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Housekeeping gene
dysregulation in psoriasis:
integrative multi‐cohort
and single‐cell analysis
reveals keratinocyte‐centric
molecular mechanisms
and diagnostic biomarkers
Hao Tang1, Jiacheng Wang1, Shuhao Zhang1, Guanglong Feng2,
Xiangshu Cheng1, Xin Meng1, Rui Chen1, Jiaqi Wang1,
Yongshuai Jiang1*, Ruijie Zhang1* and Wenhua Lv1*

1College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China,
2Department of CT Diagnosis, The Second Affiliated Hospital of Harbin Medical University,
Harbin, China
Background: Psoriasis is a chronic immune-mediated skin disease driven by the

interleukin-23/interleukin-17 cytokine axis, yet its immunopathogenesis remains

incompletely understood. Housekeeping genes, traditionally considered stably

expressed across tissues and cell types, have not been systematically investigated

for their role in psoriasis. Here, we aimed to identify psoriasis-associated

housekeeping genes and explore their molecular mechanisms and

clinical implications.

Methods: We integrated multi-cohort data and identified psoriasis-associated

housekeeping genes using weighted gene co-expression network analysis

combined with differential expression analysis. Single-cell transcriptomic

analysis was performed to identify cell-type specific expression patterns, while

ligand-receptor interaction analysis was applied to evaluate pathway activation

and interactions with downstream target genes. In addition, multiple diagnostic

models were established for psoriasis detection.

Results: We identified 34 housekeeping genes associated with psoriasis and

observed that the co-expression relationships between six genes (APOL2,

DCUN1D3, UBE2F, HIGD1A, PPIF, and STAT3) and known psoriasis-related

genes differed significantly between diseased and healthy individuals.

Furthermore, single-cell transcriptomic analysis revealed that these

housekeeping genes were differentially expressed primarily in basal, spinous,

supraspinous, and proliferating keratinocytes. Ligand-receptor interaction

analysis demonstrated significant activation of the IL - 17, IL - 6, and midkine

(MK) pathways within keratinocyte subpopulations, which led to the upregulation

of STAT3, EIF5A, and RAN, thereby promoting keratinocyte hyperproliferation

and enhancing immune reactivity. Finally, among the various diagnostic models

developed, the averaged neural network (avNNet) model emerged as the best

performer, achieving over 90% classification accuracy across multiple
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independent datasets. Moreover, its scores were strongly correlated with the

Psoriasis Area and Severity Index (correlation coefficient = 0.74, P = 4.4e-47).

Conclusions: This study redefines housekeeping genes as dual-function

regulators in psoriasis pathogenesis, with the avNNet model enabling clinical

translation of these molecular insights toward precision-targeted therapies and

biomarker-based management strategies.
KEYWORDS

housekeeping genes, keratinocyte, machine learning models, psoriasis, single-
cell transcriptomics
1 Introduction

Psoriasis is a common chronic, non-contagious skin disease with

a globally variable prevalence, ranging from 0.09% to 11.43% across

different countries. It is estimated to affect at least 100 million people

worldwide, making it a significant global health concern (1). The

etiology of psoriasis is complex, involving both genetic and

environmental factors. Triggers such as infections, sunburn, and

smoking can contribute to disease onset and exacerbation (2),

while genetic predisposition remains a major risk factor. Genome-

wide association studies (GWAS) have identified over 80 genetic risk

loci associated with psoriasis, yet these variants collectively account

for only approximately 30% of the disease’s heritability (3). Clinical

studies have demonstrated that hyperactivation of the IL - 23/IL-17

axis is a key driver of psoriasis pathogenesis. Additionally, IL - 36, a

cytokine produced by keratinocytes, has been strongly implicated in

disease progression (4). The hallmark characteristics of psoriasis

include epidermal hyperplasia and immune cell infiltration into the

dermis, with keratinocyte hyperproliferation being the primary cause

of epidermal thickening. Keratinocytes play a crucial role in both the

initiation and maintenance of psoriasis. In response to external

triggers, they release nucleotides and antimicrobial peptides, which

activate dendritic cells involved in the early stages of disease

development. Once activated by various pro-inflammatory signals,

keratinocytes undergo excessive proliferation and secrete chemokines

that recruit leukocytes and inflammatory mediators, thereby

amplifying the inflammatory response. As key components of the

innate immune system, keratinocytes not only sustain the

inflammatory milieu but also actively contribute to disease

progression (5).

Housekeeping genes (HKGs) are universally expressed in cells

and play a fundamental role in maintaining essential physiological

functions. Under normal conditions, they are constitutively

expressed across all cell types, regardless of their specific function,

developmental stage, or cell cycle phase (6). Due to these

characteristics, HKGs are widely used as internal controls in

molecular biology and computational experiments. However,

recent studies have revealed a strong association between HKGs

and complex diseases. For instance, SURF4 has been shown to
02
inhibit myeloid differentiation and suppress cell death in myeloid

leukemia cells by negatively regulating the STING-TBK1-STAT6

axis (7). Similarly, STAT3 activation has been implicated in the

progression of breast cancer (8), while RAB5A expression is

upregulated in an m6A-YTHDF2-dependent manner by

ALKBH5, promoting colorectal cancer development (9). In the

context of psoriasis, disease-associated variants in the ERAP1 gene

have been found to increase susceptibility in individuals carrying

the HLA-C risk allele (10). However, despite emerging evidence

linking HKGs to disease mechanisms, no studies have

systematically investigated the impact of their aberrant expression

on the progression of psoriasis.

