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Housekeeping gene
dysregulation in psoriasis:
iIntegrative multi-cohort
and single-cell analysis
reveals keratinocyte-centric
molecular mechanisms

and diagnostic biomarkers
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Yongshuai Jiang™, Ruijie Zhang™ and Wenhua Lv*

College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China,
2Department of CT Diagnosis, The Second Affiliated Hospital of Harbin Medical University,
Harbin, China

Background: Psoriasis is a chronic immune-mediated skin disease driven by the
interleukin-23/interleukin-17 cytokine axis, yet its immunopathogenesis remains
incompletely understood. Housekeeping genes, traditionally considered stably
expressed across tissues and cell types, have not been systematically investigated
for their role in psoriasis. Here, we aimed to identify psoriasis-associated
housekeeping genes and explore their molecular mechanisms and
clinical implications.

Methods: We integrated multi-cohort data and identified psoriasis-associated
housekeeping genes using weighted gene co-expression network analysis
combined with differential expression analysis. Single-cell transcriptomic
analysis was performed to identify cell-type specific expression patterns, while
ligand-receptor interaction analysis was applied to evaluate pathway activation
and interactions with downstream target genes. In addition, multiple diagnostic
models were established for psoriasis detection.

Results: We identified 34 housekeeping genes associated with psoriasis and
observed that the co-expression relationships between six genes (APOL2,
DCUN1D3, UBE2F, HIGD1A, PPIF, and STAT3) and known psoriasis-related
genes differed significantly between diseased and healthy individuals.
Furthermore, single-cell transcriptomic analysis revealed that these
housekeeping genes were differentially expressed primarily in basal, spinous,
supraspinous, and proliferating keratinocytes. Ligand-receptor interaction
analysis demonstrated significant activation of the IL - 17, IL - 6, and midkine
(MK) pathways within keratinocyte subpopulations, which led to the upregulation
of STAT3, EIF5A, and RAN, thereby promoting keratinocyte hyperproliferation
and enhancing immune reactivity. Finally, among the various diagnostic models
developed, the averaged neural network (avNNet) model emerged as the best
performer, achieving over 90% classification accuracy across multiple
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independent datasets. Moreover, its scores were strongly correlated with the
Psoriasis Area and Severity Index (correlation coefficient = 0.74, P = 4.4e-47).
Conclusions: This study redefines housekeeping genes as dual-function
regulators in psoriasis pathogenesis, with the avNNet model enabling clinical
translation of these molecular insights toward precision-targeted therapies and
biomarker-based management strategies.

housekeeping genes, keratinocyte, machine learning models, psoriasis, single-

cell transcriptomics

1 Introduction

Psoriasis is a common chronic, non-contagious skin disease with
a globally variable prevalence, ranging from 0.09% to 11.43% across
different countries. It is estimated to affect at least 100 million people
worldwide, making it a significant global health concern (1). The
etiology of psoriasis is complex, involving both genetic and
environmental factors. Triggers such as infections, sunburn, and
smoking can contribute to disease onset and exacerbation (2),
while genetic predisposition remains a major risk factor. Genome-
wide association studies (GWAS) have identified over 80 genetic risk
loci associated with psoriasis, yet these variants collectively account
for only approximately 30% of the disease’s heritability (3). Clinical
studies have demonstrated that hyperactivation of the IL - 23/IL-17
axis is a key driver of psoriasis pathogenesis. Additionally, IL - 36, a
cytokine produced by keratinocytes, has been strongly implicated in
disease progression (4). The hallmark characteristics of psoriasis
include epidermal hyperplasia and immune cell infiltration into the
dermis, with keratinocyte hyperproliferation being the primary cause
of epidermal thickening. Keratinocytes play a crucial role in both the
initiation and maintenance of psoriasis. In response to external
triggers, they release nucleotides and antimicrobial peptides, which
activate dendritic cells involved in the early stages of disease
development. Once activated by various pro-inflammatory signals,
keratinocytes undergo excessive proliferation and secrete chemokines
that recruit leukocytes and inflammatory mediators, thereby
amplifying the inflammatory response. As key components of the
innate immune system, keratinocytes not only sustain the
inflammatory milieu but also actively contribute to disease
progression (5).

Housekeeping genes (HKGs) are universally expressed in cells
and play a fundamental role in maintaining essential physiological
functions. Under normal conditions, they are constitutively
expressed across all cell types, regardless of their specific function,
developmental stage, or cell cycle phase (6). Due to these
characteristics, HKGs are widely used as internal controls in
molecular biology and computational experiments. However,
recent studies have revealed a strong association between HKGs
and complex diseases. For instance, SURF4 has been shown to
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inhibit myeloid differentiation and suppress cell death in myeloid
leukemia cells by negatively regulating the STING-TBK1-STAT6
axis (7). Similarly, STAT3 activation has been implicated in the
progression of breast cancer (8), while RAB5A expression is
upregulated in an m6A-YTHDF2-dependent manner by
ALKBHS5, promoting colorectal cancer development (9). In the
context of psoriasis, disease-associated variants in the ERAP1 gene
have been found to increase susceptibility in individuals carrying
the HLA-C risk allele (10). However, despite emerging evidence
linking HKGs to disease mechanisms, no studies have
systematically investigated the impact of their aberrant expression
on the progression of psoriasis.

