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Cancers, with its rising incidence strongly linked to human papillomavirus (HPV)

infection, particularly HPV16. HPV-induced OPSCC (HPV-OPSCC) exhibits

distinct biological behaviors, including a high propensity for early lymphatic

metastasis, occurring in most of cases, often presenting as cystic lymph node

changes. The rising incidence of HPV-positive OPSCC is associated with specific

mechanisms, particularly the characteristic biological behaviors driven by the E6/

E7 oncoproteins: E7 disrupts cell cycle control by degrading pRb protein, while

E6 inhibits apoptotic pathways through ubiquitination-mediated degradation of

p53. Despite advances in treatment, HPV-OPSCC poses unique challenges due

to its complex tumor microenvironment and immune interactions. Tertiary

lymphoid structures (TLS) within the tumor microenvironment play a critical

role in modulating anti-tumor immunity, correlating with improved clinical

outcomes. Recent advances in immunotherapy, such as immune checkpoint

inhibitors and HPV-specific vaccines, have shown promise in enhancing patient

survival. This review explores the mechanisms of HPV-driven carcinogenesis, the

clinical and molecular features of lymphatic metastasis, and the emerging role of

TLS and immunotherapeutic strategies in HPV-OPSCC. By analyzing existing

evidence, this review seeks to clarify the distinct biological features of HPV-

associated oropharyngeal squamous cell carcinoma (HPV-OPSCC) and guide the

development of novel treatment strategies aimed at enhancing clinical

outcomes for patients. (OPSCC)
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1 Introduction

With current estimates indicating approximately 25% of

HNSCC cases originating in the oropharynx, OPSCC nowadays

represents a substantial disease burden characterized via

continuously escalating incidence rates. Escalating incidence rates

of HPV (notably HPV16) infection, recognized as a key etiological

factor in oropharyngeal malignancy formation, constitute the major

determinant of this upward trend (1). Despite advances in

treatment, including surgery, radiotherapy, and chemotherapy,

HPV-OPSCC presents unique challenges, particularly its

propensity for early lymphatic metastasis, which occurs in most

of cases and significantly influences on prognosis (2, 3). Lymphatic

metastasis is a hallmark of HPV-OPSCC progression, often

manifesting as cystic changes in neck lymph nodes and exhibiting

distinct patterns of spread compared to HPV-negative OPSCC (2).

Studies have found that the spatial proximity between CD8+ T cells

and PD-L1+ macrophages is enhanced in HPV-positive tumors,

suggesting that immune escape may promote the lymphatic

metastasis of cancer cells, which is associated with the high rate

of lymphatic metastasis in HPV-OPSCC (4). In the management of

early-stage human papillomavirus-associated oropharyngeal

squamous cell carcinoma (HPV-OPSCC) with postoperative

radiotherapy (PORT), lymphovascular invasion (LVI) has been

identified as an independent adverse prognostic factor, potentially

linked to its role in promoting lymphatic metastasis (5). HPV

genome integration into host DNA can activate nearby

oncogenes. Viral integration also induces genomic instability.

These effects collectively promote lymphatic metastasis (6). The

tumor microenvironment, including tertiary lymphoid structures

(TLS), plays a critical role in modulating immune responses and

shaping lymphatic metastatic behaviors. TLS are ectopic lymphoid

formations and have been associated with improved clinical

outcomes in HPV-OPSCC due to their role in enhancing local

anti-tumor immunity (7). Recent advances in immunotherapy,

particularly immune checkpoint inhibitors and HPV-specific

vaccines, have shown promise in improving outcomes for HPV-

OPSCC patients (8). However, the association between HPV status

and immunotherapy response has not been fully elucidated, and

validated biomarkers are currently lacking. This review aims

summarizes the mechanisms of lymphatic metastasis in HPV-
Abbreviations: AJCC, the American Joint Committee on Cancer; CAR, chimeric

antigen receptor; CTL, cytotoxic T cell; CSCs, Cancer stem cells; circE7, E7

oncogene; FNA, Fine-needle aspiration; HEV, high endothelial venule; HIF,

hypoxia-inducible factor; HPV, human papillomavirus; HPV-OPSCC, HPV-

induced OPSCC; ICB, Immune checkpoint blockade; ICIs, immune checkpoint

inhibitors; IFN-g, interferon-gamma; IL-6, interleukin-6; LTi, lymphoid tissue

inducer; LVD, lymphatic vessel density; LVI, lymphovascular invasion; MDSCs,

myeloid-derived suppressor cells; (m6A), N6-methyladenosine; NAC,

neoadjuvant chemo-therapy; OPSCC, Oropharyngeal squamous cell carcinoma;