Psoriasis treatment has long been an important topic, as

conventional therapies often fail to prevent relapse. In recent

years, the development of biologic agents has made substantial

progress, enabling long-term remission of lesions (11). Objective

diagnosis and evaluation are critical when selecting treatment

strategies and assessing therapeutic outcomes. Currently, psoriasis

diagnosis and classification are primarily based on clinical features

and patient history, supplemented when necessary by dermoscopy

and histopathological analysis (12). However, the diagnostic process

can be influenced by clinician experience and remains somewhat

subjective. Therefore, as treatment modalities continue to advance,

improving the accuracy and convenience of diagnosis and

evaluation becomes increasingly important. Molecular diagnostic

techniques, a key component of precision medicine, have achieved

significant progress in recent years and are now applied clinically

for diagnosing genetic diseases and cancers—particularly by

detecting changes in gene expression at the DNA and RNA levels

to guide optimal treatment selection (13). These techniques rely on

advanced technologies such as microarrays and next-generation

sequencing. They have also been widely applied in psoriasis

research; for example, GWAS in Chinese populations have

identified several genes associated with psoriasis susceptibility

(14). Accurate diagnosis and assessment of psoriasis can facilitate

more appropriate treatment decisions, although the clinical

application of these molecular technologies is still evolving. With

the widespread adoption of microarray and RNA sequencing

technologies, vast amounts of psoriasis-related data have been
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accumulated in public repositories like the Gene Expression

Omnibus (GEO). Therefore, developing an accurate evaluation

platform using these existing RNA expression datasets is of

great importance.

In this study, we integrated bulk and single-cell transcriptomic

data to investigate the impact of aberrant housekeeping gene

expression on psoriasis progression. Candidate driver HKGs

associated with psoriasis were identified through differential

expression analysis combined with weighted gene co-expression

network analysis (WGCNA). Biological pathways influenced by

these genes were explored using enrichment analysis. Co-expression

analysis, combined with immune infiltration assessment, was

performed to determine the predominant cell types affected by

HKGs. Additionally, ligand-receptor interaction analysis was

conducted to explore cell-cell communication and elucidate how

these interactions influence housekeeping gene expression in

keratinocytes, thereby contributing to disease progression. Finally,

we applied machine learning approaches to construct robust

predictive models for psoriasis assessment, aiming to improve

diagnostic accuracy and disease monitoring.
2 Materials and methods

2.1 Collection and processing of bulk RNA
datasets

All datasets used in this study were retrieved from the GEO

database. Initially, datasets were screened based on sample size,

sample type, and sequencing platform. To ensure the reliability of

the analysis and to minimize the impact of confounding factors

such as drug treatment and tissue type on gene expression, only pre-

treatment skin tissue samples were included, with the exception of

GSE117468. A summary of the datasets is provided in Table 1.
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Batch effects were corrected using the “removeBatchEffect” function

from the limma R package (15), and principal component analysis

(PCA) was performed using the factoextra R package to assess the

preprocessed data. Differential expression analysis was conducted

with the limma R package, considering genes with an adjusted p-

value of less than 0.05 and an absolute log fold change (logFC)

greater than 0.5 as differentially expressed.
2.2 Collection and processing of single-cell
datasets

In this study, single-cell RNA sequencing data from psoriasis

patients and controls were obtained from the GEO database

(accession number GSE173706), uploaded by Ma Feiyang et al

(16). The dataset comprises 14 psoriasis samples and 8 control

samples. A summary of the datasets is provided in Table 1. Analysis

was performed using the Seurat R package (version 5.1.0) (17). Low-

quality cells were filtered out by removing cells that expressed fewer

than 100 genes, more than 5,000 genes, fewer than 500 transcripts,

or in which mitochondrial genes accounted for more than 10% of

total transcripts. Normalization and variable feature identification

were performed independently for each sample. Batch effects were

subsequently corrected and the samples integrated using the

“RunHarmony” function from the Harmony R package (18).

After clustering, dimensionality reduction was achieved via

Uniform Manifold Approximation and Projection (UMAP).

Cluster-specific marker genes were identified using the

“FindAllMarkers” function, and cell types were manually

annotated based on the original publication and additional

literature, with cells of unidentified types excluded from further

analysis. Differential expression analysis between normal skin (NS)

and lesional psorisais (PP) was conducted using the “run_de”

function from the Libra R package.
TABLE 1 Brief information of GEO datasets.

