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Risk scoring model for lung
adenocarcinoma based on
PD-L1 related signature reveals
prognostic predictability
and correlation with tumor
immune microenvironment
genes was constructed
Meng Li-Fei1†, Si-Meng Ren2†, Jun Wang1, Wei-Jun Zhao1,
Jian Chen1* and Wen-Tao Hu1*

1Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China,
2Department of Psychology, College of Liberal Arts, Wenzhou-Kean University, Wenzhou, China
Background: Immunotherapy has recently become a hot topic in the field of

oncology, with PD-L1 playing a crucial role in this area. However, the research on

PD-L1 correlation predictionmodels is not fully understood. The aim of our studywas

to investigate the role of PD-L1-related genes in lung adenocarcinoma immunity.

Methods: The mRNA and clinical data were obtained from the Cancer Genome

Atlas database. DESeq2, Glmnet, forestplot, clusterProfiler and enrichplot were

used to analyze the mRNA and clinical data. Western blotting and real-time qRT-

PCR were used to confirm the GPR115, MF12, GREB1L, SPRR1B and LIPK mRNA

and protein expression.

Results: Firstly, 562 cases of TCGA lung adenocarcinoma, including 503 of tumor

tissue and 59 of normal tissue were collected. The dataset was analyzed using the

DESeq2 package of R. 1,251 high- and 285 low-expression genes were obtained.

The tumor samples were divided into CD274-high and CD274-low expression

samples and 873 genes were up-regulated and 1,010 genes were down regulated

between CD274-high and CD274-low samples. Subsequently, the intersection

of 1,251 and 873 was taken to obtain 110 genes that were both highly expressed

genes in tumors and CD274 high-expression samples. Survival analysis of 110

genes yielded 5meaningful genes including GPR115, MF12, GREB1L, SPRR1B, and

LIPK (p < 0.001). These five genes were used to construct PD-L1 risk predictors.
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Cytokine-cytokine receptor interaction and IL-17 signaling pathway were

involved in the regulation of this risk model factors to lung adenocarcinoma.

The level of effector memory CD4 T cells and Type 2 T helper cells were

correlated with the risk model factor. Importantly, the PD-L1 risk prediction

model could effectively predict the prognosis of patients.

Conclusion: The construction of PD-L1 risk model was of great significance for

the treatment of lung adenocarcinoma.
KEYWORDS

lung adenocarcinoma, programmed death ligand-1, bioinformatics, survival analysis,
machine learning
1 Introduction

As the most common histological subtype of non-small cell lung

cancer (NSCLC), lung adenocarcinoma has a high incidence and

mortality rate that seriously threatens human health (1, 2).

Although significant progress has been made in targeted therapy

and immunotherapy in recent years, tumor heterogeneity, drug

resistance, metastasis and recurrence remain major challenges in

clinical management (3–5). It is of great significance to deeply

analyze the molecular mechanism of the occurrence and

development of lung adenocarcinoma, especially the key genes

that drive tumor progression, for the development of novel

biomarkers and precision treatment strategies. In recent years,

several studies have suggested that genes such as SPRR1B, MFI2,

LIPK, GREB1L, and GPR115 may play a potential role in lung

adenocarcinoma (LUAD).

As a member of the transferrin family, the transmembrane

protein MFI2 (Melanotransferrin, also known as CD228) has

gradually become a research hotspot due to its potential role in

tumor metabolic reprogramming and metastatic microenvironment

regulation (6). In lung adenocarcinoma, abnormally elevated MFI2

expression was significantly associated with lymph node metastasis,

late clinical stage, and shortened survival (7–9). Mechanistic studies

suggest that MFI2 may enhance the migration and invasion ability

of tumor cells through integrin-extracellular matrix interactions, or

affect the drug resistance and immune escape of tumor cells by

regulating iron-dependent metabolic pathways (such as lipid

peroxidation). In addition, the potential association between

MFI2 and immune microenvironment remodeling events such as

tumor-associated macrophage (TAMs) polarization and PD-L1

expression is also worth further exploration (10–13). However,

there is still a lack of systematic research on the functional

mechanism, upstream regulatory network and feasibility of MFI2

as a therapeutic target in lung adenocarcinoma.

Growth regulation by estrogen in breast cancer 1-like

(GREB1L) has become a research hotspot due to its potential

function in developmental regulation and tumorigenesis (14, 15).
02
GREB1L was initially found to be involved in embryonic organ

formation and gonadal development, and subsequent studies

suggest that it may affect cell proliferation and differentiation by

regulating hormone receptor (e.g., estrogen receptor, androgen

receptor) signaling or non-canonical pathways (14, 15). In the

field of tumors, aberrant expression of GREB1L has been reported

in breast, ovarian and prostate cancers, but its biological

significance in lung adenocarcinoma is not clear (16–19). As an

important regulator of triglyceride hydrolysis and fatty acid

metabolism, the lipid metabolism-related enzyme LIPK (Lipase

K) may disrupt lipid homeostasis, affecting the energy supply,

membrane structure remodeling, and signal transduction of

tumor cells , thereby driving the progression of lung

adenocarcinoma (20–22). There is still a lack of systematic

exploration regarding the specific targets of LIPK in lung

adenocarcinoma, the mechanisms of epigenetic regulation, and its

feasibility as a target for metabolic therapy.

