignant cells in which at least two model genes were detected

were selected for subsequent analysis. After standardization,

normalization, identification of highly variable genes, removal of

batch effects and PCA, the first 50 principal components were

selected at a resolution of 0.1. Three subtypes of tumor cells were

subsequently identified by clustering and grouping again. The

marker genes of each subtype of tumor cells were identified via

the “FindAllMarkers” function (avg_log2fc > 0.25, p_val_adj <

0.05). The CellScore was calculated based on the genes included

in the prognostic model via the “AddModuleScore” function of the

“Seurat” package. The malignant cells were divided into high and

low groups based on the median cell score.
2.10 Trajectory analysis and cellular
communication analysis

The R package “monocle2” was used to conduct the trajectory

analysis of the tumor cells. Different states reflect the internal

transformation of tumor cells. The R package “CellChat” was

used to analyze the communication between tumor cells and

other cells.
2.11 Validation of the expression levels of
genes via immunohistochemical staining
images

The expression levels of the genes included in the lung TRM cell-

related prognostic model were validated at the protein level using

immunohistochemical staining images from the Human Protein
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Atlas database (https://www.proteinatlas.org/). The staining

intensity levels of each gene in normal lung tissues and LUAD

tissues were observed and compared.
2.12 Clinical sample collection and
immunohistochemistry

Lung adenocarcinoma samples were collected from the pathology

department of Shandong Provincial Hospital from 2017 to 2021.

Written informed consent was obtained from all participants. Tumor

tissues were obtained from excised biopsies, fixed in formalin and

embedded in paraffin (FFPE) for histological evaluation. After

paraffin wax removal and rehydration, the sections were placed in

citrate antigen retrieval solution and boiled for 15 minutes for antigen

retrieval. An endogenous peroxidase blocker was then added to block

the endogenous peroxidase activity in the sections. After incubation

at room temperature for 30 min, 50 μL of goat serum working

solution was added to each sample, which was subsequently

incubated at 37°C for 20 min to block nonspecific staining. The

sections were subsequently incubated with a primary antibody (rabbit

anti-thymidylate synthase antibody, 1:100, ab108995, Abcam) for 1 h

at 37°C. After 3 × 5-minute washes with PBS, the sections were

incubated with a biotinylated secondary antibody at room

temperature for 30 min, followed by subsequent washes (3 × 5 min

in PBS). The sections were subsequently dried with absorbent paper

and incubated with 50 μL horseradish peroxidase-labeled streptavidin

for 20 min at 37°C. The sections were then rinsed with PBS for 3 × 5

min each. After immunostaining, the sections were visualized using

anMBMbio Intelligence 400 scanner according to the manufacturer’s

protocol. The slides were independently examined by two

experienced pathologists according to the WHO criteria. The

expression levels of each gene were characterized using a scoring

system. The staining intensity was graded into four levels: 0, no

positive staining (negative), 1 point for light yellow (weakly positive),

2 points for brownish yellow (positive); and 3, dark brown (strongly

positive). The percentage of positive cells was also classified into four

levels: 1 point was given when it was ≤25%, 2 points when it ranged

from 26% to 50%, 3 points when it was between 51% and 75%, and 4

points when it was >75%. The final scoring results were obtained by

multiplying the scores of the above two items. Based on the results,

the samples were divided into four grades: negative expression (0

points), low expression (1–4 points), moderate expression (5–8

points) and high expression (9–12 points).
2.13 Cell lines and culture

The human cell line, H1395, was purchased from the National

Laboratory Cell Resource Sharing Platform (Beijing, China) at the

beginning of this study, with STR authentications. H1395 cells were

cultured in RPMI 1640 medium supplemented with 10% fetal

bovine serum (FBS) and 100 U/mL penicillin/streptomycin

(Invitrogen, Carlsbad, CA, USA) at 37°C in a humidified

incubator with 5% CO2.
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2.14 siRNA design and transfection

The siRNA oligo sequences (5’-3’) against TYMS mRNAs (si-

TYMS-1#: sense, GGGAUUCUCCACCAGAGAATT; antisense,

UUCUCUGGUGGAGAAUCCCTT; si-TYMS-2#: sense, CCAA

CUGCAAAGAGUGAUUTT; antisense, AAUCACUCUUUGC

AGUUGGTT) were synthesized by GenePharma Co. (Shanghai,

China). H1395 cells were transfected with the siRNAs using

Omifection-R (OMIGET, China) siRNA transfection reagent

according to the manufacturer’s instructions when the cells

reached a confluence of 60–80% confluence. The successful

knockdown of TYMS expression was confirmed by quantitative

RT-PCR (qRT-PCR) and western blotting 48 h post-transfection.

Scramble siRNAs (sense: 5’-UUCUCCGAACGUGUCACGUTT-3’;

antisense: 5’-ACGUGACACGUUCGGAGAATT-3’) were used as

negative controls.
2.15 RNA extraction and quantitative real-
time PCR

The total RNA of the cell lines was isolated using the Total RNA

Isolation kit (TRIcom Reagent) of GenStone Biotech and then

reverse-transcribed into cDNA using TransScript First-Strand

cDNA Synthesis SuperMix (TransGen Biotech, China) according

to the manufacturer’s instructions. Next, qRT-PCR was performed

using the FastStart Universal SYBR Green Master (ROX) (Roche,

Germany) on an ABI-7500 Fast system (Applied Biosystems). ALU

was used as the endogenous reference gene for the cultured cell

lines. Each sample was analyzed quantitatively in six replicates. The

relative expression levels of these genes were determined using the

DDCt method. The differences in target gene expression between

different groups were analyzed using the Kruskal-Wallis test and

plotted using GraphPad Prism 10.1.2. P < 0.05 was considered

statistically significant (***indicates p < 0.001). The primer

sequences are shown in Table 1.
2.16 Western blotting

Total protein was extracted from cultured cells using RIPA

buffer. Primary polyclonal antibodies against TYMS (15047-1-AP,

ProteinTech) and b-Actin (66009-1-Ig, ProteinTech) were used at

dilutions of 1:3,000 and 1:20,000, respectively. The signals were

visualized using an enhanced chemiluminescence kit (Millipore)

and an Alpha Imager system.
2.17 Assessment of cell proliferation with
IncuCyte

The long-term dynamic proliferation of the H1395 cells was

observed using a long-term dynamic observation platform

(IncuCyte, Essen, MI, USA). The cells were seeded into 96-well

plates (3000 cells per well, six wells per group) and cultured for 120
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h to generate proliferation curves. The cells were photographed

every 24 h on the platform and analyzed using IncuCyte ZOOM

software (Essen, Ann Arbor, MI, USA).
2.18 Statistical analysis

All analyses were performed using R software (version 4.4.2).