GEO
accession

Platform Tissue Size Treatment Source type

GSE54456 GPL9052 Human skin 174 No treatment RNA-seq

GSE14905 GPL570 Human skin 54 No treatment Array

GSE226244 GPL570 Human skin 41 No treatment Array

GSE182740 GPL570 Human skin 15 No treatment Array

GSE121212 GPL16791 Human skin 66 No treatment RNA-seq

GSE109248 GPL10558 Human skin 31 No treatment Array

GSE66511 GPL16288 Human skin 24 No treatment RNA-seq

GSE80047 GPL13158 Human skin 50 No treatment Array

GSE53431 GPL10558 Human skin 24 No treatment Array

GSE117468 GPL570 Human skin 565
Brodalumab
Ustekinumab

Array

GSE173706 GPL24676 Human skin 22 No treatment scRNA-seq

GSE192867 GPL23126 Human PBMC 72 No treatment Array
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2.3 Human housekeeping gene list

In this study, HKGs were defined based on the comprehensive

re‐analysis by Eisenberg and Levanon (6). In their work, HKGs were

identified as genes that are ubiquitously expressed across a wide

range of human tissues and cell types, reflecting their essential roles

in maintaining core cellular functions. Specifically, Eisenberg and

Levanon surveyed publicly available high‐throughput sequencing

datasets encompassing diverse normal human tissues to pinpoint

genes with consistently stable expression profiles. The selection

criteria for housekeeping genes (HKGs) mandated: (1) ubiquitous

detection across all examined tissues, (2)low inter-tissue variability

(standard deviation of log2(RPKM) < 1), and (3) no extreme outlier

expression (no tissue with expression differing by ≥4-fold from the

average). Genes were designated as HKGs when ≥50% of exons in

any RefSeq transcript satisfied these parameters, yielding the 3,804

high-confidence HKG set that served as our analytical framework.
2.4 Weighted gene co-expression network
analysis

To elucidate the relationship between gene expression patterns

and disease states, we conducted Weighted Gene Co-expression

Network Analysis on the differentially expressed genes using the

WGCNA R package (19). First, we calculated a gene similarity

matrix based on Pearson correlation coefficients. Next, we

constructed an adjacency matrix by selecting an appropriate soft-

thresholding parameter (b) to accentuate the connections between

highly correlated gene pairs. The resulting adjacency matrix was

then transformed into a Topological Overlap Matrix (TOM), which

quantifies the network connectivity of genes and provides a measure

of dissimilarity (1-TOM). Hierarchical clustering was subsequently

performed on the TOM to group genes into modules, with module

detection carried out using dynamic tree cutting methods. Finally,

correlations between modules and disease states were calculated to

identify those modules that were significantly associated with the

investigated diseases.
2.5 Functional enrichment analysis of
genes

To elucidate the biological functions of the gene set of interest,

we performed functional annotation using the clusterProfiler R

package (20). Both Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analyses were conducted.

An adjusted p-value of <0.05 was used as the threshold for

statistical significance.
2.6 Immune infiltration analysis

Single‐cell data from GSE173706 was used as the reference

matrix, while RNA-seq data from GSE54456 served as the mixture
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file. First, CIBERSORTx (https://cibersortx.stanford.edu/) was

employed to generate a signature matrix from the single‐cell RNA

sequencing data (21). Subsequently, the tool was used to estimate

the abundance of nine distinct cell types.
2.7 Inference of intercellular interactions

CellChat (v2.1.2) was employed to analyze receptor-ligand

interactions (22). Except for keratinocytes, which were further

divided into subclusters, all other cells were annotated according

to their primary cell types. To compare cell communication

between the PP and NS groups, each sample group was analyzed

separately, and the number of interactions between different cell

types was quantified. Furthermore, to investigate how other cells

influence keratinocytes by modulating the expression of key HKGs,

these HKGs were designated as target genes. Subsequently, the

nichenetr package (v2.2.0) was used to identify the connections

between ligands and their target genes (23). Finally, we used

Cytoscape (v3.7.2) to construct and visualize the ligand-to-target

gene regulatory network (24).
2.8 Construction of machine learning
models

Using the caret R package (25), we constructed machine

learning models with the 34 identified key HKGs serving as

features. The dataset was randomly partitioned, with 80% of the

samples assigned to the training set and the remaining 20% to the

testing set. In total, five distinct models were developed: Random

Forest (rf), Naïve Bayes, Averaged Neural Network (avNNet),

Support Vector Machine with Radial Basis Function kernel

(svmRadial), and Generalized Linear Model Network (glmnet).

To assess the classification performance of these models, we

computed several metrics, including recall, precision, accuracy, F1

score, and the area under the receiver operating characteristic curve

(AUC). The AUC was calculated using the pROC R package, while

the other metrics were generated via the “confusionMatrix”

function from the caret R package.

