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transplant recipients
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Eduardo López-Collazo3 and Leonardo M. R. Ferreira1,2*

1Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston,
SC, United States, 2Hollings Cancer Center, Medical University of South Carolina, Charleston,
SC, United States, 3The Innate Immune Response Group, Hospital La Paz Institute for Health Research
(IdiPAZ), University Hospital La Paz, Madrid, Spain, 4Paediatric Nephrology Unit, University Hospital La
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Organ transplantation is a lifesaving procedure, with 50,000 transplants

happening every year in the United States. However, many patients harbor

antibodies and B cells directed against allogeneic human leukocyte antigen

(HLA) molecules, notably HLA-A2, greatly decreasing their likelihood of

receiving a compatible organ. Moreover, antibody-mediated rejection is a

significant contributor to chronic transplant rejection. Current strategies to

desensitize patients non-specifically target circulating antibodies and B cells,

resulting in poor efficacy and complications. Regulatory T cells (Tregs) are

immune cells dedicated to suppressing specific immune responses by

interacting with both innate and adaptive immune cells. Here, we genetically

modified human Tregs with a chimeric anti-HLA antibody receptor (CHAR)

consisting of an extracellular HLA-A2 protein fused to a CD28-CD3zeta

intracellular signaling domain, driving Treg activation upon recognition of anti-

HLA-A2 antibodies on the surface of alloreactive B cells. We find that HLA-A2

CHAR Tregs get activated specifically by anti-HLA-A2 antibody-producing cells.

Of note, HLA-A2 CHAR activation does not negatively affect Treg stability, as

measured by expression of the Treg lineage transcription factors FOXP3 and

HELIOS. Interestingly, HLA-A2 CHAR Tregs are not cytotoxic towards anti-HLA-

A2 antibody-producing cells, unlike HLA-A2 CHAR modified conventional CD4+

T cells. Importantly, HLA-A2 CHAR Tregs recognize and significantly suppress

high affinity IgG antibody production by B cells from HLA-A2 sensitized patients.

Altogether, our results provide proof-of-concept of a new strategy to specifically

inhibit alloreactive B cells to desensitize transplant recipients.
KEYWORDS

HLA sensitization, regulatory T cells, B cells, antibody production, transplantation,
engineered immune receptors, human immunology, transplant rejection
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1601385/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1601385/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1601385/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1601385/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1601385/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1601385/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1601385&domain=pdf&date_stamp=2025-08-15
mailto:ferreirl@musc.edu
https://doi.org/10.3389/fimmu.2025.1601385
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1601385
https://www.frontiersin.org/journals/immunology


Valentı́n-Quiroga et al. 10.3389/fimmu.2025.1601385
Introduction

Organ transplantation represents a pivotal advancement in

modern medicine, offering a lifeline to thousands of patients

suffering from end-stage organ failure. Renal transplant is the

most common organ transplant worldwide, according to the latest

Global Observatory on Donation and Transplantation (GDOT)

report (1, 2).

However, several hurdles remain in the field of organ

transplantation. A significant barrier to successful transplantation

is immune rejection of the donor organ by the recipient’s immune

system (3). The current standard of care in organ transplant

patients involves lifetime multimodal immunosuppressive drug

therapy. Broad suppression of the immune suppression by these

drugs results in multiple toxicities, including viral infections,

nephrotoxicity, neurotoxicity, hyperglycemia, and cancer

development (4–8). These side effects are especially pernicious in

pediatric transplant recipients, who can suffer growth delays,

cognitive impairments, and compounded cancer risk due to

continued exposure to steroids and neurotoxic drugs during a

critical developmental period (9–12).

Strikingly, 20% of first-time organ recipients and up to 75% of

second-time recipients harbor antibodies and B cells directed

against allogeneic human leukocyte antigen (HLA) molecules

(13–15). HLA-A2 is a very common HLA allele group; 25% of

renal transplant recipients in Europe and the United States receive

an HLA-A2 mismatched renal transplant (16, 17). These HLA

sensitized patients face an uphill battle in securing compatible

grafts: as the risk of antibody-mediated rejection escalates, the

pool of eligible donor organs narrows (18), creating the need for

higher doses of immunosuppressants (19) and contributing to

chronic rejection (20).

Current desensitization protocols to mitigate the effects of these

alloreactive antibodies lack specificity, targeting total circulating

antibodies or B cells, resulting in poor efficacy and unintended

complications (19). It is thus imperative to develop treatments that

specifically target the recipient’s alloreactive B cells. Using a cellular

approach instead of a broad pharmacological approach could

increase efficacy and help prevent non-specific side effects.