For significance analysis between various values (such as expression

levels, infiltration ratios, and various eigenvalues), the Wilcoxon

rank-sum test was applied to compare the differences between two

groups of samples, and the Kruskal-Wallis test was used to compare

the differences between multiple groups of samples. For the plot

presentation, ns indicates p > 0.05, * indicates p < 0.05, ** indicates

p < 0.01, *** indicates p < 0.001, and **** indicates p < 0.0001.

Survival curves for the prognostic analysis were generated using the

Kaplan-Meier method, and the significance of the differences was

determined using the log-rank test.
3 Results

3.1 Identification of DE lung TRM cell-
specific genes

A flow chart of the study is shown in Figure 1. To assess whether

the expression of lung TRM-cell-specific genes affects tumorigenesis

and tumor progression in LUAD, differential expression analysis

was performed in LUAD and adjacent normal tissues. First, 1002

downregulated genes and 741 upregulated genes in tumor tissues

were screened (Figures 2A, B; Supplementary Table 1), including

130 lung TRM cell-specific genes (Figure 2C; Supplementary

Table 2). Protein-protein interaction network (PPI) analysis

results revealed extensive interactions among the DE lung TRM

cell-specific genes, and the node connectivity of the RRM2, CDK1,

CCNA2 and EXO1 genes was relatively high, which may indicate

that these genes play a dominant role in the regulatory

network (Figure 2D).

The results of functional enrichment analysis revealed that the

DE lung TRM cell-specific genes were significantly enriched in

biological processes such as cell cycle regulation and chromosome

segregation and were significantly associated with functions such as

MHC class II molecule receptor activity, antigen binding, and
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immune receptor activity (Figures 2E1–E4), suggesting that these

genes are related to TRM cells.
3.2 Construction and validation of the lung
TRM-related prognostic signature

To investigate the clinical value of the DE lung TRM cell-specific

genes, a lung TRM cell-related prognostic signature was constructed

and validated. First, a univariate Cox regression analysis was

performed. There were 62 genes associated with overall patient

survival, and the top 20 genes with the greatest significance are

shown in Figure 3A; Supplementary Table 3. The KM curves of the

top six genes with the lowest p-values are presented in

(Figures 3B1–B6). Least absolute shrinkage and selection operator

(LASSO) regression analysis was subsequently conducted to further

investigate the clinical significance of these genes. The trajectory of

each independent variable was obtained (Figure 3C), and as the

lambda gradually increased, the number of independent variable

coefficients gradually decreased to zero (Figure 3C). Ten-fold cross-

validation was used to build the model, and the confidence intervals

for each lambda value are shown in Figure 3D. Fourteen genes were

identified when the model was optimized. Therefore, we selected the

14 genes for the subsequent analyses and constructed a risk score

model based on their coefficients and expression levels of the 14

genes (Figure 3E). The formula for calculating the risk-score model

is as follows:

Score = SLC16A3 * (0.128) + ARHGAP11A * (0.031) + PTTG1 *

(0.020) +DTL * (0.025) + GPRIN1 * (0.044) + EXO1 * (0.018) +

GAPDH * (0.128) + TYMS * (0.039) + DAPK2 * (-0.023) + CCL20 *

(0.038) + HLA-DQA1 * (-0.076) +ADAM12 * (0.010) + ALOX5AP *

(-0.040) + OASL * (0.014).

Using the 14-gene risk score model, the samples in the TCGA-

LUAD training cohort were divided into high- and low-risk groups

according to the median risk score. Overall survival analysis revealed

that the OS of patients in the high-risk group was significantly lower

than that of patients in the low-risk group in both the training cohort

(TCGA-LUAD) (Figure 4A) and the two validation cohorts:

GSE41271 (Figure 4D) and GSE42127 (Figure 4G). The ROC curve

revealed that the AUCs of the patients at 1, 3, and 5 years were

relatively high (0.688, 0.698, and 0.648, respectively) in the training

cohort (Figure 4B). The AUCs of patients at 1, 3, and 5 years were

0.649, 0.638, and 0.646, respectively, in validation cohort GSE41271

(Figure 4E). The AUCs of the patients at 1, 3, and 5 years were 0.867,

0.662, and 0.672, respectively, in validation cohort GSE42127

(Figure 4H). To test whether the risk score model was an

independent prognostic factor for LUAD patients, we performed

univariate and multivariate Cox regression analyses via the “coxph()”

function in the R package “survival”. In all the training and validation

cohorts, the risk score was an independent prognostic factor among

other clinical features, such as age, sex, and tumor stage (Figures 4C,

F, I). These results demonstrated that the 14-gene prognostic

signature based on the DE lung TRM cell-specific genes had strong

prognostic efficacy with high robustness and generalizability.
TABLE 1 The sequences of the primers used in the study.