Psoriasis treatment has long been an important topic, as
conventional therapies often fail to prevent relapse. In recent
years, the development of biologic agents has made substantial
progress, enabling long-term remission of lesions (11). Objective
diagnosis and evaluation are critical when selecting treatment
strategies and assessing therapeutic outcomes. Currently, psoriasis
diagnosis and classification are primarily based on clinical features
and patient history, supplemented when necessary by dermoscopy
and histopathological analysis (12). However, the diagnostic process
can be influenced by clinician experience and remains somewhat
subjective. Therefore, as treatment modalities continue to advance,
improving the accuracy and convenience of diagnosis and
evaluation becomes increasingly important. Molecular diagnostic
techniques, a key component of precision medicine, have achieved
significant progress in recent years and are now applied clinically
for diagnosing genetic diseases and cancers—particularly by
detecting changes in gene expression at the DNA and RNA levels
to guide optimal treatment selection (13). These techniques rely on
advanced technologies such as microarrays and next-generation
sequencing. They have also been widely applied in psoriasis
research; for example, GWAS in Chinese populations have
identified several genes associated with psoriasis susceptibility
(14). Accurate diagnosis and assessment of psoriasis can facilitate
more appropriate treatment decisions, although the clinical
application of these molecular technologies is still evolving. With
the widespread adoption of microarray and RNA sequencing
technologies, vast amounts of psoriasis-related data have been

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1601705
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Tang et al.

accumulated in public repositories like the Gene Expression
Omnibus (GEO). Therefore, developing an accurate evaluation
platform using these existing RNA expression datasets is of
great importance.

In this study, we integrated bulk and single-cell transcriptomic
data to investigate the impact of aberrant housekeeping gene
expression on psoriasis progression. Candidate driver HKGs
associated with psoriasis were identified through differential
expression analysis combined with weighted gene co-expression
network analysis (WGCNA). Biological pathways influenced by
these genes were explored using enrichment analysis. Co-expression
analysis, combined with immune infiltration assessment, was
performed to determine the predominant cell types affected by
HKGs. Additionally, ligand-receptor interaction analysis was
conducted to explore cell-cell communication and elucidate how
these interactions influence housekeeping gene expression in
keratinocytes, thereby contributing to disease progression. Finally,
we applied machine learning approaches to construct robust
predictive models for psoriasis assessment, aiming to improve
diagnostic accuracy and disease monitoring.

2 Materials and methods

2.1 Collection and processing of bulk RNA
datasets

All datasets used in this study were retrieved from the GEO
database. Initially, datasets were screened based on sample size,
sample type, and sequencing platform. To ensure the reliability of
the analysis and to minimize the impact of confounding factors
such as drug treatment and tissue type on gene expression, only pre-
treatment skin tissue samples were included, with the exception of
GSE117468. A summary of the datasets is provided in Table 1.

TABLE 1 Brief information of GEO datasets.

GEO

Platform Tissue

accession

10.3389/fimmu.2025.1601705

Batch effects were corrected using the “removeBatchEffect” function
from the limma R package (15), and principal component analysis
(PCA) was performed using the factoextra R package to assess the
preprocessed data. Differential expression analysis was conducted
with the limma R package, considering genes with an adjusted p-
value of less than 0.05 and an absolute log fold change (logFC)
greater than 0.5 as differentially expressed.

2.2 Collection and processing of single-cell
datasets

In this study, single-cell RNA sequencing data from psoriasis
patients and controls were obtained from the GEO database
(accession number GSE173706), uploaded by Ma Feiyang et al
(16). The dataset comprises 14 psoriasis samples and 8 control
samples. A summary of the datasets is provided in Table 1. Analysis
was performed using the Seurat R package (version 5.1.0) (17). Low-
quality cells were filtered out by removing cells that expressed fewer
than 100 genes, more than 5,000 genes, fewer than 500 transcripts,
or in which mitochondrial genes accounted for more than 10% of
total transcripts. Normalization and variable feature identification
were performed independently for each sample. Batch effects were
subsequently corrected and the samples integrated using the
“RunHarmony” function from the Harmony R package (18).
After clustering, dimensionality reduction was achieved via
Uniform Manifold Approximation and Projection (UMAP).
Cluster-specific marker genes were identified using the
“FindAllMarkers” function, and cell types were manually
annotated based on the original publication and additional
literature, with cells of unidentified types excluded from further
analysis. Differential expression analysis between normal skin (NS)
and lesional psorisais (PP) was conducted using the “run_de”
function from the Libra R package.

