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circ-0001875 downregulation is
associated with M1 macrophage
activation and lung inflammation
in severe asthma
Gege Liu †, Jiahao Cao †, Yiyan Lin, Bingyu Long, Yanyu Su,
Guiqiang Qiu, Chi Jiang, Yue Wang, Xuanna Zhao*,
Dan Huang* and Dong Wu*

Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical
University, Zhanjiang, China
Background: Asthma is a heterogeneous group of diseases. The mechanism by

which dysregulated circRNAs affect severe asthma by regulating macrophage

polarization remains unclear.

Methods: High-throughput RNA sequencing technology was used to analyze

circRNA expression in peripheral bloodmononuclear cells (PBMCs) from patients

with severe asthma. RT-qPCR and ELISA were used to analyze the expression of

inflammatory factors in a mouse model of severe asthma induced by ovalbumin-

lipopolysaccharide. The effect of circ-0001875 on macrophage activation and

the underlying mechanism were analyzed by RT-qPCR, Western blot, and ELISA.

Subsequently, the regulatory relationships among circ-0001875, miR-31-5p, and

SP1 were examined through dual luciferase reporter gene assay, and the

mechanism by which they regulate macrophage polarization was analyzed by

Western blot.

Results: Compared with the healthy control group, 420 circRNAs were

differentially expressed in PBMCs from patients with severe asthma. Among

them, circ-0001875, which was mainly expressed in the cytoplasm of

monocytes, was significantly downregulated in asthmatics, especially those

with severe disease. circ-0001875 overexpression inhibited M1 macrophage

activation in vitro and alleviated lung inflammation in a mouse model of severe

asthma. Mechanistically, circ-0001875 promoted SP1 translation by

competitively binding to miR-31-5p, thereby reducing its inhibitory effect on

SP1 translation; SP1 then inhibited M1 macrophage polarization, which is

associated with severe asthma, through the NF-kB signaling pathway.

Conclusions: We found that circ-0001875 plays an important role in regulating

M1 macrophage polarization, which is associated with a severe pro-

inflammatory response.
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1 Introduction

Bronchial asthma is a heterogeneous group of diseases

characterized by chronic inflammation of the airways involving

various inflammatory cells including eosinophils, mast cells,

lymphocytes, macrophages, and so on, as well as various

inflammatory mediators. Its main features include chronic airway

inflammation, airway hyperresponsiveness, and chronic airway

remodeling over time (1, 2). Currently, approximately 300 million

people worldwide suffer from asthma, posing a serious threat to

global public health (3). Severe asthma is a clinically defined

subgroup of asthma that frequently responds poorly to treatment

with corticosteroids. Corticosteroids are currently recommended

for the treatment of persistent asthma and are the preferred therapy

for effectively controlling airway inflammation (4). Corticosteroid

resistance is a significant challenge to the treatment of refractory

asthma (5, 6).

Macrophages are the main innate immune cells in the lungs,

accounting for over 70% of pulmonary immune cells (7). Upon

exposure to external allergens, pulmonary macrophages are

activated and participate in pro-inflammatory and anti-

inflammatory processes (8). Classically activated (or M1)

macrophages induced by IFN-g, lipopolysaccharide (LPS), and

granulocyte macrophage colony stimulating factor (GM-CSF) are

associated with pathogen clearance and involved in the pathogen-

driven innate immune response. In contrast, alternatively activated

(or M2) macrophages induced by IL-4 and IL-13 are associated with

tissue remodeling and cell clearance and involved in anti-

inflammatory reactions (9, 10). Previous studies have shown that

M1 macrophages are involved in asthma pathology. In severe

asthma, macrophages adopt the M1 phenotype and produce a

large amount of pro-inflammatory mediators (including TNF-a,
IL-1b, IL-6, NO, etc.) that promote airway mucus secretion,

exacerbate lung injury, and accelerate airway remodeling (11, 12).

Our previous study showed that the nuclear factor kappa B (NF-kB)
pathway is one of the main pathways that induces M1 macrophage

polarization and regulates asthma-related airway inflammation and

remodeling (13).

Circular RNAs (circRNAs) and microRNAs (miRNAs) are non-

coding RNAs (ncRNAs) that regulate various pathological

processes involving macrophages, such as macrophage

polarization, airway inflammation, and airway remodeling, and

are abnormally expressed in asthma (14–18). circRNAs modulate

various biological processes such as macrophage polarization,

immune regulation, and airway remodeling, and are involved in

asthma pathology (19, 20). CircRNAs are regulatory factor for

various cellular and biological processes in asthma airway smooth

muscle cells, including proliferation, apoptosis, migration, and

secretion of inflammatory mediators. Dysregulated circRNAs may

also lead to dysfunction of bronchial epithelial cells associated with

asthma, playing a critical role in T cells development and function

(20). As competitive endogenous RNAs, circRNAs can act as

miRNAs sponges, thereby altering the function of proteins and

signaling pathways that are regulated by miRNAs (21, 22). miRNAs

regulate macrophage activation during asthma progression (23, 24).
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miRNAs control the M1/M2 macrophage polarization balance and

immune regulatory response by regulating the expression of

different transcription factors (25–31). Therefore, circRNAs and

miRNAs that are differentially expressed in asthma patients may

participate in immune regulation, airway inflammation, and

remodeling by regulating macrophage activation. However, the

specific mechanisms by which dysregulated circRNAs and

miRNAs affect severe asthma have not been studied.

