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Introduction: Neonatal sepsis remains a leading cause of global childhood

mortality, yet treatment options are limited. Clinical and biological

heterogeneity hinders the development of targeted therapies. Gene-

expression profiling offers a potential strategy to identify neonatal sepsis

subtypes and guide targeted intervention.

Methods: We performed secondary analyses of publicly available gene-

expression datasets. Differential gene expression analysis and T-distributed

Stochastic Neighbor Embedding (t-SNE) identified biologically relevant patient

clusters. Mortality and organ dysfunction were compared across clusters to

determine clinical relevance.

Results:We identified three endotypes of neonatal sepsis based on the 100 gene

expression mortality signature, distinguishing five non-survivors from 72

survivors across datasets. Compared with other endotypes, Endotype A was

associated with high mortality (22% vs. 0%, p=0.003) and cardiac dysfunction

(61% vs. 31%, p=0.025). Pathobiology among endotype A patients was primarily

driven by neutrophil progenitors.

Conclusions: Gene-expression profiling can be used to disentangle neonatal

sepsis heterogeneity. Dysregulated hyperinflammatory response with

emergency granulopoiesis was pathognomonic of high-risk endotype A.

Pending further validation, gene-expression-based subclassification may be

used to identify at-risk neonates and inform the selection of targeted

sepsis therapies.
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1 Introduction

Neonatal sepsis remains a major cause of morbidity and

mortality worldwide. Infections account for a significant

proportion of neonatal deaths, with pooled estimates indicating a

high mortality rate of 10–29% (1). In the U.S., one in four extremely

preterm neonates experience at least one episode of pathogen-

confirmed sepsis during their Neonatal Intensive Care Unit

(NICU) stay (2). Beyond the acute phase, survivors face long-

term complications that extend well beyond the NICU,

contributing to adverse neurodevelopmental outcomes and

prolonged healthcare needs (3). Despite its substantial impact, the

host response to sepsis and its relationship to neonatal sepsis

outcomes remain poorly understood. Furthermore, biological

heterogeneity among patients with neonatal sepsis has limited the

development of targeted treatments.

Gene-expression profiling has successfully identified

reproducible disease subtypes among critically ill adults and

pediatric populations. Wong et al. first detailed pediatric septic

shock endotypes with prognostic and therapeutic relevance (4). The

high-risk endotype A has an increased risk of mortality and

detrimental response to adjunct corticosteroids (5). Similar

studies have since been replicated among adult populations (6–8).

While gene-expression profiling has been conducted in neonates,

demonstrating age-related development differences in host

responses to sepsis (9, 10). To the best of our knowledge, no prior

studies have attempted to identify neonatal sepsis subtypes.

In this study, we leveraged publicly available gene-expression

datasets of neonatal sepsis to test the hypothesis that sepsis-related

mortality defines a unique gene signature, providing insight into

disease heterogeneity.
2 Methods

2.1 Gene expression datasets

We conducted a secondary analysis of publicly available whole-

blood gene expression datasets and de-identified data from

neonates with sepsis. Accordingly, the study was exempt from

approval by the Institutional Review Board (IRB). Two authors

(FA and MA) identified Gene-Expression Omnibus datasets

available in the National Library of Medicine Geo Dataset

repository, using the following MeSH terms: Sepsis and Neonate,

and excluding species other than Homo Sapiens. The search yielded

thirteen datasets. Eleven were excluded: Five included only certain

cell types, two because they did not include neonates with sepsis,

and four because they included patients of older age groups

admitted to a setting other than the NICU. The two datasets

included in the analysis were those published by Smith et al.

(GSE25504) (11) and Wynn et al. (GSE69686) (12). The former

conducted two separate batches of gene-expression data. Combat

co-normalization using controls (COCONUT) (13) was applied to

selected gene-expression data to eliminate the batch effect.
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2.2 Primary and secondary outcomes
definitions

Clinical definitions were made based on the available de-

identified metadata from the datasets. Our primary outcome was

mortality. Since we did not have access to the reported cause of

death and to ensure that we do not include late deaths that occurred

due to co-morbidities other than sepsis, we chose 10-day mortality.