Regulatory T cells (Tregs), a subset of CD4+ T cells integral to

the maintenance of immune tolerance, play a pivotal role in

modulating immune responses against self and non-self antigens.

These specialized immune cells exert their suppressive functions

through various mechanisms, including the inhibition of effector T

cell activation and the modulation of B cell responses (21–23). Due

to these tolerogenic properties, several ongoing trials focus on using

Tregs as cellular therapeutics to replace or diminish the dose of

immunosuppressive drugs needed to prevent organ transplant

rejection (22, 24–26).

One strategy to reverse HLA pre-sensitization is thus to

engineer Tregs to recognize donor HLA specific B cells and

suppress their function, leading to immune tolerance specifically

to the target allogeneic HLA molecule without affecting immunity
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to other antigens. Such an approach can help more patients

become eligible for organ transplants and reduce the need for

broad immunosuppressive regimens in transplant recipients, as

well as potentially quell chronic transplant rejection. To

accomplish this, we genetically modified human Tregs with a

chimeric anti-HLA antibody receptor (CHAR) consisting of an

extracellular HLA-A2 protein fused to a CD28-CD3zeta

intracellular signaling domain (27, 28), driving Treg activation

upon recognition of anti-HLA-A2 antibodies on the surface of

alloreactive B cells, and assessed HLA-A2 CHAR Treg phenotype

and suppressive function towards HLA-A2 sensitized patient

B cells.
Materials and methods

Molecular biology

The HLA-A2-CHAR-2A-NGRFt lentiviral plasmid was

synthesized by VectorBuilder (Chicago, IL). The construct

contained an MND promoter driving the expression of HLA-A2

fused to a CD8 hinge (H), CD28 transmembrane domain (TM), and

a CD28−CD3zeta tandem intracellular signaling domain, followed

by a T2A sequence and a truncated nerve growth factor receptor

(NGFRt) as a reporter gene, similar to constructs reported in (27,

28). The HLA-A2 sequence used was the HLA-A*02010101 coding

sequence (CDS) from the IPD-IMGT/HLA database, previously

validated for cell surface expression in K562 cells and activation of

anti-HLA-A2 CAR Tregs (29). CHAR Lentivirus particles were

produced by VectorBuilder and shipped to the laboratory, where

they were stored in aliquots at -80°C until use.
Treg sorting, transduction, and expansion

Human Treg isolation, lentiviral transduction, and ex vivo

expansion was carried out as previously described (30). Human

peripheral blood leukopaks from de-identified HLA-A2 negative

healthy donors were purchased from STEMCELL Technologies

(Vancouver, Canada). CD4+ T cells were enriched using the

EasySep Human CD4+ T Cell Isolation Kit (STEMCELL

Technologies), following manufacturer’s instructions. Enriched

CD4+ T cells were then stained for CD4, CD25, and CD127, and

CD4+CD25hiCD127low regulatory T cells (Tregs), previously shown

to be bona fide Tregs (31, 32), and CD4+CD25lowCD127hi effector T

(Teff) cells were purified by fluorescence-assisted cell sorting

(FACS) using a BD FACS Aria II Cell Sorter (Beckton Dickinson,

Franklin Lakes, NJ). Post-sort analyses confirmed greater than 99%

purity. Tregs were activated in complete medium (RPMI10),

comprising RPMI 1640 medium supplemented with 10% fetal

bovine serum (FBS), glutamax, penicillin-streptomycin, HEPES,

non-essential amino acids (NEAA), and sodium pyruvate (all

from Gibco, ThermoFisher Scientific) with anti-CD3/CD28 beads
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FIGURE 1