Small Proline-Rich Protein 1B (SPRR1B), as a member of the

epidermal differentiation-related protein family, has attracted much

attention for its potential role in cell proliferation, migration, and

Epithelial-Mesenchymal Transition (EMT) (23–25). EMT is a process

by which epithelial cells transform into mesenchymal - like cells,

endowing themwith enhanced migratory and invasive properties (26,

27). Studies have shown that SPRR1B is abnormally high expressed in

a variety of solid tumors (such as esophageal cancer, head and neck

squamous cell carcinoma), and promotes tumor invasion and

metastasis by activating signaling pathways such as EGFR/MAPK

(23, 28–30). In lung adenocarcinoma, the expression of SPRR1B is

significantly up-regulated and is closely related to the poor prognosis

of patients. Further mechanistic studies have found that SPRR1Bmay

enhance the migration ability and drug resistance of cancer cells by

regulating cytoskeletal remodeling, matrix metalloproteinase

(MMPs) secretion, and tumor microenvironment interaction (31,

32). However, the specific downstream targets of SPRR1B in lung

adenocarcinoma, the epigenetic regulatory mechanism, and its

association with the immune microenvironment are still not

fully elucidated.
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GPR115 (Adhesion G Protein-Coupled Receptor V1,

ADGRV1), as a member of adhesion GPCRs, is involved in tissue

development and homeostasis maintenance by mediating cell-

matrix interaction and transmembrane signaling. In recent years,

studies have suggested that GPR115 is abnormally expressed in a

variety of malignant tumors (such as breast cancer and glioma),

which may promote tumor invasion and drug resistance by

activating MAPK/ERK or PI3K/AKT pathways (33–36). In lung

adenocarcinoma, the expression of GPR115 was significantly up-

regulated, and was significantly associated with TNM stage

progression, distant metastasis, and shortened overall survival.

Preliminary mechanistic studies suggest that GPR115 may

enhance tumor cell adhesion and migration by regulating the

integrin-FAK signaling axis, or promote tumor angiogenesis by

mediating vascular endothelial growth factor (VEGF) secretion (37,

38). However, the mechanism of ligand-receptor interaction,

epigenetic regulatory model, and pharmacological feasibility of

GPR115 as a therapeutic target in lung adenocarcinoma still need

to be elucidated.

The programmed death-1 (PD-1) pathway is a key mediator of

local immunosuppression of the tumor microenvironment (TME)

and also regulates T cell activation of tumor antigens and secondary

lymph nodes (39). Blocking the PD-1 pathway by inhibiting PD-1

receptors on immune cells or PD-L1 ligands on tumors or immune

cells can inhibit tumor growth and may lead to curability. PD-L1

antibodies, including Pembrolizumab, Nivolumab, Atezolizumab

and Durvalumab, have been approved by the FDA for the clinical

treatment of NSCLC (40). NSCLC still has a poor prognosis, and

immunotherapy (IMT) has become part of the treatment of patients

with no driver alterations (epidermal growth factor receptor

(EGFR) or anaplastic lymphoma kinase (ALK)) (41). Guidelines

from the ASCO and OH Joint Expert Group recommend

pembrolizumab for non-squamous cell carcinoma (non-SCC)

with high PD-L1 expression (Tumor Proportion Score

[TPS]≥50%) (41). At present, immunotherapy has shown

significant efficacy in patients with NSCLC with high expression

of programmed death-ligand 1 (PD-L1) and high tumor mutational

burden (42). Therefore, it is crucial to find predictive biomarkers of

immunotherapy efficacy.

Immunotherapy has recently become a hot topic in the

field of oncology. However, the research on PD-L1 correlation

prediction models is not fully understood. The aim of our study

was to investigate the role of PD-L1-related genes in lung

adenocarcinoma immunity.
2 Materials and methods

2.1 Data acquisition and processing of lung
adenocarcinoma

The Cancer Genome Atlas (TCGA) database, jointly established

by the U.S. National Cancer Institute (NCI) and National Human

Genome Research Institute (NHGRI), provides multi-omics data

including transcriptomic expression profiles, genomic variation
Frontiers in Immunology 03
data, and clinical annotations. Clinical datasets were retrieved

from the TCGA portal (http://portal.gdc.cancer.gov/), and 562

samples meeting inclusion criteria (complete clinical metadata)

were retained for subsequent analyses. All datasets utilized in this

study were derived from public repositories, thus exempting the

requirement for ethics committee approval.
2.2 Screening of differentially expressed
genes and enrichment analysis

Differentially expressed genes (DEGs) in lung adenocarcinoma

were identified using the DESeq2 package in R (version 4.3.0), with

thresholds set at an adjusted p-value (Benjamini-Hochberg false

discovery rate [FDR]) < 0.05 and absolute log2-fold change (|

log2FC|) > 1. Visualization of DEGs was performed using ggplot2

(volcano plots) and heatmaps (hierarchical clustering heatmaps).