Secondary outcomes include cardiac, respiratory, and hematologic

dysfunctions and identification of a causative pathogen on blood

culture. We defined organ dysfunctions as follows: Cardiac

dysfunction: Reduced perfusion and hypotension requiring fluid

resuscitation or vasoactive support; Respiratory dysfunction:

Supplemental oxygen or intubation or mechanical ventilation;

Hematologic dysfunction: Platelet count < 150 X 103/mm3.
2.3 Differential gene-expression signature
based on neonatal sepsis mortality

Limma package (v.3.54.2) in R was applied to identify differentially

expressed genes (DEGs) according to the primary outcome. A

predetermined log2 fold change > ± 1 and a Benjamin Hochberg

adjusted false discovery rate (FDR) ≤ 0.05 was used. Heatmap and

volcano plots were used to visualize DEGs. We determined enriched

biological processes using REACTOME pathway analyses.
2.4 Identification of upstream regulators of
neonatal sepsis mortality

To identify key transcriptional regulators among high-risk

patients, we submitted the gene list associated with neonatal

sepsis mortality to the Chip Enrichment Analysis (ChEA3) portal

(https://maayanlab.cloud/chea3/) to predict transcription factors

(TFs) anticipated to regulate gene expression (14). The most

notable TF is denoted by the lowest mean rank, which indicates

the TF predicted by ChEA3 to interact most with the submitted

gene lists after searching across multiple libraries, including

ENCODE, GTEx, ARCHS4, and ReMap. Additionally, we

submitted the gene list associated with neonatal sepsis mortality

for Ingenuity Pathway Analysis (15) (QIAGEN Inc., https://

digitalinsights.qiagen.com/IPA) to identify upstream regulators

and mechanistic networks that could influence gene-expression

patterns, focusing on direct interactions between regulators and

selecting TFs with highest activation z-scores and p<0.001.
2.5 Identification of neonatal sepsis
endotypes based on mortality signature

T-distributed Stochastic Neighbor Embedding (t-SNE) was used

to project gene-expression data and identify neonatal sepsis endotypes

based on the mortality gene-expression signature. To determine the
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optimal number of clusters, we used the Silhouette Score to determine

the overall goodness-of-fit of the cluster structure.
2.6 Testing clinical relevance of neonatal
sepsis endotypes

Demographic and outcome measures were measured across

endotypes to determine their clinical relevance. Categorical variables

are described as total numbers and percentages and compared using

Fisher’s exact or Chi-square test. Non-parametric continuous

variables were described using the median and interquartile range

and compared using the Mann-Whitney or Kruskal-Wallis test as

appropriate. Given the small and imbalanced nature of the dataset

with perfect class separation of mortality across endotypes, we

adjusted for baseline characteristics, including gestational age and

sex, relevant to the primary outcome using Firth’s logistic regression.

Analyses were conducted using GraphPad Prism v10.4 (GraphPad

Software, Boston, Massachusetts USA, www.graphpad.com) and

RStudio v.1.4 (RStudio Team, Massachusetts USA).
2.7 Inferring differences in cell type
abundance and signaling associated with
endotypes

To assess differences in cell type abundance between endotypes,

we utilized CIBERSORTx (16), applying the gene-expression

signature linked to neonatal sepsis mortality. Recognizing that

cellular abundance and signaling may be discordant, we

addressed this limitation by integrating data from a single-cell

RNA sequencing (scRNAseq) study of septic adults conducted by

Kwok et al. (17) To quantify gene expression changes, we employed

a previously established method to compute a composite gene score

(18), defined as the geometric mean of the 96 overexpressed genes

minus the geometric mean of the four repressed genes. These genes

were identified through differential expression analysis and were

also present in the scRNAseq dataset. We then projected this scaled

composite score onto the visual projection of the scRNAseq dataset

to infer the cell types driving biological differences between neonatal

sepsis non-survivors and survivors.
2.8 Identification of genes distinguishing
endotypes

The most differentially expressed genes distinguishing endotype

A from other endotypes were identified based on the lowest FDR-

adjusted p-values as candidate biomarkers for future validation.
2.9 Ethics statement

This study does not involve human or animal subjects.

Therefore, consenting or ethical approval is not indicated.
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3 Results

3.1 Demographics of patients included

Seventy-seven neonates were included in the analysis, of whom

five (6%) died from sepsis. There were no differences in gestational

age at birth, sex, onset of infection (early vs. late), pathogen type,

and total white blood cell count (WBC) when comparing non-

survivors and survivors, as shown in Table 1.
3.2 Differentially expressed genes
distinguish neonatal sepsis non-survivors
and survivors

We identified 100 differentially expressed genes, of which 96 were

overexpressed and four were repressed, distinguishing neonatal sepsis

non-survivors from survivors (Supplementary Table 1). Upregulated

genes among non-survivors were predominantly involved in cell

cycle-related processes. Figures 1A-C show a heatmap, volcano plot,

and upregulated biological pathways.
3.3 Transcription factor analyses reveal
upstream regulators of neonatal sepsis
mortality