HLA-A2 CHAR Tregs are activated specifically by anti-HLA-A2 antibody producing cells. (A) Schematic representation of chimeric anti-human
leukocyte antigen (HLA) antibody receptor (CHAR) featuring a CD28-CD3zeta signaling domain, expressed on the surface of a human regulatory T
cell (Treg), binding an anti-HLA-A2 antibody on the surface of an allogeneic B cell from an HLA-A2 pre-sensitized patient. The B cell receptor (BCR)
on the surface of the B cell comprises a surface-bound antibody and the signaling heterodimer CD79A and CD79B. Upon engagement, the HLA-A2
CHAR Treg suppresses anti-HLA-A2 expressing B cell function. (B) Cell surface expression of HLA-A2 CHAR construct in lentivirus transduced Tregs,
as assessed by co-expression of HLA-A2 and a reporter gene, truncated nerve growth factor receptor (NGFRt), linked to the CHAR gene by a 2A
peptide. UT, untransduced. (C) CHAR Treg activation upon 48-hour co-incubation with irradiated PA2.1 (anti-HLA-A2), but not alone or with IVA12
(anti-HLA-DR, DP, DQ) hybridoma cells, as assessed by surface expression of CD69. (D) Frequency of CD69-expressing cells among UT or CHAR
Tregs alone or co-incubated with PA2.1 or IVA12 cells for 48h. (E) Expression levels (MFI, median fluorescence intensity) of CD71 on UT or CHAR
Tregs alone or co-incubated with PA2.1 or IVA12 cells for 48h. (F) Expression levels (MFI) of CD25 on UT or CHAR Tregs alone or co-incubated with
PA2.1 or IVA12 cells for 48h. (G) Enrichment of CHAR-expressing Tregs upon 9-day co-incubation with irradiated PA2.1 cells, but not alone or with
IVA12 cells, as assessed by surface expression of NGFRt reporter. (H) Frequency of NGFRt-expressing Tregs (CHAR Tregs) alone or co-incubated
with PA2.1 or IVA12 cells for 9 days. For (D–F, H), bars represent mean and standard deviation (n = 3 technical replicates, one blood donor
representative of two). Data were analyzed by one-way ANOVA with multiple comparisons. ns, not significant; *p < 0.05, **p < 0.01, ***p < 0.001,
and ****p < 0.0001.
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(Gibco, ThermoFisher Scientific) at a 1:1 ratio and 1,000

international units (IU) per ml of recombinant human IL-2

(Peprotech, ThermoFisher Scientific) at 106 cells/ml in 24-wells

(33). 48 hours after activation, Tregs were transduced with CHAR

lentivirus at a multiplicity of infection (MOI) of 3 (3 particles per

cell) in the presence of IL-2. After adding the lentivirus, Tregs cells

were centrifuged at 1,000 g at 32°C for 1 hour. Following

transduction, Tregs were maintained and expanded in RPMI10,

with fresh medium and IL-2 being given every two days. Tregs

received 1,000 IU/ml IL-2 and CD4+ Teff cells received 100 IU/ml

IL-2 for 9–12 days. CHAR transduction efficiency was evaluated by

flow cytometry based on HLA-A2 and NGFRt reporter

surface expression.
Activation assay

Untransduced (UT) or CHAR Tregs were co-cultured with

irradiated (4,000 rad) B-cell hybridoma cell lines (kind gift from

Instituto Salud Carlos III, Madrid, Spain) specific for HLA-A2

(PA2.1) or HLA-DR (IVA12) at a 1:1 ratio in RPMI10 medium

supplemented with 1,000 IU/ml IL-2 in round-bottom 96-wells.

CHAR Tregs alone and UT Tregs alone or co-incubated with

IVA12 or PA2.1 cells served as a negative controls. Surface

expression of the T cell activation markers CD69, CD71, and

CD25 in UT or CHAR+ Tregs was assessed 48 hours later by flow

cytometry. Parallel co-cultures were kept for 9 days to assess

selective enrichment in NGFRt+ Tregs as an additional metric

of activation.
Treg stability assessment

CHAR Tregs were co-cultured with irradiated PA2.1 or IVA12

B-cell hybridoma cell lines at a 1:1 ratio in RPMI10 medium

supplemented with 1,000 IU/ml IL-2 in round-bottom 96-wells.

UT and CHAR Tregs alone served as controls. Cells were expanded

and expression of the Treg lineage transcription factors FOXP3 and

HELIOS was assessed 9 days post activation by intracellular staining

using the FOXP3/Transcription Factor Staining Buffer Set

(eBiosc ience , ThermoFisher Scient ific) , according to

manufacturer’s instructions. Teff cells were stained for FOXP3

and HELIOS as negative controls.
Cytotoxicity assay

CHAR Tregs, CHAR Teff cells or their UT counterparts were

co-incubated with PA2.1 cells at a 1:1 ratio for 24 hours in round-

bottom 96-wells. 50 ml supernatant was then carefully removed and

target cell killing assessed using the CyQUANT Cytotoxicity Lactate

Dehydrogenase (LDH) Release Assay kit (Thermofisher Scientific)

as per manufacturer’s instructions (34).
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Patient peripheral blood mononuclear cell
isolation

HLA-A2 sensitized patient whole blood was collected in EDTA

tubes. Peripheral blood mononuclear cells (PBMCs) were

immediately isolated using a Ficoll-Paque gradient and frozen in

liquid nitrogen at University Hospital La Paz, Madrid, Spain. De-

identified frozen patient PBMCs were shipped to the Medical

University of South Carolina.
Allogeneic B cell stimulation

Peripheral blood mononuclear cells (PBMCs) from de-

identified HLA-A2 pre-sensitized patients (Paediatric and Adult

Nephrology Unit, La Paz University Hospital, Madrid, Spain) were

thawed in RPMI10, counted, and the frequency of B cells

(CD19+CD20+ cells) was determined by spectral flow cytometry.

