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Integrated analysis of single-cell
RNA-seq and spatial
transcriptomics to identify the
lactylation-related protein
TUBB2A as a potential biomarker
for glioblastoma in cancer cells
by machine learning
Yifan Xu †, Chonghui Zhang †, Jinpeng Wu †, Pin Guo, Nan Jiang,
Chao Wang* and Yugong Feng*

Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
Background: An increasing number of studies have revealed a link between

lactylation and tumor initiation and progression. However, the specific impact of

lactylation on inter-patient heterogeneity and recurrence in glioblastoma (GBM)

remains to be further elucidated.

Methods:We employed functional enrichment algorithms, including AUCell and

UCell, to assess lactylation activity in GBM cancer cells. Additionally, we

introduced the interquartile range (IQR) method based on a set of lactylation-

related genes (LRGs) to reevaluate the extent of lactylation production within the

cancer population at the single-cell resolution. By reconstructing the spatial

transcriptomics of hematoxylin and eosin (HE)-stained sections, we further

evaluated the lactylation activity in GBM tissues. Subsequently, We employed

machine learning algorithms to identify hub genes significantly associated with

elevated lactylation levels in GBM. Finally, we experimentally validated the

emulsification efficiency and quantified the expression levels of hub genes in

human GBM samples.

Results: Our study innovatively demonstrated a markedly elevated global

lactylation level in GBM and validated it as an independent prognostic factor

for GBM. We established a prognostic gene model associated with emulsification

in GBM. Furthermore, the machine learning-based model identified SSBP1, RPA3

and TUBB2A as potential biomarkers for GBM. Notably, the expression levels of

these three hub genes and the lactylation level of TUBB2A in GBM tissues were

significantly higher compared to those in normal tissues.
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Conclusions: We propose and validate a IQR lactylation screening method that

provides potential insights for GBM therapy and an effective framework for

developing gene screening models applicable to other diseases and

pathogenic mechanisms.
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Introduction

GBM is a highly aggressive form of brain tumor that belongs to

the glioblastoma subtype originating primarily in glial cells, which

are support cells in the brain (1). It is one of the most prevalent and

lethal primary brain tumors among adults (2). Based on molecular

and genomic characteristics, GBM can be categorized into distinct

subtypes, including IDH mutants and wild types, with significant

implications for prognosis and treatment strategies (3, 4). Due to its

intricate nature, studying GBM holds immense significance in

oncology as it drives the advancement of novel therapeutic

approaches such as immunotherapy, targeted therapies, and gene

therapy (5, 6).

Lactylation refers to the process in which lactic acid molecules

form ester or covalent bonds with proteins or other biomolecules,

thereby modifying protein function, stability, and interaction (7). The

significance of lactylation in cellular metabolism has gained increasing

attention, particularly within the tumor microenvironment. Cancer

cells often rely on aerobic glycolysis (8) for energy production, leading

to an accumulation of lactic acid (7, 9). Lactylation, as a post-

translational modification, is believed to exert significant regulatory

effects on signal transduction and metabolic reprogramming in GBM

cells (10). Research has demonstrated that lactylation of specific key

proteins can modulate their functionality, including the regulation of

cell cycle progression, apoptosis, and metabolic pathways (11, 12). The

GBM is characterized by its heightened metabolic activity and

aberrant angiogenesis (13, 14). Cancer cells satisfy their demand for

rapid proliferation through upregulation of glycolysis and subsequent

lactic acid production (15). Additionally, the accumulation of lactic

acid results in tumor microenvironment acidification, which not only

impacts Cancer cell proliferation but also potentially hinders immune

cell function and facilitates immune evasion by tumors (16).

Moreover, the acidic environment can influence the functionality of

tumor-associated fibroblasts and vascular endothelial cells, thereby

further promoting tumor growth and metastasis (17, 18).

In this study, we employed the single-cell RNA sequencing

(scRNA-seq) profiles to investigate the heterogeneity in primary

and recurrent GBM samples. We applied five machine learning

algorithms to explore the relationship between LRGs and GBM

progression. Furthermore, we introduced an innovative IQR

classification method to re-evaluate the lactylation levels within

cancer cell populations at the single-cell level. This approach
02
considers both lactylation and gene expression variations across

individual cells. Using 40 independent GBM samples, we

demonstrated that the prediction model based on the IQR

method exhibits superior robustness and accuracy compared to

traditional differential gene expression models and LRGs screening

models. The flow chart illustrating the operational procedure and

the mechanism of lactylation in this study is presented in Figure 1.
Methods

Data collection and processing

The scRNA-seq including 40 samples from newly diagnosed

GBM (ndGBM, n = 22), recurrent GBM (rGBM, n = 18) were

downloaded from GEO database with accession ID: GSE103224,

GSE138794, GSE139448 and GSE131928. The bulk RNAseq and

microarray data of GBM samples were obtained from TCGA

databases. The study incorporated one sample of GBM spatial

Transcriptome sequencing (stRNA-seq) with entry number

GSE194329. A comprehensive review of previous studies led to

the identification and selection of a total of 371 lactylation-related

genes (LRGs) (19, 20) (Supplementary Table 1).
scRNA-seq dataset analysis and cell
annotation

The “Seurat (Version 4.1.1) (21)” R tool was utilized for data

processing to ensure the accuracy of scRNA-seq data. In order to

ensure high-quality scRNA-seq data, we screened for genes

expressed in a minimum of five individual cells, cells with 200 to

7,000 genes, and cells with more than 20 percent mitochondrial

genes. A total of 226736 suitable cells were selected for further

investigation. The initial set of highly mutated genes was

determined using the “Discover Variant Signatures” function in

the “Seurat” package. Principal Component Analysis (PCA) was

conducted on highly variable genes to reduce the dimensionality of

the scRNA-Seq data by the “RunPCA” function. Following this, the

“FindNeighbors” and “FindClusters” functions were applied,

resulting in a resolution of 0.8. Cells were annotated based on the

expression of marker genes and references to marker gene
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signatures (Supplementary Table 2). we successfully identify and

visualize 8 distinct cell clusters using a UMAP plot. The

“FindAIIMarkers” tool was utilized for the identification of

differentially expressed genes (DEGs) within each cluster.

Subsequently, a cut-off threshold and modified criteria of P<0.01

and log2 (Foldchange) >0.25 were employed to ascertain the gene

markers for each respective cluster. We evaluate the heterogeneity

of cell cycle progression within these clusters by lever lactylation cell

cycle markers incorporated in the Seurat package.
Evaluation of lactylation activity

To calculate lactate activity by evaluating transcription factor

activity according to SCENIC’s AUCell method, multiple

algorithms were used to reduce the bias that may be introduced

by a single algorithm, thus improving the robustness of the results.

