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Multi-omics-based subtyping
of melanoma suggests
distinct immune and
targeted therapy strategies
Changchang Li, Xiaoqiong Lin, Jinhui Wang, Qiaochu Zhou,
Fangfang Feng and Jie Xu*

Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou,
Zhejiang, China
Background: Melanoma is a highly heterogeneous malignancy with diverse

molecular and clinical behaviors. A precise molecular classification is critical

for improving prognostic assessment and guiding personalized therapy.

Methods: We performed an integrative multi-omics analysis of skin cutaneous

melanoma using data from The Cancer Genome Atlas (TCGA) and validated our

findings in independent cohorts. Multi-layered data, including transcriptomic,

genomic, epigenetic, and immune landscape profiles, were analyzed using

unsupervised clustering and machine learning approaches to define molecular

subtypes. Functional assays and in silico drug screening were employed to

explore subtype-specific vulnerabilities.

Results: Three robust molecular subtypes (CS1, CS2, CS3) were identified, each

with distinct genomic alterations, tumor microenvironment characteristics, and

clinical outcomes. The CS2 subtype was immunologically “hot,” characterized by

high tumor mutational burden (TMB), elevated neoantigen load, strong immune

infiltration, and activated IFN-g signaling. CS2 tumors showed significant

enrichment of immune checkpoint gene expression and were associated with

favorable response to anti-PD-1 therapy in external validation cohorts. In

contrast, CS1 and CS3 were immunologically “cold” with immune exclusion,

high chromosomal instability, and activation of oncogenic pathways linked to

immune evasion. Transcriptomic drug sensitivity modeling suggested that CS1

and CS3 may benefit from HSP90 or MEK inhibitors. Moreover, COL11A2 was

identified as a subtype-enriched oncogenic driver predominantly expressed in

CS1/CS3, and its silencing impaired tumor cell proliferation, invasion, and

epithelial–mesenchymal transition (EMT) features.
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Conclusions: This study presents a refined multi-omics classification of

melanoma that reveals biologically and clinically distinct subtypes with

divergent immune and therapeutic profiles. It offers a framework for subtype-

specific treatment strategies, and identifies COL11A2 as a potential target in

immune-cold melanomas.
KEYWORDS

melanoma, multi-omics integration, molecular subtypes, immune checkpoint therapy,
in-silico drug screening
1 Introduction

Melanoma is a highly aggressive and deadly skin cancer, causing

around 57,000 deaths globally each year (1). Despite advancements in

treatments such as immune checkpoint inhibitors targeting PD-1 or

CTLA-4, and therapies for BRAF/MEK mutations, the prognosis for

metastatic melanoma remains poor, with a five-year survival rate of just

32% (2, 3). A major obstacle to effective treatment is the pronounced

intra-tumoral heterogeneity of melanoma, which drives therapeutic

resistance and promotes aggressive disease progression (4).

Emerging research has unveiled the extraordinary adaptability and

phenotypic diversity of melanoma cells. Single-cell RNA sequencing

studies have identified four predominant transcriptional subtypes (5,

6): (1) an invasive, poorly differentiated population with suppressed

MITF and elevated AXL levels; (2) a stem-like subset resembling neural

crest precursors, distinguished by upregulated developmental markers;

(3) a differentiated melanocytic lineage expressing pigment synthesis

and melanocyte-specific genes; and (4) an intermediate phenotype

displaying mixed features. These subpopulations dynamically interact

within tumors and undergo selective pressure during treatment,

frequently enriching for therapy-resistant, metastatic variants (7).

Nevertheless, the precise molecular controls orchestrating these

transitions and their distinct roles in disease aggressiveness

remain elusive.

Beyond transcriptional plasticity, melanoma exhibits extensive

genetic and phenotypic heterogeneity (8). For instance, tumor

subpopulations can be stratified based on the expression of

microphthalmia-associated transcription factor (MITF), with MITF-

high and MITF-low states contributing to both intra- and intertumoral

heterogeneity (9). Additionally, genetic diversity—such as spatial

variations in BRAF mutations—can influence responses to targeted

therapies (10), underscoring the need for comprehensive molecular

profiling to guide treatment decisions. Critically, this heterogeneity

leads to divergent therapeutic responses, as resistant subclones evade

treatment and drive disease relapse.