On the same day, PBMCs were incubated with 100 IU/ml IL-2, 100

IU/ml IL-6 (Peprotech, ThermoFisher Scientific) (35), and

irradiated (4,000 rad) HLA2-expressing K562 cells (a kind gift

from Jack Strominger, Harvard University) at a ratio of 1 B cell:

10 irradiated HLA-A2-K562 cells with or without HLA-A2 CHAR

Tregs at a ratio of 1 CHAR Treg: 1 B cell in 12-wells for up to 5 days.

PBMCs from pre-sensitized patients with IL-2 and IL-6 alone, as

well as PBMCs from a de-identified healthy donor (STEMCELL

Technologies) subjected to all 3 conditions, were kept as

negative controls.
IgG antibody production assay

Three conditions were set up with HLA-A2 pre-sensitized patient

PBMCs and healthy donor PBMCs: PBMCs alone, PBMCs with

irradiated HLA2-K562 cells, and PBMCs with irradiated HLA2-

K562 cells and HLA-A2 CHAR Tregs, as described above. All

cultures received 100 IU/ml IL-2 and 100 IU/ml IL-6. After 48h or

5 days of culture, 250 ml supernatant was collected from each

allogeneic B cell stimulation condition and diluted 1:2 with PBS.

Human IgG solid-phase sandwich enzyme-linked immunosorbent

assay (ELISA) (Thermofisher Scientific) was performed as per

manufacturer’s instructions.
Spectral flow cytometry

Spectral flow cytometry data was acquired in a 3-laser Cytek

Northern Lights spectral flow cytometer (Cytek Biosciences,

Fremont, CA). Spectroflow 3.2.1 (Cytek Biosciences) and FlowJo

v10.9 software (BD Life Sciences, Franklin Lakes, NJ) were used for

flow cytometry data analysis. Data were manually pre-gated to

remove cell aggregates, dead cells, debris, and then sub-sampled to

include 10,000 live singlets from each sample. Uniform Manifold
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Approximation and Projection (UMAP) analysis was performed to

visualize the different sub-populations in groups (36). UMAP

settings were as follows: all files used, all compensated fluorescent

parameters were used besides Live/Dead,Neighbors =15, Minimum

Distance = 0.5, Components = 2, Metric = Euclidean. Antibodies

used for spectral flow cytometry in this study can be found in

Supplementary Table 1.
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Ethics approval statement

The studies involving human participants were reviewed and

approved by the Local Committee for Research Ethics at the University

Hospital La Paz, Madrid, Spain (PI-3969, principal investigator: ELC).

Written informed consent to participate in this study was provided by the

participants. Samples were collected by AZS and processed by JVQ.
FIGURE 2

HLA-A2 CHAR Tregs remain stable and are not cytotoxic upon activation. (A) Representative flow cytometry analysis of CHAR Treg FOXP3 and
HELIOS expression after 9 days of co-culture with irradiated PA2.1 (anti-HLA-A2) and IVA12 (anti-HLA-DR, DP, DQ) hybridoma cells. Untransduced
(UT) T effector (Teff) cells and CHAR Teff cells were used as negative controls. (B) Frequency of FOXP3+ CHAR Tregs alone or co-cultured with PA2.1
and IVA12 hybridoma cells for 9 days. (C) FOXP3 expression (mean fluorescence intensity - MFI) in CHAR Tregs alone or co-cultured with PA2.1 and
IVA12 hybridoma cells for 9 days. (D) Frequency of FOXP3+HELIOS+ CHAR Tregs alone or co-cultured with irradiated PA2.1 and IVA12 hybridoma
cells for 9 days. (E) Cytotoxicity of CHAR Tregs and CHAR Teff cells towards PA2.1, as measured by lactate dehydrogenase (LDH) release after 24-
hour co-incubation at a 1:1 ratio. Bars in (B–E) represent mean and standard deviation (n = 3 technical replicates, one blood donor representative of
two). Data were analyzed by one-way ANOVA with multiple comparisons. ns, not significant; *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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Results

Aiming to test the concept of regulatory T cell (Tregs)

engineered to specifically recognize and inhibit alloreactive B cells

responsible for human leukocyte antigen (HLA) pre-sensitization in

patients, we constructed a chimeric anti-HLA antibody receptor

(CHAR) specific for anti-HLA-A2 B cells by fusing an HLA-A2

molecule to a CD8 hinge, a CD28 transmembrane domain, and a

CD28-CD3zeta intracellular signaling domain (27, 28) (Figure 1A).