Specific protein 1 (SP1) is a member of the zinc finger

transcription factor family, which includes at least four SP

transcription factors (32, 33). Previous studies have suggested that

SP1 is involved in monocyte activation. SP1 can be induced and

activated by LPS in THP-1, a human monocyte cell line (34, 35).

SP1 also binds the enhancer or promoter region of the GM-CSF

gene (35–39). As an M1 macrophage stimulating factor, GM-CSF

regulates NF-kB expression (40, 41). SP1 not only binds to NF-kB,
but also regulates NF-kB activation in cancer (42, 43). We

previously found that SP1 expression is regulated by circRNAs

that act as sponges to inhibit miRNA activity, thereby affecting the

epithelial mesenchymal transition; this suggests that SP1 may be a

downstream regulator of cell function and phenotype changes

induced by circRNAs (44). However, whether SP1 expression is

modified by dysregulated circRNAs during asthma progression, and

the specific mechanisms by which SP1 participates in M1

macrophage polarization, remain unclear.

In this study, we investigated the role and regulatory

mechanism of abnormally expressed circRNAs in severe asthma.

We found that circ-0001875 expression levels are associated with

asthma severity. Compared with healthy individuals, circ-0001875

expression is reduced in patients with severe asthma. Importantly,

circ0001875 regulated M1 macrophage polarization by acting as a

sponge for miR-31-5p, thereby promoting SP1 expression. We also

found that the circ-0001875/miR-31-5p/SP1 axis regulates the NF-

kB signaling pathway, which is involved in M1 polarization. This

study reveals for the first time the mechanism by which circ-

0001875 participates in asthma inflammation by regulating

macrophage polarization, providing new experimental evidence

for understanding the role of circRNAs in asthma. However, its

potential as a clinical biomarker still needs further validation in the

following areas.
2 Materials and methods

2.1 Research subject recruitment and
specimen collection

All research subjects, male and female, were over 18 years old.

We collected peripheral blood samples from 101 patients, including

32 in the mild asthma group, 34 in severe asthma group, and 35 in

the healthy control group. The patients in the asthma groups were

selected from patients who received outpatient or inpatient

treatment in the Respiratory and Critical Care Department of

Guangdong Medical University Affiliated Hospital from January

2020 to December 2022 and were ultimately diagnosed with asthma
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following the diagnostic standards in the “Guidelines for the

Prevention and Treatment of Bronchial Asthma (2020 Edition)”

formulated by the Asthma Group of the Respiratory Branch of the

Chinese Medical Association in 2020 (45). The exclusion criteria for

the asthma group were as follows (1): acute respiratory tract

infection or corticosteroid treatment within 4 weeks prior to the

visit; (2) underlying diseases that could have interfered with the

study; (3) lack of informed consent from the patient to participate in

the study. Healthy individuals for the healthy control groups were

selected from patients who underwent physical examinations at the

Department of Health Examination Department of Guangdong

Medical University Affiliated Hospital from January 2020 to

December 2022. The inclusion criteria for the healthy control

group included: (1) no abnormalities detected during the routine

physical examination and no history of allergic disease; (2)

matching the average age and gender composition of the asthma

groups; (3) informed consent obtained to participate in the study.

The clinical data and relevant examination results of the

research subjects were recorded, and peripheral venous blood

samples were collected (5 mL in the morning on an empty

stomach) in sodium heparin vacuum tubes. Ethical approval for

the study was obtained from the Ethics Committee of Guangdong

Medical University Affiliated Hospital, and all experiments were

carried out in strict accordance with regulations. All of the study

participants provided written informed consent.
2.2 Cell lines

Normal lung epithelial cell (BEAS-2B), normal human

bronchial epithelial cell (HBE), human embryonic kidney cell

(293A), and human monocyte (THP1) lines were purchased from

the cell bank of the Chinese Academy of Sciences (Shanghai,

China). The cells were cultured in high-glucose DMEM complete

medium (containing 10% fetal bovine serum) and RPMI 1640

complete medium (containing 10% fetal bovine serum),

respectively and incubated at 37 °C with 5% CO2.
2.3 Animal model

Healthy female SPF C57BL/6 mice, 6 weeks old, weighing 16 to

18 g, were purchased from Guangdong Medical Experimental

Animal Center (Guangdong, China). The mice were housed at a

temperature of 20 to 24 °C with a 12/12-hour light/dark cycle and a

relative humidity range of 40% to 70%. The mice were given one

week to acclimate before starting the experiments. Animal ethics

approval was obtained from the Quality Inspection Unit: Animal

Ethical and Welfare of Affiliated Hospital of Guangdong Medical

University (License No.: AHGDMU-LAC-B-202404-0020).

The experimental mice were randomly divided into four groups,

each consisting of five mice: the control group (PBS), severe asthma

group (ovalbumin-lipopolysaccharide [OVA-LPS]), circ-0001875

negative control with severe asthma group (OVA-LPS+con plasma),
Frontiers in Immunology 03
and circ-0001875 overexpression with severe asthma group (OVA-LPS

+circ-0001875). The severe asthma model was established according to

previous studies (46, 47). Sensitization: on Day 1 and Day 14, a

sensitization solution consisting of 2.25 mg aluminum hydroxide and

20 mg OVA in 0.1 mL of PBS was intraperitoneally injected into each

mouse mice. Boosting: on Day 27, 10 mg of LPS in 60 mL of solution

was administered intranasally to each mouse mice. Challenge: on Days

28 to 30, 15 mL of 1% OVA in saline was administered to each mouse

via atomized inhalation for 20 minutes. The mice in the control group

received an equal amount of PBS.