We identified 34 TFs inferred to be activated among neonatal

sepsis non-survivors. (Supplementary Table 2) The top 15 TFs

identified were LTF, CEBPE, E2F8, ZNF215, MYB, E2F7, ZNF93,

RFX8, CENPA, ZNF695, GFI1, MYBL2, FOXM1, ZNF519, and

ZNF124 (Supplementary Figure 1). The top 15 TFs identified

through IPA analyses were TBX3, E2F4, TCF3, ZBTB17, CCND1,

TP53, E2F3, FOXM1, MYOD1, and E2F1 (Supplementary Table 3).
3.4 Neonatal sepsis endotypes with distinct
biological and clinical profiles

Silhouette Score analysis showed that the ideal number of

clusters based on the cohort gene-expression data was three, as
TABLE 1 Clinical variables comparing non-survivors and survivors in
the study.

Characteristic
Non-survivors

n=5 (6%)
Survivors
n=72 (94%)

p-
value

GA at Birth
Weeks [IQR]

27 [26-29] 28 [27-31] 0.21a

Sex at Birth: Female
male

1 (20%)
4 (80%)

42 (58%)
30 (42%)

0.64b

Early vs. Late 2 (40%) 22 (31%) 0.64b

Pathogen Identified 5 (100%) 52 (72%) 0.32 b

Total White Count/
mm3 [IQR]

9900 [1700-15000]
10150

[6675-15475]
0.41a
front
aCalculated using the Mann-Whitney test.
bCalculated using the Fisher’s exact test.
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shown in Figure 2A. The relatedness of each patient’s gene

expression profile to the mortality signature was projected using

t-SNE and is shown in Figure 2B, revealing three distinct clusters.

Based on t-SNE coordinates, all patients were subsequently assigned

to one of three endotypes – A, B, or C.

Neonates belonging to endotype A had a mortality rate of 5/23

(22%) compared to 0/20 (0%) and 0/34 (0%) for clusters B and C,

respectively, p=0.003, as shown in Table 2. The adjusted odds of
Frontiers in Immunology 04
neonatal sepsis mortality in endotype A after adjusting for

confounding factors was aOR 24.4 (95% CI 2.6-3253.5) compared

to the other endotypes, p 0.003. Neonates classified as endotype A

were born earlier at 27 weeks gestation [IQR 25–29 weeks]

compared to 28 weeks [IQR 27–30 weeks] and 30 weeks [IQR 27-

35] compared to endotypes B and C, respectively, p=0.01. All

neonates assigned to endotype B had positive pathogen

confirmation 20/20 (100%) compared to 17/23 (74%) and 20/34
FIGURE 1

Gene expression according to neonatal sepsis mortality. (A). Heatmap of the mean expression of top differentially expressed genes according to
mortality. (B). Volcano plot of differentially expressed genes, the horizontal dotted line represents a -log(p-value) of 1·2, and the vertical ones
represent a log (fold change) of ±1. (C). Upregulated REACTOME pathways comparing neonatal sepsis non-survivors and survivors.
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(59%) in endotypes A and C, respectively, p=0.004. Although

pathogen identification differed between endotypes, the rate of

gram-negative pathogens was not statistically different according

to the endotype. Neonates assigned to endotype C had more early-

onset sepsis 18/34 (53%) compared to 4/23 (17%) and 2/20 (10%) in

endotypes A and B, respectively, p=0.001.

For secondary outcomes, respiratory and cardiac dysfunction

data were available for the entire cohort, and hematologic

dysfunction data for 42/77 (55%) neonates. Neonates in endotype

A had a higher rate of cardiac dysfunction, 14/23 (61%), compared to

4/20 (20%) and 13/34 (41%) in endotypes B and C, respectively,

p=0.03. The rate of respiratory dysfunction and hematologic

dysfunction was comparable across endotypes: 18/23 (78%) in

endotype A, 13/20 (65%) in endotype B, and 20/34 (59%) in

endotype C, p=0.311 and 10/14 (71%) in endotype A, 10/20 (50%)

in endotype B, and 3/8 (38%) in endotype C, p=0.26, respectively.
Frontiers in Immunology 05
Neonates had no differences in total WBC counts across

endotypes. Moreover, CIBERSORTx analyses did not identify

significant differences in the major cell types comparing

endotypes, including Neutrophils (Neu), Monocytes, B- and T-

lymphocytes, or NK cells, comparing detrimental endotype A vs

others, as shown in Figure 3A. However, inference from the

scRNAseq dataset indicated that endotype A was characterized by

predominantly Neu progenitor-driven signaling and concomitant

downregulation of CD4 and CD8 lymphocyte signaling, as shown

in Figure 3B. Finally, the top 10 genes distinguishing neonatal sepsis

endotypes CTSG, MMP8, MS4A3, DEFA4, BPI, CEACAM8,

ABCA13, SERPINB10, SLP1, and MPO are shown in Figures 4A-J.