We then sorted CD4+CD25hiCD127low Tregs (31, 32) from human

peripheral blood collected from HLA-A2 negative donors, activated

them with anti-CD3/CD28 beads and IL-2, and transduced them

two days later with lentivirus coding for the HLA-A2 CHAR. Flow

cytometry analysis of transduced Tregs revealed successful

expression of the CHAR construct, as assessed by simultaneous

surface expression of HLA-A2 and the truncated nerve growth

factor receptor (NGFRt) reporter gene, linked to CHAR gene

expression via a 2A peptide (Figure 1B).

To evaluate CHAR target recognition, we co-incubated

untransduced (UT) or CHAR Tregs with B cell hybridoma cell

lines specific for HLA-A2 (PA2.1) or for HLA-DR (IVA12). CHAR

Tregs, but not UT Tregs, upregulated surface expression of the well-

established Treg activation markers (30, 37) CD69 (Figures 1C, D),

CD71 (Figure 1E), and CD25 (Figure 1F) and increased in

frequency (Figures 1G, H) upon co-incubation with PA2.1 cells,

but not with IVA12 cells, indicating CHAR Treg reactivity

specifically to HLA-A2 antibody-producing cells.

Next, we sought to confirm that activation via the CHAR did

not compromise Treg identity stability, measured by the expression

levels of the Treg lineage transcription factors FOXP3 and HELIOS

(38). We found no difference in the frequency of FOXP3 or HELIOS

expressing cells between UT or CHAR Tregs co-incubated with

either PA2.1 or IVA12 hybridoma cells (Figure 2A). Of note, while

the frequency of FOXP3+ CHAR Tregs (Figure 2B) and

FOXP3+HELIOS+ CHAR Tregs (Figure 2C) did not change

across conditions, FOXP3 levels were higher in CHAR Tregs co-

incubated with PA2.1 cells (Figure 2D), an additional line of

evidence for CHAR Treg activation specifically by anti-HLA-A2

antibody-producing cells (39).

Interestingly, CHAR Tregs were not cytotoxic towards anti-HLA-

A2 antibody-producing PA2.1 cells at a 1:1 ratio, unlike CHAR T

effector (Teff) cells (Figure 2E). While additional donor Tregs need to

be tested due to variation in Treg cytotoxic potential in the human

population (40), our observations suggest that HLA-A2 CHAR Tregs

do not function primarily by eliminating target B cells.

To assess CHAR Treg function, we thawed peripheral blood

mononuclear cells (PBMCs) from HLA-A2 pre-sensitized patients

(SEN) and a healthy donor (HD) (Figure 3A) and co-incubated

them with irradiated HLA-A2-expressing K562 cells as a source of

HLA-A2 antigen in the presence of IL-2 and IL-6 with or without

CHAR Tregs for 2 days or 5 days (Figure 3B). In two out of three

HLA-A2 pre-sensitized patients tested, CHAR Tregs significantly

decreased IgG antibody production by the patient’s cells after 48h of

co-incubation (Figure 3C), demonstrating the ability of CHAR

Tregs to inhibit alloreactive B cells.
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In order to gain mechanistic insight into CHAR Treg function,

we performed spectral flow cytometric analysis of these co-cultures.

We identified NGFR+HLA-A2+CD19- CHAR Tregs and NGFR-

HLA-A2-CD19+CD20+ patient B cells. Expression of CD27 (Treg

suppressive function marker (41, 42)), CD71 (Treg activation

marker (29, 30, 37)), and CD38 (Treg activation and suppressive

function marker (42, 43)) was assessed in CHAR Tregs. B cells were

subsetted into naïve B cells (CD27-IgD+), marginal zone B cells

(CD27+IgD+), memory B cells (CD27+IgD-), CD27-IgD- double-

negative B cells, and CD27+CD38+ plasmablasts (Figure 4A).