For in vivo transfection with the circ-0001875 overexpression

plasmid, an overexpression vector encoding circ-0001875 under the

control of the macrophage-specific CD68 promoter was

constructed. On Day 27, 50 mL of a transfection solution

containing 8 mg of the circ-0001875 overexpression plasmid or a

negative control plasmid was administered to each mouse

intratracheally. The transfection mixture included Entranster ™

In vivo transfection reagent (Engreen, China). On Day 31, the mice

were euthanized, and samples were collected.
2.4 RNA sequencing

Peripheral blood mononuclear cells were extracted from

patients with bronchial asthma and healthy individuals, and total

RNA was isolated from the cells using TRIzol Reagent (Invitrogen,

CA, USA). An Agilent 2100 instrument was used to detect RNA

integrity, and samples with RNA integrity values>7.0 were selected

for analysis. Ribosomal RNA was removed from the samples using a

RiboMinus eukaryotic assay kit (Qiao, Valencia, CA, USA). Deep

sequencing of the RNA seq library was performed using an Illumina

HiSeq 2000 instrument (Illumina, San Diego, CA, USA). Paired-end

reads were obtained, and differentially expressed circRNAs were

identified using Edger software (v3.16.5).
2.5 RT-qPCR

Total RNA was extracted from tissues and cells using Trizol

reagent (Invitrogen) according to the manufacturer’s instructions.

cDNA was synthesized using Evo M-MLV RT Premium (AG,

Hunan, China), and RT-qPCR was performed on an ABI7500

(Applied Biosystems, Foster City, CA, USA) or LightCycle 480

(Roche Applied Biosystems) instrument. U6 or b-actin served as the
internal controls for miRNA and mRNA, respectively. The

sequences of primers were shown in Supplementary Table S2.
2.6 RNase R treatment and actinomycin D
treatment

For RNase R treatment, total RNA was extracted from the cells,

and 2 mg total RNA was incubated at 37°C for 15 min with 3U/mg
RNase R (Epicentre Technologies Corporation, Madison, WI,
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USA). For ActD, cells were cultured with 2 mg/mL ActD (Beyotime,

Shanghai, China) for a specific amount of time.
2.7 Western blot

The transfected cells were lysed in RIPA (Beyotime) containing

PMSF, and the protein concentrations were quantified with BCA

reagent (Beyotime). Equivalent amounts of protein were subjected to

10% SDS-PAGE and transferred to a PVDF membrane (Millipore,

Billerica,MA, USA). Themembrane with blocked with 5% skimmilk at

room temperature for 1 hour, then incubated with the primary

antibody overnight with shaking at 4°C. Next, the membrane was

incubated with horseradish peroxidase-labeled secondary antibodies for

1 hour. BeyoECL star (Beyotime) was used to detect the protein signals.
2.8 ELISA

Cell supernatants and mouse BALF were collected, and ELISA

reagent kits were used to detect the concentrations of various factors

in the samples. The relative concentrations of the factors were

calculated based on the standard curve.
2.9 Extraction of PBMCs from human
peripheral blood

Peripheral venous blood was collected from patients with

asthma and healthy individuals, mononuclear cells were extracted

using a monocyte extraction kit, and red blood cells were removed

using a red blood cell lysing reagent.
2.10 Fluorescence in situ hybridization and
immunofluorescence staining

The cells were fixed with 4% paraformaldehyde and then soaked in

PBS containing 0.5% Triton X-100 in a confocal dish for 30 minutes.

For FISH, the cells were incubated overnight at 37°C with a FITC-

labeled circ-0001875 probe (GenePharma). Anti-fading mounting

medium was added, DAPI staining was performed, and the cells

were imaged with Olympus laser confocal microscope (Olympus

Corporation, Tokyo, Japan).
2.11 Dual luciferase reporter assay

circ-0001875 and SP1 luciferase reporter plasmids (wild-type and

mutant) were synthesized by GenePharma. Cells were seeded into a 24-

well plate. When the cell density reached around 60%, the cells were

transfected with the luciferase plasmids, Renilla control plasmids, and

miRNA mimetics. A dual luciferase assay system (Promega) was used

to detect the luciferase and Renilla fluorescence levels. The sequences of

siRNAs were shown in Supplementary Table S3.
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2.12 Bioinformatics analysis

The online circRNA database CircBase (https://www.circbase.org/)

was used to predict target miRNAs, and their interaction sites were

predicted using Circinteractome (https://circinteractome.nia.nih.gov/).

TargetScan (https://www.targetscan.org/), miRbase (https://

www.mirbase.org/), and miRDB (https://www.mirdb.org/) were used

to predict downstream target genes of the identified miRNAs.
2.13 Statistical analysis

Statistical analysis was conducted using GraphPad Prism 8.0

and SPSS 26.0. Data are shown as mean ± standard deviation.

Intergroup differences were assessed by t-test, one-way ANOVA, or

chi square test. Statistically significant differences are shown as

*P<0.05, **P<0.01, and ***P<0.001.
3 Results

3.1 circ-0001875 expression is
downregulated in severe asthma

We conducted high-throughput sequencing of PBMCs from

peripheral blood samples collected from patients with severe asthma

and healthy individuals using (Figure 1A). Using the criteria of log2

(fold-change) absolute value>1 and P-value<0.05, we identified 430

differentially expressed circRNAs, including 197 upregulated and 233

downregulated circRNAs (Figure 1B). The circRNAs differentially

expressed between severe asthma and healthy control group are

shown in Supplementary Table S1. Notably, as the linear counterpart

of circ-0001875, FAM120A is associated with inflammation or asthma

(48). circ-0001875 (has_circRNA_0001875) showed significant

downregulation in the analyzed data. (Figure 1C).