Finally, we compared neonates who survived to those who did

not in cluster A, and we did not find any differences related to

gestational age or sex at birth, timing of sepsis, or respiratory or

cardiac dysfunctions (Supplementary Table 4).
FIGURE 2

Neonatal sepsis endotypes. (A).The number of optimal clusters (n=3) of neonatal sepsis patients is shown on the x-axis, and the Silhouette score is
shown on the y-axis. (B). Neonates were allocated to three clusters or endotypes based on their gene-expression profile in relation to sepsis
mortality signature: Endotype A (pink), endotype B (green), and endotype C (blue).
TABLE 2 Characteristics according to endotype.

Characteristic Cluster A (n=23) Cluster B (n=20) Cluster C (n=34) p-value

Mortality 5/23 (22%) 0/20 (0%) 0/34 (0%) 0.003a

GA at Birth Weeks [IQR] 27 [25-29] 28 [27-30] 30 [27-35] 0.21b

Sex at Birth: Female
male

9 (39%)
14 (61%)

10 (50%)
10 (50%)

12 (35%)
22 (65%)

0.56a

Early vs. Late 4/23 (17%) 2/20 (10%) 18/34 (53%) 0.001b

Pathogen Identified 17/23 (74%) 20/20 (100%) 20/34 (59%) 0.004a

Gram-Negative Pathogen 3/17 (18%) 4/20 (33%) 4/20 (33%) >0.99 a

Cardiac Dysfunction 14/23 (61%) 4/20 (20%) 13/34 (41%) 0.025a

Respiratory Dysfunction 18/23 (78%) 13/20 (65%) 20/34 (59%) 0.311a

Hematologic Dysfunction 10/10 (50%) 10/20 (50%) 3/8 (38%) 0.257 a

Total White Count/mm3 [IQR] 11250 [5950-18475] 13350 [8150-16150] 8500 [5700-12150] 0.07b
Neonates in cluster A experienced more death and cardiac dysfunction compared to others.
aCalculated using the Chi-square test.
bCalculated using the Mann-Whitney test.
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4 Discussion

We analyzed publicly available gene-expression datasets to define

a neonatal sepsis mortality signature and identify transcription factors
Frontiers in Immunology 06
linked to immune dysregulation. Gene-expression profiling revealed

distinct neonatal sepsis endotypes, with endotype A associated with

significantly higher mortality and cardiac dysfunction. While cell

abundance analysis showed no major differences, single-cell RNA
FIGURE 3

Immune dysregulation of neonatal sepsis endotype A (A). Results of CIBERSORTx showing an inferred abundance of cell types comparing Endotype
A vs. others; proportion of subsets are shown as Tukey bars. *: p <0.05. (B). Composite gene expression scores in Endotype A, relative to other
endotypes, showing up-regulation of Neutrophil Progenitor signaling and concomitant downregulation of T-Lymphocyte signaling.
FIGURE 4

Top gene candidates defining endotype A Top 10 genes distinguishing neonatal sepsis endotypes in descending significance: (A). CTSG, (B). MMP8,
(C). MS4A3, (D). DEFA4, (E). BPI, (F). CEACAM8, (G). ABCA13, (H). SERPINB10, (I). SLP1, and (J). MPO. Gene expression is shown as violin plots for
each cluster A: Endotype A; pink, B: Endotype B; green, C: Endotype C; blue). p value calculated using the Kruskal-Wallis test with Dunn’s correction.
*: p < 0.05, **: p <0.01, ***: p <0.001, p<0.0001: ****.
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sequencing inference indicated that endotype A was driven by

neutrophil progenitor signaling and suppressed CD4+ and CD8+

lymphocyte signaling. These findings suggest that functional immune

dysregulation, rather than overt differences in cell abundance,

contributes to poor outcomes in neonatal sepsis. Our study

underscores the potential of gene-expression profiling for disease

subtyping and precision medicine in neonatal sepsis.