PET-CT, Positron emission tomography-computed tomography; pRb, the

retinoblastoma protein; TAMs, tumor-associated macrophages; TDEs, Tumor-

derived exosomes; TLS, Tertiary lymphoid structures; Tregs, regulatory T cells;

Tfh, follicular helper T cells; TIL, tumor-infiltrating lymphocyte.
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OPSCC, and the emerging role of TLS and immunotherapeutic

strategies in HPV-OPSCC. By systematically consolidating

contemporary evidence, this synthesis not only deciphers the

distinct molecular landscape of HPV-OPSCC, but also establishes

foundational knowledge for refining precision medicine strategies

in clinical oncology.
2 Mechanisms of HPV-induced
OPSCC

2.1 HPV-driven cell transformation and
oncogene activation in OPSCC

While the precise oncogenic pathways of HPV in OPSCC

remain incompletely characterized, accumulating evidence from

translational studies strongly implicates HPV16 as the predominant

etiological agent in oropharyngeal carcinogenesis. The high-risk

HPV E6 and E7 genes are pivotal drivers of cell transformation,

especially in basal squamous epithelial cells. For HPV types 16 and

18, both E6 and E7 proteins play essential roles in preventing

senescence in human primary keratinocytes, potentially activating

oncogenes and inducing carcinogenic cell proliferation (9, 10). E6

forms a complex as E6-AP, binding to p53 and promoting its

degradation, thereby accelerating cell division and malignant

transformation (11). Meanwhile, the E7 oncoprotein interacts

with the retinoblastoma protein (pRb), disrupting its association

with E2F transcription factors and facilitating unregulated

progression into the S-phase of the cell cycle (12). The limited

oncogenic potential demonstrated by HPV16/18 E2-E4-E5 genomic

segments, which becomes further attenuated upon viral genome

integration, may mechanistically explain their predominant

association with non-malignant epithelial transformations rather

than invasive carcinomas (13).

Some researchers propose that the cis-activating effect of HPV

DNA on adjacent host genes has been postulated by investigators as

a potential mechanism driving oncogenic transformation processes

(11, 14). Hu et al. found that the E6/E7 proteins regulate the activity

of key enzymes in the aerobic glycolysis pathway by influencing the

binding of IGF2BP2 to the MYC m6A site (overexpression of

IGF2BP2 in E6/E7-knockout CC cells). Ultimately, this reduces

the glycolytic flux, leading to a decrease in cancer cell proliferation

(15). Besides, hu et al. suggest that oncogenic human

papillomaviruses (HPVs) could generate cir-cRNAs, some of

which encompass the E7 oncogene (circE7), which is N6-

methyladenosine (m6A) modified, preferentially localized to the

cytoplasm, associated with polysomes. CircE7 can be translated and

produce E7 oncoprotein (16). Other studies have noted that the

integration of HPV DNA into chromosomes is a significant inducer

of p53 gene mutations and may also lead to its overexpression (17).

Palefsky et al. discovered that HPV16 infection is a cause of cellular

transformation, likely due to alterations in the p53 and

retinoblastoma proteins(pRb) triggered by HPV E6 and E7 (18).

The cumulative evidence establishes HPV E6/E7’s pivotal function

in p53 and pRb pathway disruption, which initiates cellular
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transformation and oncogenic signaling cascades, thereby

mechanistically underpinning OPSCC pathogenesis.
2.2 Synergistic effects of HPV and other
carcinogenic factors

Although HPV alone can induce malignant cell transformation,

its carcinogenicity is often enhanced by synergistic interactions with

other factors (14, 17). Oral tissues, exposed to various physical,

chemical, and microbial agents, are particularly susceptible to the

combined effects of HPV with smoking, alcohol, trauma, fungal

infections, or other viruses, contributing to oral malignancies (17).