GSE54456 GPL9052 Human skin
GSE14905 GPL570 Human skin
GSE226244 GPL570 Human skin
GSE182740 GPL570 Human skin
GSE121212 GPL16791 Human skin
GSE109248 GPL10558 Human skin
GSE66511 GPL16288 Human skin
GSE80047 GPL13158 Human skin
GSE53431 GPL10558 Human skin
GSE117468 GPL570 Human skin
GSE173706 GPL24676 Human skin
GSE192867 GPL23126 Human PBMC
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Treatment Source type
174 No treatment RNA-seq
54 No treatment Array
41 No treatment Array
15 No treatment Array
66 No treatment RNA-seq
31 No treatment Array
24 No treatment RNA-seq
50 No treatment Array
24 No treatment Array
s65 Brodz}alumab Array
Ustekinumab

22 No treatment scRNA-seq
72 No treatment Array
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2.3 Human housekeeping gene list

In this study, HKGs were defined based on the comprehensive
re-analysis by Eisenberg and Levanon (6). In their work, HKGs were
identified as genes that are ubiquitously expressed across a wide
range of human tissues and cell types, reflecting their essential roles
in maintaining core cellular functions. Specifically, Eisenberg and
Levanon surveyed publicly available high-throughput sequencing
datasets encompassing diverse normal human tissues to pinpoint
genes with consistently stable expression profiles. The selection
criteria for housekeeping genes (HKGs) mandated: (1) ubiquitous
detection across all examined tissues, (2)low inter-tissue variability
(standard deviation of log,(RPKM) < 1), and (3) no extreme outlier
expression (no tissue with expression differing by >4-fold from the
average). Genes were designated as HKGs when >50% of exons in
any RefSeq transcript satisfied these parameters, yielding the 3,804
high-confidence HKG set that served as our analytical framework.

2.4 Weighted gene co-expression network
analysis

To elucidate the relationship between gene expression patterns
and disease states, we conducted Weighted Gene Co-expression
Network Analysis on the differentially expressed genes using the
WGCNA R package (19). First, we calculated a gene similarity
matrix based on Pearson correlation coefficients. Next, we
constructed an adjacency matrix by selecting an appropriate soft-
thresholding parameter () to accentuate the connections between
highly correlated gene pairs. The resulting adjacency matrix was
then transformed into a Topological Overlap Matrix (TOM), which
quantifies the network connectivity of genes and provides a measure
of dissimilarity (1-TOM). Hierarchical clustering was subsequently
performed on the TOM to group genes into modules, with module
detection carried out using dynamic tree cutting methods. Finally,
correlations between modules and disease states were calculated to
identify those modules that were significantly associated with the
investigated diseases.

2.5 Functional enrichment analysis of
genes

To elucidate the biological functions of the gene set of interest,
we performed functional annotation using the clusterProfiler R
package (20). Both Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analyses were conducted.
An adjusted p-value of <0.05 was used as the threshold for
statistical significance.

2.6 Immune infiltration analysis

Single-cell data from GSE173706 was used as the reference
matrix, while RNA-seq data from GSE54456 served as the mixture
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file. First, CIBERSORTx (https://cibersortx.stanford.edu/) was
employed to generate a signature matrix from the single-cell RNA
sequencing data (21). Subsequently, the tool was used to estimate
the abundance of nine distinct cell types.

2.7 Inference of intercellular interactions

CellChat (v2.1.2) was employed to analyze receptor-ligand
interactions (22). Except for keratinocytes, which were further
divided into subclusters, all other cells were annotated according
to their primary cell types. To compare cell communication
between the PP and NS groups, each sample group was analyzed
separately, and the number of interactions between different cell
types was quantified. Furthermore, to investigate how other cells
influence keratinocytes by modulating the expression of key HKGs,
these HKGs were designated as target genes. Subsequently, the
nichenetr package (v2.2.0) was used to identify the connections
between ligands and their target genes (23). Finally, we used
Cytoscape (v3.7.2) to construct and visualize the ligand-to-target
gene regulatory network (24).

2.8 Construction of machine learning
models

Using the caret R package (25), we constructed machine
learning models with the 34 identified key HKGs serving as
features. The dataset was randomly partitioned, with 80% of the
samples assigned to the training set and the remaining 20% to the
testing set. In total, five distinct models were developed: Random
Forest (rf), Naive Bayes, Averaged Neural Network (avNNet),
Support Vector Machine with Radial Basis Function kernel
(svmRadial), and Generalized Linear Model Network (glmnet).

To assess the classification performance of these models, we
computed several metrics, including recall, precision, accuracy, F1
score, and the area under the receiver operating characteristic curve
(AUC). The AUC was calculated using the pROC R package, while
the other metrics were generated via the “confusionMatrix”
function from the caret R package.