To address these challenges, we performed a comprehensive

multi-omics integration of cutaneous melanoma to delineate robust

molecular subtypes and elucidate the biological drivers of tumor

heterogeneity. Using a Bayesian integrative framework, we

identified novel subtypes with distinct molecular, clinical, and
02
immunological features. Our findings provide a refined molecular

taxonomy of melanoma with clear prognostic and therapeutic

implications, offering a foundation for improved patient

stratification and personalized immunotherapy strategies.
2 Materials and methods

2.1 Multi-omics discovery cohort from
TCGA-SKCM

We developed a multi-omics discovery cohort for cutaneous

melanoma using data from The Cancer Genome Atlas (TCGA-

SKCM) (11). This included 421 primary or metastatic tumor samples

with matched transcriptomic, DNA methylation, somatic mutation,

copy number alteration (CNA), clinical, and survival data. Gene

expression profiles (n = 453) were obtained from UCSC Xena (http://

xena.ucsc.edu/) and initially expressed as fragments per kilobase

million (FPKM). These were then converted to transcripts per

kilobase million (TPM) to enable cross-sample comparison. Both

mRNAs and long non-coding RNAs (lncRNAs) were analyzed, with

lncRNA annotations derived from the VEGA database (http://

vega.archive.ensembl.org/). Ensembl transcript IDs were mapped

to gene symbols using the GENCODE v22 reference. DNA

methylation data (Illumina HumanMethylation450 BeadChip)

were also obtained from UCSC Xena. CNA segment files were

obtained from FireBrowse (http://firebrowse.org/), and somatic

mutation, clinicopathological, and survival data (including overall

survival [OS] and progression-free survival [PFS]) were retrieved

from cBioPortal (https://www.cbioportal.org/).
2.2 External validation cohorts

To validate the robustness of the molecular subtypes identified, we

employed two independent datasets. The first was the Conway cohort

(GSE120878), consisting of genome-wide methylation profiles from 89

primary invasive formalin-fixed paraffin-embedded (FFPE)

melanomas. The second cohort, known as the Gide cohort,

comprised transcriptomic and clinical data from 91 metastatic
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melanoma patients undergoing immune checkpoint inhibitor (ICI)

treatment: 50 received anti-PD-1 monotherapy, while 41 were treated

with a combination of anti-CTLA-4 and anti-PD-1 therapies (12).
2.3 Integrative clustering of multi-omics
data

Five matrices (mRNA, lncRNA, DNA methylation, CNA,

mutation) were constructed for the 421 TCGA samples.

Expression data were log2-transformed. Using the “ChAMP” R

package, methylation data were filtered to retain probes within

promoter CpG islands. For multiple probes mapping to the same

gene promoter, the median b value was calculated, yielding 10,270

gene-level values. Mutation status was binarized (1 = mutated

nonsynonymous, 0 = wild-type). CNA features were processed

according to published methods.

To ensure computational efficiency, we selected the top 500

most variable features from each data type (excluding mutations,

which included 24 known melanoma driver genes) using median

absolute deviation. The optimal number of clusters was identified

using the clustering prediction index (CPI) and gap statistics. The

“iClusterBayes” R package, which employs a fully Bayesian latent

variable model, was used for integrative clustering. To address

platform-specific batch effects across omics layers, ComBat

normalization (sva R package) was applied to each data matrix

prior to integration, following standard preprocessing procedures.
2.4 Tumor microenvironment inference

We utilized gene set variation analysis (GSVA) to estimate

tumor microenvironment composition, employing a curated

signature of 364 genes that represent 24 distinct cell types.

Immune and stromal scores were calculated using the “estimate”

R package. Additionally, tumor-infiltrating lymphocyte

methylation (MeTIL) scores were computed for both TCGA and

Conway cohorts using previously published algorithms.
2.5 Differential expression and pathway
enrichment analysis

Differential gene expression was assessed using the “limma” R

package. A gene list ranked by log2 fold change was created for gene

set enrichment analysis (GSEA) using the “clusterProfiler” R

package. Pathway enrichment was evaluated using Hallmark gene

sets, and visualization was conducted with the “GseaVis” package

(https://github.com/junjunlab/GseaVis) (13).
2.6 Molecular subtype characterization

Subtype-specific differences in prognosis, mutation profiles,

chromosomal instability, and clinical features were characterized
Frontiers in Immunology 03
using the “MOVICS” R package (14). Genes with >10% mutation

frequency and P < 0.05 between subtypes were considered

differentially mutated. Chromosomal instability was quantified

using the fraction genome altered (FGA), defined as:

R = copy number of segments=2

FGA = Br=B

Where Br is the number of bases with |log2R| > 0.2 and B is the

total number of profiled bases. Focal CNAs were identified using

GISTIC2.0 via GenePattern (https://www.genepattern.org/) (15),

with amplification/deletion thresholds set at 0.2 and q-value < 0.05.
2.7 Subtype prediction in external cohorts

Nearest template prediction (NTP), a model-free classification

method, was used to assign samples in external cohorts to molecular

subtypes based on gene expression or methylation signatures.
2.8 Therapeutic response prediction

Drug sensitivity for each TCGA sample was predicted using the

“pRRophetic” R package (16), based on ridge regression models

trained on 727 cancer cell lines with GDSC 2016 data. Predicted

IC50 values were generated for multiple chemotherapeutics. For

immunotherapy, transcriptomic and response data from 47

melanoma patients treated with ICIs were analyzed (17). Subclass

mapping was performed to estimate similarity between molecular

subtypes and ICI responders.
2.9 Clinical sample collection and
processing

Primary tumor and corresponding adjacent normal tissues

(located more than 3 cm from the tumor margin) were obtained

from five cutaneous melanoma patients undergoing surgical

resection at Wenzhou Hospital of Integrated Traditional Chinese

and Western Medicine from May 2022 to April 2024. Fresh

specimens were snap-frozen in liquid nitrogen and stored at −80°

C for future processing. The institutional ethics committee

approved the study protocol, and all participants provided written

informed consent.
2.10 RNA extraction and qRT-PCR analysis

Total RNA was extracted from tissue samples using TRIzol

reagent (Invitrogen), and its purity and concentration were

measured with a NanoDrop 2000 spectrophotometer (Thermo

Fisher Scientific). First-strand cDNA was synthesized using the

PrimeScript RT Kit (Takara) following the manufacturer’s

guidelines. Quantitative real-time PCR (qRT-PCR) was performed

on a QuantStudio 5 system (Applied Biosystems) using SYBR
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Premix Ex Taq (Takara). Relative mRNA expression levels of

COL11A2 were normalized to GAPDH using the 2^−DDCt
method. Each reaction was conducted three times.
2.11 Cell culture and characterization

Human melanoma cell lines A-375 and SK-MEL-31 were sourced

from authenticated providers and confirmed through short tandem

repeat (STR) profiling. The cells were confirmed to be free of

mycoplasma contamination. Cells were maintained in DMEM

(Gibco, USA) with 10% FBS and 1% penicillin-streptomycin

(Gibco) at 37°C and 5% CO2. For expression profiling, cells were

harvested at ~80% confluence, and COL11A2 mRNA levels were

quantified via qRT-PCR as described above. Each assay was conducted

with three independent biological replicates.
2.12 siRNA transfection

Small interfering RNA (siRNA) specific to COL11A2 and a

non-targeting control siRNA were synthesized and dissolved in

nuclease-free water to achieve a stock concentration of 10 mM. A-

375 and SK-MEL-31 cells were plated at 2 × 105 cells per well in 6-

well plates and incubated overnight for adherence. For transfection,

50 nM siRNA was combined with 5 mL Lipofectamine 3000

(Invitrogen, L3000015) in Opti-MEM reduced-serum medium

(Gibco, 31985070) and allowed to incubate at room temperature

for 15 minutes to create siRNA-lipid complexes. The complexes

were gradually introduced into each well. The medium was replaced

with complete growth medium after 6 hours.

Total RNA was extracted 48 hours after transfection using

TRIzol reagent, then converted to cDNA and analyzed by qRT-

PCR. Using the 2^−DDCt method, siRNA treatment reduced

COL11A2 expression by over 70% relative to the control group

(p < 0.01, Student’s t-test). Each experiment was conducted using

three independent biological replicates for each cell line.
2.13 Cell proliferation assay (CCK-8)

Post-siRNA transfection, cells were plated in 96-well plates at 3

× 10³ cells per well, in five replicates. At 24, 48, 72, and 96 hours

post-transfection, 10 mL of Cell Counting Kit-8 (CCK-8) reagent

(Dojindo, Japan) was added to each well and incubated at 37°C for 2

hours. Absorbance at 450 nm was recorded with a BioTek Synergy

H1 microplate reader. Proliferation curves were generated based on

absorbance values normalized to the 0 h time point.
2.14 Apoptosis assay (flow cytometry)

Apoptosis was evaluated 48 hours post-transfection. Cells were

collected, rinsed twice with PBS, and stained with Annexin V-FITC
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and propidium iodide (PI) using the Annexin V Apoptosis

Detection Kit (BD Biosciences, USA) according to the

manufacturer’s guidelines. Flow cytometry analysis of stained cells

was conducted immediately using a BD FACSVerse. Apoptotic

populations were categorized as early apoptosis (Annexin V+/PI-)

and late apoptosis (Annexin V+/PI+). Data analysis was performed

using FlowJo v10.
2.15 Migration and invasion assays

Migration and invasion were evaluated using Transwell assays.