Animal models confirm HPV’s role as a cofactor in carcinogenesis,

with smoking facilitating HPV invasion and colonization in oral

tissues (19). Additionally, HPV, smoking, and alcohol collectively

induce oral cancer, suggesting a synergistic interaction. HPV’s

carcinogenicity may also be influenced by hormone levels and

immune status. For instance, The observed elevation in HPV

prevalence among gravid populations, combined with augmented

cervical carcinogenesis risk in prolonged contraceptive users,

implies endocrine-mediated potentiation of viral genome

duplication and mitotic activity (17, 19). Elevated hormone levels

may enhance viral DNA expression, favoring carcinogenesis.

Furthermore, higher HPV infection rates and tumor incidence in

immunocompromised individuals, such as kidney transplant and

acquired immunodeficiency syndromes (AIDS) patients, indicate

latent HPV reactivation under such conditions (19).
3 Characteristics, detection and
treatment of lymphatic metastasis in
HPV-OPSCC

HPV-OPSCC often lacks early symptoms, and the existence of

precancerous lesions remains controversial, with no such lesions

found in 4,095 healthy individuals (20). Clinical data show that the

lymphatic metastasis rate of HPV-OPSCC can exceed 90%,

significantly higher than that of HPV-negative OPSCC (3).

Additionally, Two-thirds of patients present with a neck mass,

indicating lymphatic metastasis at diagnosis, creating a diagnostic

and therapeutic blind spot (21).
3.1 Characteristics of lymphatic metastasis
in HPV-OPSCC

Compared with HPV-negative OPSCC, HPV-OPSCC typically

presents with smaller primary lesions but is more likely to develop

early lymphatic metastasis, often manifesting as cystic changes in

metastatic neck lymph nodes (cystic metastases). HPV-OPSCC also

exhibits a distinctive pattern of lymph node invasion: the involved

lymph nodes tend to be large and prone to extracapsular spread (2).

Although HPV-OPSCC and HPV-negative OPSCC differ

substantially in terms of their lymphatic metastasis rate and time
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to metastasis, they share similar locations and numbers of invaded

lymph nodes, suggesting a fundamentally similar route of lymphatic

invasion (22). Given the different pathogenic mechanisms and

biological behaviors of HPV-OPSCC and HPV-negative OPSCC,

the 8th edition of the American Joint Committee on Cancer (AJCC)

staging manual has established an independent TNM staging

system for HPV-OPSCC (21).
3.2 Detection of lymphatic metastasis in
HPV-OPSCC

Positron emission tomography-computed tomography (PET-

CT) is currently one of the most employed clinical methods for

detecting lymphatic metastasis in head and neck tumors (23).

However, a clinical study by Snyder et al. reported a misdiagnosis

rate of 36–43% in detecting lymphatic metastasis in 49 HPV-

OPSCC cases using PET-CT, with challenges in accurately

determining the number and size of affected lymph nodes (24).

Some researchers have established predictive models based on

clinical presentation and imaging results to evaluate the risk of

lymphatic metastasis in HPV-OPSCC patients; however, these

models require validation through prospective studies (25). Fine-

needle aspiration (FNA) biopsy is also insufficient for accurate

detection, as aspirates from cystic metastatic lymph nodes in HPV-

OPSCC resemble fluid from benign cystic lesions, potentially

leading to diagnostic omissions (26). High-risk HPV testing on

FNA samples is recommended for patients presenting with

unexplained neck masses to determine whether these lesions

might represent HPV-OPSCC metastases (26). HPV-RNA in situ

hybridization has shown promise, with an 88.9% concordance rate

with p16 immunohistochemical staining in detecting HPV in neck

FNA samples (27).
3.3 Treatment and prognosis of lymphatic
metastasis in HPV-OPSCC