Code Availability: The R scripts used for model training,

performance evaluation, and figure generation are provided in

Supplementary Data S1. This archive includes a README file

that details all software dependencies and provides step-by-step

instructions to reproduce our results.
3 Results

3.1 34 key housekeeping genes associated
with psoriasis identified through WGCNA
and differential analysis

To systematically identify key HKGs linked to psoriasis

pathogenesis, we integrated transcriptomic datasets from
frontiersin.org
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GSE14905, GSE226244, and GSE182740. PCA confirmed effective

batch effect correction after dataset merging (Supplementary

Figures S1A, B). The integrated dataset was annotated according

to its sequencing platform. Differential expression analysis was

conducted separately on three datasets: GPL570 (integrated

dataset), GPL9052 (GSE54456), and GPL16791 (GSE121212). We

identified 3,257, 3,974 and 4,322 differentially expressed genes

(DEGs) between psoriasis patients and healthy controls for

GPL9052 dataset, GPL570 dataset and GPL16791 dataset

respectively. The intersection across these three platforms resulted

in 1,411 common DEGs. Subsequently, we intersected the common

DEGs with the human housekeeping gene list. We identified 196,

570 and 519 differentially expressed HKGs in the GPL9052, GPL570

and GPL16791 datasets, respectively Among these, 88 HKGs were

consistently differentially expressed across all three platforms, with

62 upregulated and 26 downregulated (Figure 1A).

Given that the GPL9052 dataset had the largest sample size (92

psoriasis patients and 82 healthy controls), we selected it for subsequent

analyses. We used its 3,257 DEGs to construct a weighted gene co-

expression network. Based on the scale-free topology fitting index and

average connectivity, a soft-thresholding power of 16 was chosen

(Supplementary Figures S1C, D). Dynamic tree cutting and average

hierarchical clustering identified six modules (Figure 1B). Module–trait

correlation analysis revealed that the turquoise module was most

strongly associated with psoriasis (correlation coefficient = 0.97,

p = 1e-109) (Figure 1C). Nearly 83% (73/88) of HKGs appear in the

turquoise module, underscoring a close relationship between these

genes and psoriasis progression (Figure 1E).

We then calculated the module membership (MM) for the

turquoise module and the gene significance (GS) for disease traits,

identifying 827 genes significantly associated with psoriasis that

exhibited high MM (>0.8) and high GS (>0.8), including 34 HKGs

(Figures 1D, E). KEGG and GO enrichment analyses were

subsequently performed on these 827 genes, focusing on pathways

that involved HKGs. GO analysis indicated that these HKGs were

involved in processes closely related to psoriasis, including

inflammatory response, epidermis development, and IL - 17

signaling. In the KEGG analysis, the HKGs were primarily enriched

in cell cycle and chemokine signaling pathways (Figures 1F, G).

In summary, through combined differential expression and

WGCNA analyses, we identified 34 HKGs that are closely

associated with psoriasis progression. The enrichment results

further indicate that these HKGs play a widespread role in the

disease’s pathogenesis.
3.2 Significant alterations in the co-
expression relationships between key
housekeeping genes and psoriasis-
associated genes

In the GPL9052 dataset, we calculated the correlations between

34 HKGs and all other genes separately in the disease and control

groups. The correlation coefficients were categorized into eight

intervals: strongest negative correlation (−1 to −0.75), strong
Frontiers in Immunology 05
negative correlation (−0.75 to −0.5), weak negative correlation

(−0.5 to −0.25), weakest negative correlation (−0.25 to 0),weakest

positive correlation (0 to 0.25), weak positive correlation (0.25 to

0.5), strong positive correlation (0.5 to 0.75), and strongest positive

correlation (0.75 to 1) (26). We then examined how these co-

expression relationships changed from controls to psoriasis cases

(Table 2). Notably, the correlation coefficients for 13 gene pairs

shifted from strong negative to weak positive, 51 gene pairs

transitioned from weak negative to strong positive, one gene pair

changed from weak negative to strongest positive, and 15 gene pairs

shifted from weakest negative to strongest positive. These shifts

spanned at least four intervals from controls to cases. Additionally,

59 gene pairs that changed from weakest positive to strongest

positive were also included in our analysis. We infer that these

139 gene pairs alterations in co-expression relationships are

induced by psoriasis.

Among these 139 gene pairs with substantial changes, several

interesting pairs were identified. For example, APOL2 paired with

SERPINB13; DCUN1D3 paired with DEFB103A, DEFB103B,

IL1F5 (IL36RN), IL1F6 (IL36A), and IL1F9 (IL36G); HIGD1A

paired with SERPINB3; PPIF paired with DEFB103A, DEFB103B,

and IL1F6; STAT3 paired with IL1F5, IL1F9, SERPINB7, and

S100A7A; and UBE2F paired with DEFB103A, DEFB103B, IL1F9,

SERPINB1, SERPINB3, SERPINB4, and S100A12 (Supplementary

Figure S2A). Notably, SERPINB1, SERPINB3, SERPINB4,

SERPINB7, and SERPINB13 belong to the serine protease

inhibitor family, which play critical roles in maintaining skin

barrier function, immune regulation, and inflammatory responses

(27). DEFB103A and DEFB103B are members of the human b-
defensin gene family and encode small antimicrobial peptides that

are pivotal in innate immunity, countering a range of pathogens

including bacteria, fungi, and certain viruses (28). S100A7A and

S100A12, part of the S100 protein family, are primarily involved in

inflammatory processes and are upregulated in psoriasis, thereby

exacerbating inflammation (29). IL1F5, IL1F6, and IL1F9 belong to

the interleukin-1 family and are centrally involved in mediating

inflammation and immune responses (30). Although IL1F5 acts as

an antagonist of the IL - 36 receptor, previous studies have

consistently observed its high expression in psoriasis (31). Among

the 34 key HKGs identified, the co-expression relationships with

previously reported psoriasis-associated pathogenic genes shifted

from negative to positive (or from weakest to strongest

correlations). Given that these pathogenic genes are aberrantly

expressed in keratinocytes (5, 16, 32), our findings suggest that

these HKGs may influence the progression of psoriasis by

modulating the biological functions of keratinocytes.
3.3 Differential expression of key
housekeeping genes primarily in
keratinocytes