TYMS Sequence (5’ → 3′)

Forward Primer GTGTGCCTTTCAACATCGCC

Reverse Primer GGGTTCTCGCTGAAGCTGAAT

ALU Sequence (5’ → 3′)

Forward Primer GAGGCTGAGGCAGGAGAATCG

Reverse Primer GTCGCCCAGGCTGGAGTG
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3.3 Association between the TRM cell-
related prognostic signature and
clinicopathologic features

The associations between the TRM-related prognostic signature

and patients’ clinicopathological features were further analyzed. The
Frontiers in Immunology 06
results revealed that the proportions of patients aged <60 years, with

advanced-stage disease, and with a history of smoking was

significantly greater in the high-risk score group than in the low-

risk score group (p < 0.05). The proportions of patients of different

sexes, ALK rearrangements, EGFR mutations, and KRAS mutations

did not significantly differ between the high- and low-risk score
FIGURE 1

The flow chart of this study.
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FIGURE 2

Identification of the lung TRM cell-related genes that were differentially expressed between LUAD and adjacent normal tissues. (A) Volcano plot
showing the DEGs between LUAD and adjacent normal tissues. The red dots represent the upregulated genes with log2FC ≥ 1 and FDR < 0.05,
whereas the green dots represent downregulated genes with log2FC ≤ -1 and FDR < 0.05. (B) Heatmap of the DEGs. The upper horizontal axis
denotes the cluster analysis of each sample. The blue color indicates adjacent normal tissues, whereas the red color indicates tumor tissues. The left
longitudinal axis indicates the cluster analysis of the DEGs. The blue and red blocks represent relatively low and high expression, respectively.
(C) Venn diagram showing the intersecting genes among the DEGs and the TRM cell-related genes in the lung. (D) The PPI network of the
intersecting genes among the DEGs and the lung TRM cell-related genes. (E1) KEGG pathway, (E2) GO biological process, (E3) GO molecular
function and (E4) GO cellular component enrichment analyses of the intersecting genes. FC, fold change; FDR, false discovery rate; DEGs,
differentially expressed genes.
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FIGURE 3

Construction of the lung TRM cell-related prognostic model. (A) Forest plot showing the top 20 lung TRM cell-related prognostic genes identified via
univariate Cox regression analysis. The left column of each panel shows the p value of each gene, and the right column shows the corresponding
forest plot. (B) The KM survival curves of the top 6 prognostic genes in the univariate Cox regression analysis: CCNA2 (B1), CDK1 (B2), FAM83D (B3),
ASPM (B4), NUSAP1 (B5) and SLC16A3 (B6). The abscissa axis shows the survival time, whereas the ordinate axis shows the survival probability. The
blue color represents low expression, whereas the red color represents high expression of each gene. The risk table is presented under the KM
survival curves of each gene. (C) Scatter plot showing the trajectory of each independent variable. The abscissa axis represents the log value of the
independent variable lambda. The vertical axis indicates the coefficient of the independent variable. (D) Dynamic process diagram of variables
screened by LASSO regression analysis and selection process diagram of the cross-validation parameter lambda. (E) Coefficient of each gene
included in the prognostic model.
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groups (Supplementary Figure 1). Patients aged <60 years, with

advanced-stage disease, male sex, and a history of smoking had

significantly higher risk scores than the other groups of patients, and

there was no significant difference in the risk scores for patients with

EGFR mutations or KRAS mutations (Supplementary Figure 2).
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3.4 Depiction of the TME landscape via the
prognostic signature

To further explore the functions of lung-specific TRM cells in the

TME of LUAD, gene set enrichment analysis (GSEA) and immune
FIGURE 4

Validation of the predictive efficacy of the lung TRM cell-related prognostic model in the training cohort: (A–C) TCGA-LUAD cohort and in the
validation cohorts: (D–F) GSE41271 and (G–I) GSE42127. (A, D, G) KM survival curves of patients in the low- and high-risk score groups in the TCGA-
LUAD cohort, GSE41271 cohort and GSE42127 cohort, respectively. The blue color represents patients in the low-risk score group, whereas the red
color represents patients in the high-risk score group. The risk table is presented under the KM survival curves of each gene. (B, E, H) ROC curves
for predicting the 1-, 3-, and 5-year survival of patients according to the risk score in the TCGA-LUAD cohort, GSE41271 cohort and GSE42127
cohort, respectively. The abscissa axis represents specificity, and the vertical axis represents sensitivity. Different colors represent different predictive
times. (C, F, I) Univariate and multivariate Cox regression analyses of the prognostic model in the TCGA-LUAD cohort, GSE41271 cohort and
GSE42127 cohort, respectively. The upper forest plot in each panel is the result of univariate Cox regression analysis, whereas the lower plot is the
result of multivariate Cox regression analysis. In each forest plot, the variables are listed on the left of each panel. The hazard ratio of each variable
and the corresponding forest plot are in the middle of each panel. The p values of the corresponding variables are shown on the right.
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cell infiltration analysis were conducted in the high- and low-risk

score groups of patients. The results revealed that signaling

pathways, such as P53, B-cell receptor, and MAPK, were

significantly activated in the low-risk score group (Figure 5A;

Supplementary Table 4), and immune-related biological

processes, such as T-cell activation, proliferation, and B-cell

activation, were also significantly activated in the low-risk score

group (Figure 5B; Supplementary Table 4). Further analysis of

immune cell infiltration revealed that the infiltration of immune

cells, such as activated B cells, activated CD8+T cells, central

memory CD4+T cells, central memory CD8+T cells, and effector

memory CD8+T cells, was significantly greater in the low-risk score

group (Figure 5C). These results demonstrate that patients in the

low-risk score group had stronger antitumor immunity and greater

infiltration of TRM cells, which may be the reason for their longer

survival time. The ESTIMATE, immunity, and stroma scores were

significantly greater in the low-risk score group, whereas the tumor

purity was significantly greater in the high-risk score group

(Figures 5D1–D4). Next, the expression levels of the immune

checkpoint genes were compared between the high- and low-risk

score groups. The results revealed that the expression levels of

several immune checkpoint genes, including CD276 and LAG3,

were significantly different between the two groups (Figure 5E).

These findings suggest the possibility of exploring novel targets

for immunotherapy.
3.5 Validation of the predictive efficacy of
the prognostic model at the single-cell
level

A total of 51935 cells, including 4827 B lymphocytes, 635

endothelial cells, 10998 epithelial cells, 1764 fibroblasts, 1735

MAST cells, 9098 myeloid cells, 22878 T/NK cells, and 27578

cells, were detected in the GSE131907 scRNA-seq cohort

(Supplementary Figure 3). The PCA results revealed that there

was a significant batch effect between samples (Supplementary

Figures 4A, B), and the batch effect between samples was

removed via the R package “Harmony” (Supplementary

Figures 4C, D). The distribution of different cell types was

determined via UMAP analysis (Supplementary Figure 4E), and

heterogeneity in the distribution of cells among the samples was

detected (Supplementary Figure 4F).