Although HPV-associated oropharyngeal squamous cell

carcinoma (HPV-OPSCC) is categorized as a distinct disease

entity in the AJCC 8th edition staging system, current clinical

management remains largely similar to that for HPV-negative

OPSCC because of limited high-quality clinical evidence justifying

disease-specific therapeutic strategies. (28). Patients with early

HPV-OPSCC can undergo surgical monotherapy; however, most

patients present with lymphatic metastasis and extracapsular spread

at diagnosis, necessitating combined surgery, radiotherapy, and

chemotherapy (28). It is important to emphasize that patients

with lymphatic metastasis have a poorer prognosis compared to

those without nodal involvement, underscoring the need to further

elucidate the mechanisms of lymphatic metastasis and develop

targeted interventions. Despite early and high rates of lymphatic

metastasis, the overall prognosis of HPV-OPSCC is markedly better

than that of HPV-negative OPSCC. A recent clinical study found

that the 3-year overall survival rate was significantly higher (93%)

among HPV-OPSCC patients than among HPV-negative OPSCC
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patients with a smoking history (46.2%) (28). The number of

invaded lymph nodes exerts minimal effect on overall survival in

HPV-OPSCC, contrasting sharply with other head and neck

malignancies (29). The distinct pathobiological profile of HPV-

OPSCC necessitates urgent elucidation of molecular mediators

governing its preferential lymphatic dissemination, a prerequisite

for optimizing nodal disease management protocols.
4 Exploration of lymphatic metastatic
mechanisms in HPV-OPSCC

Metastatic colonization of lymphatic systems is mechanistically

governed by synergistic contributions from genomic instability,

epithelial-mesenchymal transition, and chemokine-mediated

navigation. Seeing that the marked differences in lymphatic

metastasis between HPV-OPSCC and HPV-negative OPSCC,

several studies have sought to elucidate the specific mechanisms

underlying lymphatic metastasis in HPV-OPSCC.
4.1 HPV+ OPSCC and epithelial–
mesenchymal transition

Despite HPV-OPSCC’s sensitivity to radiotherapy and

chemotherapy, its high lymphatic metastasis incidence remains

paradoxical. EMT is critical for lymphatic metastasis (30). HPV

E6/E7 upregulates EMT transcription factors (Slug, Twist, ZEB1,

ZEB2), enhancing tumor proliferation and invasiveness (31).

Nevertheless, PRKCZ, an oncogenic factor, promotes HPV-

OPSCC progression but is inhibited by HPV E6-induced

hypermethylation, suppressing EMT (32). Recent studies indicate

that miRNA 34a significantly inhibits tumor stem cell proliferation,

invasiveness, and EMT in HNSCC, with reduced miRNA 34a levels

correlating with increased tumor invasiveness (33). The oncogenic

proteins E6 and E7 of HPV can also enhance the tendency of tumor

cells to metastasize to lymph nodes by activating the pathways

related to epithelial-mesenchymal transition (EMT), such as the
Frontiers in Immunology 04
Wnt/b-catenin pathway (33). Cancer stem cells (CSCs) are pivotal

for EMT and tumor metastasis, with markers like ALDH1A1,

CD44, CD98, BMI1, and OCT4. Gunduz et al. reported lower

CD44 and CD98 expression in HPV+ OPSCC specimens (34),

while another study found reduced BMI1 expression in HPV+

OPSCC (35). Zhang et al. found that HPV-OPSCC contains more

CSCs than HPV-negative OPSCC, with HPV E6 degrading p53 or

blocking its acetylation, increasing CSC numbers and tumor

invasiveness (36). Hufbauer et al. showed that HPV E6/E7

mediates the transition from stationary to migratory CSCs by

regulating CD44 and EpCAM, promoting lymphatic metastasis in

HPV-OPSCC (37). It shows that the intricate interplay between

cancer stem cell plasticity and microRNA-mediated regulatory

networks in HPV-driven oncogenesis is compell ingly

demonstrated by these experimental observations.
4.2 HPV-OPSCC and the vascular
endothelial growth factor family