Uniform Manifold Approximation and Projection (UMAP)

visualization of total live cells in the different co-culture

conditions across all three pre-sensitized patients at 48 hours

(Figure 4B) and 5 days (Figure 4D) illustrates that B cells

constitute a small and relatively uniform fraction of the patients’

PBMCs (colored in blue, light green, dark green, orange, and yellow

according to B cell subset) and that CHAR Tregs (colored in red)

form distinct clusters, potentially reflecting differences in activation

status. Focusing on the B cell fraction, we found that CHAR Tregs

significantly reduced the frequency of total B cells in all three pre-

sensitized patients’ PBMCs at 48 hours (Figure 4B) and at 5 days

(Figures 4D, E) of co-culture. Of note, the frequencies of any of the

individual B cell subsets measured (naïve, memory, marginal zone,

and CD27-IgD- B cells, as well as plasmablasts) were not

significantly altered by CHAR Tregs at either time point

(Figures 4B, D), suggesting that all B cell subsets were equally

suppressed by CHAR Tregs. With regards to the CHAR Tregs, we

observed that the majority of CHAR Tregs expressed high levels of

CD27 and CD38, markers associated with Treg suppressive

function (41–43) after 48h (Figure 4C) and 5 days (Figure 4E) of

co-culture. There was a trend where a larger fraction of CHAR

Tregs expressed CD27 and CD38 when co-incubated with SEN

PBMCs (86% CD27+ and 90-94% CD38+ at 48 hours, 76-88%

CD27+ and 86-91% CD38+ at 5 days) than with HD PBMCs (80%

CD27+ and 86% CD38+ at 48 hours, 68% CD27+ and 82% CD38+ at

5 days) (Figures 4C, E). Moreover, CHAR Tregs were activated, as

assessed by CD71 upregulation (29, 30, 37), in the presence of all

three SEN PBMCs, but not HD PBMCs after 48 hours (Figure 4C)

and 5 days (Figure 4E) of co-culture.
Discussion

The field of immunotherapy has witnessed remarkable

advancements in recent years, particularly concerning the

engineering of T cells to target specific cells and immune responses.

Previous studies have demonstrated the potential of conventional T

cells to recognize and eliminate B cells. In the clinic, total B cells are

being eliminated using CD19 chimeric antigen receptor (CAR) T cells

in patients with systemic lupus erythematosus and other autoimmune

disorders, leading to disease remission (44, 45). At the pre-clinical

stage, self-reactive antigen-specific B cells have been eliminated

through chimeric autoantibody receptor T cells (CAAR T cells) in

the setting of pemphigus vulgaris (46) and alloreactive donor HLA-

specific B cells have been targeted using CHAR T cells (27, 28).
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Our study introduces a novel approach by engineering

regulatory T cells (Tregs), immune cells dedicated to inhibiting

immune responses to maintain immune homeostasis (21–23), to

recognize and suppress B cells specific for an HLA molecule with a
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CHAR. This innovative strategy not only enhances the specificity of

Treg-mediated suppression of alloreactive B cells but also opens

new avenues for therapeutic intervention in transplant

immunology. Tregs, like all CD4+ T cells, possess T cell receptors
FIGURE 3

HLA-A2 CHAR Tregs suppress IgG specific production on highly pre sensitized patients. (A) HLA-A2 sensitized patient (SEN) and healthy control (HD)
demographics and clinical characteristics. (B) Experimental design for assessing CHAR Treg function in the presence of HLA-A2 pre-sensitized
patient cells. HLA-A2 sensitized donor-derived peripheral blood mononuclear cells (PBMCs) were co-incubated with HLA-A2-expressing K562 cells
to induce expansion of anti-HLA-A2 B cells and anti-HLA-A2 IgG antibody production. If CHAR Tregs are added, a decrease in antibody production
elicited by exposure to HLA-A2 is expected. (C) IgG antibody production 48 hours or 5 days after pre-sensitized patient PBMC co-incubation with
HLA-A2-K562 in the presence or absence of CHAR T regs, as assessed by ELISA. n=3 sensitized patients (SEN) and n=1 healthy donor (HD) control).
Data were analyzed by one-way ANOVA with multiple comparisons. ns, not significant; *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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(TCRs) restricted to human leukocyte antigen (HLA) class II

molecules, which are expressed in professional antigen presenting

cells, including B cells (47). Previous work reported the expansion

of rare recipient alloreactive Tregs using donor-derived B cells (48).