For migration, 5 × 104 cells in 200 mL serum-free DMEM were

seeded into the upper chamber of Transwell inserts with 8 mm pores

(Corning, USA). The lower chamber was filled with 600 mL of

DMEM containing 10% FBS to serve as a chemoattractant. After

incubating for 24 hours at 37°C, cells remaining on the upper

surface were carefully wiped away using a cotton swab. Cells that

migrated to the lower membrane surface were fixed using 4%

paraformaldehyde and stained with 0.1% crystal violet. Cells were

counted in five randomly selected fields under a light microscope.

For invasion assays, the Transwell inserts were pre-coated with

diluted Matrigel (1:8 dilution in DMEM; BD Biosciences) and

incubated for 4 hours at 37°C prior to seeding. All subsequent

steps mirrored those of the migration assay.
2.16 Western blotting

Total protein was extracted using RIPA lysis buffer (Beyotime,

China) supplemented with protease inhibitors (Roche). Protein

concentrations were determined using the BCA assay (Pierce,

Thermo Fisher). Equal amounts of protein (30 mg/lane) were

resolved by 10% SDS-PAGE and transferred to PVDF membranes

(Millipore). Membranes were blocked with 5% non-fat milk in

TBST for 1 hour at room temperature, then incubated overnight at

4°C with primary antibodies: anti-cleaved Caspase-3 (1:1000,

#9664), anti-E-cadherin (1:2000, #3195), anti-Bcl-2 (1:1000,

#15071), anti-Vimentin (1:1000, #5741), and anti-b-actin (1:5000,

#4970), all from Cell Signaling Technology. Membranes were

incubated with HRP-conjugated secondary antibodies (1:5000,

CST) for 1 hour at room temperature following washing. Protein

bands were visualized using enhanced chemiluminescence (ECL)

reagents (Millipore) and quantified using ImageJ software.
2.17 Statistical analyses

All statistical analyses were performed using R (v4.0.2). Two-sided

tests were applied throughout. Continuous variables were analyzed

using the Mann-Whitney U or Kruskal-Wallis tests, while categorical

variables were assessed with Fisher’s exact test. Kaplan-Meier survival

analyses used the “survminer” package with log-rank tests (18).

Significance was determined by P < 0.05 or FDR < 0.05, as applicable.
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3 Result

3.1 Multi-omics integrative molecular
subtyping of melanoma

Utilizing two clustering metrics (Figure 1A) and established

molecular classifications for melanoma, we identified three as the

optimal number of clusters. Using a fully Bayesian latent variable

model to integrate five omics datasets, we discovered three distinct

clusters. These clusters exhibited significant overlap with the

classifications proposed by TCGA (Figure 1B). Importantly, our

classification revealed unique molecular patterns across the

transcriptome, DNA methylation, copy number alterations (CNA),

and somatic mutations (Figure 1C). The multi-omics classification

showed a strong correlation with both progression-free survival (PFS)

and overall survival (OS) (P < 0.001; Figures 1D, E). Among the three

subtypes, CS2 exhibited the most favorable prognosis. Furthermore,
Frontiers in Immunology 05
these subtypes were significantly associated with key clinical risk

features, including T stage and pathological stage (both P < 0.05;

Supplementary Table S1). A strong correlation was also observed

between our classification and variables such as mitotic count, Clark’s

level, and ulceration status (all P < 0.05; Supplementary Table S1).
3.2 Genetic dissection of integrated
subtypes of melanoma

As melanoma progresses, genetic alterations drive substantial

heterogeneity. To explore the genetic distinctions among the three

subtypes, we analyzed the mutational landscape of all samples,

identifying 65 mutations with significantly different mutational

frequencies across subtypes. These mutations were present in at

least 10% of melanomas in the TCGA cohort (Figure 2A; P < 0.05,

Supplementary Table S2). Among these, eight were identified as
FIGURE 1

Multi-omics integrative molecular subtyping of melanoma. (A) Determination of the optimal clustering number based on two clustering statistics.
(B) Integrative clustering using a fully Bayesian latent variable model identified three distinct clusters, showing overlap with previous TCGA
classifications. (C) Distinct molecular patterns across different omics platforms: transcriptome expression, DNA methylation, CNA, and somatic
mutation. (D, E) Kaplan–Meier survival plots showing the association of our classification with progression-free survival (PFS) and overall
survival (OS).
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potential driver mutations for melanoma: ARID2 (17%), BRAF