The VEGF family, particularly VEGF-C, VEGF-D, and their

receptor VEGFR-3, plays a critical role in lymphangiogenesis and

lymphatic metastasis in various malignancies, including HNSCC

(38). Elevated VEGF-C/D expression in HNSCC correlates with

increased peritumoral lymphatic vessel density (LVD), lymphatic

metastasis, and poor prognosis, with VEGF-C serving as a

predictive marker for metastasis (39, 40). In HPV-related tumors,

HPV16-E6 seems to induce VEGF expression independently of

TP53 inactivation, using the SP1 transcription factor for E6-

mediated induction of the VEGF promoter (41). However,

Baruah et al. found that circulating VEGF levels in HPV-

OPSCC were similar to healthy controls, with no significant

difference in VEGF-D expression among HPV-OPSCC, HPV-

negative OPSCC, and healthy groups (42). This low

VEGF expression contrasts with the lymphatic invasiveness of

HPV-OPSCC, raising questions about whether HPV-OPSCC

forms specific lymphatic metastases via VEGF-C-mediated

lymphangiogenesis (Table 1).
TABLE 1 Mechanisms of HPV-induced OPSCC and lymphatic metastasis.

Mechanism Molecules/Pathways Functional Role Implications

HPV Integration E6, E7, E1/E2 disruption
E6 degrades p53; E7 inactivates RB, promoting cell
cycle progression and oncogenesis.

High-risk HPV integration correlates with poor
prognosis and therapeutic resistance.

Oncogene Activation c-myc, p53, pRb
HPV DNA integration activates c-myc and other
oncogenes, enhancing cellular transformation.

Targeted therapies against c-myc and p53
pathways may improve outcomes.

Epithelial–Mesenchymal
Transition (EMT)

ZEB1, Slug, Twist, miRNA 34a,
Wnt/b-catenin

HPV E6/E7 induces EMT transcription factors,
promoting tumor invasiveness and metastasis.

EMT markers (e.g., ZEB1) may serve as
prognostic biomarkers for lymphatic metastasis.

Cancer Stem Cells
(CSCs)

CD44, EpCAM, BMI1, OCT4
HPV E6/E7 promotes CSC transition (CD44high/
EpCAMlow), driving lymphatic metastasis.

Targeting CSCs may reduce metastasis and
improve therapeutic efficacy.

VEGF Family VEGF-C, VEGF-D, VEGFR-3
VEGF-C/D promotes lymphangiogenesis and
lymphatic metastasis.

Anti-VEGF therapies (e.g., bevacizumab) may
inhibit lymphatic spread.

Tumor Hypoxic
Microenvironment

HIF-1a, E-cadherin, matrix
metalloproteinases (MMPs)

Hypoxia induces EMT and CSC maintenance,
enhancing tumor invasiveness.

Hypoxia-targeting therapies (e.g., HIF-1a
inhibitors) may reduce metastasis.
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4.3 HPV-OPSCC and the tumor hypoxic
microenvironment

A hypoxic tumor microenvironment leads to elevated levels of

hypoxia-inducible factor (HIF), which promotes EMT and increased

secretion of matrix metalloproteinases by inducing downstream target

genes, thereby enhancing tumor invasiveness (43). HPV-associated

oropharyngeal squamous cell carcinoma (HPV-OPSCC) tumor cells

may demonstrate hypoxia-inducible factor (HIF)-mediated

suppression of the activation of E-cadherin and concurrent EMT,

promoting increased invasive potential. Under hypoxic conditions,

CSCs can maintain stemness and self-renewal capacity under the

stimulation of HIF-1, further enhancing tumor invasiveness (43).