Yet, antigen-specific Tregs are rare and prone to destabilization

upon multiple rounds of activation ex vivo, kindling interest in
Frontiers in Immunology 08
genetic engineering approaches to confer desired antigen

specificities to human Tregs (21, 22). Previous work has focused

on modifying human Tregs with artificial receptors to confer them

specificity towards transplanted tissues, aiming to provide localized

protection from immune attack (29, 37, 49–51). Engineering Tregs

with CHAR tackles the problem of allogeneic immune rejection
FIGURE 4

HLA-A2 CHAR Tregs were activated and reduced the frequency of total B cells in pre-sensitized patient peripheral blood samples. (A) Flow cytometry
gating strategy to identify HLA-A2+NGFR+CD19- CHAR Tregs, CD19+CD20+ B cells, and B cell subsets in co-cultures of sensitized patient PBMCs with
irradiated HLA-A2-K562 and CHAR Tregs. (B, D) Uniform manifold approximation and projection (UMAP) representation of sensitized patient PBMCs with
irradiated HLA-A2-K562 (iA2K562) and CHAR Tregs depicting naive, marginal zone, memory and IgD-CD27- B cells, as well as plasmablasts, after 48
hours (B) and 5 days (D) of co-culture. (C, E) Frequency of CD27 expression and CD38 expression, as well as CD71 surface expression levels, in CHAR
Tregs co-incubated with sensitized patient PBMCs for 48 hours (C) and 5 days (E). n=3 sensitized patients (SEN) and n=1 healthy donor (HD) control.
Data were analyzed by one-way ANOVA with multiple comparisons. ns, not significant; *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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from a different, potentially orthogonal and synergistic, angle,

providing a targeted mechanism to directly inhibit B cell

responses against allogeneic HLA molecules, such as HLA-A2.

Unlike engineered conventional T cells, which can induce wide-

ranging immune activation and potential tissue damage (52–55),

HLA-A2 CHAR Tregs are designed to suppress only B cells

producing anti-HLA-A2 antibodies in an anti-inflammatory

fashion, thereby minimizing collateral damage to other

components of the immune system or any tissues. In line with

this concept, we observed that while conventional HLA-A2 CHAR

T cells were cytotoxic towards anti-HLA-A2 antibody-producing

hybridoma cells, HLA-A2 CHAR Tregs were not (Figure 2E).

Future studies will manufacture CHAR Tregs from more blood

donors to ascertain that CHAR Tregs are not cytotoxic regardless of

origin, as variation in the cytotoxic potential of engineered Tregs

towards target cells has been observed in patient samples (40), as

well as characterize the cytokine secretion of activated CHAR Tregs.

Of note, Tregs are more amenable to be used as allogeneic cell

therapies than conventional T cells, which carry the risk of inducing

graft-vs-host disease unless they endogenous TCR expression is

eliminated (56–58), potentially allowing for the development of off-

the-shelf CHAR Treg therapeutics. Experiments using polyclonal UT

Tregs will be key to explore this possibility: while UT Tregs were not

activated by allogeneic B cell hybridomas in vitro (Figures 1C-F),

mouse studies have shown that polyclonal Tregs are activated by

allogeneic DCs and are suppressive in vivo (59–61), potentially

leading to unwanted suppression beyond specific alloreactive B cell

inhibition. Elimination of the endogenous TCR may thus be required

for future allogeneic CHAR Treg therapies.

Tregs have been shown to directly inhibit B cells via contact-

dependent mechanisms, either by inhibiting B cell proliferation

through ligation of PD-L1 and PD-L2 on Tregs with PD-1 on B cells

(62), or by killing B cells via the perforin/granzyme B pathway,

FASL, or PD-L1 and PD-L2 (62–64). Tregs can also directly inhibit

B cells via contact-independent mechanisms, mainly by secreting

suppressive cytokines IL-10 and TGF-b, which inhibit B cell

proliferation (65, 66). Interestingly, these cytokines also promote

B cell differentiation into IL-10- and TGF-b-secreting regulatory B
cells (Bregs), which can in turn induce naïve T cell differentiation

into Tregs (22, 67, 68). Follow-up studies will profile surface protein

markers, cytokine secretion, and the transcriptome of activated

CHAR Tregs, coupled with loss-of-function perturbations and

immune assays, to dissect the mechanisms by which CHAR Tregs

inhibit target alloreactive B cells and further validate the anti-

inflammatory characteristics of CHAR Tregs.

Specificity and safety profile are crucial in the context of

transplantation, where current desensitization strategies often fall

short due to their non-specific nature and associated complications

(19). By effectively reducing IgG antibody production by sensitized

individuals’ B cells (Figure 3C) while maintaining their Treg

identity (Figures 2A–D) in vitro, CHAR Tregs offer a promising

therapeutic option for improving transplant outcomes by

enhancing graft acceptance and reducing the risk of rejection.