Code Availability: The R scripts used for model training,
performance evaluation, and figure generation are provided in
Supplementary Data SI. This archive includes a README file
that details all software dependencies and provides step-by-step
instructions to reproduce our results.

3 Results

3.1 34 key housekeeping genes associated
with psoriasis identified through WGCNA
and differential analysis

To systematically identify key HKGs linked to psoriasis
pathogenesis, we integrated transcriptomic datasets from
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GSE14905, GSE226244, and GSE182740. PCA confirmed effective
batch effect correction after dataset merging (Supplementary
Figures SI1A, B). The integrated dataset was annotated according
to its sequencing platform. Differential expression analysis was
conducted separately on three datasets: GPL570 (integrated
dataset), GPL9052 (GSE54456), and GPL16791 (GSE121212). We
identified 3,257, 3,974 and 4,322 differentially expressed genes
(DEGs) between psoriasis patients and healthy controls for
GPL9052 dataset, GPL570 dataset and GPL16791 dataset
respectively. The intersection across these three platforms resulted
in 1,411 common DEGs. Subsequently, we intersected the common
DEGs with the human housekeeping gene list. We identified 196,
570 and 519 differentially expressed HKGs in the GPL9052, GPL570
and GPL16791 datasets, respectively Among these, 88 HKGs were
consistently differentially expressed across all three platforms, with
62 upregulated and 26 downregulated (Figure 1A).

Given that the GPL9052 dataset had the largest sample size (92
psoriasis patients and 82 healthy controls), we selected it for subsequent
analyses. We used its 3,257 DEGs to construct a weighted gene co-
expression network. Based on the scale-free topology fitting index and
average connectivity, a soft-thresholding power of 16 was chosen
(Supplementary Figures S1C, D). Dynamic tree cutting and average
hierarchical clustering identified six modules (Figure 1B). Module-trait
correlation analysis revealed that the turquoise module was most
strongly associated with psoriasis (correlation coefficient = 0.97,
p = le-109) (Figure 1C). Nearly 83% (73/88) of HKGs appear in the
turquoise module, underscoring a close relationship between these
genes and psoriasis progression (Figure 1E).

We then calculated the module membership (MM) for the
turquoise module and the gene significance (GS) for disease traits,
identifying 827 genes significantly associated with psoriasis that
exhibited high MM (>0.8) and high GS (>0.8), including 34 HKGs
(Figures 1D, E). KEGG and GO enrichment analyses were
subsequently performed on these 827 genes, focusing on pathways
that involved HKGs. GO analysis indicated that these HKGs were
involved in processes closely related to psoriasis, including
inflammatory response, epidermis development, and IL - 17
signaling. In the KEGG analysis, the HKGs were primarily enriched
in cell cycle and chemokine signaling pathways (Figures 1F, G).

In summary, through combined differential expression and
WGCNA analyses, we identified 34 HKGs that are closely
associated with psoriasis progression. The enrichment results
further indicate that these HKGs play a widespread role in the
disease’s pathogenesis.

3.2 Significant alterations in the co-
expression relationships between key
housekeeping genes and psoriasis-
associated genes

In the GPL9052 dataset, we calculated the correlations between
34 HKGs and all other genes separately in the disease and control
groups. The correlation coefficients were categorized into eight
intervals: strongest negative correlation (-1 to —0.75), strong
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negative correlation (-0.75 to —0.5), weak negative correlation
(—0.5 to —0.25), weakest negative correlation (—0.25 to 0),weakest
positive correlation (0 to 0.25), weak positive correlation (0.25 to
0.5), strong positive correlation (0.5 to 0.75), and strongest positive
correlation (0.75 to 1) (26). We then examined how these co-
expression relationships changed from controls to psoriasis cases
(Table 2). Notably, the correlation coefficients for 13 gene pairs
shifted from strong negative to weak positive, 51 gene pairs
transitioned from weak negative to strong positive, one gene pair
changed from weak negative to strongest positive, and 15 gene pairs
shifted from weakest negative to strongest positive. These shifts
spanned at least four intervals from controls to cases. Additionally,
59 gene pairs that changed from weakest positive to strongest
positive were also included in our analysis. We infer that these
139 gene pairs alterations in co-expression relationships are
induced by psoriasis.