We examined the expression level of circ-0001875 in PBMCs from

patients with asthma and healthy individuals. The clinical characteristics

of the subjects are shown in Table 1. We divided the patients with

asthma into severe and mild asthma groups. Compared with patients

with mild asthma, the patients with severe asthma showed a significant

increase in inhaled steroid doses and decreased FENO (P<0.001),

indicating a poorer response to inhaled corticosteroids. Lung function

in the severe asthma group was also significantly lower than that seen in

the mild asthma group (P<0.001). In addition, the sputum of patients

with severe asthma patients contained more inflammatory cells than

that of patients with mild asthma, including eosinophils, macrophages,

lymphocytes, and neutrophils (P<0.001). Furthermore, circ-0001875

was downregulated in the PBMCs of patients with asthma, especially

those with severe asthma (Figures 1D, E).

Furthermore, we constructed an animal model of severe asthma by

treating mice with LPS-OVA and found that circ-0001875 was

expressed at low levels in these animals (Figures 1F, G) (46, 47).

More importantly, inflammatory factors released by M1 macrophages

were expressed at high levels in the lung tissue and BALF of the mouse

model of severe asthma (Figures 1H-L).
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FIGURE 1

circ-0001875 expression in peripheral blood monocytes (PBMCs) from patients with asthma and an OVA-LPS-induced asthmatic mouse model. (A)
Comparison of gene expression heatmaps between healthy and severe asthma groups. (B) Volcano plots showing differentially expressed circRNAs.
(C) circRNAs with corresponding host genes and fold change values. (D–E) Differential expression of circ-0001875 in PBMCs from patients with mild
asthma, patients with severe asthma, and healthy individuals. (F) OVA-LPS-induced mouse model of asthma. (G) circ-0001875 expression in lung
tissue from the OVA-LPS-induced asthmatic mouse model. (H–L) Expression of M1 polarization–related inflammatory factors in lung tissue and
BALF from the asthma model. The bars and error bars represent the mean ± SEM; ***P< 0.001. ns, not significant by unpaired Student's t-test or
one-way ANOVA with Tukey's multiple comparisons test.
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3.2 Circ-0001875 inhibits M1 macrophage
polarization in severe asthma

Subsequently, we found that circ-0001875 was downregulated

in monocytes isolated from peripheral blood and downregulated in

human macrophages stimulated by LPS (Figures 2A, B). Monocytes

are one source of macrophages in lung tissue, and macrophages are

involved in severe asthma-induced pulmonary inflammation (11,

12, 49). Therefore, we hypothesized that circ-0001875 induces M1

macrophage polarization.

The sequence and structural composition of circ-0001875 were

identified using the CircBase database (50), and divergent and

convergent primers (circ-0001875 and FAM120A mRNA) were

designed and synthesized to verify the stability of circ-0001875 as a

circular RNA (Figure 2C). RNase R experiments and ActD
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experiments showed that circular circ-0001875 was more stable

than linear FAM120A mRNA (Figures 2D, E). In addition,

fluorescence in situ hybridization confirmed that circ-0001875

was mainly expressed in the cytoplasm, indicating its potential as

a competitive endogenous RNA (Figure 2F).

To investigate the biological function of circ-0001875 in severe

asthma, we designed and synthesized circ-0001875 siRNA and

overexpression plasmids, which were then transfected into THP1

cells. The effectiveness of circ_0001875 knockdown and

upregulation was validated in cells, showing no effect on the

expression of its linear counterpart FAM120A (Figure 2G). In

vitro, knocking down circ-0001875 promoted M1 macrophage

polarization and the secretion of related inflammatory factors,

while circ-0001875 overexpression inhibited M1 macrophage

polarization (Figures 2H-K).
TABLE 1 Clinical characteristics of the study participants.

Variables Severe asthma
(n=34)

Mild-moderate Asthma
(n=32)

Healthy
(n=35)

P value

Age (y) mean (SD) 38.5 ± 14.7 43.7 ± 15.3 40.1 ± 10.2 0.292

Male n (%) 17 (50) 12 (37.5) 15 (42.9) 0.589

Disease duration years median (IQR) 13 (7,17.5) 5 (3,11.5) NA < 0.001

BMI kg/m2 mean (SD) 23.7 ± 2.6 23.6 ± 3.2 23.1 ± 2.4 0.631

Current smoking n (%) 8 (23.5) 6 (18.8) 7 (20) 0.883

ACT score, median (IQR) 13 (12,14) 22.5 (21.8,23) NA < 0.001

Beclometasone-equivalent dose of inhaled steroid (mg)
median(IQR)

800 (800,800) 400 (400,500) NA < 0.001

Atopy* n (%) 26 (76.5) 26 (81.2) 1 (2.9) < 0.001

Comorbidities
Allergic rhinitis n (%)

25 (73.5) 22 (68.8) 1 (2.9) < 0.001

Lung function:FEV1% predicted median(IQR) 71.4 (62,79.3) 97.2 (89.3,101.7) 106.4 (100.3,110) < 0.001

FVC % predicted median(IQR) 93.5 (90,96.3) 105.6 (102.3,109.6) 112.3 (103.8,125.6) < 0.001

FEV1/FVC % predicted
Median (IQR)

79.8 (73.6,82) 86.2 (82.9,91.1) 84.7 (82.2,86.6) < 0.001

FENO (ppb), median (IQR) 30.5 (21,46.8) 44.5 (27.2,57.2) 6 (4,7.5) < 0.001

Total IgE (kUA/L), median (IQR) 897.5 (300.5,946.8) 467 (128,654.2) 41.2 (15.1,97.2) < 0.001