Subsequently, we normalized the output of each algorithm on a

scale of 0 to 1 and performed a comprehensive comparative analysis
Frontiers in Immunology 03
of all algorithms to derive a final score. The lactylation activity of

each cell was evaluated at the individual cellular level, and

subsequently, the cumulative lactylation activity was calculated.

Based on the median scores obtained, the cells were categorized

into groups with high or low lactylation activity. Studies have been

conducted to identify genes closely associated with lactylation

activity. The “FindMarkers” function was utilized to screen for

DEGs and further analyze the results of association analysis and

DEGs identification in shared genes. AUcell (Version 1.12.0) (22),

Ucell (Version 1.8.0) (23), SingScore (Version 1.0) (24), ssGSEA

and AddModuleScore (Version 4.1.1) (25) algorithms were

employed in this analytical process. AUCell evaluates the

functional status of a cell’s transcriptome by calculating the gene

set activity for each cell. Specifically, AUCell employs the area under

the cumulative distribution curve (AUC) to measure the expression

rank of a given gene set within a single cell. Initially, genes within

each cell are ranked based on their expression values, and the

activity of the gene set is subsequently quantified using AUC values.

This approach demonstrates significant advantages in assessing
FIGURE 1

The operational flow chart and mechanism of lactylation. ****P < 0.0001.
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gene set activity in high-dimensional single-cell data and is

particularly effective for evaluating the effects of lowly expressed

genes. Similarly, UCell serves as another gene-set activity scoring

method but focuses on standardizing the ranking scores of gene

expression in single cells. Specifically, UCell assesses the activity of a

gene set by calculating the ranking score of each cell within the gene

set. These standardized ranking scores reflect the relative expression

levels of each cell within the gene set, thereby enabling more precise

functional evaluations. The SingScore method evaluates gene set

activity by ranking the genes of a given gene set within each cell and

calculating the average ranking score for that gene set. ssGSEA

compares the expression values of a gene set with the expression

levels of other genes in the dataset to compute the relative

enrichment score (ES). This score indicates the degree of

enrichment of the gene set in a specific cell and facilitates an

accurate assessment of the relative activity of the gene set in a

single cell. AddModuleScore evaluates the activity level of a gene set

by calculating its weighted average expression value in each cell. The

computational procedure involves normalizing the gene expression

for each cell, calculating the score for the gene set, and normalizing

the final score to obtain the module activity score. Through this

process, a comprehensive activity score for the gene set in each cell

can be achieved.

IQR method serves as a critical tool for classifying the

lactoacylation activity of individual cells, thereby addressing the

inherent biological heterogeneity. Given the significant variation in

lactoacylation levels within tumor populations, this study employed

the IQR method to categorize cells into three distinct groups

according to their lactoacylation activity. Utilizing the quartile

method, cell fractions below the 25th percentile are categorized as

the Low lactylation state (LLS) group, those between the 25th and

75th percentiles are classified as the Dynamic transition lactylation

state (LDTS) group, and those above the 75th percentile are

designated as the High lactylation state (LHS) group. A

differential expression analysis was then performed to identify

DEGs between the LHS and LLS groups. This analysis led to the

identification of 1458 DEGs, which were selected for further

investigation (Supplementary Table 3).
The pipeline of high-dimensional WGCNA

To accurately identify highly relevant genes in disease-specific

cell subclusters, we employed a computational approach based on

high dimensional weighted gene coexpression networks to analyze

the scRNA-seq data. Initially, a graph-based clustering algorithm

utilizing shared nearest neighbors was utilized for the identification

of disease-specific cell subclusters (1). Subsequently, hdWGCNA

was applied to the expression data of these cell subclusters to unveil

gene modules with strong associations. After acquiring the modular

genes, we conducted a differential expression analysis utilizing the

FindMarkers function, setting a significance threshold of P<0.05, to

identify genes significantly associated with GBM. The intersection

of these analyses revealed key genes that play crucial roles in GBM.
Frontiers in Immunology 04
Spatial transcriptomics data analysis

The annotation of cell populations was conducted using

hematoxylin and eosin (HE) stained sections along with

significantly variable genes within each cluster. The Seurat R

package was employed for processing and interpreting spatial

transcriptomics (ST) data (26). Standardization of ST data was

performed using SCT technology, followed by integration of the

data through the functions SelectIntegrationFeatures,

PrepSCTIntegration, FindIntegrationAnchors, and IntegrateData.

An unsupervised clustering approach was utilized to aggregate

similar ST regions. Subsequently, the functions SpatialDimPlot

and SpatialFeaturePlot were applied to visualize the expression

levels of cells in the ST data. Unique marker genes for each cell

type were identified using the Seurat function FindAllMarkers, with

a focus on markers exhibiting a positive log2 fold change. Finally, a

standard RCTD analysis pipeline was strictly adhered to,

concentrating on reference and Visium spatial transcriptomics

data in a fully bimodal mode.
Enrichment analysis

Through the analysis of gene function, high-throughput

molecular findings are often translated into practical applications

in the field of biology. In this study, we conducted gene function

analysis utilizing the “clusterProfiler” (R version 3.18), and

visualized the results using Disease Ontology (DO) and Gene

Ontology (GO) annotations provided by the Visualization Hub

Genes platform.
Machine learning algorithms are used to
identify optimal LRGs

The application of four machine algorithms is employed to

identify the optimal LRGs. The first step involves applying the

Least Absolute Shrinkage and Selection Operator (LASSO) (27, 28)

to iteratively reweight least squares in order to filter candidates.

Following 1000 iterations of the algorithm, the feature variables are

selected based on the minimum criteria. The candidate genes were

identified through a univariate Cox (29) regression analysis, with

those exhibiting a p-value less than 0.05 being selected for further

consideration. XGboost (30) is an exceptionally effective

methodology for addressing a wide array of classification

challenges. This approach, which employs extreme gradient

boosting, can systematically rank features from most to least

important through the utilization of the XGboost package in R.

Random forest (RF) (31, 32) offers high predictive accuracy, resilience

to overfitting, feature importance evaluation, and applicability to

high-dimensional datasets, making it a robust and versatile tool for a

wide range of predictive modeling tasks. The Boruta (33) algorithm is

a supervised classification feature selectionmethod used to identify all

relevant features in a classification problem.
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Pseudotime trajectory, transcription factor
analysis and cell-cell interaction analysis

The scRNA data for all cell types in the GBM was analyzed

using the R package “Monocle2” (Version 2.18.0) (34) to investigate

the correlation between aggregated LRGs and cellular pseudotime

tracks. Variant genes that were most representative were selected by

estimating cell size factors using the “estimateSizeFactors” function.