Previous gene expression studies have primarily focused on

differentiating infected from uninfected controls. By aggregating

datasets, we identified a distinct gene-expression signature

associated with neonatal sepsis mortality. However, mortality

was still a rare outcome, likely due to the challenges of

studying critically ill neonates, consent limitations, and sampling

challenges within the included datasets. We identified key TFs

implicated in driving neonatal sepsis mortality with Forkhead box

M1 (FOXM1) – a master regulator of cell cycle regulation and T-

lymphocyte survival (19) – emerging as the only TF identified

through both computational approaches used. Furthermore,

animal models of lung injury have shown that FOXM1 is

essential in regulating neutrophil response and secretion of MPO

and cathepsin G (20), both of which were enriched in neonates that

did not survive sepsis. Future mechanistic studies are warranted

to elucidate the role of FOXM1 and other TFs in immune

dysregulation and explore their potential as therapeutic targets in

neonatal sepsis.

We identified three robust clusters of neonatal sepsis, which we

labeled as endotypes, given their pathophysiologic distinctiveness.

Patients assigned as endotype A had significantly higher adjusted

odds of mortality after controlling for gestational age and sex.

Notably, neonates belonging to endotype A had lower rates of

early-onset sepsis and pathogen-identification rates than those

with endotypes B and C. Our data contradict prior reports have

indicated higher mortality with early- vs late-onset cases (21), and

differences when comparing culture-positive vs -negative sepsis (22).

Our findings revealed an overactive innate immune response

driven by neutrophil progenitors and repression of T-lymphocyte

signaling in detrimental endotypes, suggesting that immune

dysregulation rather than gestational age or pathogen detection is

the primary determinant of neonatal sepsis outcomes.

Lastly, we identified genes that reliably distinguished neonatal

sepsis endotypes, with the top two being cathepsin G (CTSG) and

matrix metalloprotease 8 (MMP8). Cathepsin G (CTSG) is a

protease presented on or released from many immune cells,

mainly neutrophils, upon activation (23). It plays a significant

role in inflammation and platelet aggregation, and higher plasma

levels of cathepsin G were linked to more severe illness and

death from SARS-Cov-2 (24). Matrix metalloprotease 8 (MMP8)

is a collagenase with pro-inflammatory effects in infection (25, 26).

We have previously demonstrated that elevated MMP8 and

interleukin-8 and low platelet counts were associated with a

higher mortality risk from neonatal sepsis (27). Future research

is necessary to determine whether these candidate genes –either

alone or in combination with protein biomarkers– may be

used for prognostic and predictive enrichment in neonatal

sepsis (28).
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Our study has several limitations. Our study had a limited

number of subjects, highlighting the need to conduct studies

enrolling neonates with sepsis to understand the disease

pathophysiology better. Second, we do not yet have a consensus

definition of neonatal sepsis (29), which introduces additional

variability, potentially confounding the results. Furthermore,

organ dysfunction definitions were not consistent across the

datasets. Nonetheless, we investigated signatures associated with

mortality – an unambiguous measure – as our primary outcome.

However, the low numbers of non-survivors across datasets

contribute to class imbalance, necessitating robust statistical

approaches to adjust for confounders. Next, the datasets reflect

gene expression at a single time point early in the disease. We could

not assess for temporal changes that might reveal dynamic immune

changes that occur with neonatal sepsis.

Furthermore, our study utilized computational bioinformatics

to infer enriched pathways, transcriptional factors, and cell-type-

specific signaling according to mortality or discovered endotypes

without corroborative experiments to support our findings. These

approaches rapidly evolve, and new methodologies could alter the

results described here. As such, our study shows subtyping neonatal

sepsis based on gene-expression profiles is feasible, and future

efforts should bolster inclusion of neonates while narrowing the

search for upstream mechanistic targets that require orthogonal

validation and rigorous mechanistic testing. Lastly, the patient

endotypes identified had prognostic implications. Yet, whether

the endotypes demonstrate heterogeneous responses to NICU

interventions, including immunomodulatory therapies such as

corticosteroids, remains to be tested.
5 Conclusions

Neonatal sepsis is a major cause of morbidity and mortality, yet

its biological heterogeneity limits targeted interventions. We

identified distinct neonatal sepsis endotypes using gene-

expression profiling, with endotype A associated with higher

mortality and immune dysregulation. Our findings suggest that

immune dysfunction, rather than traditional clinical factors, drives

poor outcomes. These results highlight the potential of

transcriptomic profiling for risk stratification and precision

medicine approaches in neonatal sepsis.
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