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Fungal immunization potentiates
CD4+ T cell-independent cDC2
responses for cross-presentation
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1Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-
Champaign, Urbana, IL, United States, 2Cancer Center at Illinois, University of Illinois Urbana-
Champaign, Urbana, IL, United States
The incidence rates of fungal infections are increasing, especially in

immunocompromised individuals without an FDA-approved vaccine.

Accumulating evidence suggests that T cells are instrumental in providing

fungal immunity. An apt stimulation and responses of dendritic cells are pivotal

in inducing T-cell responses and vaccine success. Using amousemodel of fungal

vaccination, we explored the dynamics, kinetics, activation, and antigen

presentation of dendritic cell subsets to unravel the features of dendritic cell

responses in the absence of CD4+ T cell help. The subcutaneous fungal

vaccination induced more robust cDC2 responses than the cDC1 subset in

draining lymph nodes. A single immunization with Blastomyces yeasts

bolstered DC responses that peaked around day 5 before reverting to basal

levels by day 15. The migratory cDC2 was the dominant DC subset, with higher

numbers than all other DC subsets combined. Fungal vaccination augmented

costimulatory molecules CD80 and CD86 without altering the levels of MHC

molecules. Despite the higher fungal antigen uptake with migratory cDC2, the

mean cross-presentation ability of all DC subsets was similar. Counterintuitively,

deleting CD4+ T cells enhanced the DC responses, and CD4+ T cells were

dispensable for conventional cross-presenting cDC1 responses. Collectively, our

study shows that fungal vaccination selectively augmented cDC2 responses, and

CD4+ T cells were dispensable for DC activation, antigen uptake, expression of

costimulatory molecules, and cross-presentation. Our study provides novel

insights into DC responses to an effective fungal vaccine for designing

efficacious vaccines tailored for immunocompromised hosts.
KEYWORDS

migratory dendritic cells, conventional dendritic cells, fungal, vaccine,
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Introduction

The global threat of fungal infections is alarming, especially in immunocompromised

individuals with dysfunctional or deficient CD4+ T cells (1, 2). Fungal infections are deadly

and reported to cause case fatality rates ranging 20-90% with more than 3.8 million global

deaths annually (3) and significant healthcare burden up to 11.5 billion USD (2). The
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current antifungal drug arsenal is limited, and its use results in

severe organ toxicity, drug resistance, and adverse metabolic effects

(4–7). Thus, novel preventive measures, including vaccines to

combat fungal infections, are needed to protect vulnerable

immunocompromised individuals (8, 9). Despite several lines of

preclinical experimental vaccines, there are no FDA-approved

fungal vaccines available, but significant strides have been made

recently to delineate the mechanisms of effective vaccine immunity.

The development of dendritic cell (DC)-based vaccines has

recently gained prominence as a potential avenue to fight against

fungal infections (9). DCs are the bona fide innate immune cells that

link innate and adaptive immune systems, and they are necessary

for inducing robust T-cell responses. Thus, their optimal

stimulation is required for vaccine efficacy (10, 11). DCs are

involved in antigen uptake, processing, presentation, and priming

naïve T cells, thus orchestrating the adaptive immune response (12).

Based on the functions and phenotypic markers, DCs are classified

into specialized subsets like conventional DCs (cDCs),

plasmacytoid DCs (pDCs), and monocyte-derived DCs (moDCs)

(13), and lymph node-resident cDC1 and cDC2 are mainly involved

in antigen presentation and priming of CD8+ and CD4+ T cells,

respectively (14). The migratory cDC subset, a subclass of cDCs,

following the antigen uptake, migrates to draining lymph nodes

(dLNs) and presents antigens to CD4+ and CD8+ T cells or transfers

the antigen depot to resident cDC1 or cDC2 (15, 16). Additionally,

monocytes can differentiate into monocyte-derived dendritic

cells (moDCs) and modulate the ongoing T cell responses (17,

18). Thus, different DC subsets tailor and modulate adaptive

immune responses.

CD4+ T helper (Th) cells play an important role in the priming

of cytotoxic CD8+ T cells (CTLs) (19). Cognate Th cells interact with

antigen-displaying DCs to provide co-stimulatory signals that

“license” them to cross-present and activate CD8+ T cells

effectively (20). Although CD4+ T cells can help CD8+ T cell

responses in many ways (21), the “licensing” of DCs requires

their interaction with CD40 on DCs through CD40L (19, 22, 23)

and upregulation of costimulatory molecules CD80/86 on DCs to

cross-present and activate CD8+ T cells (24). Numerous studies in

viral and tumor models have shown that cDC1 subsets are well-

equipped with cross-presentation ability and activation of CD8+ T

cells (24–26). Expression of CD40 on cDC1 subsets was essential for

their survival, and optimal CD8+ T cell responses were governed by

CD4+ T cell help in allogenic adenovirus transformed cell

immunization, tumor inoculation, and HSV-1 and CMV infection

models (20, 23, 24, 27). Further, CD4+ T cells can indirectly help

CD8+ T cells by facilitating chemotaxis signals, enhancing

inflammation, and secreting IL-2. Thus, CD4+ T cells are essential

for cross-presentation and enhancement of CD8+ T cell responses

(27–29). However, CD4+ T cell help-independent cross-

presentation and CD8+ T cell activation are not well understood.