Pseudo-temporal ordering of cells was performed using the

“orderCells” function, and the resulting trajectories were

visualized utilizing Monocle’s “plot cell trajectory” function. The

R package “CellChat” is utilized for the identification and

quantification of cell-to-cell communication between distinct cell

types within a single-cell dataset. The “ClusterGVis” software

package (version 10.1.0) in conjunction with the k-means

clustering algorithm was utilized to visualize the dynamic trends

within metabolic pathways.
Patients and samples

The study protocol was approved by the Ethics Committee of

the Affiliated Hospital of Qingdao University (QYFYWZLL 29545).

Written informed consent was obtained from each patient before

participation in the trial. A total of 4 patients diagnosed with GBM

were enrolled, and normal brain tissue adjacent to the tumor was

used as control. Tissue samples were immediately frozen in liquid

nitrogen and transported to the laboratory for subsequent analysis.
Quantitative real-time PCR

The RNA was extracted using TRIzol reagent (Bioflux, China).

And the extracted RNA (1mg) was reverse-transcribed into cDNA

utilizing the PrimeScript™ RT kit (Takara Biomedical Technology

Corporation, Beijing, China). RT-qPCR analysis was conducted on

CFX Opus instrument (Bio-Rad Laboratories Corporation, Shanghai,

China) employing Talent qPCR PreMix (SYBR Green). The entire

reaction followed a thermal cycle procedure consisting of 50 cycles

with 10 seconds at 95°C and 20 seconds at 60°C. The relative

quantification method used for data analysis was the 2−DDCt
method. The primer sequences are shown in Supplementary Table 4.
Western blot

RIPA lysis buffer (Solarbio, China) was utilized to lyse the tissues.

Protein concentrations were quantified using the BCA method.

Samples were subjected to electrophoresis on a 10% sodium dodecyl

sulfate polyacrylamide gel and subsequently transferred onto PVDF

membranes. Non-specific binding sites on the membranes were

blocked with protein-free rapid blocking buffer (Meilun, Dalian,

China) for 20 minutes at room temperature. The membranes were

then incubated overnight at 4°C with primary antibodies against

TUBB2A, RPA3, SSBP1, and b-actin, all sourced from China
Frontiers in Immunology 05
Protein Corporation. Subsequently, the membranes were incubated

with goat anti-rabbit IgG for 1 hours at room temperature. The

protein bands were then visualized using a chemiluminescence

imaging system (Millipore, Billerica, MA, USA). (Solarbio, China),

with b-actin serving as a loading control. Western blot analysis was

employed to assess the protein levels of SSBP1, RPA3, and TUBB2A in

both the normal and GBM groups. Relative protein expression levels

were quantified based on the intensity of the corresponding bands.
Immunoprecipitation

Cell lysates, supplemented with protease inhibitors, were

incubated with anti-TUBB2A antibody (Proteintech, China) and

magnetic beads for 12 hours at 4°C. The magnetic beads were

subsequently washed three times with lysis buffer to ensure

thorough removal of non-specifically bound proteins. Finally, the

proteins specifically bound to the magnetic beads were eluted and

prepared for Western blot analysis.
Statistical analysis

Logistic regression analysis was conducted utilizing the GLM

function to examine the association between variables and binary

outcomes. Continuous variables were compared through the

Wilcoxon rank-sum test. Kaplan-Meier survival analyses were

performed, with significance assessed using the log-rank test.

Receiver Operating Characteristic (ROC) curves were constructed

using the “TimeROC” package, while calibration curves were

generated using the “RMS” package. A p-value of less than 0.05

was considered statistically significant.
Results

The characteristics of GBM lactylation
were analyzed using the scRNA-seq
dataset

The heterogeneity of GBM was investigated by extracting three

samples from the GEO database (Figure 2A), and single-cell

sequencing data was utilized to assess differences between ndGBM

samples and rGBM samples. Following the identification of 2,000

highly variable genes, PCA was employed for dimensionality

reduction, with a focus on the top 20 principal components (PCs).

Subsequently, 27 clusters were generated (Figure 2B). Manual

annotation based on classical marker genes revealed the presence of

8 distinct cell types (Figures 2C, D). Figure 2E illustrates alterations in

the distribution of cellular proportions. The expression patterns of

signature marker genes associated with 8 cell subpopulations are

depicted in Figure 2F Bubble maps. Cell type recognition relies on the

marker genes illustrated in Figure 2G.

Next, we analyzed the lactylation activity in the samples, and the

GSVA analysis results showed that the rGBM samples showed
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higher lactylation activity compared with the ndGBM group

(Figure 3A). The lactylation activity of each cell was calculated

using AUcell, Ucell, SingScore, ssGSEA, and AddModuleScore

algorithms. The results revealed heterogeneity in the lactylation

activity of GBM cell clusters compared to the control group. Cancer

cell, monocytes and stromal cell exhibited the highest agglutination
Frontiers in Immunology 06
activity, whereas T cell, neutrophil, and B cell displayed relatively

low activity (Figures 3B–D). The lactylation activity levels between

GBM and control samples in each cell type exhibited significant

disparities, with notable distinctions observed in cancer cell,

monocytes and stromal cell (Figures 3E–G). Figure 3H illustrates

the lactylation scores for diverse cell subsets.
FIGURE 2

Analysis of single-cell data. (A) The UMAP profiles of 40 samples. (B) The UMAP diagram is colored according to the 18 cell clusters. (C, D) The cell
type annotations are clustered in the scRNA-seq data using seurat UMAP. (E) The cellular composition of GBM and normal tissues. (F) Bubble map
illustrating marker genes associated with 11 major cell types. (G) The UMAP visualization depicts the expression patterns of 9 genes exhibiting high
levels of expression.
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Visualization of lactylation activity and
heterogeneity in cancer cell clusters

The AUCell R package was utilized to measure the lactylation

activity of each cell, with higher AUC values indicating greater

lactylation activity, we computed the corresponding lactylation

AUC score for each cell and categorized them into LHS, LDTS and

LLS AUC groups based on the IQR range methods (Figure 4A). Cell

Counting and Expressed Gene Trace Reconstruction Analysis

(CytoTRACE) is a computational methodology designed to infer

the relative differentiation status of cells based on single-cell RNA

sequencing data. In this study, we examined the differentiation status

of three cell groups (LHS, LDTS and LLS) utilizing the CytoTRACE

algorithm. Figures 4B, C illustrate the distribution and density of

cancer cells across groups LHS, LDTS and LLS. The differentiation

status of cancer cells was further investigated using the Monocle2

algorithm through CytoTRACE analysis. The results demonstrated

that LHS cancer cells exhibited a lower degree of differentiation and

possessed a higher potential for differentiation (Figures 4D, E). We

subsequently correlated the lactylation score with the CytoTRACE

score, as illustrated in Figures 4F, G. The yellow regions indicate cells

that exhibit high lactylation and CytoTRACE scores, which largely
Frontiers in Immunology 07
demonstrate a consistent overlap. We then conducted an analysis of

the CytoTRACE scores across the three groups (Figure 4H).