A total of 3906malignant tumor cells with at least twomodel genes

detected were extracted for subsequent analyses. These malignant cells

were renormalized and clustered, and three subtypes of malignant cells

were identified (Figures 6A, B1–B3). These cell subtypes were defined

according to the genes that were highly expressed in the clusters, and

these three subtypes were named IFI27+Mal, FBXO2+Mal and

HMGB2+Mal (Figures 6A, B1–B3). With the “FindAllMarkers”

function, we identified the marker genes of each cell subtype

(Supplementary Table 5), and the top 5 marker genes of each cell

subtype are shown in Figure 6C. FBXO2+Mal highly expressed genes

such as CXCL14, TNNC2 and ASS1, which were significantly enriched

in biological processes such as the regulation of the apoptosis signaling
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pathway and peptidase activity (Supplementary Figure 5A).

HMGB2+Mal highly expressed genes such as STMN1, TUBA1B and

UBE2C, which were significantly enriched in biological processes such

as the regulation of cell adhesion, leukocyte migration and leukocyte

chemotaxis (Supplementary Figure 5B). IFI27+Mal highly expressed

genes such as SFTPA2, SFTPA1 and SCGB3A1, which were

significantly enriched in biological processes such as the regulation

of cell adhesion, leukocyte migration and leukocyte chemotaxis

(Supplementary Figure 5C).

The CellScore of each malignant tumor cell line was calculated

via the “AddModuleScore” function (Figure 6D), and the malignant

tumor cells were divided into high- and low-CellScore groups

(Figure 6F). Among the three cell subtypes, FBXO2+Mal and

HMGB2+Mal had higher CellScores (Figure 6E), and the

CellGroup was high (Figure 6G). GSEA of the cells in high- and

low-CellScore groups revealed that immune-related biological

processes, such as T-cell migration and the B-cell receptor

signaling pathway, were also significantly activated in the low-

CellScore group (Supplementary Figure 6; Supplementary Table 6).

Trajectory analysis of the extracted malignant epithelial cells revealed

three differentiation states (Figure 7A). In the trajectory from State1 to State2

cells, the IFI27+Mal subpopulation decreased significantly, whereas the

HMGB2+Mal subpopulation increased significantly (Figure 7D). In the

State1 to State3 cell trajectories, the proportion of the FBXO2+Mal

subpopulation increased, but the HMGB2+Mal subpopulation also

increased (Figure 7D). In the trajectory from State1 to State2, there was no

significant increase in theCellScore.However, in the trajectory fromState1 to

State3, therewas a significant increase in theCellScore (Figures 7B, C) and an

increase in the proportion of high-cell groups (Figures 7E, F). This suggests

that the malignancy of the tumor cells increased from low to high in

the trajectory.

To further analyze the differences in physiological activity

between high- and low-neoplastic populations, cell-to-cell

communication was analyzed via the “CellChat” package.

Extensive cellular communication was observed between the cell

populations (Supplementary Figure 7A). High neoplastic cells were

more likely to be outgoing signaling-dominant senders than low

neoplastic cells (Supplementary Figure 7B), and different cell

populations were found to have outgoing signaling patterns in

different biological pathways (Supplementary Figures 7C, D).

Compared with low neoplastic patients, high neoplastic patients

exhibited specific cellular communication in the CSF and KIT

signaling pathways (Supplementary Figures 7E, F).
3.6 Lung TRM-related prognostic model for
the treatment of LUAD

The IC50 values of the drugs in the training cohort were

predicted using the R package “oncoPredict” via the use of the

drug information from the GDSC database combined with the

expression profiles of the training set. Spearman correlation analysis

was performed between the prognostic signature and the log2(IC50)

value for each drug (Supplementary Table 7). Patients in the high-

risk group had a poorer prognosis; therefore, the top six drugs with
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FIGURE 5

Correlation between the risk score and the immune landscape. (A) Pathways that are activated in different risk score groups according to KEGG
GSEA enrichment analysis of bulk RNA-seq data. (B) Pathways that were activated in different risk score groups according to the GO-BP enrichment
analysis of the bulk RNA-seq data. The abscissa axis represents the ranked gene list according to their expression levels in the two groups. The
vertical axis represents the running enrichment score. Curves of different colors represent different pathways. (C) Relative abundances of the 28
types of immune cells in the low-risk score and high-risk score groups. The abscissa axis represents the names of the immune cells. The vertical axis
represents the infiltration fraction. (D) Box plots showing the ESTIMATE score (D1), immune score (D2), stromal score (D3) and tumor purity (D4) in
the low- and high-risk score groups. (E) Expression levels of immune checkpoint genes in the low-risk score and high-risk score groups. The
abscissa axis shows the gene names, and the vertical axis shows the relative expression levels of these genes.
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the most significant negative correlations were selected according to

the absolute values of the correlation coefficients. The six drugs used

were AZD6738_ 1917, BI.2536_1086, docetaxel_1007,

docetaxel_1819, MK.1775_179, and paclitaxel_1080 (p<0.05). The

log2(IC50) values of these six drugs were lower in the high-risk

score group than those in the low-risk score group and had greater

sensitivity (Figures 8A1–A6). The Spearman correlation coefficients

between the risk scores and drug log2 (IC50) values were also

calculated, and the top 50 drugs were selected for display, which

revealed that there was a correlation between gene expression levels

and most of the drug log2 (IC50) values (Figure 8B).