Sputum total cell count x106 ·mL−1 median (IQR) 5.4 (4.5,6.4) 5.4 (3.9,6) 6.2 (5.7,7.5) < 0.001

Sputum neutrophils (%) median(IQR) 34.4 (25.8,35.9) 15.3 (13.7,16.4) 14.8 (14,18.3) < 0.001

Sputum eosinophils (%) median(IQR) 6.2 (4.9,9.4) 3.1 (1.9,7.4) 0.2 (0.2,0.2) < 0.001

Sputum macrophages (%) median(IQR) 66.9 (64.7,69.4) 65.2 (61.2,69.6) 80.5 (78.8,82.4) < 0.001

Lymphocytes (%) median(IQR) 1 (0.9,1.1) 1.3 (1,1.7) 0.8 (0.6,1) < 0.001

Epithelial cells (%) median(IQR) 4.5 (1.2) 4.7 (1.4) 3.4 (1.5) < 0.001

WBC median (IQR) 5.9 (4.9,6.5) 5.7 (4.9,6.7) 3.6 (3,4.1) < 0.001

EO# median (IQR) 0.4 (0.3,0.8) 0.3 (0.2,0.6) 0.2 (0.1,0.4) 0.002

neutrophils median (IQR) 5.3 (4.3,5.7) 3.6 (2.7,3.7) 3.5 (2.5,3.9) < 0.001
The data are presented as the mean (standard deviation), median (interquartile range), or n (%). ACT, asthma control test; BMI, body mass index; DRSmethacholine, slope of the dose-response
curve for methacholine provocation; FENO, fraction of exhaled nitric oxide; ICS, inhaled corticosteroids; IQR, Interquartile range; NA, not available; NS, not significant.
*Atopy is defined as a specific IgE level greater than 0.35 kU/L in response to inhaled allergens (Phadiatop).
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Next we constructed an animal model of severe asthma model by

treating mice with OVA-LPS, while the negative control group was

treated with PBS (46, 47). A CD68–circ-0001875 overexpression vector

and negative control vector were transfected into the lungs of C57BL/6
Frontiers in Immunology 07
mice via intrabronchial injection. Brief transfection with the CD68–

circ-0001875 plasmid resulted in circ-0001875 overexpression in lung

tissue (Figure 3A, Supplementary Figure S1). H&E and PAS staining

confirmed an increase in inflammatory cell infiltration and goblet cell
FIGURE 2

circ-0001875 inhibits M1 macrophage polarization in vitro. (A–B) circ-0001875 expression in different cells. (C) Schematic of the genomic location
and back splicing of circ-0001875 with the splicing site validated by Sanger sequencing. (D–E) The expression of circ-0001875 and FAM120A mRNA
after treatment with actinomycin D and RNase R. (F) Fluorescence microscopy images revealing cellular localization of FITC-circ_0001875. (G) circ-
0001875 and FAM120A mRNA expression levels after circ-0001875 knockdown and overexpression. (H–K) The effect of circ-0001875 knockdown
or overexpression on macrophage polarization was detected by RT-qPCR, Western blot, and ELISA, respectively. The bars and error bars represent
the mean ± SEM; *P< 0.05, **P< 0.01, and ***P< 0.001. ns, not significant by one-way ANOVA with Tukey's multiple comparisons test.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1601272
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2025.1601272
proliferation in the lung tissue of severely asthmatic mice, while circ-

0001875 overexpression inhibited airway inflammation (Figures 3B,

C). In vivo, circ-0001875 overexpression inhibited the expression of

inflammatory factors related to M1 macrophage polarization

(Figures 3D, E). More macrophages and eosinophils were present in

BALF from the severe asthma group than BALF from the negative

controls, while circ-0001875 overexpression reduced the number of

macrophages and eosinophils in BALF (Figures 3F-H). These results

indicate that circ-0001875 inhibits M1 macrophage polarization in

vivo, thereby reducing airway inflammation in severe asthma.
3.3 circ-0001875 acts as a sponge for miR-
31-5p, thereby reducing M1 macrophage
polarization

Next we used CircBase (50) to search for potential miRNA

targets of circ-0001875 and Circinteractome (51) to identify their

interaction sites. We found 21 miRNA sequences with interaction

regions that complemented circ-0001875 (Figure 3I). Dual

luciferase reporter gene detection and rescue experiments showed

that circ-0001875 can serve as a “molecular sponge” for miR-31-5p,

exerting a negative regulatory effect on its expression (Figures 3J, K,

Supplementary Figure S2A). miR-31–5 was expressed at higher

levels in PBMCs of patients with severe asthma (Figures 3L, M).