Among these 139 gene pairs with substantial changes, several
interesting pairs were identified. For example, APOL2 paired with
SERPINB13; DCUNID3 paired with DEFB103A, DEFB103B,
ILIF5 (IL36RN), ILIF6 (IL36A), and IL1F9 (IL36G); HIGD1A
paired with SERPINB3; PPIF paired with DEFB103A, DEFB103B,
and IL1F6; STAT3 paired with IL1F5, IL1F9, SERPINB7, and
S100A7A; and UBE2F paired with DEFB103A, DEFB103B, IL1F9,
SERPINBI, SERPINB3, SERPINB4, and S100A12 (Supplementary
Figure S2A). Notably, SERPINB1, SERPINB3, SERPINB4,
SERPINB7, and SERPINBI13 belong to the serine protease
inhibitor family, which play critical roles in maintaining skin
barrier function, immune regulation, and inflammatory responses
(27). DEFB103A and DEFB103B are members of the human 3-
defensin gene family and encode small antimicrobial peptides that
are pivotal in innate immunity, countering a range of pathogens
including bacteria, fungi, and certain viruses (28). SI00A7A and
S100A12, part of the S100 protein family, are primarily involved in
inflammatory processes and are upregulated in psoriasis, thereby
exacerbating inflammation (29). IL1F5, IL1F6, and IL1F9 belong to
the interleukin-1 family and are centrally involved in mediating
inflammation and immune responses (30). Although IL1F5 acts as
an antagonist of the IL - 36 receptor, previous studies have
consistently observed its high expression in psoriasis (31). Among
the 34 key HKGs identified, the co-expression relationships with
previously reported psoriasis-associated pathogenic genes shifted
from negative to positive (or from weakest to strongest
correlations). Given that these pathogenic genes are aberrantly
expressed in keratinocytes (5, 16, 32), our findings suggest that
these HKGs may influence the progression of psoriasis by
modulating the biological functions of keratinocytes.

3.3 Differential expression of key
housekeeping genes primarily in
keratinocytes

To validate whether the identified key HKGs are differentially

expressed in keratinocytes, we analyzed single-cell transcriptomic
data derived from skin tissues of psoriasis patients. This dataset
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FIGURE 1

Identification of psoriasis related housekeeping genes. (A) Venn diagram illustrating the overlap of differentially expressed genes between various
datasets, including the number of differentially expressed housekeeping genes. (B) Cluster dendrogram and module assignment for the GPL9052
cohort. (C) Heatmap showing the association between gene expression modules and phenotypic traits. (D) Scatter plot showing correlation of genes
within modules to modules and to psoriasis traits. (E) Venn diagram shows the overlap of 88 DHKs with the turquoise module genes and the
turquoise module hub genes. (F) GO enrichment analysis. (G) KEGG enrichment analysis. DEG, Differentially expressed gene; DHK, Differentially
expressed housekeeping gene; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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comprised 14 psoriasis patients and 8 healthy controls. After quality
control, a total of 48,287 high-quality cells were retained. Using the
Seurat package, we identified nine distinct cell types, including
keratinocytes, fibroblasts, T cells, endothelial cells, smooth muscle
cells, neurons, myeloid cells, mast cells, and melanocytes
(Figure 2A; Supplementary Figure S3A) (16, 33).

Differential expression analysis comparing lesional skin to
healthy controls revealed that, within keratinocytes, 8 key HKGs
were downregulated and 25 genes were upregulated, with one gene
undetected. Notably, the expression patterns of these key HKGs in
keratinocytes from the single-cell data were highly consistent with
those observed in bulk transcriptomic analyses. The majority of key
HKGs (32 out of 34) showed consistent expression in keratinocytes
between bulk and single-cell transcriptomic data—7 genes were
downregulated and 25 genes were upregulated (Figures 2B, C), with
only NOP2 displaying inconsistent expression and SCO2
undetected in the single-cell dataset. Although a few genes did
not reach statistical significance in the single-cell analysis, their
expression trends remained consistent with the bulk data.

Furthermore, cell type deconvolution analysis using
CIBERSORTX indicated that keratinocytes constituted the largest
proportion among all cell types, with a significantly higher proportion
observed in psoriasis patients compared to healthy controls
(Figure 2D). This finding is in line with the clinical characteristics
of psoriasis, which is marked by hyperproliferation of keratinocytes
and consequent epidermal thickening. Additionally, correlation
analysis between the key HKGs and various cell types revealed that
the upregulated genes were significantly positively correlated with
keratinocytes, whereas the downregulated genes exhibited a
significant negative correlation (Figure 2E).

Collectively, these results indicate that the differential
expression of the identified key HKGs is primarily driven by
changes in keratinocytes.

3.4 IL-17A regulates the expression of four
HKGs in keratinocyte subpopulations

To further elucidate the role of HKGs in keratinocytes, we
adopted the keratinocyte subcluster classification defined by Francis
et al (33). Keratinocytes were categorized into five subpopulations:
follicular (KRT177), basal (KRT15"), proliferating (MKI67"),
spinous (KRT1"/SPRR2E’), and supraspinous (KRT1"/SPRR2E")
(Figure 3A; Supplementary Figure S3B).