To explore the predictive efficacy of the lung TRM-related

prognostic model for patients receiving anti-PD1/PD-L1

immunotherapy, two immunotherapeutic cohorts, GSE126044 and

GSE135222, were used for the prognostic analysis. The results

revealed that patients in the low-risk score group had a superior

overall survival status compared with patients in the high-risk score

group in both cohorts (Figures 8C, E). Patients with low-risk scores

had a greater response rate (Figure 8D) and a greater progression-free

rate to anti-PD1/PD-L1 immunotherapy (Figure 8F).
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3.7 Validation of the expression levels of
genes in the protein data

To validate whether the protein expression levels of the genes

involved in the lung TRM cell-related prognostic model were

consistent with the RNA expression levels, immunohistochemical

staining images were obtained from the Human Protein Atlas

database (https://www.proteinatlas.org/). The results of

immunohistochemical staining for SLC16A3, ARHGAP11A,

PTTG1, GPRIN1 and TYMS were greater in LUAD tissues than in

normal lung tissues, which was consistent with the RNA expression

levels of these genes (Figures 9A–F). Immunohistochemical staining

for HLA-DQA1, ALOX5AP and OASL was lower in LUAD tissues

than in normal lung tissues, which was consistent with the RNA

expression levels of these genes (Figures 9A, G–J). The LUAD

proteome expression data and corresponding clinical information

were obtained from the supplementary data of the study by Xu et al.

(22). Survival analysis based on the proteome data revealed that

SLC16A3, TYMS, ALOX5AP and OASL were risk factors for patient

prognosis, whereas HLA-DQA1 was a protective factor
FIGURE 6

Calculation of the risk score at the single-cell level in LUAD. (A) TSNE plot showing the three subtypes of malignant tumor cells. Different colors
represent different cell subtypes. (B) TSNE plots showing the expression levels of the marker genes in the three subtypes of malignant tumor cells:
IFI27 (B1), FBXO2 (B2) and HMGB2 (B3). (C) Bubble diagram presenting the expression of the top 5 marker genes of the three subtypes of malignant
cells. The abscissa axis shows the gene names, and the vertical axis shows the names of the cell subtypes. Yellow indicates high expression, whereas
yellow indicates low expression. The bubble size represents the percentage of each gene expressed in each subtype of cell. (D) The TSNE plot
showing the cell score for each malignant cell. Blue represents a low score, whereas red represents a high score. (E) Violin plot showing the cell
scores of three subtypes of malignant cells. The abscissa axis shows the cell names, and the vertical axis shows the CellScore. (F) The TSNE plot
shows that the single cells were divided into high- and low-CellScore groups. (G) Proportion of different subtypes of malignant cells in the high- and
low-cell groups. The abscissa represents the cell name, and the vertical axis represents the proportion.
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(Figures 10A–E). These findings validated the functions of key

genes in the TRM cell-related prognostic signature.
3.8 Verification of the clinical and
biological roles of the TYMS hub gene

Previous results revealed that TYMS was a hub gene in the TRM

cell-related prognostic signature in the PPI analysis and the

construction of the risk score model (Figures 2D, 3E;

Supplementary Table 3). However, the function of TYMS in

LUAD has rarely been investigated. To further investigate the

clinical and biological roles of TYMS in LUAD, we performed

immunohistochemical staining experiments using LUAD samples

and assessed the proliferation of LUAD cell lines. Images of LUAD

samples with negative, low, moderate, and high TYMS expression,

magnified 40 × 10 times under a light microscope, are presented in

(Figures 11A1–A4). The clinical samples included in this study were

from a total of 30 patients with LUAD, 10 of whomwere positive for

TYMS and 20 of whom were negative. Survival analysis revealed

that patients with negative TYMS staining in their tumor tissues had

longer overall survival times than patients with positive TYMS

staining (p=0.038, Figure 11B). Patients with M1 tumors had a

higher TYMS-positive staining rate than those with M0 tumors

(Figure 11C), and patients with clinical stage IV tumors had a

higher TYMS-positive staining rate than those with stages II and III

tumors (Figure 11D). These findings indicated that TYMS is a risk

factor for LUAD patients, which is consistent with our previous

findings (Figure 3E; Supplementary Table 3).
Frontiers in Immunology 13
In the cell proliferation experiment, first, TYMS was

successfully knocked down through the siRNA oligos, as

evaluated by qRT-PCR (Figure 11E) and western blotting

(Figures 11F, G). The results of long-term dynamic observation

experiments using the IncuCyte platform revealed that the

proliferative capacity of H1395 cells was significantly impaired in

the TYMS-knockdown groups compared with the control groups

(Figures 11H, I), suggesting that TYMS may promote LUAD cell

proliferation. These findings validate the role of TYMS in enhancing

the growth of H1395 cells, suggesting its potential in promoting

LUAD progression.
3.9 Validating the correlation between the
TRM cells infiltration density and the
expression levels of the prognostic
predictors in LUAD

To further verify the link between tissue-resident memory T

cells infiltration and the expression of the TRM cell-related

prognostic predictors, Spearman’s correlation analysis was

performed between the expression levels of the marker genes of

TRM cells: CD8, CD69, CD103, and the 14 genes included in the TRM

cell-related prognostic signature. The analytical results were

consistent in the three datasets: TCGA (Figure 12A), GSE41271

(Figure 12B), and GSE42127 (Figure 12C). Interestingly, the

expression levels of genes that were significant risk factors for

LUAD patient prognosis, such as GAPDH, GPRIN1 and EXO1,

were negatively correlated with the expression levels of TRM cell
FIGURE 7

Trajectory analysis of malignant tumor cells. (A) Distribution of the three differentiation states of malignant cells. Different colors represent different
states. (B) Distribution of malignant cells with different cell scores according to the differentiation trajectory. Different colors represent different cell
scores. (C) Violin plot showing the cell scores in different states of the cell differentiation trajectory. (D) Distribution of the three subtypes of cells
according to the cell differentiation trajectory. Different colors represent different cell subtypes. (E) Distribution of different cell groups according to
the cell differentiation trajectory. Red represents a high CellScore, whereas blue represents a low CellScore. (F) Distribution of low- and high-cell
groups in different cell differentiation states. Red represents the high-CellScore group, whereas blue represents the low-CellScore group.
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marker genes (Figures 3E, 12A–C). In contrast, the genes that are

protective factors for the prognosis of LUAD, such as HLA-DQA1

and ALOX5AP, were positively correlated with the three TRM cell

markers (Figures 3E, 12A–C). Moreover, the risk score of the LUAD

patients was negatively correlated with the important TRM cell

marker gene CD69 in all three cohorts (Figures 12A–C). These

results confirmed again that the prognostic predictors involved in

the TRM cell-related signature could affect patient prognosis by

regulating the infiltration of TRM cells.
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4 Discussion