To validate whether the identified key HKGs are differentially

expressed in keratinocytes, we analyzed single-cell transcriptomic

data derived from skin tissues of psoriasis patients. This dataset
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FIGURE 1

Identification of psoriasis related housekeeping genes. (A) Venn diagram illustrating the overlap of differentially expressed genes between various
datasets, including the number of differentially expressed housekeeping genes. (B) Cluster dendrogram and module assignment for the GPL9052
cohort. (C) Heatmap showing the association between gene expression modules and phenotypic traits. (D) Scatter plot showing correlation of genes
within modules to modules and to psoriasis traits. (E) Venn diagram shows the overlap of 88 DHKs with the turquoise module genes and the
turquoise module hub genes. (F) GO enrichment analysis. (G) KEGG enrichment analysis. DEG, Differentially expressed gene; DHK, Differentially
expressed housekeeping gene; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
Frontiers in Immunology frontiersin.org06

https://doi.org/10.3389/fimmu.2025.1601705
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tang et al. 10.3389/fimmu.2025.1601705

Frontiers in Immunology 07
comprised 14 psoriasis patients and 8 healthy controls. After quality

control, a total of 48,287 high-quality cells were retained. Using the

Seurat package, we identified nine distinct cell types, including

keratinocytes, fibroblasts, T cells, endothelial cells, smooth muscle

cells, neurons, myeloid cells, mast cells, and melanocytes

(Figure 2A; Supplementary Figure S3A) (16, 33).

Differential expression analysis comparing lesional skin to

healthy controls revealed that, within keratinocytes, 8 key HKGs

were downregulated and 25 genes were upregulated, with one gene

undetected. Notably, the expression patterns of these key HKGs in

keratinocytes from the single-cell data were highly consistent with

those observed in bulk transcriptomic analyses. The majority of key

HKGs (32 out of 34) showed consistent expression in keratinocytes

between bulk and single-cell transcriptomic data—7 genes were

downregulated and 25 genes were upregulated (Figures 2B, C), with

only NOP2 displaying inconsistent expression and SCO2

undetected in the single-cell dataset. Although a few genes did

not reach statistical significance in the single-cell analysis, their

expression trends remained consistent with the bulk data.

Furthermore, cell type deconvolution analysis using

CIBERSORTx indicated that keratinocytes constituted the largest

proportion among all cell types, with a significantly higher proportion

observed in psoriasis patients compared to healthy controls

(Figure 2D). This finding is in line with the clinical characteristics

of psoriasis, which is marked by hyperproliferation of keratinocytes

and consequent epidermal thickening. Additionally, correlation

analysis between the key HKGs and various cell types revealed that

the upregulated genes were significantly positively correlated with

keratinocytes, whereas the downregulated genes exhibited a

significant negative correlation (Figure 2E).

Collectively, these results indicate that the differential

expression of the identified key HKGs is primarily driven by

changes in keratinocytes.
3.4 IL-17A regulates the expression of four
HKGs in keratinocyte subpopulations

To further elucidate the role of HKGs in keratinocytes, we

adopted the keratinocyte subcluster classification defined by Francis

et al (33). Keratinocytes were categorized into five subpopulations:

follicular (KRT17+), basal (KRT15+), proliferating (MKI67+),

spinous (KRT1+/SPRR2E-), and supraspinous (KRT1+/SPRR2E+)

(Figure 3A; Supplementary Figure S3B).

Differential expression analysis comparing PP and NS revealed

that supraspinous, spinous, proliferating, and basal keratinocytes

exhibited a more pronounced response to psoriasis, evidenced by a

larger number of DEGs, whereas follicular keratinocytes displayed a

relatively muted response (Figure 3B).Further examination of the

differential expression of key HKGs and their co-expressed partners

indicated that significant changes were primarily observed in the

spinous, supraspinous, proliferating, and basal subpopulations, with

no notable alterations in follicular keratinocytes (Figures 3C, D).