To verify at the functional level that miR-31-5p is a downstream

miRNA target of circ-0001875, we constructed miR-31-5p mimics and

an miR-31-5p inhibitor to overexpress and inhibit miR-31-5p

expression, respectively (Supplementary Figure S2B). miR-31-5p

overexpression promoted M1 macrophage polarization, while

inhibition of miR-31-5p expression inhibited M1 macrophage

polarization (Figures 4A-F). In addition, miR-31-5p mimics

promoted the secretion of M1 polarization–related inflammatory

factors by macrophages, while miR-31-5p inhibition had the opposite

effect (Figures 4G-J). Subsequent rescue experiments confirmed that

miR-31-5p is a downstream miRNA of circ-0001875 involved in

regulating macrophage M1 polarization (Figures 4K-O). These results

indicate that circ-0001875 acts as a molecular sponge for miR-31-5p to

regulate M1 macrophage polarization associated with severe asthma.
3.4 circ-0001875 affects M1 macrophage
polarization by modulating SP1 expression

To understand the mechanisms underlying the observations

described above, we used the online prediction databases (miRDB,

TargetScan, and miRWalk (52–54) to predict potential downstream

target genes of miR-31-5p. Intersection analysis identified potential

complementary binding sites in 72 genes (Supplementary Figure

S3). Subsequently, we searched the relevant literature and found

that SP1 is a potential downstream target genes of miR-31-5p that

may be related to M1 macrophage polarization. Next, based on the

complementary pairing sequences between SP1 and miR-31-5p, we

constructed wild-type (pmirGLO-Wt-SP1) and mutant (pmirGLO-

MUT-SP1) dual luciferase reporting plasmids for SP1 and
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demonstrated that SP1 is downstream and negatively regulated by

miR-31-5p (Figures 5A-C, Supplementary Figures S4A,

Supplementary Figures S5A, B). Furthermore, SP1 was expressed

at low levels in a mouse model of severe asthma, PBMCs from

patients with severe asthma, and THP1 cells stimulated with LPS

(Figures 5D-F).

To investigate the effects of SP1 on macrophage polarization, we

constructed SP1 knockdown (si-SP1) and overexpression (pcDNA

SP1) plasmids (Figure 5G, Supplementary Figure S4B). SP1

knockdown promoted M1 macrophage polarization, while SP1

overexpression had the opposite effect (Supplementary Figures S4C–

E). Moreover, knocking down SP1 promoted the expression of M1-

polarized cytokines by macrophages, including IL-6, IL-1b, and TNF-

a, compared with the negative control group, while SP1 overexpression

had the opposite effect (Figures 5H-M). A rescue experiment showed

that si-SP1 reversed this inhibitory effect of circ-0001875

overexpression on M1 macrophage polarization. While knocking

down circ-0001875 promoted M1 macrophage polarization,

transfection with pcDNA SP1 inhibited this effect (Figures 5N-P).

These results indicate that SP1 is located downstream of circ-0001875

and forms a regulatory axis with circ-0001875/miR-31-5p affecting M1

macrophage polarization in bronchial asthma.
3.5 Circ-0001875 regulates M1
macrophage polarization via the NF-kB
signaling pathway

To explore how the circ-0001875 regulatory axis affects M1

macrophage polarization, we performed a series of Western blot

experiments. p-p65 and p-IKB were highly expressed in the lung

tissue of the mouse model of severe asthma, while circ-0001875

overexpression inhibited their expression (Figure 6A). In vitro, we

found that stimulating THP1 cells with LPS upregulated the expression

of p-p65 and p-IKB, which are NF-kB signaling pathway proteins

(Figure 6B). circ-0001875 knockdown further upregulated the

expression of p-p65 and p-IKB, while circ-0001875 overexpression

inhibited the expression of these protein (Figure 6C). SP1 and circ-

0001875 had similar effects on the expression of NF-kB signaling

pathway proteins, while miR-31-5p had an opposite effect (Figures 6D,

E). Co-transfection of cells with circ-0001875 and miR-31-5p showed

that miR-31-5p could restore the effects of circ-0001875 on p-p65 and

p-IKB expression levels. Similarly, when circ-0001875 was co-

transfected with SP1, SP1 reversed the effects of circ-0001875 on p-

p65 and p-IKB expression levels (Figures 6F, G). These results indicate

that NF-kB, a key signaling pathway involved in M1 macrophage

polarization, mediates signaling by the circ-0001875/miR-31-5p/SP1

regulatory axis, which modulates M1 macrophage polarization in

severe asthma.
4 Discussion

Corticosteroids, as first-line treatment for persistent asthma,

can effectively control airway inflammation. However, patients with
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FIGURE 3

circ-0001875 overexpression inhibits pulmonary inflammation in an OVA-LPS-induced asthma model. (A) circ-0001875 expression in lung tissue
from the mouse model. (B, C) Lung sections stained using hematoxylin and eosin (H&E) and periodic acid–Schiff (PAS). (D, E) The effect of circ-
0001875 overexpression on macrophage polarization in the lung tissue. (F-H) Differential cell counts in BALF from the mouse model. (I) Relative
expression of various miRNAs. (J) Relative luciferase activity of miR-31-5p mimics or miR-NC after co-transfection with pmirGLO-Wt-circ-0001875
or pmirGLO-MUT-circ-0001875 in 293A cells, respectively. (K) Differential expression of miR-31-5p after circ-0001875 knockdown and
overexpression. (L, M) miR-31-5p expression in PBMCs, monocytes and macrophages. The bars and error bars represent the mean ± SEM;
**P< 0.01, and ***P< 0.001. ns, not significant by unpaired Student's t-test or one-way ANOVA with Tukey's multiple comparisons test.
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FIGURE 4