Differential expression analysis comparing PP and NS revealed
that supraspinous, spinous, proliferating, and basal keratinocytes
exhibited a more pronounced response to psoriasis, evidenced by a
larger number of DEGs, whereas follicular keratinocytes displayed a
relatively muted response (Figure 3B).Further examination of the
differential expression of key HKGs and their co-expressed partners
indicated that significant changes were primarily observed in the
spinous, supraspinous, proliferating, and basal subpopulations, with
no notable alterations in follicular keratinocytes (Figures 3C, D).
This suggests that the co-expression of key HKGs and psoriasis-
associated pathogenic genes occurs predominantly in the non-
follicular keratinocyte subpopulations.
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To explore cell communication differences among keratinocyte
subpopulations in psoriasis, we focused on the spinous, supraspinous,
proliferating, and basal groups. These subpopulations showed
marked gene expression differences between PP and NS, suggesting
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their critical roles in psoriasis pathogenesis. Ligand-receptor analysis
further revealed a significant increase in interactions between these
keratinocyte subpopulations and other cell types in psoriasis patients
(Figure 3C). When treating these four subpopulations as receptor
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sources, subsequent pathway analysis indicated that the
communication networks in psoriasis encompassed several key
immune and signaling pathways, including IL - 17, CXCL, midkine
(MK), IL - 6, NOTCH, EGF, and MHC-II (Figure 3D). Midkine is a
heparin-binding growth factor broadly expressed in inflammatory
diseases; recent studies have shown that MK regulates VEGF-A
expression via the Notch2/HES1/JAK2-STATS5A signaling pathway,
thereby exerting critical effects on angiogenesis in psoriasis (34, 35).
Collectively, these pathways are intimately linked to chronic
inflammation and keratinocyte hyperproliferation in psoriasis.

To assess the regulatory effects of the altered cell communication
pathways on downstream targets, we employed NicheNet, which
integrates expression data with known signaling and gene regulatory
networks to predict ligand-target relationships (23). All cells were
considered “sending cells,” while the four keratinocyte subpopulations
were defined as “receiving cells.” Using NicheNet, we inferred
the regulatory potential of ligands on differentially expressed and
HKGs within these subpopulations. Our analysis identified four
HKGs—RAN, STAT3, EIF5A, and PPARD—whose differential
expression was regulated by specific ligands (Figures 3E, F, 4A).
Notably, MDK exhibited the highest regulatory potential for RAN, a
small GTPase involved in nucleocytoplasmic transport and cell cycle
regulation, suggesting that its upregulation may accelerate cell
proliferation (36). For STATS3, IL - 6 was the key ligand, consistent
with the known role of STAT3 in mediating inflammatory responses
via cytokines such as IL - 6, IL - 17A, and EGF (37). IL - 17A emerged
as the principal regulator for both EIF5A and PPARD. EIF5A plays a
critical role in translation elongation, mRNA stability, and cell growth,
and its upregulation via NF-kB pathways may enhance inflammatory
mediator production and cellular stress responses (38, 39). PPARD, a
nuclear receptor that regulates lipid metabolism, cell proliferation, and
differentiation, is crucial for maintaining the epidermal barrier and
modulating skin inflammation; its upregulation may represent a
negative feedback mechanism to counterbalance IL - 17A-induced
inflammation (40). Notably, IL - 17A was the only ligand with
regulatory potential for all four HKGs. In addition, IL - 17A
regulated key downstream targets including the transcription factor
STAT1, chemokines CXCL2, CXCLS8, and CCL20, and the structural
protein KRT17. These targets play critical roles in controlling cell
proliferation, differentiation, and chemotaxis.

Our NicheNet-derived regulatory network delineates the
functional interactions between these ligands and HKGs
(Supplementary Figure S4B). Cellular expression profiling revealed
predominant localization of MDK receptors (SDC1/SDC4) in
keratinocytes. Notably, IL17A expression exhibited psoriasis-
specific restriction to T-cell populations (Supplementary Figures
S4C, D). Furthermore, psoriatic keratinocytes showed significant
upregulation of key transcriptional regulators including CREM,
STAT1, and BATF (Supplementary Figure S4E).

In summary, in psoriasis, ligand-receptor signaling pathways,
especially those involving IL - 17A, significantly modulate the
expression of key HKGs in keratinocyte subpopulations. This
modulation contributes to abnormal inflammatory responses,
immune activation, and keratinocyte hyperproliferation.
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3.5 Application of the avNNet model based
on key housekeeping genes in psoriasis
diagnosis and treatment monitoring

Using the GSE54456 dataset, five machine learning models were
constructed using 34 key HKGs as features. To further assess model
generalizability and potential overfitting, we validated these models
on six external datasets, including three merged GPL570 platform
datasets. All five models performed exceptionally well on the
training and internal test sets, achieving AUC and F1 scores of 1
and a classification accuracy of 100%.

External validation with multiple independent datasets
confirmed the stability of our models. Except for the SVM Radial
model, which showed prediction accuracies below 75% on some
datasets, the other four models achieved accuracies above 80% and
F1 scores greater than 0.8 across all datasets. Notably, the avNNet
model consistently exceeded 90% prediction accuracy across all
datasets (Figures 4A-C). These results indicate that the machine
learning models based on the identified key HKGs can reliably
distinguish between normal and diseased samples, underscoring
their potential for molecular-level psoriasis diagnosis.