This suggests that the co-expression of key HKGs and psoriasis-

associated pathogenic genes occurs predominantly in the non-

follicular keratinocyte subpopulations.
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To explore cell communication differences among keratinocyte

subpopulations in psoriasis, we focused on the spinous, supraspinous,

proliferating, and basal groups. These subpopulations showed

marked gene expression differences between PP and NS, suggesting
Frontiers in Immunology 08
their critical roles in psoriasis pathogenesis. Ligand-receptor analysis

further revealed a significant increase in interactions between these

keratinocyte subpopulations and other cell types in psoriasis patients

(Figure 3C). When treating these four subpopulations as receptor
FIGURE 2

Identification of cell populations with differential expression of housekeeping genes in psoriasis. (A) UMAP plot showing 48,287 cells colored by cell
types. (B) Heatmap of the expression of 34 housekeeping genes in the GPL9052 cohort. (C) Heatmap of differential expression of housekeeping
genes in different cell types. *P<0.05, **P<0.01, ***P<0.001. (D) Box plot demonstrating comparison of relative abundance of different cell types
between GPL9052 cohort psoriasis and controls. (E) Dot plot showing the correlation between relative cell abundance and gene expression.
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FIGURE 3

Ligand-receptor interactions of other cells with keratinocyte subtypes. (A) UMAP plot showing 29489 keratinocytes colored by cell types. (B) UMAP
plot showing the number of differentially expressed genes in keratinocyte subtypes in diseased and healthy skin. (C) Circle plot comparing the
number of ligand-receptor interactions between cell types of lesion and control skin. (D) Bar graph depicting pathways with significantly more
cellular communication in diseased skin than in control. (E) NicheNet ligand-receptor analysis: heatmap of ligand activity (left) and differential
expression (right) of ligands in different cell types. (F) NicheNet ligand-receptor analysis: matrix showing potential targets of ligands and their
regulatory potential in four keratinocyte subtypes. KC, keratinocyte; PP, lesional psoriasis; NS normal skin.
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sources, subsequent pathway analysis indicated that the

communication networks in psoriasis encompassed several key

immune and signaling pathways, including IL - 17, CXCL, midkine

(MK), IL - 6, NOTCH, EGF, and MHC-II (Figure 3D). Midkine is a

heparin-binding growth factor broadly expressed in inflammatory

diseases; recent studies have shown that MK regulates VEGF-A

expression via the Notch2/HES1/JAK2-STAT5A signaling pathway,

thereby exerting critical effects on angiogenesis in psoriasis (34, 35).

Collectively, these pathways are intimately linked to chronic

inflammation and keratinocyte hyperproliferation in psoriasis.

To assess the regulatory effects of the altered cell communication

pathways on downstream targets, we employed NicheNet, which

integrates expression data with known signaling and gene regulatory

networks to predict ligand-target relationships (23). All cells were

considered “sending cells,” while the four keratinocyte subpopulations

were defined as “receiving cells.” Using NicheNet, we inferred

the regulatory potential of ligands on differentially expressed and

HKGs within these subpopulations. Our analysis identified four

HKGs—RAN, STAT3, EIF5A, and PPARD—whose differential

expression was regulated by specific ligands (Figures 3E, F, 4A).

Notably, MDK exhibited the highest regulatory potential for RAN, a

small GTPase involved in nucleocytoplasmic transport and cell cycle

regulation, suggesting that its upregulation may accelerate cell

proliferation (36). For STAT3, IL - 6 was the key ligand, consistent

with the known role of STAT3 in mediating inflammatory responses

via cytokines such as IL - 6, IL - 17A, and EGF (37). IL - 17A emerged

as the principal regulator for both EIF5A and PPARD. EIF5A plays a

critical role in translation elongation, mRNA stability, and cell growth,

and its upregulation via NF-kB pathways may enhance inflammatory

mediator production and cellular stress responses (38, 39). PPARD, a

nuclear receptor that regulates lipid metabolism, cell proliferation, and

differentiation, is crucial for maintaining the epidermal barrier and

modulating skin inflammation; its upregulation may represent a

negative feedback mechanism to counterbalance IL - 17A-induced

inflammation (40). Notably, IL - 17A was the only ligand with

regulatory potential for all four HKGs. In addition, IL - 17A

regulated key downstream targets including the transcription factor

STAT1, chemokines CXCL2, CXCL8, and CCL20, and the structural

protein KRT17. These targets play critical roles in controlling cell

proliferation, differentiation, and chemotaxis.

Our NicheNet-derived regulatory network delineates the

functional interactions between these ligands and HKGs

(Supplementary Figure S4B). Cellular expression profiling revealed

predominant localization of MDK receptors (SDC1/SDC4) in

keratinocytes. Notably, IL17A expression exhibited psoriasis-

specific restriction to T-cell populations (Supplementary Figures

S4C, D). Furthermore, psoriatic keratinocytes showed significant

upregulation of key transcriptional regulators including CREM,

STAT1, and BATF (Supplementary Figure S4E).

In summary, in psoriasis, ligand-receptor signaling pathways,

especially those involving IL - 17A, significantly modulate the

expression of key HKGs in keratinocyte subpopulations. This

modulation contributes to abnormal inflammatory responses,

immune activation, and keratinocyte hyperproliferation.
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3.5 Application of the avNNet model based
on key housekeeping genes in psoriasis
diagnosis and treatment monitoring

Using the GSE54456 dataset, five machine learning models were

constructed using 34 key HKGs as features. To further assess model

generalizability and potential overfitting, we validated these models

on six external datasets, including three merged GPL570 platform

datasets. All five models performed exceptionally well on the

training and internal test sets, achieving AUC and F1 scores of 1

and a classification accuracy of 100%.