Additionally, our findings revealed a significant correlation between

CytoTRACE and lactylation scores (Figures 4I). Figure 4J illustrates

the expression profiles of cell-specific marker genes in relation

to CytoTRACE.
HdWGCNA identifies hub genes associated
with cancer cell

The hdWGCNA algorithm is utilized to identify key modules

exhibiting cancer cell characteristics. A scale-free fibroblast network,

based on optimal connectivity, is constructed using a soft threshold of

12. Consequently, a total of 15 gene modules are identified

(Figures 5A–D). The correlation analysis between these 15 gene

modules and among the gene modules and the LHS, LDTS and

LLS groups facilitated the identification of gene modules strongly

associated with the LHS, LDTS and LLS groups. The findings

indicated that the red, turquoise, blue, and magenta module

exhibited the highest level of expression in the LHS group.

(Figures 5E, F). Notably, All four modules exhibited significant
FIGURE 3

The analysis of lactylation activity in individual cells among patients with GBM. (A) The Wilcoxon tests were conducted to compare lactylation-
related gene sets between normal individuals and patients with GBM. (B, C) The bubble map displays the enrichment scores of genes associated
with lactylation for each individual cell type within the GBM. (D) The results from the analysis of five algorithms indicated that cancer cell and stromal
cell exhibited the highest level of lactylation activity, whereas B cells and neutrophils demonstrated relatively lower levels of lactylation activity.
(E–G) The lactylation activity levels differ among cell types in both normal and GBM samples. (H) The UMAP plot illustrates the lactylation scores for
diverse cell subsets. ns, no significance; ****P < 0.0001.
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positive correlations with cancer cells. The central genes for

subsequent analysis were selected as the top 25 KME genes from

the black, turquoise, blue, and brown modules (Figure 5G).
The enrichment analysis and spatial
transcriptome analysis

The volcano plot shows 1458 DEGs of LHS and LLS

(Figure 6A). The analysis identified a total of 616 genes that were

found in both hdWGCNA and DEGs, indicating their involvement

in up-regulating lactylation activity (Figure 6B). The consequences
Frontiers in Immunology 08
of DO analysis illustrate that shared LRGs are relevant to connective

tissue cancer, autosomal dominant disease and ovary epithelial

cancer (Figure 6C, Supplementary Table 5). The GO analysis

revealed that shared LRGs were significantly enriched in anaphase

−promoting complex−dependent catabolic process, regulation of

mRNA metabolic process and actin binding (Figure 6D,

Supplementary Table 6). We conducted an in-depth analysis of

the spatial architecture of GBM samples. Thereafter, we delineated

cancerous regions based on HE staining (Figures 6E, H). Notably,

the red-stained areas represent cancer cells with elevated lactylation

levels (Figures 6F, I). Additionally, The dot plot illustrates the

lactylation activity of each population of cells (Figures 6G, J).
FIGURE 4

Lactylation activity and heterogeneity were visualized by CytoTRACE. (A) The DEGs were categorized into LHS, LDTS, LLS group based on the IQR
method. (B, C) The UMAP map illustrating the cell distribution of LHS, LDTS and LLS. (D) The CytoTRACE characteristics and lactylation-related
phenotypes of GBM cancer cells. (E) Boxplots showing differentiating ordering identically ordered by CytoTRACE. (F–G) The correlation was revealed
when the lactylation score was combined with the CytoTRACE score. (H) Comparison of CytoTRACE Scores Among LHS, LDTS and LLS. (I) Pearson
correlation test for CytoTRACE and lactylation scores (J) The expression Profiles of Cell-Specific Marker Genes Linked to CytoTRACE Analysis. ***P < 0.001.
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Identification and validation of hub LRGs
by machine learning

We utilized machine learning algorithms to further refine the

selection of hub LRGs with significant diagnostic value. A total of 17

genes were identified through LASSO analysis (Figure 7A,

Supplementary Table 7). Subsequently, we identified 20 hub genes

using the RF algorithm (Figure 7B, Supplementary Table 8). And an

additional 39 hub genes were identified using the Uncox (Figure 7C,

Supplementary Table 9) and 7 hub genes of the Boruta algorithm

(Figure 7D, Supplementary Table 10). Furthermore, the xgboost

algorithm was employed to select another set of 9 hub genes

(Figure 7E, Supplementary Table 11). Finally, by performing

intersection analysis on the signature genes identified through

these five machine learning algorithms, we determined three

common hub genes: SSBP1, RPA3, and TUBB2A (Figure 7F).
Frontiers in Immunology 09
Reveal the hub LRGs at the single-cell level

The UMAP analysis demonstrated that these LRGs were

predominantly expressed in cancer cells and LHS cells

(Figures 8A–C). Figures 8D, E illustrates the differential

expression levels of SSBP1, RPA3 and TUBB2A between the LHS,

LDTS and LLS. The results demonstrated that SSBP1, RPA3 and

TUBB2A exhibited high expression levels in cancer cells compared

to relatively lower levels in T cells and B cells (Figure 8F).
Results of trajectory analysis and cell
interactions