However, another study showed that the tumor microenvironment of

HPV-OPSCC lacks significant hypoxia, withminimal HIF expression,

but displays significantly increased neovascular density around the

cancer cells (44). This finding suggests that HPV-OPSCCmay possess

a unique mechanism of hypoxia.
5 Relationship between HPV-induced
OPSCC and the immune
microenvironment

The relationship between HPV-driven oropharyngeal squamous

cell carcinoma (OPSCC) and the tumor immune microenvironment

has been extensively characterized in contemporary research. HPV-

positive OPSCC exhibits significantly higher infiltration of CD8+ T

cells within the tumor microenvironment compared to HPV-negative

cases, correlating with improved patient prognosis (45). Furthermore,

the activation of interferon signaling pathways, such as IFN-g, in HPV-
positive OPSCC enhances tumor immunogenicity, promoting antigen

presentation and T cell activation (46). However, despite the

heightened immune activity in HPV-positive OPSCC, tumor cells

can evade immune surveillance through mechanisms such as

upregulation of PD-L1 expression. A study revealed that PD-L1

expression is significantly higher in HPV-positive OPSCC,

potentially mediated by the HPV oncoprotein, which contributes to

immune evasion (47).

Additionally, the tumormicroenvironment inHPV-positive OPSCC

is characterized by increased infiltration of immunosuppressive cells,

including tumor-associated macrophages (TAMs) and regulatory T cells

(Tregs). These cells secrete cytokines such as IL-10 and TGF-b, which
suppress effector T cell function and facilitate immune escape (32, 47).

Although PD-1/PD-L1 inhibitors show efficacy in some patients, the

presence of regulatory T cells (Tregs) can promote an

immunosuppressive microenvironment that limits therapeutic

effectiveness (48). Studies have shown that Tregs further exacerbate the

formation of an immunosuppressive microenvironment by recruiting

and activating other immunosuppressive cells, such as myeloid-derived

suppressor cells (MDSCs) andM2macrophages (49). Tregs suppress the

activation and cytotoxic function of CD8+ T cells by secreting inhibitory

cytokines and through direct cell-cell contact, thereby enabling tumor

cells to evade immune-mediated elimination (50, 51). Due to the

immunosuppressive function of Tregs, single-target immunotherapy is
Frontiers in Immunology 05
difficult to be effective. Therefore, some strategies that jointly target Tregs

are needed. Studies have found that IDO1 inhibitors can regulate the

development and activation of Treg cells and granulocyte-derived

suppressor cells (MDSCs), and inhibit effector T cells and natural killer

(NK) cells. IDO1 can also promote the neovascularization of tumors by

regulating the production of interferon-gamma (IFN-g) and interleukin-
6 (IL-6) (52, 53). Therefore, the combined use of IDO1 inhibitor and the

checkpoint inhibitor can enhance the efficacy of cancer immunotherapy

(54). In summary, Tregs promote the formation of an

immunosuppressive microenvironment in HPV-OPSCC through

multiple mechanisms, thereby driving immune evasion and resistance

to immunotherapy. Targeting Tregs represents a promising therapeutic

strategy to overcome these challenges and achieve breakthroughs in

HPV-OPSCC treatment.

HPV viral antigens induce CD161+ CTL subsets that co-express

activation markers (e.g., IFN-g) and exhaustion markers (e.g., PD-1,

CTLA-4), forming an immunosuppressive microenvironment to

facilitate lymphatic metastasis. Other research indicates that integrins

on the surface of tumor-derived exosomes (TDEs), such as a6b4,
specifically target lymphatic endothelial cells, thereby activating EMT

and inhibit T - cell function and establishing a pre-metastatic

microenvironment that directs tumor cells to colonize within the

lymph nodes (55). Therefore, despite demonstrating a high degree of

immunogenicity in HPV-positive oropharyngeal squamous cell

carcinoma (OPSCC), the immunosuppressive processes inherent to

the tumor microenvironment continue to present a major obstacle to

successful immunotherapeutic interventions.
6 Debate of tertiary lymphoid
structures in HPV-induced OPSCC

Tertiary lymphoid structures (TLS) are ectopic immune aggregates

in HPV-induced oropharyngeal squamous cell carcinoma (HPV-

OPSCC) that exhibit dual roles in tumor immunity. While TLS

formation may correlate with improved prognosis by supporting

cytotoxic lymphocyte activity, their functional dysfunction-driven by

immunosuppressive mechanisms like regulatory T cell infiltration and

cytokine dysregulation-can paradoxically promote immune evasion

and immunotherapy resistance. We next examine these conflicting

roles and explore therapeutic strategies targeting TLS reprogramming

to enhance treatment efficacy in HPV-OPSCC.
6.1 Role of tertiary lymphoid structures in
HPV-induced OPSCC