Building upon avNNet’s exceptional performance, we further
validated its clinical utility across two independent cohorts. For skin
tissue samples (GSE117468), the model achieved 93% accuracy in
discriminating lesional from non-lesional skin (Figure 4D), while also
demonstrating remarkable sensitivity to treatment response -
successfully identifying molecular recovery as early as week 4 post-
treatment and accurately classifying clinical responders by week 12
(Figure 4E). Notably, the model maintained strong predictive
performance (83% accuracy) when applied to PBMC transcriptomes
(GSE192867; Supplementary Figure S5A), underscoring its robustness
across different biological samples. These findings collectively establish
avNNet as a sensitive tool for both psoriasis diagnosis and longitudinal
monitoring of therapeutic efficacy.

The avNNet-derived HKG signatures enabled stratification of
psoriasis patients into distinct high- and low-score phenotypes,
revealing significant differential gene expression patterns. GO
enrichment analysis revealed that upregulated genes in the high-
score group were enriched in antiviral and type I interferon signaling
pathways, keratinocyte differentiation, epidermal cell proliferation, and
chemokine activity, reflecting the inflammatory and hyperproliferative
state characteristic of active psoriasis (41)(Supplementary Figure S5B).
In contrast, downregulated genes were associated with extracellular
matrix organization, collagen metabolism, epidermis development and
wound healing, suggesting reduced tissue remodeling and
normalization of keratinocyte hyperproliferation in the low-score
group (42) (Supplementary Figure S5C).

Finally, we observed a significant correlation between the
avNNet model score and the clinical Psoriasis Area and Severity
Index (PASI) (correlation = 0.74, P = 4.4e-47) (Figures 4F, G). This
strong correlation indicates that the molecular-level scoring
provided by the avNNet model closely reflects traditional clinical
assessment metrics, offering a novel approach for evaluating
psoriasis progression and treatment outcomes.
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Machine learning models to diagnose psoriasis. (A) Circular barplot depicting the AUC values of five machine learning models on different datasets.
(B) Circular barplot depicting the accuracy of five machine learning models across different datasets. (C) Circular barplot depicting the F1 score of
five machine learning models across different datasets. (D) ROC curves were used to assess the accuracy of the avNNet model in classifying lesional
and non-lesional skin. (E) ROC curves were used to assess the accuracy of the avNNet model in classifying pre-treatment and post-treatment.

(F) Heatmap showing correlation between avNNet model scores and clinical indicators. G Box plot comparing PASI across treatment times for the
GSE117468 cohort. ****P<0.0001. PASI, psoriasis area and severity index; LS, lesional skin; NS non-lesional skin.
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4 Discussion

Our study systematically elucidates the critical role of HKGs in
psoriasis pathogenesis through integrative transcriptomic analysis
and machine learning modeling. By combining bulk and single-cell
transcriptomic analyses, we identified 34 HKGs that exhibit
dysregulated expression patterns tightly linked to keratinocyte
dysfunction and immune dysregulation. These findings not only
expand our understanding of psoriasis mechanisms beyond
canonical pathways but also establish a novel framework for
molecular diagnosis and therapeutic monitoring.

In this study, we draw on the “moonlighting protein” paradigm to
redefine a subset of HKGs as “dual-function regulators,” recognizing
that a single gene product can fulfill disparate roles depending on
cellular context (43, 44). Specifically, under homeostatic conditions,
these regulators sustain essential cellular processes, while in
pathological states such as psoriasis, they perform additional
regulatory functions. This redefinition leverages the comprehensive
reanalysis by Eisenberg and Levanon, who cataloged 3,804 high-
confidence HKGs based on their ubiquitous and stable expression
across human tissues (6). Our results reveal that, within psoriatic
lesions, a subset of these genes not only exhibit disrupted expression
stability but also actively participate in inflammatory signaling and
keratinocyte differentiation pathways, thus extending well beyond their
canonical housekeeping roles. Previous work has documented context-
dependent repurposing of classical HKGs. For example, GAPDH,
beyond its glycolytic function, also modulates transcription and
apoptosis (45). Here, we demonstrate that in psoriasis, HKGs such as
STATS3, PPIF, and EIF5A are co-opted by the IL-17/IL-6 signaling axis
to drive keratinocyte activation. These findings underscore a conserved
mechanism of functional repurposing, whereby traditionally
“housekeeping” molecules become integral components of disease-
specific regulatory circuits.