Subsequently, gene expression profiles were integrated with survival

data (overall survival status and time). Prognostically significant

genes were preliminarily screened through univariate Cox

regression analysis (threshold: p < 0.05). Functional annotation of

these prognosis-related genes was conducted using clusterProfiler

and enrichplot packages, including: Gene Ontology (GO)

enrichment analysis (biological processes, molecular functions,

cellular components), Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analysis. Results were visualized via dot plots,

enrichment maps, and circular dendrograms following best

practices for omics data visualization.
2.3 Construction of protein-protein
interaction network and correlation
analysis

The GeneMANIA platform (http://genemania.org/), a widely

used online tool for predicting protein-protein interactions and

functional associations, was employed to construct a PPI network.

The PPI network of these mitochondrial-related prognostic genes

was subsequently constructed using the GeneMANIA database.
2.4 Construction of prognostic risk score
model

Differentially expressed genes (DEGs) were integrated with

LUAD patient survival data, and samples with incomplete clinical

information were excluded. The Glmnet package in R was utilized

to perform LASSO (Least Absolute Shrinkage and Selection

Operator) regression, followed by Cox proportional hazards

modeling for survival analysis. Forest plots were generated using

the forestplot package. To mitigate overfitting in the prognostic

model, genes identified through univariate Cox regression were

subjected to LASSO regression via the Glmnet package, excluding

genes with regression coefficients of zero. Subsequently,

multivariate Cox regression analysis was performed to identify
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genes significantly associated with prognosis. A risk score was

calculated for each patient based on the final gene set.

risk score =o
n

i=1
Coef (i)�m(i)

The final prognostic risk score model was constructed using the

following parameters:
Fron
n: Total number of genes significantly associated

with prognosis

Coef: Regression coefficient of each gene derived from

multivariate Cox regression analysis

m: Expression level of each gene
2.5 Evaluation and validation of the
prognostic risk model

A total of 503 LUAD samples were stratified into high and low

risk groups based on the optimal cut-off value determined by

receiver operating characteristic (ROC) curve analysis. The

pheatmap package was utilized to generate: a survival status

heatmap illustrated the distribution of high and low risk groups.

An expression heatmap of prognosis-associated genes were used in

the model. Survival curves were plotted using the survival package,

and the independent prognostic value of the risk score was validated

through Cox regression analysis. The predictive performance of the

model was further evaluated by constructing ROC curves using an

internal validation dataset.
2.6 Patient sample collection

Samples were collected from patients with NSCLC in the

Department of Thoracic Surgery, the First Affiliated Hospital of

Ningbo University. All patients provided written informed consent.

NSCLC tissues and adjacent tissues were collected for research

purposes. The samples were sectioned and stored frozen in liquid

nitrogen at -80 °C. All procedures involving human participants

were conducted in accordance with the 1964 Declaration of

Helsinki and its subsequent amendments.
2.7 Western blotting

Proteins were extracted from tumor tissues and separated by

polyacrylamide gel electrophoresis (Beyotime, Shanghai, China).

The separated proteins were transferred to a polyvinylidene fluoride

(PVDF) membrane (Invitrogen, USA) using an electro-transfer

device (Servicebio, Wuhan, China), which was placed in an ice

bath. Blocking was performed with 5% bovine serum albumin (BSA;

Beyotime, Shanghai, China), and the membrane was placed on a

shaker at a slow speed for 1 hour. The primary antibody was then

added for incubation to allow specific binding, followed by
tiers in Immunology 04
incubation with horseradish peroxidase (HRP)-labeled secondary

antibody to form an HRP-primary antibody conjugate (1:10000,

Abbkine, China). The details of the primary antibodies are as

follows: GREB1L (1:1000, Novus, USA), MFI2 (1:1000, CST,

USA), SPRR1B (1:1000, Zen-bio, China), GPR115 (1:1000, Baijia,

China), LIPK (1:1000, Novus, USA), and b-actin (1:1000,

Proteintech, USA). Enhanced chemiluminescence (ECL;

Millipore, USA) was used for signal development, which was

stopped once clear bands appeared. The film was scanned, and

the gray values of the target bands were analyzed using

ImageJ software.
2.8 RNA isolation and real-time qRT-PCR

Total RNA was extracted from NSCLC cells using TRIzol

reagent (Invitrogen, USA), and the RNA concentration was

measured. qRT-PCR was performed using SYBR Green (Tiangen,

China) on an ABI Illumina instrument (Foster, USA). The

information of primers was listed in Table 1.
2.9 Statistical analysis

All statistical analyses and presentations were performed using

the R 4.3.0 software package. The differential expression of

immune-related genes in LUAD and normal tissues was

compared using Wilcox test. Multivariate Cox regression

analysis was used to identify immune-related genes associated

with poor prognosis in LUAD. T test was used to evaluate the

correlation between prognostic genes and transcription factors.

Survival analysis was performed using Kaplan-Meier curves.

P<0.05, P<0.01 and P<0.001 was considered a statistically

significant difference.
TABLE 1 The sequence of primer.