TLS form from lymphoid and stromal cell aggregation in non-

secondary lymphoid organs under pathological conditions,

including autoimmune diseases, infections, transplant rejection,

and malignancies (56). Persistent inflammation upregulates

chemokines (e.g., CXCL13, IL-7), attracting lymphoid tissue

inducer (LTi) cells (e.g., Th17, B cells, M1 macrophages) to

inflamed sites (57, 58). LTa1b2 on LTi cells interacts with LTbR
and IL-17 receptors on stromal cells, inducing VEGF-C release,
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high endothelial venule (HEV) formation, and adhesion molecule

expression (VCAM-1, ICAM-1) (59). Macrophages and endothelial

cells secrete IL-36g, further enhancing VCAM-1, ICAM-1, and

chemokines (IL-8, CCL2, CCL20), promoting HEV recruitment

of lymphocytes and TLS maturation (60).

The role of TLS in HPV-positive OPSCC has garnered increasing

attention. A study found that the presence of TLS in HPV-positive

OPSCC is associated with higher CD8+ T cell infiltration and

improved clinical outcomes (61). Tertiary lymphoid structures (TLS),

residing within the tumor microenvironment, represent ectopic

lymphoid formations that actively promote localized anti-tumor

immune activity. In HPV-positive OPSCC, B cells and T cells within

TLS collaborate to generate HPV-specific antibodies and cytotoxic T

cell (CTL) responses, thereby enhancing anti-tumor immunity. The

formation and maintenance of TLS are closely linked to the expression

of chemokines such as CXCL13 and CCL21. High CXCL13 expression

is associated with TLS formation and function in HPV-positive

OPSCC, providing a theoretical basis for targeting chemokine

networks to enhance TLS activity (56). Additionally, follicular helper

T cells (Tfh) within TLS play a critical role in B cell differentiation and

antibody production, further amplifying anti-tumor immune responses

(62). However, TLS functionality is not uniformly effective across all

patients, as some exhibit dysfunctional TLS characterized by B cell

exhaustion or T cell impairment. Therefore, it is meaningful to further

explore and focus on elucidating the mechanisms underlying the

dysfunction of tertiary lymphoid structures (TLS), and to develop

targeted strategies to restore their anti-tumor activity.
Frontiers in Immunology 06
6.2 The mechanism of TLS dysfunction and
treatment strategies in HPV-induced
OPSCC

Immune checkpoint blockade (ICB) targeting PD-1/PD-L1 is a

prominent immunotherapy. It has demonstrated significant efficacy in

treating OPSCC. However, the overall response rate to PD-1/PD-L1

blockade in OPSCC remains below 20% (63). Studies have revealed that

CD20+ B cells predominantly localize within TLS (64). Moreover, the

presence of CD20+ B cells is associated with a more favorable prognosis

for patients with OPSCC (65). The induction of TLS formation

enhances the response to PD-1 blockade treatment in HPV-OPSCC

mouse models. Therefore, promoting TLS formation may improve the

response rates of HPV-OPSCC patients to ICB therapy (66). A study

found that by regulating chemokines such as CXCL13 or lymphoid

tissue inducers like LTa/b, the maturation and function of TLS can be

promoted, and the anti-tumor immunity can be enhanced (67).

Another study found that the PD-1 inhibitor pembrolizumab is

effective in enhancing the response to immunotherapy. It

demonstrated clinically meaningful anti-tumour activity in recurrent

or metastatic squamous cell carcinoma of the head and neck (68).

In HPV-OPSCC, the maturity of TLS is closely linked to their

functional capacity. Immature TLS may fail to effectively facilitate

antigen presentation and lymphocyte activation, thereby

compromising immunotherapy efficacy. In contrast, mature TLS

are enriched with memory B cells, plasma cells, and CD4+ T cells,

accompanied by upregulated expression of B-cell activation-related
FIGURE 1

Treatment strategies targeting TLS dysfuncton in HPV-OPSCC.
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genes. Consequently, promoting TLS maturation could enhance the

therapeutic response to immunotherapy in HPV-OPSCC (69).