(52%), CDKN2A (13%), COL5A1 (23%), MECOM (22%), NF1

(17%), NRAS (28%), and TP53 (16%). Further analysis revealed that

CS2 exhibited a significantly higher tumor mutational burden

(TMB) compared to CS1 and CS3 (P = 0.0096; Figure 2B). In

terms of neoantigen load, CS2 showed a significantly higher

number of neoantigens than CS1 (P = 0.013; Figure 2C), while

the difference between CS2 and CS3 was not statistically significant.

We next examined chromosomal instability by mapping CNAs

across all human genes (Figures 3A, B). CS2 demonstrated superior

chromosomal stability compared to other subtypes, as evidenced by

lower individual fractional genome alterations (FGA) values and fewer

genome gains and losses (FGG and FGL) (both P < 0.001; Figure 3C;

Supplementary Table S3). Focal-level CNAs indicated that CS2

exhibited significantly fewer amplifications and deletions compared

to other subtypes (P < 0.001; Figure 3D; Supplementary Table S4).
3.3 Differential immune profiles across
melanoma subtypes

The genomic landscape of melanoma not only defines its

molecular features but also profoundly influences its immune
Frontiers in Immunology 06
microenvironment. By analyzing immune cell infiltration patterns

across the TCGA cohort, we observed significantly higher immune

infiltration in CS2 and CS3 compared to CS1 (Figure 4A). Notably,

CS2 exhibited elevated expression of key immune checkpoint genes,

including CD274 (PD-L1), PDCD1 (PD-1), CD247 (CD3z),
PDCD1LG2 (PD-L2), CTLA4 (CD152), TNFRSF9 (4-1BB),

TNFRSF4 (OX40), and TLR9, suggesting potential susceptibility to

immunotherapy (Figures 4B, C). Further characterization revealed

extensive immune and stromal cell infiltration in CS2 (Figures 4D-F),

which may underlie its more favorable clinical outcomes. In contrast,

DNA methylation analysis indicated a lower proportion of tumor-

infiltrating leukocytes in this subtype, as reflected by a significantly

higher MeTIL score (P < 0.001; Figure 4G).
3.4 Validation of tumor microenvironment
landscape and immunotherapy relevance

To test our hypothesis that CS2 may exhibit increased

responsiveness to immunotherapy, we analyzed a clinical cohort

of metastatic melanoma patients from Gide et al., who received

either anti-PD1 monotherapy or a combination of anti-CTLA4 and

anti-PD1 therapy. Using a gene-based classifier derived from the
FIGURE 2

Genetic delineation of integrative subtypes. (A) Mutational landscape indicating 65 mutations with significantly different frequencies among the
subtypes. (B) Box plot showing that the CS2 subtype has a significantly higher TMB. (C) Box plot demonstrating that CS2 has more neoantigens than
CS1 and CS3.
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top 30 genes of each subtype, we generated a 90-gene classifier

(Figure 5A; Supplementary Table S5). This classifier was applied to

the TCGA cohort and demonstrated strong congruence between

predicted and actual subtype labels (Figures 5B–D). When the

classifier was applied to Gide’s cohort, we found that a higher

proportion of patients predicted as CS2 responded positively to

immunotherapy: 45.4% in CS1, 85.7% in CS2, and 50% in CS3 (P <

0.001; Figure 5E). Furthermore, patients predicted to be CS2 had

improved PFS (P = 0.001; Figure 5F) and OS (P = 0.002; Figure 5G).

Consistent with TCGA findings, the Gide cohort recapitulated the

CS2-specific immune-enriched microenvironment, with heightened

immune cell infiltration and checkpoint expression (Figures 6A–D).

In further validation, we explored an epigenetic dataset of 89

primary invasive FFPE melanomas (Conway’s cohort) to assess

lymphocytic infiltration via DNA methylation. A 90-gene classifier

targeting promoter CpG islands was created (Figure 7A;

Supplementary Table S6). Applying this classifier to Conway’s

cohort successfully delineated the three subtypes (Figure 7B).