External validation with multiple independent datasets

confirmed the stability of our models. Except for the SVM Radial

model, which showed prediction accuracies below 75% on some

datasets, the other four models achieved accuracies above 80% and

F1 scores greater than 0.8 across all datasets. Notably, the avNNet

model consistently exceeded 90% prediction accuracy across all

datasets (Figures 4A–C). These results indicate that the machine

learning models based on the identified key HKGs can reliably

distinguish between normal and diseased samples, underscoring

their potential for molecular-level psoriasis diagnosis.

Building upon avNNet’s exceptional performance, we further

validated its clinical utility across two independent cohorts. For skin

tissue samples (GSE117468), the model achieved 93% accuracy in

discriminating lesional from non-lesional skin (Figure 4D), while also

demonstrating remarkable sensitivity to treatment response -

successfully identifying molecular recovery as early as week 4 post-

treatment and accurately classifying clinical responders by week 12

(Figure 4E). Notably, the model maintained strong predictive

performance (83% accuracy) when applied to PBMC transcriptomes

(GSE192867; Supplementary Figure S5A), underscoring its robustness

across different biological samples. These findings collectively establish

avNNet as a sensitive tool for both psoriasis diagnosis and longitudinal

monitoring of therapeutic efficacy.

The avNNet-derived HKG signatures enabled stratification of

psoriasis patients into distinct high- and low-score phenotypes,

revealing significant differential gene expression patterns. GO

enrichment analysis revealed that upregulated genes in the high-

score group were enriched in antiviral and type I interferon signaling

pathways, keratinocyte differentiation, epidermal cell proliferation, and

chemokine activity, reflecting the inflammatory and hyperproliferative

state characteristic of active psoriasis (41)(Supplementary Figure S5B).

In contrast, downregulated genes were associated with extracellular

matrix organization, collagen metabolism, epidermis development and

wound healing, suggesting reduced tissue remodeling and

normalization of keratinocyte hyperproliferation in the low-score

group (42) (Supplementary Figure S5C).

Finally, we observed a significant correlation between the

avNNet model score and the clinical Psoriasis Area and Severity

Index (PASI) (correlation = 0.74, P = 4.4e-47) (Figures 4F, G). This

strong correlation indicates that the molecular-level scoring

provided by the avNNet model closely reflects traditional clinical

assessment metrics, offering a novel approach for evaluating

psoriasis progression and treatment outcomes.
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FIGURE 4

Machine learning models to diagnose psoriasis. (A) Circular barplot depicting the AUC values of five machine learning models on different datasets.
(B) Circular barplot depicting the accuracy of five machine learning models across different datasets. (C) Circular barplot depicting the F1 score of
five machine learning models across different datasets. (D) ROC curves were used to assess the accuracy of the avNNet model in classifying lesional
and non-lesional skin. (E) ROC curves were used to assess the accuracy of the avNNet model in classifying pre-treatment and post-treatment.
(F) Heatmap showing correlation between avNNet model scores and clinical indicators. G Box plot comparing PASI across treatment times for the
GSE117468 cohort. ****P<0.0001. PASI, psoriasis area and severity index; LS, lesional skin; NS non-lesional skin.
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4 Discussion

Our study systematically elucidates the critical role of HKGs in

psoriasis pathogenesis through integrative transcriptomic analysis

and machine learning modeling. By combining bulk and single-cell

transcriptomic analyses, we identified 34 HKGs that exhibit

dysregulated expression patterns tightly linked to keratinocyte

dysfunction and immune dysregulation. These findings not only

expand our understanding of psoriasis mechanisms beyond

canonical pathways but also establish a novel framework for

molecular diagnosis and therapeutic monitoring.

In this study, we draw on the “moonlighting protein” paradigm to

redefine a subset of HKGs as “dual‐function regulators,” recognizing

that a single gene product can fulfill disparate roles depending on

cellular context (43, 44). Specifically, under homeostatic conditions,

these regulators sustain essential cellular processes, while in

pathological states such as psoriasis, they perform additional

regulatory functions. This redefinition leverages the comprehensive

reanalysis by Eisenberg and Levanon, who cataloged 3,804 high‐

confidence HKGs based on their ubiquitous and stable expression

across human tissues (6). Our results reveal that, within psoriatic

lesions, a subset of these genes not only exhibit disrupted expression

stability but also actively participate in inflammatory signaling and

keratinocyte differentiation pathways, thus extending well beyond their

canonical housekeeping roles. Previous work has documented context‐

dependent repurposing of classical HKGs. For example, GAPDH,

beyond its glycolytic function, also modulates transcription and

apoptosis (45). Here, we demonstrate that in psoriasis, HKGs such as

STAT3, PPIF, and EIF5A are co‐opted by the IL‐17/IL‐6 signaling axis

to drive keratinocyte activation. These findings underscore a conserved

mechanism of functional repurposing, whereby traditionally

“housekeeping” molecules become integral components of disease‐

specific regulatory circuits.