TRM cells can reside in specific organs or tissues without

entering the blood circulation (1). A recent study revealed that

TRM cells in different tissues or organs have distinct transcriptomic

status and specific gene expression patterns, which may be closely

related to their specific functions in these organs (11). For example,

acute respiratory virus-specific TRM cells, such as influenza- and

SARS-CoV-2-specific TRM cells, are more likely to be maintained in
FIGURE 8

The predictive efficacy of the prognostic model for chemotherapy and immunotherapy. (A) Box plots showing the log2(IC50) values of the six drugs
that had the highest negative correlation with the risk score in the high- and low-score groups: AZD6738_1917 (A1), BI.2536_1086 (A2),
Docetaxel_1007 (A3), Docetaxel_1819 (A4), MK.1775_1179 (A5) and Paclitaxel_1080 (A6). In each box plot, the abscissa axis indicates the risk score
groups, and the vertical axis indicates the log2(IC50) value of each drug. (B) The correlation coefficients between the top 50 drugs that have the
highest negative correlation with the risk score and the expression levels of the genes involved in the prognostic signature. The abscissa axis
indicates the gene names, and the vertical axis indicates the drug names. Red indicates a positive correlation, whereas blue represents a negative
correlation. The sizes of the circles indicate significance (-log(p value)). (C, E) KM survival curves of patients in the low- and high-risk score groups in
the two immunotherapeutic cohorts GSE126044 and GSE135222. The blue color represents patients in the low-risk score group, whereas the red
color represents patients in the high-risk score group. The risk table is presented under the KM survival curves of each gene. (D) The proportions of
patients who experienced a PR or PD/SD after receiving anti-PD1/PD-L1 immunotherapy in the low- and high-risk score groups. (F) The proportions
of patients who experienced progressive and no progressive disease after receiving anti-PD1/PD-L1 immunotherapy in the low- and high-risk score
groups. PR, partial response; PD, progressive disease; SD, stable disease.
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FIGURE 9

Validation of the protein expression levels of genes involved in the lung TRM-related prognostic signature. (A) RNA expression levels of the genes
included in the prognostic model in LUAD and adjacent normal tissues. The abscissa axis shows the gene names, and the vertical axis shows the RNA
expression levels. (B–J) Immunohistochemical staining images obtained from the Human Protein Atlas database (https://www.proteinatlas.org/):
(B) SLC16A3, (C) ARHGAP11A, (D) PTTG1, (E) GPRIN1, (F) TYMS, (G) HLA-DQA1, (H) ALOX5AP and (J) OASL. The names of the genes and antibodies are
presented at the top of each panel. The left image of each panel is the adjacent normal tissue, whereas the right image is the LUAD tissue. The staining
intensity is labeled under each image.
Frontiers in Immunology frontiersin.org15

https://www.proteinatlas.org/
https://doi.org/10.3389/fimmu.2025.1600863
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1600863
the lungs than at other sites; TRM cells that target the intestinal

microbiota and pathogens are maintained in the intestinal tract,

whereas in the skin, TRM cells are produced in response to skin

infections and are associated with protective immune responses.

The infiltration of TRM cells has been proven to be a protective

factor for patient prognosis in many cancers (10). Recent studies
Frontiers in Immunology 16
have shown that even the dysfunctional CD8+TRM cells, induced by

interactions with surrounding tumor cells, play important roles in

anti-tumoral reactivity (23, 24). The efficacy of anti-PD-1

immunotherapy is also highly dependent on the sufficiency of

CD8+TRM cells infiltrating in the TME (25). However, it is

unclear whether TRM-specific genes in one type of organ can
FIGURE 10

Validation of the prognostic significance of the genes involved in the lung TRM-related prognostic signature via proteomic data. K–M curves showing
the survival status of LUAD patients with low and high protein expression of (A) SLC16A3, (B) TYMS, (C) HLA-DQA1, (D) ALOX5AP and (E) OASL.
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FIGURE 11

Validation of the clinical and biological roles of TYMS through experiments on LUAD clinical samples (n=30) and cell lines. (A) Images of LUAD
samples with negative TYMS expression (A1), low TYMS expression (A2), moderate TYMS expression (A3) and high TYMS expression (A4) in the
immunohistochemical experiment. (B) Kaplan–Meier curves showing the survival status of LUAD patients with negative and positive TYMS staining.
(C) Percentage plot showing the proportion of samples with negative and positive staining among tumors at the M0 and M1 stages. (D) Percentage
plot showing the proportions of samples with negative and positive staining among patients with clinical stages II+III and clinical stage IV disease.
(E) Column chart showing the relative mRNA expression levels of TYMS in the si-TYMS-1#, si-TYMS-2# and control groups via qRT–PCR.
(F) Western blotting results showing the protein levels of TYMS in the si-TYMS-1#, si-TYMS-2# and control groups. (G) The corresponding grayscale
of the WB results in (F). (H) Proliferation curves of H1395 cells in the si-TYMS-1#, si-TYMS-2# and control groups. (I) Images of H1395 cells in the
si-TYMS-1#, si-TYMS-2# and control groups captured by the IncuCyte platform 120 hours after seeding into 96-well plates.
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regulate TRM cells to exert specific immune responses

against tumors.