The interaction between circ-0001875 and miR-31-5p affects M1 macrophage polarization. (A–F) The effect of miR-31-5p mimics or an miR-31-5p
inhibitor on the relative expression of IL-6, IL-1b and TNF-a. (G–I) The effect of miR-31-5p mimics and an miR-31-5p inhibitor on the concentration
levels of IL-6, IL-1b and TNF-a. (J) The effects of miR-31-5p mimics and an miR-31-5p inhibitor on macrophage polarization were detected by
Western blot. (K–L) ELISA was used to detect the effect of co-transfection with si-circ-0001875+miR-31-5p inhibitor and pc-circ-0001875+miR-31-
5p mimics on macrophage polarization. (M–O) The effects of co-transfection with si-circ-0001875+miR-31-5p inhibitor and pc-circ-0001875+miR-
31-5p mimics on macrophage polarization were detected by RT-qPCR. The bars and error bars represent the mean ± SEM; *P< 0.05, **P< 0.01, and
***P< 0.001.
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FIGURE 5

circ-0001875 acts as a sponge for miR-31-5p and targets SP1. (A) miR-31-5p mimics or miR-NC were co-transfected with pmirGLO-Wt-SP1 or
pmirGLO-MUT-SP1, and relative luciferase activity was detected. (B-C) Expression of SP1 in THP1 cells transfected with circ-0001875 knockdown or
overexpression plasmids and miR-31-5p mimics or an inhibitor. (D) SP1 expression in lung tissue. (E) SP1 expression in PBMCs from patients with
severe asthma and healthy individuals. (F) SP1 expression in monocytes and M1-polarized macrophages. (G) The transfection efficiency of SP1
knockdown (si-SP1) or overexpression (pc-SP1). (H-P) The effects of si-SP1, pc-SP1, co-transfection with si-circ-0001875+pc-SP1 and pc-circ-
0001875+si-SP1 on macrophage polarization. The bars and error bars represent the mean ± SEM; *P< 0.05, **P< 0.01, and ***P< 0.001. ns, not
significant by unpaired Student's t-test or one-way ANOVA with Tukey's multiple comparisons test.
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severe asthma frequently respond poorly to corticosteroid

treatment (4–6). Research has shown that, although Th2-

mediated eosinophil recruitment and airway hyperresponsiveness

(AHR) can be inhibited by corticosteroid treatment, OVA- and

LPS-induced, Th1-mediated AHR is resistant to corticosteroid

treatment. Corticosteroid treatment completely suppresses Th2-

driven inflammation, but only partially inhibits Th1-driven

neutrophil recruitment. In our study, patients with severe asthma

had a poorer response to glucocorticoid therapy than patients with

mild asthma, and thus used higher doses of inhaled corticosteroids.

Patients with severe asthma patients exhibited both poorer lung

function and more severe airway inflammation. We found that circ-

0001875 expression is related to asthma severity: circ-0001875 is

expressed at low levels in the PBMCs of patients with asthma,
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especially severe asthma. Interestingly, previous studies have shown

that FAM120A, as the its linear counterpart of circ-0001875, is

associated with inflammation or asthma (48). We also searched for

potential miRNA targets of circ-0001875. Among them,

upregulation of miR-1287-5p inhibits LPS induced epithelial

mesenchymal transition and secretion of pro-inflammatory

cytokines in human nasal epithelial cells (55). MiR-1184

downregulation serves as a diagnostic biomarker for neonatal

sepsis, regulating LPS induced inflammatory response by

inhibiting IL-16 in monocytes (56, 57). It can also target TRADD

to regulate inflammatory response and cell apoptosis (58). In

addition, studies have shown that miR-31-5p is upregulated in

children with asthma (59). Therefore, we further investigated the

correlation between circ-0001875 and asthma. In patients with
FIGURE 6

circ-0001875 alters M1 polarization via the NF-kB signaling pathway. (A) circ-0001875 alters M1 polarization via the NF-kB signaling pathway in a
mouse model. (B) The expression levels of NF-kB signaling pathway and SP1 proteins in THP1 cells stimulated by LPS. (C-E) The effects of circ-
0001875, miR-31-5p, and SP1 on the expression levels of NF-kB signaling pathway proteins. (F-G) The rescue experiment assessed the impact of
circ-0001875, miR-31-5p, and SP1 on the expression levels of NF-kB signaling pathway and SP1 proteins.
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severe asthma, pro-inflammatory cytokines in the airway lumen

and bronchial mucosa, including TNF-a, IL-1b, IL-6, and IL-8, are

mainly produced by macrophages, while LPS can stimulate THP-1

cells to secrete pro-inflammatory cytokines (60–62). We found that

circ-0001875 is expressed at low levels in a mouse model of severe

asthma, and that M1 polarization–related inflammatory factors are

expressed at high levels in the lung tissue and BALF of the

same model.

In PBMCs isolated from peripheral blood, circ-0001875 was

mainly downregulated in monocytes. Monocytes are a source of

macrophages in lung tissue, and macrophages are involved in severe

asthma-induced pulmonary inflammation (11, 12, 49). Therefore, we

hypothesized that circ-0001875 regulates M1 macrophage polarization.

During asthma progression, macrophages have various functions such

as antigen presentation, cell clearance, production of inflammatory

mediators, and pathogen clearance (7). Alveolar macrophages originate

from fetal monocytes of embryonic origin.When damaged or depleted,

monocytes are recruited from the circulation and differentiate into

pulmonary macrophages (63–65). Emerging studies indicate that

patients with asthma exhibit dysregulation of circRNAs, which

regulate macrophage phenotype and function (19, 20, 66, 67). Here

we found that circ-0001875 overexpression inhibited LPS-induced M1

macrophage polarization. Furthermore, circ-0001875 overexpression

inhibited pulmonary inflammation in a severe asthma model. We

found that circ-0001875 overexpression inhibited macrophage

secretion of pro-inflammatory cytokines in vitro and in vivo.