In multiple cohorts, our study identified 34 highly conserved

dysregulated HKGs, underscoring their critical role in psoriasis.

Notably, STAT3, EIF5A, and RAN emerge as pivotal nodes in

keratinocyte activation driven by IL - 17A signaling. Overexpression

of RAN has been associated with increased cellular proliferation in

breast cancer (46), while persistent STAT3 activation has long been

implicated in psoriasis (47). Moreover, RAN appears to act

synergistically with STAT3 by modulating its nuclear import (48). As

a key translation factor, EIF5A, and in particular its isoform EIF5A2, is

overexpressed in various cancers (49). These mechanisms are

consistent with the hyperproliferative and inflammatory phenotype

observed in psoriatic keratinocytes. We also observed downregulation

of CD81, which can enhance NF-kB–mediated inflammation and

upregulation of PARP9, which is a known promoter of

proinflammatory gene expression (50, 51). These findings support

prior studies linking HKG dysregulation to inflammatory processes.

Additionally, our single-cell data reveal that HKG dysregulation is

predominantly confined to non-follicular keratinocyte subpopulations

(basal, spinous, supraspinous, and proliferative cells), which are the

primary drivers of epidermal hyperplasia. This spatial specificity
Frontiers in Immunology 12
emphasizes the compartmentalized nature of HKG-driven pathology

in psoriasis.

The co-expression shifts of HKGs with psoriasis-associated genes

(e.g., DEFB103A/B, S100A7A, IL36RN) further demonstrate their

regulatory influence. The transition from negative to positive

correlations in disease states suggests that HKGs may act as

molecular rheostats, rewiring transcriptional networks to sustain

inflammation. For instance, the interaction between DCUN1D3

and IL36RN, a key antagonist of IL - 36 receptor signaling, implies

a role in modulating IL - 36 dependent epidermal barrier dysfunction,

a mechanism recently implicated in pustular psoriasis (52). These

findings bridge the gap between HKGs and established pathogenic

pathways, positioning them as amplifiers of disease-specific signals.

The avNNet model’s exceptional performance (AUC >0.9

across datasets) underscores the diagnostic utility of HKGs.

Unlike previous biomarker panels that rely on immune-specific

genes, our HKG-based approach captures keratinocyte-centric

molecular shifts, enabling earlier detection of subclinical

inflammation. The model distinguishes treated from untreated

skin with 93% accuracy and shows a strong correlation with PASI

(r = 0.74), positioning it as a robust tool for monitoring therapeutic

response. Notably, the model detected molecular recovery at 4

weeks post-treatment, a timepoint when clinical improvement is

often ambiguous, suggesting its potential to guide personalized

treatment escalation. The superior performance of the avNNet

model can be attributed to its ensemble averaging approach,

which aggregates the outputs of multiple individual neural

networks. This strategy not only markedly enhances overall

accuracy and prediction stability but also reduces reliance on

hyperparameter tuning for any single network, thereby

simplifying model optimization (53). Furthermore, by integrating

multiple weak learners, avNNet mitigates the risk of overfitting. In

contrast, the inferior performance of the SVM Radial model likely

stems from its dependence on two critical hyperparameters, the

penalty parameter C and kernel width g, where inappropriate

combinations can easily lead to underfitting or overfitting (54).

This underscores the necessity of selecting algorithms specifically

tailored to capture HKG expression dynamics, as these biological

patterns often involve complex nonlinear interactions that are best

captured by neural network architectures.

While our findings are compelling, several limitations warrant

consideration. First, the reliance on pre-treatment lesional skin

samples may overlook dynamic HKG changes during disease flares

or treatment. Second, SCO2 and NOP2’s inconsistent expression in

single-cell data raises questions about technical variability versus

biological context-dependency. Third, our ligand-receptor analyses

were based solely on transcriptomic inference without protein-level

or functional validation, such as phospho-protein assays or cytokine

blockade experiments. Additionally, while our avNNet model

demonstrated high diagnostic accuracy and correlation with

PASI, its ability to distinguish psoriasis subtypes and capture

immune-driven heterogeneity remains to be validated. These

analytical constraints, common in large-scale transcriptomic
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studies, highlight important directions for future investigation. As

multi-omics datasets become more accessible, subsequent studies

could further validate these networks, while expanded cohorts

would enable refined subtype analyses. Looking ahead, the

implementation of spatial transcriptomics could precisely map

HKG activity across epidermal-dermal microenvironments, while

CRISPR-based functional screens would help establish causal

relationships. Such advances would significantly accelerate the

translation of our findings into clinical applications, particularly

for personalized treatment strategies in psoriasis management.
5 Conclusion

By redefining HKGs as active contributors to psoriasis

pathogenesis, this study challenges the traditional view of HKGs

as mere experimental controls. Our multi-level transcriptomic

analysis reveals their dual role as both stabilizers of cellular

homeostasis and drivers of disease-specific networks, offering new

therapeutic targets. The avNNet model further bridges molecular

insights to clinical practice, providing a scalable tool for precision

dermatology. These advances pave the way for HKG-directed

therapies and biomarker-driven management of psoriasis.
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