The findings of cellular communication suggest that LHS

exhibits a higher propensity for signaling to neighboring cells via
FIGURE 5

The hdWGCNA analysis reveals that the red, turquoise, blue, and magenta modules are the four hub modules closely associated with high-
lactylation group. (A) Selecting a soft power of 12 to construct a scale-free network. (B) Visualizing eight modules in a scale-free network using a
tree diagram. (C) Obtaining 15 gene modules and presenting the top hub gene based on the hdWGCNA pipeline. (D) Examining the distribution of 15
gene modules in both LHS, LDTS and LLS groups. (E) The correlation between gene modules. (F) The degree of expression of gene modules in
groups LHS, LDTS and LLS. (G) Creating a correlation bubble diagram to illustrate module associations into the LHS, LDTS and LLS group.
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VEGF, BMP, and also demonstrates an increased receptivity

towards signals transmitted through SPP1, PTN pathways

(Figure 9A). The results of cell communication revealed a

significantly high frequency of interaction between LHS and

LDTS LHS and stromal, as well as monocyrtes and LHS

(Figures 9B–D). Subsequently, we conducted an analysis of the

number of ligand-receptor pairs involving LHS and LLS with

various cell types. The results indicated that LHS exhibited the

highest number of pairs with oligodendrocytes, stromal cells, and

monocytes, respectively. Additionally, LLS demonstrated the

highest number of pairs with stromal cells, endothelial cells, and

monocytes (Figure 9E). The results demonstrated that cancer cells

interact with stromal cells via the PTN-NCL and MIF-(CD74

+CXCR4) signaling pathways. (Figure 9F). GSVA analysis showed

that LHS was strongly corre la ted with OXIDATIVE

PHOSPHORYLATION, PI3K AKT MTOR SIGNALING, DNA

REPAIR (Figure 9G). We divided cancer cells into six groups:

SSBP1+ cancer group, SSBP1− cancer group, RPA3+ cancer group
Frontiers in Immunology 10
and RPA3− cancer group, TUBB2A+ cancer group and TUBB2A−

cancer group. Monocle2 was used for trajectory analysis to explore

transcriptional heterogeneity in cancer cells. The proportion of

SSBP1, RPA3, and TUBB2A cancer cells increased synchronously

during the quasi-time course (Figures 9H, I). The pseudo-time

series analysis was employed to elucidate the developmental

trajectory of cells within each population. The cells exhibiting

similar states are clustered together, while distinct cell clusters are

visually distinguished using color codes, the differentiation

trajectory is represented by a black line (Figure 9J). Pseudotime

analysis revealed a gradual decline in LHS, LDTS and LLS over

time (Figure 9K).
Experimental validation of hub LRGs

Firstly, we observed a significant increase in the protein levels of

SSBPP1, RPA3, and TUBB2A as shown in Figures 10A–D, as well as
FIGURE 6

The functional enrichment analysis and Spatial transcriptome analysis. (A) The volcanic map of the DEGs. (B) Overlap genes in hdWGCNA and DEGs.
(C, D) GO and DO functional enrichment analysis of shared LRGs. (E, H) Cell counts in tissue samples. (F, I) The spatial distribution map of lactylation
intensity. (G, J) The dot plot illustrates the lactylation activity of each population of cells.
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an elevation in their mRNA levels as demonstrated in Figures 10E–G,

using WB and RT-qPCR analyses. We subsequently investigated the

global lactylation levels in human GBM tissues compared to control

tissues. The results demonstrated that GBM tissues exhibited

significantly elevated lactylation levels relative to control tissues

(Figure 10H). Finally, we selected TUBB2A with the most

significant difference for IP validation, and WB results showed that

TUBB2A was involved in the lactylation modification process in GBM

and was significantly stronger than the control group (Figure 10I).
Discussion

Aberrant reprogramming of tumor metabolism represents a

hallmark of cancer development, with lactic acid production being a

pivotal process in this metabolic shift. Cancer cells exhibit a propensity

to generate lactate through glycolysis even in the presence of ample

oxygen. The accumulation of lactic acid not only fulfills the demands

of rapid cancer cell proliferation but also facilitates tumor growth,

invasion, immune evasion, and therapeutic resistance by modulating
Frontiers in Immunology 11
the tumor microenvironment. Previous transcriptomics studies in

GBM have primarily concentrated on identifying prognostic genes

and predicting clinical outcomes (35). However, these studies

frequently neglect the intricate landscape of intercellular

heterogeneity. Meanwhile, scRNA-seq studies on GBM

predominantly focus on elucidating the functions of various cellular

components, discovering novel cell subsets, and investigating cell-to-

cell heterogeneity. Nevertheless, due to limited sample sizes, there is a

paucity of analyses linking specific cancer cell subsets to patient

prognosis. Moreover, most existing models are constrained by biases

stemming from reliance on absolute gene expression values. These

models typically treat cell subsets as homogeneous entities, thereby

overlooking the differential expression patterns of mechanisms such as

lactate metabolism, senescence, and oxidative stress within individual

cells. Such oversimplified modeling approaches often significantly

compromise the accuracy of their predictions, thereby impeding

their practical utility.

We initially used scRNA-seq data to identify a total of eight

different cell subsets, including cancer cells and macrophages.

Furthermore, we employed algorithms such as AUCell and UCell
FIGURE 7

The identification of hub LRGs is performed using machine learning techniques, (A) the LASSO regression algorithm, (B) RF algorithm. (C) Ucox
algorithm. (D) Boruta algorithm. (E) xgboost algorithm. (F) Venn diagrams of four algorithms.
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to calculate the lactylation score of GBM, We performed a 0 to one

normalization for each algorithm and a comprehensive comparative

analysis of all algorithms to arrive at the final score, revealing that

cancer cells exhibited the highest lactylation score. From a

biological standpoint, the tumor microenvironment is marked by
Frontiers in Immunology 12
substantial metabolic reprogramming. Within this environment,

cells exhibit diverse metabolic profiles, including varying levels of

lactylation production. Cancer cells, in particular, undergo rapid

and heterogeneous metabolic adaptations to sustain their

accelerated proliferation and survival under metabolically stressful
FIGURE 8

Validate hub LRGs at the single-cell level. (A) UMAP analysis revealed that these genes were predominantly expressed in LHS. (B, C) UMAP analysis
revealed that these genes were predominantly expressed in cancer cells. (D, E) The expression levels of SSBP1, RPA3, and TUBB2A were observed in
LHS, LDTS and LLS. (F) The analysis of the expression profiles of SSBP1, RPA3 and TUBB2A across diverse cellular types. ****P < 0.0001.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1601533
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2025.1601533
conditions. In GBM, increased lactate production via aerobic

glycolysis leads to considerable variation in lactylation

modification among individual cells, reflecting the dynamic

metabolic state of these cells. By categorizing cells into low,

intermediate, and high lactylation-producing groups using IQR

analysis, we effectively captured the inherent biological

heterogeneity. This approach enables the identification of distinct

cell subpopulations that may differentially contribute to tumor.