CircRNAs can act as molecular sponges to regulate biological

processes such as macrophage activation and Th1/Th2 immune

balance, thereby affecting airway inflammation (67, 68). For example,

Shang et al. found that circ-0001359 was significantly downregulated in

OVA-treated mice, and also acted as a specific sponge for miR-183-5p,

thereby promotingFoxO1 expression and reducing airway remodeling

by decreasing the secretion of inflammatory cytokines induced by M1

macrophage activation and pulmonary fibrosis (69). Similarly, a study

showed that circ-0001326 promotes M1 macrophage polarization by

directly regulating the miR-136-5p/USP4 axis, thereby promoting the

secretion of inflammatory cytokines (70). In this study, circ-0001875

was mainly expressed in the cytoplasm, indicating its potential for

sponge-like activity towardmiRNAs inmacrophages. There is evidence

to suggest that miR-31-5p is highly expressed in the lung tissues of

asthmatic mice and children (59). We also observed high levels of miR-

31-5p expression in the PBMCs of asthma patients. We confirmed by

luciferase assay that circ-0001875 acts a molecular sponge for miR-31-

5p and can negatively regulate its expression. Furthermore, we found

that miR-31-5p mimetics promote M1 macrophage polarization. Our

findings indicate that miR-31-5p inhibitors counteract the promotion

of M1 polarization caused by circ-0001875 knockdown, while circ-

0001875 overexpression inhibits M1 polarization, and this effect is

reversed by miR-31-5p overexpression. Our results indicate that circ-

0001875, an miR-31-5p sponge, is crucial for M1 macrophage

polarization–related airway inflammation.

SP1 can be induced and activated by LPS in the human

monocyte line THP-1 (34, 35). Although previous studies have

reported that SP1 typically promotes pro-inflammatory responses,

there are also studies indicating that SP1 has anti-inflammatory
Frontiers in Immunology 13
effects (71, 72). Multiple studies have shown that SP1, as a

macrophage transcription factor, is involved in macrophage

activation and inflammation-related cytokine release (73–75).

Costa et al. found that miR-31-5p targets SP1 in osteoblasts and

chondrocytes, promoting the release of inflammatory cytokines in

joints (76). In our study, we found that SP1 is significantly

downregulated in M1 macrophages and PBMCs from patients

with asthma, and its expression pattern is similar to that of circ-

0001875. We then asked whether the sponge-like activity of circ-

0001875 toward miR-31-5p inhibits macrophage M1 polarization

by targeting SP1 and found that SP1 is a downstream target gene of

circ-0001875/miR-31-5p. Based on our finding that SP1 expression

negatively regulates M1 polarization, we further investigated the

effect of circ-0001875 on SP1-activated macrophages. We found

that SP1 overexpression restored the M1 macrophage polarization

induced by knocking down circ-0001875, while knocking down SP1

had the opposite effect. In summary, circ-0001875 serves as a

sponge for miR-31-5p, whose downstream target gene is SP1,

which regulates M1 macrophage polarization, thereby affecting

airway inflammation caused by macrophage activation.

We previously reported that the NF-kB pathway is a major

pathway involved in M1 macrophage polarization and helps

regulate asthma-related airway inflammation and remodeling

(13). SP1 is present in the enhancers or promoters of the HIV,

ICAM-1, and GM-CSF genes, which regulate the NF-kB signaling

pathway (35–39). In addition, SP1 can bind to NF-kB (42). Studies

have shown that SP1 protects cardiomyocytes from inflammatory

damage in atherosclerosis by inhibiting the NF-kB signaling

pathway (77). In this study, OVA-LPS activated the NF-kB
signaling pathway in a severe asthma model, and knocking down

SP1 further upregulated the expression of NF-kB signaling pathway

proteins. circ-0001875 had a similar effect on the expression levels

of NF-kB signaling pathway proteins as SP1, while miR-31-5p had

the opposite effect. Similar results were obtained in our in vitro

experiments. These results suggest that the circ-0001875/miR-31-

5p/SP1 regulatory axis influences M1 macrophage polarization of

associated with bronchial asthma through the NF-kB signaling

pathway. Corticosteroids are effective inhibitors of NF-kB activity,

and glucocorticoid receptors directly bind to NF-kB to inhibit NF-

kB-mediated gene activation (78, 79). Therefore, NF-kB activity

reflects the effectiveness of glucocorticoid therapy. In our study,

circ-0001875 expression was inversely associated with asthma

severity. We also demonstrated that circ-0001875 can inhibit NF-

kB activity. circ-0001875 may therefore act synergistically with

glucocorticoids to control Th1-induced airway inflammation.

Our research still has some limitations.The inter individual

heterogeneity of PBMC samples (such as age, immune status, etc.)

may further increase variability. Although we reduce confounding

factors through strict matching criteria such as age and gender,

small sample sizes may still limit the comprehensive evaluation of

population level circRNA expression patterns. Previous studies have

indicated that luciferase, rescue, and expression data can

demonstrate axis relevance (80, 81). However, RIP assays or

CRISPR/Cas13 knockdown can further enhance the

correlation (82).
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5 Conclusion

Our findings indicate that circ-0001875 is downregulated in the

PBMCs of patients with severe asthma and is associated with

asthma severity. Mechanistically, circ-0001875 acts as a sponge

for miR-31-5p, co-targeting SP1 and participating in M1

macrophage polarization through the NF-kB signaling pathway,

thereby affect ing airway inflammation. c irc-0001875

downregulation in severe asthma highlights the fact that

dysregulated circRNAs mediate asthma pathophysiology by

regulating M1 macrophage polarization associated with severe

pro-inflammatory response. This provides new experimental

evidence for understanding the role of circRNA in asthma.

Subsequent research needs to validate its translational medicine

potential through larger clinical samples and preclinical models.
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