Consistent with prior findings, CS2 exhibited significantly higher

MeTIL scores (P < 0.001; Figure 7C), supporting the relevance of

the classification system for TME analysis and immunotherapy in

cutaneous melanoma.
Frontiers in Immunology 07
3.5 Potential therapeutic strategy for
melanoma subtypes

Considering the unfavorable prognosis of CS1 and CS3

melanoma patients, we aimed to identify potential therapeutic

agents for these subtypes. Using an in silico drug screening

approach, we built a ridge regression model to link cell line

sensitivities to various compounds. This model was applied to

melanoma cases from both TCGA and Gide’s cohorts with

available transcriptome data. The analysis identified 17-AAG as a

potential therapeutic agent for CS1, while four drugs—KU-55933,

MG-132, obatoclax mesylate, and PD-0325901—were highlighted

for CS3 (all FDR < 0.05; Figures 7D, E).
3.6 Functional characterization of COL11A2
reveals its oncogenic role in breast cancer
cells

To validate the functional significance of COL11A2, a key gene

in the Prognostic Index Score (PIS) model, we investigated its

expression in melanoma. Transcriptomic analysis indicated
FIGURE 3

Chromosomal Instability Analysis. (A) Focal-level CNA profiling for each subtype. (B) Broad-level copy number alteration (CNA) profiling across the
genome. (C) Quantification of chromosomal stability using FGA, FGG, and FGL metrics. (D) Comparative analysis showing significantly lower focal-
level amplifications/deletions in CS2. (E) Validation of subtype-specific drug sensitivity: estimated IC50 distributions for five compounds across CS1–
CS3 subtypes.
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increased COL11A2 expression in melanoma tissues relative to

adjacent normal tissues (Figure 8A), implying its role in

tumorigenesis. We examined COL11A2 expression in multiple

melanoma cell lines, selecting A-375 and SK-MEL-31 due to their

higher expression levels (Figures 8B, C). Knockdown of COL11A2

via siRNA significantly reduced cell proliferation, as demonstrated

by CCK-8 assays (Figures 8D, E). Flow cytometry revealed

increased apoptosis in COL11A2-silenced A-375 cells (Figures 8F,

G). Migration and invasion assays showed that COL11A2

knockdown impaired cell motility and invasiveness (Figure 8H–I).

Western blot analysis demonstrated increased levels of pro-
Frontiers in Immunology 08
apoptotic cleaved caspase-3 (c-caspase-3) and epithelial marker E-

cadherin, alongside decreased levels of anti-apoptotic Bcl-2 and

mesenchymal marker Vimentin (Figures 8J, K), reinforcing the

oncogenic function of COL11A2 in melanoma.
4 Discussion

In this study, we conducted an integrative multi-omics analysis

of cutaneous melanoma and identified three robust molecular

subtypes (CS1, CS2, and CS3), each exhibiting distinct genomic
FIGURE 4

Immune Profiles across Cutaneous Melanoma Subtypes in TCGA Cohorts. (A) Differential immunocyte infiltration across subtypes. (B, C) Upregulation of
immune-related genes (e.g., CD274, PDCD1, CTLA4) in CS2. (D) Illustration of CS2’s immune/stromal cell infiltration. (E, F) Bar plots showing CS2’s
higher enrichment of immune and stromal cells. (G) Higher tumor-infiltrating lymphocyte methylation score in CS2, indicating a lower proportion of
tumor-infiltrating leukocytes based on methylation. ** P<0.01, *** P < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1601243
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1601243
alterations, tumor microenvironmental features, and clinical

outcomes. This refined molecular classification provides a

comprehensive framework to decode melanoma heterogeneity

and offers actionable insights into subtype-specific therapeutic

vulnerabilities with potential translational relevance.

The CS2 subtype was distinguished by elevated TMB, a high

neoantigen load, strong immune cell infiltration—hallmarks of an

immunologically “hot” tumor microenvironment (19). Recent pan-

cancer studies, including in NSCLC, have shown that copy number

variation (CNV) burden—such as CNV amplitude (CNVA)—can

synergize with TMB to predict immune infiltration and ICI response

(20). In CS2 tumors, high CNVA correlated with increased PD-L1

expression, CD8+ T cell infiltration, and enhanced antigen presentation,

indicating a robust, antigen-driven anti-tumor immune response.

Although genomic instability is often associated with immune evasion

(21), CS2 maintained high MeTIL scores, suggesting preserved

immunogenicity despite elevated CNV and TMB levels. This supports
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the growing recognition of multidimensional biomarkers—combining

TMB, CNV burden, and immune activation metrics—to more

accurately predict immunotherapy responsiveness.