GREB1L Forward primer 5’-ACCTCTGCCTCCCAGATGTC-3’

Reverse primer 5’-CTTGTCTGAAACCAGGGGCA-3’

MFI2 Forward primer 5’-GGCACACAACCGTCTTGAC-3’

Reverse primer 5’-GGGGCACAGCAGTTCATAGT-3’

SPRR1B Forward primer 5’-ACCTCTGCCTCCCAGATGTC-3’

Reverse primer 5’-CTTGTCTGAAACCAGGGGCA-3’

GPR115 Forward primer 5’-TGCCACGTGATGGTGAAGAT-3’

Reverse primer 5’-TGGATCCTTCCAGTCTTGGG-3’

LIPK Forward primer 5’-TCTCTTCACACCAGGACCAG-3’

Reverse primer 5’-ACTATTGAAGGGCAGGGCTC-3’

GAPDH Forward primer 5’-GAAGGTGAAGGTCGGAGTC-3’

Reverse primer 5’-GAAGATGGTGATGGGATTTC-3’
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3 Results

3.1 Immune-related genes and enrichment
analysis in lung adenocarcinoma was
identified

Analysis of LUAD patient data from the TCGA database

identified 1,251 upregulated genes and 285 downregulated genes

(Figures 1A, B). Using stringent thresholds (adjusted p-value [FDR] <

0.05, |log2 fold change (FC)| > 1) and according to high and low

expression of CD274 (PD-L1), we detected DEGs comprising 873

upregulated and 1010 downregulated genes. A heatmap depicting
Frontiers in Immunology 05
CD274 (PD-L1) expression stratification was shown in Figure 1C.

Subsequently, Volcano plot demonstrated top 20 differential CD274-

related genes (CRGs, Figure 1D). Upregulated genes included CD274,

CXCL11, TBX21, CXCL10, GBP5, GBP1, WARS, SAMD9L,

PDCD1LG2 and LILRB2. Downregulated genes were included

CBR1, NPAS3, MYCN, CALCB, UGT2B4, PCSK2, KLK12, PGC,

INSM1 and PCSK1. To elucidate the relationship between CD274

and LUAD-associated genes, Venn diagram analysis was performed

(Figures 1E, F). 873 genes were overlapped with 1,251 LUAD-

upregulated genes and the intersected gene was 110. 1,010 CD274-

downregulated genes were overlapped with 285 LUAD-

downregulated genes and the intersected gene was 9.
FIGURE 1

CD274 related-genes were found. (A) Tissue adjacent to carcinoma tissue and high expressed genes with lower expression genes heat maps.
(B) Tissue adjacent to carcinoma tissue and high expression genes with lower expression volcanic figure. (C) The amount of gene expression when
different CD274 (PD-L1) gene expression of heat map. (D) Different gene expression was showed in the volcano. (E) High expression of genes and
high expressed genes of Wayne figure in lung adenocarcinoma patients. (F) Lower expression CD274 the number of patients with lung
adenocarcinoma compared with healthy people lower expression of gene Wayne figure.
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3.2 Prognostic analysis and survival
correlation of immune-related genes was
found

In order to further screen out valid genes, survival analysis was

performed to 110 gene and p < 0.01 was screening criteria.

Furthermore, Kaplan-Meier survival curves demonstrated that

patients with high-expression of GPR115, MF12, GREB1L,

SPRR1B, and LIPK exhibited significantly poorer prognosis
Frontiers in Immunology 06
compared to low-expression (Figures 2A-F). What’s more,

comparative analysis revealed GPR115, MF12, GREB1L, SPRR1B,

and LIPK was upregulated in LUAD samples (Figures 2G), which

confirmed by hierarchical clustering heatmaps (Figure 2H).

Intriguingly, heatmaps revealed a progressive increased in

expression levels of GPR115, MFI2, GREB1L, SPRR1B, and LIPK

in CD274-high expression (Figure 2H), suggesting potential co-

regulatory mechanisms between these genes and immune

checkpoint pathways.
FIGURE 2

Risk genes associated with prognosis was screened. (A) Survival curve of GPR115. (B) Survival curve of MFI2. (C) Survival curve of GREB1L. (D) Survival
curve of SPRR1B. (E) LIPK survival curve. (F) The expression of GPR115, MF12, GREB1L, SPRR1B and LIPK was showed in tumor and normal tissue
according to TCGA database. (G) The expression of GPR115, MF12, GREB1L, SPRR1B and LIPK was showed on heatmap. (H) The expression of
GPR115, MF12, GREB1L, SPRR1B and LIPK was showed in tumor tissues according to high and low expression of CD274. ns≥0.05 was considered a
non statistically difference. *p<0.05, **p<0.01, ***p<0.001 and ****p <0.0001 was considered a statistically significant difference.
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3.3 Prognosis-associated genes was
screened

The malignant progression and prognosis of LUAD were related

to a variety of genes and factors. Therefore, this section would like to

use Univariate Cox regression to demonstrate whether the five genes

were associated with the prognosis of LUAD. Univariate Cox

regression analysis of SPRR1B, MFI2, LIPK, GREB1L and GPR115

revealed hazard ratios (HR) > 1 (Figure 3A), indicating that high

expression of these genes was associated with increased mortality risk.