Besides, in HPV-associated oropharyngeal squamous cell

carcinoma (HPV-OPSCC), dysfunction of TLS may be linked to a

significant reduction in CD8+ T cells and B lymphocytes within the

tumor microenvironment. This association is particularly pronounced

in cases of disease recurrence following chemotherapy or radiotherapy

(70). Further research revealed T cell hat conventional

chemoradiotherapy may disrupt TLS integrity, leading to

deterioration of the local immune microenvironment. Consequently,

this impairment reduces response rates to immunotherapy. Given

favorable prognosis of HPV-OPSCC patients, decreasing therapeutic

intensity-such as reducing radiation doses and avoiding chemotherapy,

and minimizing overtreatment-could preserve TLS functionality and

sustain antitumor immunity (71). A recent study found that

neoadjuvant chemotherapy (NAC) can enhance the HPV-specific T

cell response of the primary tumor and improve the survival rate of

patients (72) (Figure 1).
7 Immunotherapeutic strategies for
HPV-induced OPSCC

HPV-positive OPSCC shows stronger responses to immunotherapy,

especially immune checkpoint inhibitors. The KEYNOTE-048 clinical

trial reported that the PD-1 inhibitor pembrolizumab significantly

improved overall survival in patients with HPV-positive OPSCC (61).

Additionally, HPV vaccines have shown promise in treating HPV-

associated OPSCC. A study in demonstrated that anHPVE6/E7 vaccine

induced robust HPV-specific T cell responses and led to tumor

regression in some patients (8). Despite these advancements, resistance

to immunotherapy remains a significant challenge. Research identified

that immunosuppressive cells, such as Tregs and myeloid-derived

suppressor cells (MDSCs), within the tumor microenvironment can

inhibit T cell function, contributing to immunotherapy resistance (73).

To overcome these limitations, current research focuses on developing

multimodal treatment approaches that combine immune checkpoint

inhibitors with radiotherapy or chemotherapy to counteract therapeutic

resistance and improve clinical outcomes. Furthermore, adoptive T cell

therapies, such as chimeric antigen receptor (CAR) T cell therapy and

tumor-infiltrating lymphocyte (TIL) therapy, have shown potential in

clinical trials. For instance, a study demonstrated that CAR-T cells

targeting HPV E6/E7 exhibited potent anti-tumor activity in HPV-

positive OPSCC (74). These emerging immunotherapeutic strategies

offer new hope for patients withHPV-positive OPSCC, underscoring the

need for continued research to optimize treatment outcomes.
8 Conclusion

HPV-positive oropharyngeal squamous cell carcinoma (HPV-

OPSCC) represents a distinct clinical and molecular entity within

head and neck cancers, characterized by a high propensity for early

lymphatic metastasis and a unique tumor-immune microenvironment.

The coordinated engagement of HPV-derived oncogenic factors,
Frontiers in Immunology 07
immune regulation, and lymphotropic metastatic processes serves to

elucidate the pathobiological complexity inherent in virally mediated

tumor development. While tertiary lymphoid structures (TLS) have

emerged as critical modulators of anti-tumor immunity, their

functional heterogeneity emphasizes the need for further mechanistic

studies to harness their full therapeutic potential.

Recent advancements in immunotherapy, particularly immune

checkpoint blockade and HPV-targeted vaccines, have reshaped the

treatment landscape, demonstrating promising efficacy in HPV-

OPSCC. However, immune evasion mechanisms, including

regulatory T cell infiltration and PD-L1 upregulation, continue to

pose significant challenges, necessitating the development of

combination strategies to strengthen therapeutic responsiveness.

Future investigations should prioritize the refinement of prognostic

biomarkers, enhance the development of immunotherapeutic

approaches, and systematically characterize the molecular

mechanisms governing lymph node metastasis. By integrating these

insights, the field can move towardmore precise and durable treatment

strategies, ultimately improving patient outcomes in HPV-OPSCC.
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