Furthermore, lactylation enhances the resistance of cancer cells to

radiotherapy and chemotherapy by modulating signaling pathways

such as STAT3 (36). Lactylation also promotes cancer cell invasion

and metastasis through the regulation of genes involved in

extracellular matrix remodeling. Research has demonstrated that

proteins modified by lactylation play a crucial role in regulating

cancer cell adhesion, migration, and invasion (37).

To investigate the spatial distribution of these cell subsets within

the tumor microenvironment and differentiate gene expression
Frontiers in Immunology 13
patterns across various regions, we utilized spatial transcriptomics.

Through hdWGCNA and machine learning analyses, we identified

SSBP1, RPA3, and TUBB2A. Located on human chromosome 6,

TUBB2A is the gene that encodes the b-2A tubulin subunit (38), a

critical component for the formation of microtubules. Microtubules

play an essential role in various cellular processes such as cell division,

intracellular transport, and the maintenance of cell morphology (39).

Wang et al. (40). demonstrated that TUBB2A may play a crucial role

in caspase-dependent apoptosis in glioma cells and could be

implicated in the regulation of metabolism-related functions and

pathways. Mitochondrial SSBP1 is a housekeeping gene essential for

mitochondrial biogenesis through its role in maintaining

mitochondrial genome stability (41, 42). As a critical subunit of the

SSB complex, SSBP1 plays a pivotal role in regulating various

important cellular physiological processes, including the

maintenance of mitochondrial DNA content and modulation of

metabolic status (42). Su et al. (43). further revealed through
FIGURE 9

Cell trajectory and communication analysis. (A) The interaction quantity and weight/strength of cellular interactions within the communication
network of GBM. (B–D) The results of cell communication demonstrated the quantification and intensity of intercellular communication between
LHS, LLS, LDTS as well as other cellular subtypes. (E) Number of cell interaction pairs between LHS and LLS and various cell types. (F) The interaction
quantity and strength of cell interactions in the communication network of GBM. (G) GSVA analysis of LHS. (H, I) Pseudotime analysis reflects the
expression level of key genes in VSMC. (J) Pseudotime UMAP map. (K) Relationship between lactylation and cell trajectories.
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bioinformatics analysis that SSBP1 was significantly upregulated in

GBM. Their study also indicated that the knockdown of SSBP1

resulted in impaired GBM cell growth and migration, as well as

mitochondrial dysfunction. RPA3 plays a critical role in regulating

DNA replication. Aberrant expression of RPA3 has been associated

with genomic instability and the onset and progression of various

tumors (44). A recent study (45) investigated the relationship

between RPA3 and immune cell infiltration and activation by

constructing a univariate Cox regression model to predict the

prognosis of glioma patients. The findings indicated that

overexpression of RPA3 enhances the proliferation, migration, and

invasion of glioma cells through the phosphorylation of PI3K, AKT,

and mTOR, thereby activating the PI3K-AKT-mTOR signaling

pathway (46).
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We attach significant importance to the biological implications

underlying our findings. Upon applying the IQR scoring framework

to the scRNA-seq data, we observed distinct differences among

cancer cells from LHS, LDTS, and LLS. Specifically, in terms of cell

communication analysis, it was noted that cancer cells from LHS

exhibit distinct interactions with immune cells, significantly

contributing to tumor progression and metastasis. Given that

tumor tissues encompass cells at various developmental stages, we

conducted an investigation into the relationship between LHS and

the developmental trajectories of cancer cells through pseudo-

temporal analysis. Our results indicate that cells from LHS are

more likely to possess characteristics of cancer stem cells, whereas

cells from LLS are closer to the terminal stages of differentiation.

Similarly, we found that score-related genes exhibit substantial
FIGURE 10

Expression of SSBPP1,RPA3 and TUBB2A in human GBM tissues and control tissues, IP validation of TUBB2A and validation of pan-Kla. (A) WB
analysis of SSBPP1, RPA3, and TUBB2A in GBM tissues and control tissues. (B–D) Quantitative analysis of (A); n = 4 per group. (E–G) RT-qPCR
analysis of SSBPP1,RPA3 and TUBB2A mRNA levels in human GBM and control tissues; n = 4 in per group. (H) The level of lactylation was measured
by Western blot in human GBM tissues and control tissues. (I) IP validation of TUBB2A. *P < 0.05; **P < 0.01.
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variation across different stages of cancer cell progression. These

observations suggest that the IQR scoring framework has a higher

capacity to influence the differentiation of cancer cells.

Furthermore, by integrating the IQR scoring framework into the

deconvoluted GBM spatial transcriptome, we observed variations in

IQR scores among tumors, indicating differing degrees of

lactylation in cancer cells. Intercellular communication analysis

highlights the critical role of the PTN-NCL pathway. The

multifunctional protein nucleolin (NCL) is overexpressed on the

surface of activated endothelial cells and tumor cells, mediating the

stimulatory effects of various angiogenic growth factors. For

instance, pleiotropic cell growth factor (PTN) induces its effects

through both NCL and avb3 integrin, which is essential for PTN-

induced cell migration. A prior study (47) demonstrated a positive

correlation between cell surface NCL and avb3 expression in

human glioblastoma tissue arrays. Furthermore, the inhibition of

cell migration by a cell surface NCL antagonist was observed

exclusively in cells expressing avb3, thereby validating the

rationale of the PTN-NCL pathway.

The analysis conducted as a pilot study had certain notable

limitations, including the relatively low sequencing depth of the

scRNA-seq data and the limited sample size. Consequently, it is

imperative to conduct further validation in a larger cohort of

patients to substantiate our conclusions. Furthermore, Given the

relatively modest sample size employed in our experimental

validation, we recognize that the results of our Western blot and

RT-qPCR analyses should be interpreted with due caution. The

limited sample size constrains the statistical power of these

experiments, and additional validation using a larger cohort of

GBM patients will be critical to confirm the robustness of our

findings. While the data from this pilot study are promising, more

extensive studies are necessary to comprehensively evaluate the

reliability and generalizability of the biomarkers associated with

lactylation identified herein. And additional research is required to

clarify the regulatory relationships and underlying mechanisms of

SSBP1, RPA3 and TUBB2A in Cancer cell lactylation despite

demonstrating an association between them. The present study

establishes a genetic signature linked to the process of lactylation,

which can serve as a diagnostic and prognostic indicator for

immune-related adverse events. This characteristic offers a

potential clinical tool to gain novel insights into patient prognosis

and response to immune checkpoint blockade therapy.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.
Ethics statement

The studies involving humans were approved by Ethics

Committee of the Affiliated Hospital of Qingdao University. The
Frontiers in Immunology 15
studies were conducted in accordance with the local legislation and

institutional requirements. The participants provided their written

informed consent to participate in this study.
Author contributions

YX: Writing – original draft. CZ: Methodology, Writing –

original draft, Validation, Conceptualization. JW: Software, Data

curation, Investigation, Writing – original draft. PG: Writing –

rev iew & edi t ing . NJ : Wri t ing – rev iew & edi t ing ,

Conceptualization, Project administration, Visualization. CW:

Investigation, Writing – review & editing, Formal Analysis,

Project administration. YF: Writing – review & editing.
Funding

The author(s) declare that no financial support was received for

the research and/or publication of this article.
Acknowledgments

Rstudio was used to create Graphics.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2025.