Furthermore, to elucidate functional relationships among these genes

and their interactome, network analysis was performed (Figures 3B),

revealing distinct interaction patterns. Co-expression and co-

localization of SPRR1B was associated with keratin family genes

KRT14, KRT6B and lymphocyte antigen LY6D. MFI2 was physically

interacted with endocytic trafficking regulators. GREB1L was shared

protein domains with GREB1 (retinoic acid receptor coactivator).

Genetic interactions of GREB1L were with transcription factor TF

and TMEM67. GPR115 was functionally associations with oncogenic
Frontiers in Immunology 07
regulators JUN, integrin ITGA9, and epithelial marker KRT5. Finally,

we performed KEGG enrichment analysis on DRGs between CD274-

high and low expression samples (Figures 3C). The results of KEGG

analysis showed that the genes with high expression of CD274 in

LUAD samples were mostly concentrated in Cytokine-cytokine

receptor interaction, IL-17 signaling pathway and other pathways.

The genes with low expression of CD274 were concentrated in the

pathways of Neuroactive ligand-receptor interaction, Metabolism of

xenobiotics by cytochrome P450 and Arachidonic acid metabolism.
3.4 Enrichment analysis of differential
genes were performed

We performed GO functional enrichment analysis (Figures 4A)

and GSEA analysis (Figures 4B) to differential genes between

CD274-high and low samples. GO analysis showed that most of

the differentially expressed genes were mainly enriched in

leukocyte-mediated immune response and immune regulation,
FIGURE 3

Interactions and enrichment pathways of differential genes between high-CD274 and low-CD274 groups were analyzed. (A) Univariate Cox
regression analysis of SPRR1B, MFI2, LIPK, GREB1L and GPR115. (B) Interaction network analysis of SPRR1B, MFI2, LIPK, GREB1L and GPR115 with
other genes. (C) KEGG enrichment analysis of DEGs in tumor patients under different CD274 expression levels.
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receptor ligand activity and other processes. These processes played

an indispensable role in the occurrence and development of tumors.

GSEA analysis showed that the genes with high expression of

CD274 and high expression in tumor patients were enriched in

Necroptosis, JAK-STAT signaling pathway and Cell adhesion

molecules. The genes with low expression of CD274 and low

expression in tumor patients were enriched in Neuroactive

ligand-receptor interaction, Hormone signaling and cAMP

signaling pathway.
3.5 The risk scoring model for lung
adenocarcinoma with CD274 related genes
was constructed

Risk scoring models were a core tool for bridging clinical data

and practice by quantifying risk, simplifying decision-making, and

facilitating precision medicine. 503 tumor samples were divided

into high and low risk groups based on risk scores (Figures 5A, B).

Survival curves indicated that the high-risk group had a

significantly shorter overall survival (OS) than the low-risk group

(P = 0.0015). Univariate Cox regression analysis was performed for
Frontiers in Immunology 08
different influencing factors (Figure 5C). Further multivariate Cox

regression analysis identified five genes significantly associated with

LUAD, which were used to build a prognostic risk scoring model.

They were GREB1L (HR = 0.2124, coef = 1.218e - 04), MFI2 (HR <

0.001, coef = 8.705e - 05), SPRR1B (HR = 0.6224, coef = 1.773e -

05), GPR115 (HR = 0.7805, coef = - 3.601e - 05), and LIPK (HR =

0.395, coef = 1.453e - 03). For GREB1L, MFI2, RSPR1B, GPR115

and LIPK, a hazard ratio (HR) > 1 means high expression was

linked to high risk (Figure 5D). Further multivariate Cox regression

analysis was done by combining with other clinical parameters

(such as age, gender, and tumor stage) (Figure 5E). Results showed

that age (HR = 1.011, 95% CI = 0.9954 - 1.027, P = 0.1708), gender

(male HR = 3, female HR = 0.992, 95% CI = 0.7353 - 1.339, P =

0.9585), and tumor stage (i stage HR = 0.748, 95% CI = 0.0658 -

8.497, P = 0.8147; ia stage HR = 0.971, 95% CI = 0.2298 - 4.104, P =

0.9682; ib stage HR = 1.161, 95% CI = 0.2780 - 4.848, P = 0.8378; ii

stage HR = 5.894, 95% CI = 0.5262 - 66.031, P = 0.1501; iia stage HR

= 3.046, 95% CI = 0.7065 - 13.130, P = 0.1352; iib stage HR = 2.157,

95% CI = 0.5094 - 9.134, P = 0.2965; iiia stage HR = 3.440, 95% CI =

0.8207 - 14.421, P = 0.0911; iiib stage HR = 2.430, 95% CI = 0.4852 -

12.169, P = 0.2801; iv stage HR = 3.848, 95% CI = 0.8722 - 16.975, P

= 0.0752) were not associated with prognosis in lung
FIGURE 4

Functions and pathways of DEGs were explored. (A) Gene Ontology functional enrichment analysis of differentially expressed genes. (B) Gene Set
Enrichment Analysis of differentially expressed genes.
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adenocarcinoma patients. However, the risk model factor (HR =