In multiple cohorts, our study identified 34 highly conserved
dysregulated HKGs, underscoring their critical role in psoriasis.
Notably, STAT3, EIF5A, and RAN emerge as pivotal nodes in
keratinocyte activation driven by IL - 17A signaling. Overexpression
of RAN has been associated with increased cellular proliferation in
breast cancer (46), while persistent STAT3 activation has long been
implicated in psoriasis (47). Moreover, RAN appears to act
synergistically with STAT3 by modulating its nuclear import (48). As
a key translation factor, EIF5A, and in particular its isoform EIF5A2, is
overexpressed in various cancers (49). These mechanisms are
consistent with the hyperproliferative and inflammatory phenotype
observed in psoriatic keratinocytes. We also observed downregulation
of CD81, which can enhance NF-kB-mediated inflammation and
upregulation of PARPY, which is a known promoter of
proinflammatory gene expression (50, 51). These findings support
prior studies linking HKG dysregulation to inflammatory processes.
Additionally, our single-cell data reveal that HKG dysregulation is
predominantly confined to non-follicular keratinocyte subpopulations
(basal, spinous, supraspinous, and proliferative cells), which are the
primary drivers of epidermal hyperplasia. This spatial specificity
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emphasizes the compartmentalized nature of HKG-driven pathology
in psoriasis.

The co-expression shifts of HKGs with psoriasis-associated genes
(e.g., DEFB103A/B, S100A7A, IL36RN) further demonstrate their
regulatory influence. The transition from negative to positive
correlations in disease states suggests that HKGs may act as
molecular rheostats, rewiring transcriptional networks to sustain
inflammation. For instance, the interaction between DCUN1D3
and TL36RN, a key antagonist of IL - 36 receptor signaling, implies
arole in modulating IL - 36 dependent epidermal barrier dysfunction,
a mechanism recently implicated in pustular psoriasis (52). These
findings bridge the gap between HKGs and established pathogenic
pathways, positioning them as amplifiers of disease-specific signals.

The avNNet model’s exceptional performance (AUC >0.9
across datasets) underscores the diagnostic utility of HKGs.
Unlike previous biomarker panels that rely on immune-specific
genes, our HKG-based approach captures keratinocyte-centric
molecular shifts, enabling earlier detection of subclinical
inflammation. The model distinguishes treated from untreated
skin with 93% accuracy and shows a strong correlation with PASI
(p = 0.74), positioning it as a robust tool for monitoring therapeutic
response. Notably, the model detected molecular recovery at 4
weeks post-treatment, a timepoint when clinical improvement is
often ambiguous, suggesting its potential to guide personalized
treatment escalation. The superior performance of the avNNet
model can be attributed to its ensemble averaging approach,
which aggregates the outputs of multiple individual neural
networks. This strategy not only markedly enhances overall
accuracy and prediction stability but also reduces reliance on
hyperparameter tuning for any single network, thereby
simplifying model optimization (53). Furthermore, by integrating
multiple weak learners, avNNet mitigates the risk of overfitting. In
contrast, the inferior performance of the SVM Radial model likely
stems from its dependence on two critical hyperparameters, the
penalty parameter C and kernel width v, where inappropriate
combinations can easily lead to underfitting or overfitting (54).
This underscores the necessity of selecting algorithms specifically
tailored to capture HKG expression dynamics, as these biological
patterns often involve complex nonlinear interactions that are best
captured by neural network architectures.

While our findings are compelling, several limitations warrant
consideration. First, the reliance on pre-treatment lesional skin
samples may overlook dynamic HKG changes during disease flares
or treatment. Second, SCO2 and NOP2’s inconsistent expression in
single-cell data raises questions about technical variability versus
biological context-dependency. Third, our ligand-receptor analyses
were based solely on transcriptomic inference without protein-level
or functional validation, such as phospho-protein assays or cytokine
blockade experiments. Additionally, while our avNNet model
demonstrated high diagnostic accuracy and correlation with
PASI, its ability to distinguish psoriasis subtypes and capture
immune-driven heterogeneity remains to be validated. These
analytical constraints, common in large-scale transcriptomic
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studies, highlight important directions for future investigation. As
multi-omics datasets become more accessible, subsequent studies
could further validate these networks, while expanded cohorts
would enable refined subtype analyses. Looking ahead, the
implementation of spatial transcriptomics could precisely map
HKG activity across epidermal-dermal microenvironments, while
CRISPR-based functional screens would help establish causal
relationships. Such advances would significantly accelerate the
translation of our findings into clinical applications, particularly
for personalized treatment strategies in psoriasis management.

5 Conclusion

By redefining HKGs as active contributors to psoriasis
pathogenesis, this study challenges the traditional view of HKGs
as mere experimental controls. Our multi-level transcriptomic
analysis reveals their dual role as both stabilizers of cellular
homeostasis and drivers of disease-specific networks, offering new
therapeutic targets. The avNNet model further bridges molecular
insights to clinical practice, providing a scalable tool for precision
dermatology. These advances pave the way for HKG-directed
therapies and biomarker-driven management of psoriasis.
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