Demonstrating CHAR Treg long-term persistence, stability, and

function under chronic antigen exposure and inflammatory
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microenvironments in humanized mouse models (69) will lend

additional support to translate CHAR Tregs into the clinic.

Engineering of Tregs to bind specific B cells had been previously

demonstrated with FVIII B cell antibody receptor (BAR) Tregs, aimed

at inhibiting anti-FVIII antibody production by hemophilic patients

treated with recombinant FVIII protein (70). While this work

demonstrated the possibility of directing Tregs towards B cells based

on B-cell antigen specificity, our findings extend the applicability of B-

cell-targeting engineered Tregs to graft-vs-host disease (GvHD), organ

transplantation, and beyond, potentially addressing challenges in

conditions such as miscarriage, where pregnant women develop

antibodies against paternally derived HLA molecules (13, 71, 72). Of

note, a limitation common to CAAR, BAR, and CHAR receptors is

their likely inability to target IgG plasma cells, terminally differentiated

IgG antibody-secreting cells that lose surface BCR expression (73),

potentially necessitating additional plasma cell targeting interventions

for some patients (74). Additionally, while reported to not be an issue

with CAAR receptors (46), it will be important to ascertain that high

levels of soluble anti-HLA-A2 antibodies do not engage or block HLA-

A2 CHAR receptors.

The novelty of our study lies not only in the engineering of

Tregs with CHAR but also in the demonstration of their efficacy

with HLA sensitized patients’ cells. The ability of CHAR Tregs to

suppress IgG production by B cells from pre-sensitized individuals

upon exposure to antigen-expressing cells (Figure 3C) is a

significant step forward, suggesting that this approach could pave

the way for tailored strategies that address individual HLA

sensitized patient needs. Polyclonal Tregs have been shown to be

safe in phase I and phase II clinical trials (75–77), and human CAR

Tregs targeting transplanted tissues have shown efficacy and safety

in preclinical studies (37, 78–80) and are being tested in ongoing

phase I clinical trials (81). Hence, CHAR Tregs are a good candidate

for first-in-human trials, to be used either in pre-sensitized patients

with the goal of bringing them to the same baseline as non-

sensitized patients and/or as an adjuvant to reduce the doses of

immunosuppressive drugs taken by transplant recipients.

Interestingly, CHAR Tregs significantly inhibited IgG production

by HLA-A2 antigen-stimulated B cells for only two out of three

sensitized patients (Figure 3C). Moreover, CHAR Tregs retained high

expression of the activation marker CD71 after 5 days of co-culture

also only with two out of three sensitized patient PBMCs (Figure 4E).

It is possible that IgG secretion by HLA-A2 antigen-activated B cells

from patient SEN3 was not reduced by CHAR Tregs to a statistically

significant extent due to the small magnitude of IgG secretion

(Figure 3C). Developing an ELISA to quantify anti-HLA-A2

antibody production specifically instead of total IgG may increase

the sensitivity to detect differences in antibody production by anti-

HLA-A2 B cells in response to HLA-A2 CHAR Tregs. Additionally,

measuring IgG classes separately can shed light on the mechanisms of

CHAR Treg-mediated suppression. For instance, IL-10 has been

shown to induce B cells to secrete IgG1 and IgG3 (82), while IL-10-

producing Bregs, which can be induced by Tregs, uniquely secrete

IgG4 antibodies (83). Future studies with more HLA-A2 sensitized

patient samples and healthy donor control samples are warranted to

define what patient characteristics indicate responsiveness to CHAR
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Treg targeting and dissect the mechanisms by which CHAR Tregs

inhibit target B cells. In addition, experiments including conditions

with HLA-A2 sensitized patient PBMCs, HLA-A2 antigen, and UT

Tregs, as well as conditions with PBMCs from patients sensitized to a

different HLA allele (e.g. HLA-A24 (84)), that different HLA allele

antigen, and HLA-A2 CHAR Tregs, both expected to display

unimpeded IgG production, will aid in the characterization of our

CHAR Treg-based approach in future comprehensive studies. Finally,

including samples from patients sensitized to other HLA alleles and

designing and testing matching CHARs will allow us to expand our

CHAR Treg concept to other HLA class I and class II molecules.

In conclusion, we provide compelling proof-of-concept for a

novel immunotherapeutic strategy to desensitize transplant

recipients with HLA sensitization. Engineering CHAR Tregs

represents an advancement in the quest for specific and safe

immunotherapies to specifically modulate harmful B-cell

responses in sensitized transplant recipients and beyond. As we

continue to refine these technologies, the potential for engineered

Tregs to transform clinical practice becomes a tantalizing prospect.
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