0.661, 95% CI = 0.4878 - 0.895, P = 0.0074) was associated with

prognosis in lung adenocarcinoma patients. These results confirm

the predictive role of the risk score in lung adenocarcinoma

prognosis. Importantly, a nomogram was built by combining risk

scores with clinical characteristics, with the risk score making a

significant contribution to the predictive model (Figure 5F).
3.6 GO, KEGG and GSEA analysis were
performed according to risk scores

The risk scores of each patient were calculated according to the

risk scoring formula. By drawing a heat map (Figure 6A), it was
Frontiers in Immunology 09
found that the risk scores of above five genes (GPR115, MFI2,

GREB1L, SPRR1B and LIPK) were high when they were highly

expressed, indicating that they were more likely to have poor

prognosis when they were highly expressed. Heatmap showed the

differential genes between high-risk and low-risk groups

(Figure 6A). The volcanic map (Figure 6B) also showed that top

highest genes such as UPK1B, LHX1, GREB1L, PADI1, A2ML1,

TGM5, IL1A, CD109, CCNE1 and MFI2 were found. Top lowest

genes were CBR1, CACNA2D2, TMED6, WIF1, SLC38A8, GKN2,

SLC14A2, PCSK2, PGC and CALCA. We performed KEGG

enrichment analysis on DEGs (Figure 6C). Staphylococcus aureus

infection, Estrogen signaling pathway, Cytokine-cytokine receptor

interaction and Phtotransduction so on were involved positively in

high-risk groups. Neuroactive ligand-receptor interaction,
FIGURE 5

Performant and independent prognostic value of the risk-scoring model was evaluated. (A) Survival curves for different risk groups. (B) Risk curves,
survival status plots and heatmap of modeling gene expression for different groups. (C) Univariate Cox regression analysis of various clinical
parameters. (D) Forest plot of Cox analysis of modeling genes. (E) Forest plot of Cox analysis of various clinical parameters. (F) Nomogram
was performed.
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Metabolism of xenobiotics by cytochrome P450, and Drug

metabolism - cytochrome P450 so on were involved negatively in

high-risk groups. GO analysis showed these genes were mainly

enriched in channel activity, passive transmembrane transporter

activity, monoatomic ion channel activity and so on (Figure 7A).

GSEA indicated they were predominantly involved in cell cycle,

NOD-like receptor signaling pathway, cellular senescence and so

on (Figure 7B).
3.7 High risk was associated with immune
cell infiltration

Infiltrating immune cells in tumors are able to directly kill

tumor cells and are associated with a good prognosis. Natural killer

cells (NK cells) induce apoptosis of tumor cells by releasing perforin

and granzyme. However, regulatory T cells (Tregs) are able to

suppress the immune response and promote tumor immune escape.

M2 tumor-associated macrophages secrete proangiogenic factors to
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support tumor growth and metastasis (43). To explore the

correlations among immune cells, we performed pairwise

correlation analysis of immune cell gene expression levels and

visualized the results with a heatmap using the “ggplot2” package

(Figure 8A). There were extremely strong correlations between

Effector memory CD4 T cells and Type 2 T helper cells, between

Effector memory CD8 T cells and MDSCs/regulatory T cells, and

between natural killer T cells and Type 1 helper cells. To further

evaluate the infiltration levels of immune cells between the high-

and low-risk groups, we generated a heatmap (Figure 8B). To

further assess the infiltration levels of immune cells between high-

and low- risk groups, we used the CIBERSORT algorithm to

calculate the relative proportions of 28 immune cell subtypes in

each lung adenocarcinoma sample. Then, we compared the

immune cells with significant differences between the two groups

(Figure 8C). The high group had higher proportions of Activated

CD4 T cells, Effector memory CD8 T cells, Regulatory T cells, and

Natural killer T cells, while the low-risk group had higher

proportions of Eosinophils and Mast cells.
FIGURE 6

Enrichment analysis of key prognostic genes was conducted. (A) Heatmap of DEGs expression and risk scores. (B) Volcano plot of the relationship
between risk scores and different gene expression levels. (C) KEGG enrichment analysis of DEGs in tumor patients under risk scores.
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3.8 Optimize the model was validated with
data aggregation

LASSO regression solves the core problem of high-dimensional

data modeling through automatic feature selection and regularization

in the prognostic model, making the model more concise, explainable

and generalizable. Its combination with survival assays such as Cox

LASSO further expands its application value in medical research (44).