To explore the roles of TRM-specific genes in regulating the

development of LUAD, in this study, TRM cell-specific genes that

were differentially expressed (DE) between LUAD and adjacent
Frontiers in Immunology 18
normal tissues were identified (Figures 2A–D; Supplementary

Tables 1, 2). Then, 62 TRM-specific DE genes associated with OS

were identified through univariate Cox regression analysis

(Supplementary Table 3), and a TRM-related prognostic model

was constructed based on these genes (Figures 3A–E). The
FIGURE 12

Validating the correlation between the tissue-resident memory T cells infiltration density and the expression levels of the prognostic predictors in
LUAD. (A–C) Correlation analysis between TRM cell marker genes CD8, CD69 and CD103, and the 14 genes involved in the TRM cell-related
prognostic signature using TCGA (A), GSE 41271 (B) and GSE42127 (C) datasets. Negative correlation: blue; positive correlation: red.
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prognostic model showed strong predictive efficacy in both the

training and validation cohorts (Figures 4A–I). Patients with low-

and high-risk scores also had different clinical features according to

the prognostic model (Supplementary Figures 1, 2). Fourteen lung

TRM cell-specific genes were included in the prognostic model

(Figure 3E). Among the 14 genes, GAPDH, SLC16A3, PRIN1,

TYMS, CCL20, ARHGAP11A, DTL, PTTG1, EXO1, OASL and

ADAM12 were risk factors, whereas DAPK2, ALOX5AP and

HLA-DQA1 were protective factors for the prognosis of patients

with LUAD (Figure 3E). Our results are consistent with those of

previously published studies (26–38). We noticed that TYMS and

EXO1 had strong connectivity with other TRM cell-specific genes in

the PPI analysis; therefore, these two genes may play central roles in

the regulatory network of these genes (Figure 2D). We intend to

further explore the clinical and biological functions of these two

genes in our future studies, and our research on the functions of

EXO1 in LUAD has recently been published recently (39).

The results of the GSEA of the DEGs between the low- and high-

risk score groups revealed that some pathways related to the

antitumoral response, such as the B-cell receptor signaling pathway

(40), regulation of T-cell activation and T-cell-mediated immunity

(41), were activated in the low-risk score group (Figures 5A, B;

Supplementary Table 4). Some immune cells that play important

roles in killing tumor cells also infiltrated more in the low-risk score

group, such as activated CD8+T cells and central memory CD8 T cell

(22, 23, 41, 42) (Figure 5C). This was validated by correlation analysis

between CD8+TRM cell marker genes CD8, CD69, CD103 (2), the TRM

cell-related risk score, and the 14 genes involved in the TRM cell-

related prognostic signature. Among the 14 genes, genes that are

associated with inferior prognosis of LUAD patients, such as

GAPDH, GPRIN1 and EXO1, were negatively correlated with the

expression levels of TRM cells markers (Figures 3E, 12A–C). However,

genes that were associated with superior prognosis of LUAD patients,

such as HLA-DQA1 and ALOX5AP, were positively correlated with

TRM cell marker genes (Figures 3E, 12A–C). The risk score, which

was associated with poor prognosis, was significantly negatively

correlated with the TRM cell marker CD69 in all three cohorts

(Figures 4, 12). This confirmed that the TRM cell-related risk score

was negatively associated with TRM cell infiltration in LUAD, and the

prognostic predictors involved in the risk score model may impact

the prognosis of LUAD patients by regulating TRM cell infiltration.

These findings suggest that the risk score was negatively correlated

with antitumor immune activation in LUAD patients, which may be

an important reason for the better prognosis in the low-risk score

group. Moreover, most of the reported immune checkpoint genes

were highly expressed in the low-risk score group (Figure 5E). This

finding was consistent with the finding that patients in the low-risk

score group had better clinical outcomes after treatment with

immune checkpoint blockade (Figures 8C–F).

Given that single-cell sequencing is an efficient method for

studying the spatiotemporal heterogeneity of tumors (43–45), we

further analyzed the scRNA-seq data to validate the predictive

efficacy of the TRM-related prognostic model (Supplementary

Figures 3, 4). Three subtypes of malignant cells were identified,

namely, IFI27+Mal, FBXO2+Mal and HMGB2+Mal (Figures 6A–C).
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The results also revealed that the FBXO2+Mal andHMGB2+Mal cell

subtypes had significantly higher scores than IFI27+Mal cells

(Figures 6D–G). Functional enrichment analysis revealed that the

marker genes of IFI27+Mal cells were enriched in pathways related

to immune activation, such as the positive regulation of leukocyte

and MHC class II receptor activity (Supplementary Figure 5;

Supplementary Table 5), which was consistent with previous

findings that the TRM-related risk score and cell score were

negatively correlated with immune activation (Figures 5A–D;

Supplementary Figure 6A). FBXO2, HMGB2 and IFI27 are all

oncogenes according to previous reports (46–51), and their roles

in regulating the development of LUAD and the possibility of

becoming therapeutic targets need to be further studied.

The above results were mainly based on analyses of RNA

expression data. In subsequent analyses, the protein expression

levels of the genes included in the TRM-related signature were

investigated using immunohistochemical images from the Human

Protein Atlas database (https://www.proteinatlas.org/). SLC16A3,

ARHGAP11A, PTTG1, GPRIN1 and TYMS were more highly

expressed in LUAD tissues, whereas HLA-DQA1, ALOX5AP and

OASL were expressed at lower levels in LUAD tissues than in

normal lung tissues. These findings validated the differences in the

RNA expression of these genes (Figures 9A–J). Survival analysis via

proteomic data verified the prognostic significance of several TRM-

related signature genes, including SLC16A3, TYMS, HLA-DQA1,

ALOX5AP and OASL (Figures 10A–E). Among these genes

included in the TRM-related signature, TYMS appeared to be a

hub gene. TYMS has been reported to be an oncogene for colorectal

cancer, pancreatic cancer and lymphoma and promotes tumor

progression (52–54), but its role in LUAD has rarely been

reported. Our experiments using LUAD clinical samples and cell

lines demonstrated that TYMS could also promote the progression

of LUAD (Figures 11A–I), and may be a potential therapeutic target

that could regulate the functions of TRM cells in LUAD. A few

reports have suggested that the expression levels of TYMS are

associated with the TME landscape and responses to immune

checkpoint inhibitor therapy (55, 56). However, the underlying

mechanisms have not been elucidated. TYMS is a key enzyme in the

5-FU catabolic pathway and is associated with the response to 5-

FU-based therapy (57). A study has also demonstrated that 5-FU/

platinum chemotherapy could facilitate tumor-reactive T cell and

M1-like macrophage interactions, thus improving the efficacy of

anti-PD-1 immunotherapy for advanced gastroesophageal

adenocarcinomas (GEA) (58). Therefore, TYMS may regulate the

TME and anti-PD-1 immunotherapeutic response via its roles in 5-

FU metabolism. Moreover, TYMS is regulated by MYC, which

affects PD-1 expression in colorectal cancer (59). Thus, TYMS may

also affect anti-PD1 immunotherapy through MYC.