Notably, the coexistence of high neoantigen load and preserved

immune activity in CS2 tumors raises the possibility of active immune

editing as a contributing factor to their favorable prognosis. Immune

editing describes a dynamic interplay in which early immune

surveillance eliminates highly immunogenic clones, while selective

pressure promotes the emergence of tumor cells capable of immune

escape or equilibrium (22). Recent studies in melanoma have revealed

that neoantigen-specific CD8+ and CD4+ T cells—including cytotoxic

and regulatory subsets—can be clonally expanded in response to class

I- and class II-restricted neoantigens, contributing to both immune

activation and localized immunosuppression (23, 24). In CS2 tumors,

sustained T cell infiltration alongside intact antigen presentation

machinery may reflect an immune-edited landscape in which partial

immunogenicity is retained. This evolutionary balance could account
FIGURE 5

Validation in Gide’s Cohort. (A) Schematic of the 90-gene classifier (see Supplementary Table S5). (B) Application of the classifier in the TCGA cohort
using NTP. (C) Classification of Gide’s cohort using the 90-gene signature. (D) Comparison of predicted versus actual subtype labels. (E) Differential
immunotherapy response among predicted subtypes. (F, G) Kaplan–Meier plots of PFS and OS for predicted subtypes in Gide’s cohort.
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for the subtype’s robust response to ICIs, and underscores the

importance of considering neoantigen quality and immune

sculpting—not just quantity—in predicting therapeutic outcomes.

Furthermore, transcriptomic profiling revealed that CS2 tumors

share high similarity with known ICI responders and demonstrated

superior clinical outcomes in the independently validated Gide cohort.

Together, these features reinforce the potential benefit of PD-1/PD-L1

blockade for this subtype and highlight the translational relevance of

integrated genomic and immunologic biomarkers in stratifying

melanoma patients for immunotherapy.

By contrast, the CS1 and CS3 subtypes exhibited features

consistent with immune exclusion, including diminished

infiltration of cytotoxic lymphocytes, high levels of chromosomal

instability, and activation of oncogenic pathways associated with

immune evasion. These immunologically “cold” phenotypes align

with established mechanisms of immune resistance in melanoma,

such as MHC class II downregulation via STAT1 silencing (25), PD-

L1 induction through YAP activation in BRAFi-resistant contexts

(26), and EMT-driven T cell exclusion mediated by ZEB1 (27).

Additionally, tumor-derived extracellular vesicles and exosomal

microRNAs have been implicated in reshaping the tumor
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microenvironment to suppress antitumor immunity in these

settings (28). To identify potential therapeutic avenues for CS1

and CS3 tumors, we employed transcriptome-based drug response

modeling, which revealed selective sensitivity to compounds

including HSP90 and MEK inhibitors—agents known to

counteract immune resistance by modulating tumor-intrinsic

signaling and restoring immune susceptibility. Notably, HSP90

inhibitors can activate NF-kB signaling via fibroblast stimulation

through extracellular vesicles (29), while MEK inhibition may

reverse tumor cell dedifferentiation and synergize with BET or

FAK inhibitors to overcome adaptive resistance (30). These findings

underscore the potential of precision drug repositioning for

targeting immunotherapy-refractory melanoma subtypes and

warrant further validation in preclinical models that recapitulate

both tumor cell-intrinsic and microenvironmental components.

In addition to oncogenic signaling, CS1 and CS3 tumors also

exhibited distinct metabolic gene expression signatures, suggestive

of subtype-specific metabolic dependencies. For example, CS1

tumors showed upregulation of FABP7, SLC2A2, and GSTO2,

implicating altered lipid handling, glucose metabolism, and redox

balance. CS3 tumors overexpressed GLUL, ALDH3B2, and multiple
FIGURE 6

Immune Profiles across Cutaneous Melanoma Subtypes in Gide’s Cohorts. (A) Differential immunocyte infiltration across subtypes. (B) Upregulation
of immune-related genes (e.g., CD274, PDCD1, CTLA4) in CS2. (C) Illustration of CS2’s immune/stromal cell infiltration. (D) Bar plots showing CS2’s
higher enrichment of immune and stromal cells. **** P < 0.0001.
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SLC family members involved in amino acid and nitrogen

metabolism. Notably, recent studies have demonstrated that

metabolic rewiring—including enhanced fatty acid oxidation,

peroxisome function, and mitochondrial plasticity—facilitates

immune evasion and MAPKi resistance in melanoma (31). These

findings suggest that targeting metabolic vulnerabilities, such as

glutamine metabolism or oxidative phosphorylation, may represent

a complementary approach for overcoming immunotherapy

resistance in CS1 and CS3 subtypes.