Therefore, to optimize the model, we used LASSO regression to

identify the best genes (Figure 9A). With the internal validation

cohort, the time-dependent ROC curves revealed 1–3-year AUC

values of 0.37-0.687, indicating good predictive performance of the

model (Figure 9B).
3.9 Expression of GREB1L, MFI2, SPRR1B,
GPR115 and LIPK was upregulated

To confirm the expression of PD-L1 related genes, PCR,

Western blotting and immunohistochemistry were used to verify

the expression levels of GREB1L, MFI2, SPRR1B, GPR115 and
Frontiers in Immunology 11
LIPK in LUAD tumor tissues. PCR results showed elevated

expression of GREB1L, MFI2, SPRR1B, GPR115 and LIPK

mRNA in LUAD tumor tissues (Figure 10A). Western blotting

results showed that the protein expression levels of GREB1L, MFI2,

SPRR1B and LIPK were increased, but the expression levels of

GPR115 did not change s ignificant ly (F igure 10B) .

Immunohistochemistry confirmed that the expression levels of

GREB1L, MFI2, SPRR1B, and LIPK proteins were elevated in

LUAD tissues, and GPR115 did not change significantly

(Figure 10C, D). These results suggest that GREB1L, MFI2,

SPRR1B, GPR115 and LIPK might be involved in the pathological

process of LUAD.
4 Discussion

As the main subtype of NSCLC, lung adenocarcinoma is highly

heterogeneous and has a complex immunemicroenvironment, which

makes prognosis prediction and treatment strategy formulation a

great challenge (4, 5). This study provides a new perspective for the

precise typing of lung adenocarcinoma and the exploration of
FIGURE 7

Functions and pathways of key prognostic genes was studied. (A) Gene Ontology functional enrichment analysis of associated DEGs. (B) GSEA of
associated DEGs.
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immunotherapeutic targets by integrating multi-omics data,

systematically screening key genes related to immune regulation

and prognosis, constructing a risk scoring model, and revealing

their association with immune microenvironment characteristics.

As the core molecule of the PD-1/PD-L1 immune checkpoint

pathway, the expression level of CD274 (PD-L1) directly affects the

immune escape ability of tumors (45, 46). In this study, it was found

that the CD274 high expression group had significant overlap with

the highly expressed genes in lung adenocarcinoma patients (110

genes), and were enriched in cytokine-cytokine receptor interaction

and IL-17 signaling pathway. This is consistent with previous

studies in which IL-17 promotes PD-L1 expression in tumor cells

by activating STAT3 signaling and recruiting both myeloid

suppressor cells (MDSCs) and regulatory T cells (Tregs) to form

an immunosuppressive microenvironment (47, 48). It is worth

noting that there were only 9 intersections between the CD274-

low expression group and the low-expression genes of lung

adenocarcinoma, suggesting that the high expression of CD274

may be the dominant phenotype of immune escape in lung
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adenocarcinoma. This finding supports the potential of PD-L1

inhibitors in the treatment of lung adenocarcinoma, especially in

the patient population with high CD274 expression.

In addition, CD274 genes associated with high expression are

enriched in Necroptosis and Cell adhesion molecules, suggesting

that CD274 may influence anti-tumor immune responses by

regulating tumor cell death patterns (such as immunogenic death)

or cell to cell interactions (49–51). However, the direct association

between CD274 expression and prognosis needs to be further

verified, as it may be regulated by molecular characteristics such

as tumor mutation load (TMB) or microsatellite instability (MSI).

Five high-risk genes selected in this study (GPR115, MF12,

GREB1L, SPRR1B, LIPK) showed independent prognostic value in

univariate and multivariate COX analyses (HR>1), and the

constructed risk scoring model showed some generalization

ability in external validation. Functional annotation and

interaction network analysis of these genes reveal their underlying

biological mechanisms. SPRR1B is co-expressed with keratin genes

(KRT14, KRT6B), which may promote tumor invasion by
FIGURE 8

Immune cell correlations and infiltration levels between risk groups were examined. (A) Heatmap of immune cell correlation analysis. (B) Heatmap of
immune cell expression differences between risk groups. (C) Relative proportions of immune cell subtypes in risk groups calculated by CIBERSORT
algorithm. ns≥0.05 was considered a non statistically difference. *p<0.05, **p<0.01, ***p<0.001 and ****p <0.0001 was considered a statistically
significant difference.
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regulating EMT. GREB1L, as a co-activator of estrogen receptors,

may drive tumor proliferation through hormone signaling

pathways. LIPK is involved in lipid metabolic reprogramming

and may affect immune cell infiltration by altering cell membrane

fluidity. MFI2 may enhance the migration and invasion ability of

tumor cells through integrin-extracellular matrix interactions, or

affect the drug resistance and immune escape of tumor cells by

regulating iron-dependent metabolic pathways (such as lipid

peroxidation). GPR115 is abnormally expressed in a variety of

malignant tumors (such as breast cancer and glioma), which may

promote tumor invasion and drug resistance by activating MAPK/

ERK or PI3K/AKT pathways (28–31). In lung adenocarcinoma, the

expression of GPR115 was significantly up-regulated, and was

significantly associated with TNM stage progression, distant

metastasis, and shortened overall survival. The enrichment

pathways of these genes (e.g., Staphylococcus aureus infection,

light signaling) had not been adequately studied in lung

adenocarcinoma, suggesting that they might indirectly influence

tumor progression through regulation of the microbiome or

environmental stress response. Importantly, the high expression

of GPR115, MF12, GREB1L, SPRR1B, LIPK were verified by in vitro

and vivo experiments.