1601533/full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1601533/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1601533/full#supplementary-material
https://doi.org/10.3389/fimmu.2025.1601533
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2025.1601533
References
1. Schaff LR, Mellinghoff IK. Glioblastoma and other primary brain Malignancies in
adults: A review. JAMA. (2023) 329:574–87. doi: 10.1001/jama.2023.0023

2. Lah TT, Novak M, Breznik B. Brain Malignancies: Glioblastoma and brain
metastases. Semin Cancer Biol. (2020) 60:262–73. doi: 10.1016/j.semcancer.2019.10.010

3. Wu L, Zhao Z, Shin YJ, Yin Y, Raju A, Vaiyapuri TS, et al. Tumour
microenvironment programming by an RNA-RNA-binding protein complex creates
a druggable vulnerability in IDH-wild-type glioblastoma. Nat Cell Biol. (2024) 26:1003–
18. doi: 10.1038/s41556-024-01428-5

4. Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L, et al. Tumor evolution of
glioma-intrinsic gene expression subtypes associates with immunological changes in
the microenvironment. Cancer Cell . (2017) 32:42–56.e46. doi: 10.1016/
j.ccell.2017.06.003

5. Noorani I, Mischel PS, Swanton C. Leveraging extrachromosomal DNA to fine-
tune trials of targeted therapy for glioblastoma: opportunities and challenges. Nat Rev
Clin Oncol. (2022) 19:733–43. doi: 10.1038/s41571-022-00679-1

6. Mittal S, Pradhan S, Srivastava T. Recent advances in targeted therapy for glioblastoma.
Expert Rev Neurother. (2015) 15:935–46. doi: 10.1586/14737175.2015.1061934

7. Li H, Sun L, Gao P, Hu H. Lactylation in cancer: Current understanding and
challenges. Cancer Cell. (2024) 42:1803–7. doi: 10.1016/j.ccell.2024.09.006

8. Zhou Z, Yin X, Sun H, Lu J, Li Y, Fan Y, et al. PTBP1 lactylation promotes glioma
stem cell maintenance through PFKFB4-driven glycolysis, cancer res. (2024) 85:739–
57. doi: 10.1158/0008-5472.CAN-24-1412

9. Wang T, Ye Z, Li Z, Jing DS, Fan GX, Liu MQ, et al. Lactate-induced protein
lactylation: A bridge between epigenetics and metabolic reprogramming in cancer. Cell
Prolif. (2023) 56:e13478. doi: 10.1111/cpr.v56.10

10. Torrini C, Nguyen TTT, Shu C, Mela A, Humala N, Mahajan A, et al. Lactate is
an epigenetic metabolite that drives survival in model systems of glioblastoma.Mol Cell.
(2022) 82:3061–3076.e3066. doi: 10.1016/j.molcel.2022.06.030

11. Chen L, Huang L, Gu Y, Cang W, Sun P, Xiang Y. Lactate-lactylation hands
between metabolic reprogramming and immunosuppression. Int J Mol Sci. (2022)
23:11943. doi: 10.3390/ijms231911943

12. He Y, Song T, Ning J, Wang Z, Yin Z, Jiang P, et al. Lactylation in cancer:
Mechanisms in tumour biology and therapeutic potentials. Clin Transl Med. (2024) 14:
e70070. doi: 10.1002/ctm2.v14.11

13. Liu R, Ren X, Park YE, Feng H, Sheng X, Song X, et al. Nuclear GTPSCS
functions as a lactyl-CoA synthetase to promote histone lactylation and gliomagenesis,
Cell Metab. (2024) 37(2):377–94.e9. doi: 10.1016/j.cmet.2024.11.005

14. Zhang M, Zhao Y, Liu X, Ruan X, Wang P, Liu L, et al. Pseudogene MAPK6P4-
encoded functional peptide promotes glioblastoma vasculogenic mimicry development.
Commun Biol. (2023) 6:1059. doi: 10.1038/s42003-023-05438-1

15. Li G, Wang D, Zhai Y, Pan C, Zhang J, Wang C, et al. Glycometabolic
reprogramming-induced XRCC1 lactylation confers therapeutic resistance in
ALDH1A3-overexpressing glioblastoma. Cell Metab. (2024) 36:1696–1710.e1610.
doi: 10.1016/j.cmet.2024.07.011

16. Liu X, Zhou Y, Wang H. The role of lactate-induced protein lactylation in
gliomas: implications for preclinical research and the development of new treatments.
Front Pharmacol. (2024) 15:1383274. doi: 10.3389/fphar.2024.1383274

17. Zou Y, Cao M, Tao L, Wu S, Zhou H, Zhang Y, et al. Lactate triggers KAT8-
mediated LTBP1 lactylation at lysine 752 to promote skin rejuvenation by inducing
collagen synthesis in fibroblasts. Int J Biol Macromol. (2024) 277:134482. doi: 10.1016/
j.ijbiomac.2024.134482

18. Wang X, Fan W, Li N, Ma Y, Yao M, Wang G, et al. YY1 lactylation in microglia
promotes angiogenesis through transcription activation-mediated upregulation of
FGF2. Genome Biol. (2023) 24:87. doi: 10.1186/s13059-023-02931-y

19. Cheng Z, Huang H, Li M, Liang X, Tan Y, Chen Y. Lactylation-related gene
signature effectively predicts prognosis and treatment responsiveness in hepatocellular
carcinoma. Pharm (Basel). (2023) 16:644. doi: 10.3390/ph16050644

20. Yang H, Zou X, Yang S, Zhang A, Li N, Ma Z. Identification of lactylation related
model to predict prognostic, tumor infiltrating immunocytes and response of
immunotherapy in gastric cancer. Front Immunol. (2023) 14:1149989. doi: 10.3389/
fimmu.2023.1149989