Our study had some limitations. First, our study was based

mainly on bioinformatics analyses of public datasets and was only

partially verified by experiments on clinical tissues. Biological and

molecular experiments in vitro and/or in vivo are needed to further

investigate the functions of key genes and the activities of the

corresponding signaling pathways. Second, owing to the

retrospective nature of our study, bias may be inevitable, and
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prospective experiments are needed for further validation. Third,

the differentially expressed TRM cell-related genes were identified

with thresholds set at |log2FC|≥1 and FDR<0.05, using

bioinformatic methods. Although they are standard methods,

some genes that do not meet with the threshold criteria may also

play significant roles in the functions of lung TRM cells and the

development of LUAD. Moreover, the experimental validation in

our study focused primarily on the PPI hub gene TYMS owing to

the limitation of time and experimental conditions. In the future

studies, we will extend these functional studies to other key genes.
5 Conclusion

The prognostic signature based on lung TRM cell-related genes was

efficient and robust for predicting the prognosis and therapeutic

outcomes of patients with LUAD. The expression and functions of

key genes in the prognostic signature were verified through experiments

with LUAD samples and cell lines. Our findings increase the

understanding of TRM-related clinical and biological significance in

LUAD and may provide potential therapeutic targets for LUAD.
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SUPPLEMENTARY FIGURE 1

The percentages of patients with different ages (A), tumor stages (B), sexes
(C), EGFR alteration status (D), ALK-EML4 fusion status (E), KRAS alteration

status (F) and smoking history (G) in the low- and high-risk score groups.
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SUPPLEMENTARY FIGURE 2

Box plots showing the risk scores of patients with different ages (A), tumor

stages (B), sexes (C), EGFR alteration status (D), smoking history (E) and KRAS

alteration status (F).

SUPPLEMENTARY FIGURE 3

Quality control of the scRNA-seq data. (A–F) Correlation analysis between

nFeature_RNA and nCount_RNA (A), percent.mito and nCount_RNA (B),
percent.HB and nCount_RNA (C), percent.mito and nFeature_RNA (D),
percent.HB and nFeature_RNA (E), percent.HB and percent.mito (F). The
correlation coefficients were marked on the top of each panal. (G–J) The
nFeature_RNA (G), nCount_RNA (H), percent.mito (I) and percent.HB (J) in
different LUAD samples. The abscissa axes show the names of LUAD samples,
whilst the ordinate axes show the numbers or percentages of each items.

SUPPLEMENTARY FIGURE 4

Annotation of the cell types in the scRNA-seq data. (A) ElbowPlot of the PCA. (B)
PCA of the scRNA-seq data. (C) The distribution of cells before the removal of
the batch effect. (D) The distribution of cells after the removal of the batch

effect. (E) The TSNE plot showing the distribution of the cell types annotated in
the harmony analysis. Different colors represent different cell types. The names

of the cell types are annotated on the right of the plot. (F) The percent bar chart
showing the proportions of different types of cells in the LUAD tissues. The

abscissa axes show the names of LUAD samples, whilst the ordinate axes show

the percentage weight of each cell. The figure note is marked on the right.

SUPPLEMENTARY FIGURE 5

Functional enrichment analysis for the marker genes of FBXO2+ (A1–A4),
HMGB2+ (B1–B4) and IFI27+ (C1–C4) malignant tumor cells.

SUPPLEMENTARY FIGURE 6

GSEA of the DEGs between the low- and high-CellScore groups. (A) Pathways
that are activated in different risk score groups according to KEGG enrichment

analysis of the scRNA-seq data. (B) Pathways that are activated in different risk
score groups according to the results of the GO-BP enrichment analysis of the

scRNA-seq data. The abscissa axis represents the list of genes ranked according to
their expression levels in the two groups. The vertical axis represents the running

enrichment score. Curves of different colors represent different pathways.

SUPPLEMENTARY FIGURE 7

Cellular communication analysis for the high- and low-CellScore groups.

(A) The number of receptor–ligand pairs between different cell populations.
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The sizes of the dots represent the number of corresponding cells. The

thickness of the lines indicates the number of receptors and ligands between

different cell populations. The color of the connecting line was the same as
the color of the signal emitter. (B) Statistical dot plot of the dominant signaling

pathways. The colors of the dots indicate different cell populations. The sizes
of the dots are proportional to the number of ligands and receptors inferred

from each cell population, and the x- and y-axes indicate the strengths of the
cell populations as signal senders and receivers, respectively. (C) Statistical
heatmap of the signaling dominant of the significant pathways. The abscissa

axis indicates the cell, and the vertical axis indicates the names of the signaling
pathways. (D) Dot plot of the signaling dominant of the significant pathways.

The abscissa axis indicates the names of the signaling pathways, and the
vertical axis indicates the cell names. (E) Tumor cells in the high-CellScore

group had stronger cellular communication with myeloid cells in the CSF
signaling pathway network. (F) Tumor cells in the high-CellScore group

had stronger cellular communication with mast cells in the KIT signaling

pathway network.

SUPPLEMENTARY TABLE 1

Differential expression analysis of genes between LUAD and adjacent

normal tissues.

SUPPLEMENTARY TABLE 2

The intersecting genes of the DEGs between LUAD and adjacent normal
tissues and between lung TRM cell-related genes.

SUPPLEMENTARY TABLE 3

The 62 prognostic genes identified in the univariate Cox regression analysis.

SUPPLEMENTARY TABLE 4

KEGG GSEA and GO-BP GSEA enrichment analysis of the DEGs between the
low- and high-risk score groups in the bulk RNA-seq data.

SUPPLEMENTARY TABLE 5

The marker genes of each subtype of malignant cells.

SUPPLEMENTARY TABLE 6

KEGG GSEA and GO-BP GSEA enrichment analysis of the DEGs between the

low- and high-risk score groups in the scRNA-seq data.

SUPPLEMENTARY TABLE 7

Correlation analysis between the risk score and the log2(IC50) values of the drugs.
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