By analyzing the immune cell infiltration pattern using

CIBERSORT algorithm, this study found that the high-risk group
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was characterized by increased infiltration of activated CD4+ T

cells, effector memory CD8+ T cells, and Treg cellswhile the low-

risk group was dominated by eosinophils and mast cells. This

phenomenon might reflect two distinct immune states.

Despite the increased number of effector T cells, their function

might be suppressed by Treg cells andMDSC, resulting in an “immune

depletion” phenotype. This hypothesis was supported by pathway

enrichment results. that High risk genes were enriched in cell cycle and

NOD-like receptor signaling pathways, suggesting that sustained

inflammatory responses minght accelerate genomic instability while

activating immune checkpoint molecules (such as PD-L1).

Eosinophils and mast cells might inhibit Th1 anti-tumor

immunity by releasing Th2 cytokines such as IL-4 and IL-13, but

their metabolic pathways (such as cytochrome P450) that were

highly expressed at the same time might play a protective role by

clearing carcinogens (52, 53). This finding highlighted the

complexity of the immune microenvironment. The increase in the

number of immune cells alone might not represent anti-tumor

activity, and comprehensive analysis should be combined with

functional status and spatial distribution.

The innovation of this study was reflected in the following

aspects. For the first time, GPR115, MF12 and other genes were

incorporated into the prognosis model of lung adenocarcinoma,

and their predictive value independent of traditional clinical stages
FIGURE 9

The performance of the prognostic risk-score model was optimized in an internal validation cohort. (A) Model optimization by LASSO regression
analysis. (B) Time-dependent ROC curve.
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provided a new tool for individualized treatment. By integrating

KEGG metabolic pathway and immune cell infiltration data, the

hypothesis that metabolic reprogramming may affect prognosis by

regulating immune cell function was proposed. The constructed

column graph visually showed the relationship between risk scores

and survival probability, which was convenient for clinicians to

quickly evaluate patient prognosis.

The expression of PD-L1 (54), tumor mutational burden (TMB)

(55), specific gene mutations, tumor-infiltrating lymphocytes (TIL)

(56), antigen presentation defects (57), and gene expression profiles

(GEPs) (58) could be used as predictive biomarkers of

immunotherapy efficacy. Among them, PD-L1 expression, TMB

(≥10 mut/Mb), microsatellite instability (MSI-H), and mismatch
Frontiers in Immunology 14
repair deficiency (MMR) had been approved by health regulatory

agencies as predictive biomarkers for immunotherapy in patients

with NSCLC (55, 59–62). PD-L1 and TMB, as composite biomarkers,

had stronger predictive power than their use alone (55, 63). Recent

studies had shown that mutations in TP53, one of the tumor

suppressor genes, were associated with high PD-L1 expression and

TMB (64). In addition, in various cancers, patients with TET1

mutations had longer progression-free survival (PFS) and overall

survival (OS) after receiving immunotherapy than patients without

TET1 mutations (65). Gene mutations might be associated with the

DNA damage and repair (DDR) pathway, which improved tumor

immunogenicity by accumulating pseudo-DNA damage responses,

and had shown good efficacy in immunotherapy (66, 67). These
FIGURE 10

The experimental confirmation of GREB1L, MFI2, SPRR1B, GPR115 and LIPK was performed in LUAD tumor tissues. (A) mRNA expression levels of
GREB1L, MFI2, SPRR1B, GPR115 and LIPK in LUAD tissues were detected by qRT-PCR. (B) Western blotting was used to detect the protein expression
levels of GREB1L, MFI2, SPRR1B, GPR115 and LIPK in LUAD tissues. (C) Immunohistochemistry was used to detect the protein expression levels of
SPRR1B and LIPK in LUAD tissues. (D) Protein expression of GREB1L, MFI2 and GPR115 in LUAD samples obtained from the HPA database. ns≥0.05
was considered a non statistically difference. *p<0.05, **p<0.01, ***p<0.001 and ****p <0.0001 was considered a statistically significant difference.
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studies focused on PD-L1 as a predictive biomarker to predict the

efficacy of immunotherapy, however, there was a lack of PD-L1-

related predictive biomarker studies. Therefore, this study focused on

exploring whether PD-L1-related predictive biomarkers had a

predictive effect on the prognosis of patients with LUAD. It is

found that GREB1L, MFI2, SPRR1B, GPR115 and LIPK were PD-

L1-related genes that predicted the prognosis of LUAD patients. Our

study could help predict the prognosis of LUAD patients with high

PD-L1 expression.

However, the study has the following limitations. The function

of key genes (such as SPRR1B) had not been verified by

experiments, and whether it was directly involved in immune

regulation was still unclear. The AUC value of verification was

low (0.687), which might be due to sample heterogeneity or batch

effect, and the feature selection needs to be optimized by

multicenter queue or deep learning algorithm.

In conclusion, the PD-L1 risk prediction model in this study

could effectively predict the prognosis of patients. The construction

of PD-L1 risk model was of great significance for the treatment of

lung adenocarcinoma.
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