Functionally, we identified COL11A2 as a subtype-enriched

oncogenic driver within our prognostic model. Its elevated expression

was associated with unfavorable clinical outcomes and was

predominantly observed in CS1 and CS3 tumors. In melanoma cells,

COL11A2 silencing significantly reduced proliferation, migration, and

invasion, induced apoptosis, and partially reversed EMT phenotypes.

These tumor-suppressive effects align with mechanistic roles described

for other fibrillar collagen family members, including COL5A1 and
Frontiers in Immunology 11
COL11A1, which contribute to extracellular matrix (ECM) remodeling,

activation of cancer-associated fibroblasts (CAFs), and

immunosuppression via stromal interactions (32–34). For instance,

COL5A1 has been implicated in promoting mechanical stress and

therapy resistance in lung adenocarcinoma, while COL11A1 activates

CAFs through the TGF-b/NF-kB/IGFBP2 signaling axis in various solid
tumors (35, 36). Given the structural and functional similarities within

this collagen subfamily, COL11A2 may function analogously to

promote melanoma progression by reinforcing a fibroblast-rich,

immunosuppressive microenvironment. These results nominate

COL11A2 as a promising therapeutic target for stromal-dominant,

immune-cold melanoma subtypes and highlight the need for further

validation in preclinical models that incorporate CAF dynamics and

ECM remodeling.

While valuable insights were obtained, it is important to

recognize certain limitations. First, the retrospective nature of

multi-omics data analysis may introduce cohort-specific biases, and
FIGURE 7

Epigenetic Validation in Conway’s Cohort and Therapeutic Drug Prediction. (A) 90-promoter classifier based on genes in promoter CpG islands (see
Supplementary Table S6). (B) Reproduction of the three subtypes in Conway’s cohort using methylation profiles. (C) CS2 in Conway’s cohort shows
significantly higher tumor-infiltrating lymphocyte methylation scores. (D, E) In silico drug sensitivity prediction using ridge regression analysis (see
Supplementary Tables S7, S8). * P<0.05, ** P<0.01, *** P<0.001.
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prospective validation in larger, independent cohorts is needed.

Second, the precise molecular determinants of immune exclusion

in CS1 and CS3 subtypes—particularly the contributions of

epigenetic regulation, tumor cell plasticity, and stromal interactions

—remain to be fully elucidated. Lastly, while our in silico drug

screening provides a rational hypothesis-generating platform,

experimental validation in patient-derived organoids or co-culture

systems will be essential to confirm therapeutic efficacy. Additionally,

tumor plasticity and potential subtype switching under therapy may
Frontiers in Immunology 12
affect the stability of our classification. Longitudinal studies will be

needed to capture these dynamics and improve clinical utility.
5 Conclusion

In conclusion, we propose a novel molecular classification of

cutaneous melanoma that integrates genomic, transcriptomic, and

microenvironmental data to reveal biologically and clinically relevant
FIGURE 8

Expression and functional analysis of COL11A2 in melanoma cells. (A) COL11A2 expression in melanoma vs. adjacent normal tissues. (B) COL11A2
expression in melanoma cell lines. (C) qRT-PCR of COL11A2 after siRNA knockdown. (D, E) CCK-8 assay showing proliferation in knockdown vs.
control. (F, G) Flow cytometry of apoptosis in A-375 cells post-knockdown. (H, I) Transwell assays of migration/invasion in A-375 cells. (J) Western
blot for cleaved caspase-3, Bcl-2, E-cadherin, and Vimentin. (K) Relative levels of cleaved caspase-3, Bcl-2, E-cadherin, and vimentin in A-375 cells
transfected with si-NC or si-COL11A2, normalized to b-actin. Data are mean ± SD (n = 3). * P<0.05, ** P<0.01, *** P<0.001.
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subtypes. The CS2 subtype emerges as an immunologically favorable

group likely to benefit from checkpoint blockade, whereas CS1 and

CS3 subtypes may require tailored strategies targeting oncogenic

pathways, stromal remodeling, and immune exclusion. Functional

characterization of subtype-specific genes such as COL11A2 further

supports their potential as therapeutic targets and paves the way

toward personalized treatment paradigms in melanoma.
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