21. Cao Y, Fu L, Wu J, Peng Q, Nie Q, Zhang J, et al. Integrated analysis of
multimodal single-cell data with structural similarity. Nucleic Acids Res. (2022) 50:e121.
doi: 10.1093/nar/gkac781

22. Liu Y, Li H, Zeng T, Wang Y, Zhang H, Wan Y, et al. Integrated bulk and single-
cell transcriptomes reveal pyroptotic signature in prognosis and therapeutic options
of hepatocellular carcinoma by combining deep learning. Brief Bioinform. (2023)
25:bbad487. doi: 10.1093/bib/bbad487

23. Andreatta M, Carmona SJ. UCell: Robust and scalable single-cell gene signature
scoring. Comput Struct Biotechnol J. (2021) 19:3796–8. doi: 10.1016/j.csbj.2021.06.043

24. Bhuva DD, Foroutan M, Xie Y, Lyu R, Cursons J, Davis MJ. Using singscore to
predict mutation status in acute myeloid leukemia from transcriptomic signatures.
F1000Res. (2019) 8:776. doi: 10.12688/f1000research
Frontiers in Immunology 16
25. Mei Y, Li M, Wen J, Kong X, Li J. Single-cell characteristics and Malignancy
regulation of alpha-fetoprotein-producing gastric cancer. Cancer Med. (2023)
12:12018–33. doi: 10.1002/cam4.v12.10

26. Cable DM, Murray E, Zou LS, Goeva A, Macosko EZ, Chen F, et al. Robust
decomposition of cell type mixtures in spatial transcriptomics. Nat Biotechnol. (2022)
40:517–26. doi: 10.1038/s41587-021-00830-w

27. Kang J, Choi YJ, Kim IK, Lee HS, Kim H, Baik SH, et al. LASSO-based machine
learning algorithm for prediction of lymph node metastasis in T1 colorectal cancer.
Cancer Res Treat. (2021) 53:773–83. doi: 10.4143/crt.2020.974

28. Xu Y, Chen B, Guo Z, Chen C, Wang C, Zhou H, et al. Identification of
diagnostic markers for moyamoya disease by combining bulk RNA-sequencing analysis
and machine learning. Sci Rep. (2024) 14:5931. doi: 10.1038/s41598-024-56367-w

29. Zheng H, Liu H, Ge Y, Wang X. Integrated single-cell and bulk RNA sequencing
analysis identifies a cancer associated fibroblast-related signature for predicting
prognosis and therapeutic responses in colorectal cancer. Cancer Cell Int. (2021)
21:552. doi: 10.1186/s12935-021-02252-9

30. Hou N, Li M, He L, Xie B, Wang L, Zhang R, et al. Predicting 30-days mortality
for MIMIC-III patients with sepsis-3: a machine learning approach using XGboost. J
Transl Med. (2020) 18:462. doi: 10.1186/s12967-020-02620-5

31. Luo G, Zhu Y, Wang R, Tong Y, Lu W, Wang H. Random forest-based
classsification and analysis of hemiplegia gait using low-cost depth cameras. Med
Biol Eng Comput. (2020) 58:373–82. doi: 10.1007/s11517-019-02079-7

32. Xu Y, Guo P, Wang G, Sun X, Wang C, Li H, et al. Integrated analysis of single-cell
sequencing andmachine learning identifies a signature based onmonocyte/macrophage hub
genes to analyze the intracranial aneurysm associated immune microenvironment. Front
Immunol. (2024) 15:1397475. doi: 10.3389/fimmu.2024.1397475

33. Yue S, Li S, Huang X, Liu J, Hou X, Zhao Y, et al. Machine learning for the
prediction of acute kidney injury in patients with sepsis. J Transl Med. (2022) 20:215.
doi: 10.1186/s12967-022-03364-0

34. Zou Y, Ye F, Kong Y, Hu X, Deng X, Xie J, et al. The single-cell landscape of
intratumoral heterogeneity and the immunosuppressive microenvironment in liver and
brain metastases of breast cancer. Adv Sci (Weinh). (2023) 10:e2203699. doi: 10.1002/
advs.202203699

35. Xu Y, Wang C, Li S, Zhou H, Feng Y. Prognosis and immune response of a
cuproptosis-related lncRNA signature in low grade glioma. Front Genet. (2022)
13:975419. doi: 10.3389/fgene.2022.975419

36. Vlashi E, Lagadec C, Vergnes L, Matsutani T, Masui K, Poulou M, et al.
Metabolic state of glioma stem cells and nontumorigenic cells. Proc Natl Acad Sci
U.S.A. (2011) 108:16062–7. doi: 10.1073/pnas.1106704108

37. Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer
Cell. (2008) 13:472–82. doi: 10.1016/j.ccr.2008.05.005

38. Logan CM, Menko AS. Microtubules: Evolving roles and critical cellular
interactions. Exp Biol Med (Maywood). (2019) 244:1240–54. doi: 10.1177/
1535370219867296

39. Schmidt L, Wain KE, Hajek C, Estrada-Veras JI, Guillen Sacoto MJ, Wentzensen
IM, et al. Expanding the phenotype of TUBB2A-related tubulinopathy: three cases of a
novel, heterozygous TUBB2A pathogenic variant p.Gly98Arg. Mol Syndromol. (2021)
12:33–40. doi: 10.1159/000512160

40. Wang R, Wei B, Wei J, Li Z, Tian Y, Du C. Caspase-related apoptosis genes in
gliomas by RNA-seq and bioinformatics analysis. J Clin Neurosci. (2016) 33:259–63.
doi: 10.1016/j.jocn.2016.03.041

41. Richard DJ, Bolderson E, Cubeddu L, Wadsworth RI, Savage K, Sharma GG,
et al. Single-stranded DNA-binding protein hSSB1 is critical for genomic stability.
Nature. (2008) 453:677–81. doi: 10.1038/nature06883

42. Oliveira MT, Kaguni LS. Functional roles of the N- and C-terminal regions of the
human mitochondrial single-stranded DNA-binding protein. PloS One. (2010) 5:
e15379. doi: 10.1371/journal.pone.0015379

43. Su J, Li Y, Liu Q, Peng G, Qin C, Li Y. Identification of SSBP1 as a ferroptosis-
related biomarker of glioblastoma based on a novel mitochondria-related gene risk
model and in vitro experiments. J Transl Med. (2022) 20:440. doi: 10.1186/s12967-022-
03657-4

44. Salas TR, Petruseva I, Lavrik O, Saintomé C. Evidence for direct contact between
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