We and others have previously shown that effector CD8+ T cells

were elicited in the absence of CD4+ T cells and compensated CD4+

T cells for vaccine-induced immunity to fungal infections (30–37).

In the model of blastomycosis during CD4+ T-cell deficiency, using

an experimental vaccine strain lacking essential virulence factor
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Blastomyces adhesin-1 (B.d. #55) of Blastomyces dermatitidis

(ATCC #26199) (38), IL-17A-expressing CD8+ T cells (Tc17

cells) were necessary, and GM-CSF co-expression further

bolstered the vaccine immunity (39, 40). The effector Tc17 cells

formed long-lived and stable memory cells without plasticity

towards IFNgsυp+ cells, even in the absence of CD4+ T cells (30,

41, 42). Ablation of a negative regulator of T cell signaling, CBLB an

E3 Ubiquitin ligase, bolstered the CD8+ T cell responses to the heat-

killed version of the experimental fungal vaccine on par with the live

vaccine strain (43), suggesting the feasibility of enhancing anti-

fungal CD8+ T cell responses to safer vaccine candidates in the

absence of CD4+ T cell help. Thus, fungal vaccination induces

optimal dendritic cell responses that overcome the CD4+ T cell help

for activation and programming of CD8+ T cell responses. Here, we

studied the kinetics, dynamics, activation, and cross-presentation of

different dendritic cells to an experimental fungal vaccine. Further,

we studied the role of CD4+ T cells in regulating the dendritic cell

responses, including cross-presentation.
Materials and methods

Mice

Wild-type C57BL/6 mice were purchased from Charles River

Laboratories (Wilmington, MA) or Jackson Laboratories (Bar

Harbor, ME). Mice were housed and used in a specific pathogen-

free environment. All experiments were done using both male and

female mice of age 6–8 weeks. The animal housing and experiments

were performed according to the strict guidelines of the

Institutional Animal Care and Use Committee at the University

of Illinois Urbana-Champaign.
Ethics statement

This work was executed in accordance with the protocols

approved by the Institutional Biosafety Committee (IBC) and

Institutional Animal Care and Use Committee (IACUC) at the

University of Illinois at Urbana-Champaign.
Fungal vaccination

The mice were vaccinated with an isogenic, attenuated (mutant

lacking an essential virulence factor, Blastomyces adhesion-1;

BAD1) (38) strain of Blastomyces dermatitidis ATCC 26199

named B.d. #55 (a kind gift from Dr. Bruce Klein, UW-Madison)

subcutaneously (s.c.; ~2 × 10^5 CFU) at two sites, dorsally and at

the base of the tail. For antigen presentation studies, recombinant

B.d. #55 strain engineered to express OT-I epitope SIINFEKL-

mCherry (30) was used for vaccination and the cohorts of mice

vaccinated with OVA257–264 peptide (10 mg/mL) pre-mixed with

non-recombinant Blastomyces dermatitidis #55 served as positive

control. The yeast strains were cultured on Middlebrook 7H10 agar
frontiersin.org
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slants supplemented with OADC (oleic acid-albumin complex;

Sigma-Aldrich) at 39°C in a humidified incubator.
Lymph node preparation for DC
characterization

The draining lymph nodes (dLN) were harvested and processed

as described (44, 45). Briefly, the harvested LN were dissected using

22G needles, and the separated tissues were digested in 1 mg/ml of

Collagenase, Type IV (Stem-Cell) in 1X PBS containing 10 mg/ml

DNAse I (Roche), kept at 37°C for 30 minutes. Digested tissues/cells

were washed with 1X PBS, passed through 40mm strainers (BD

Biosciences), and resuspended in complete RPMI media

(supplemented with 10% FBS/NEAA/PenStrep). The single-cell

suspensions were stained with fluorochrome-conjugated

antibodies and analyzed by flow cytometry.
Labeling of yeast with PKH26 dye

Yeasts were labeled with the Red Fluorescent Cell Linker Dye

Kit, PKH26-MIDI26 (Sigma, St. Louis). The yeasts were harvested

from the slants and incubated with diluted PKH26 (2 × 10^ (6)

yeasts/ml) for 5 minutes at room temperature. To quench excess

PKH26 dye, an equal volume of FBS (Corning) was added, mixed,

and kept for a minute before washing with complete RPMI medium

followed by 1X PBS.
CD4+ T cell depletion

For depletion of CD4+ T cells, GK1.5 MAb (BioXCell Inc.,

Lebanon, NH) was injected intravenously (i.v.) at every 3–4 days

with a dose of 200 mg/mouse. The depletion efficiency of CD4+ T

cells was verified by flow cytometry using MAb Clone RM4-5 (30).
Flow cytometry

All the antibodies were purchased from BD Biosciences,

Biolegend, and Invitrogen. Single-cell suspensions of the dLNs

were first incubated with anti-FCg receptor MAbs (Fc Block; BD

Biosciences) for 10 minutes before staining with fluorophore-

conjugated antibodies for surface markers and Live/Dead stain

(Invitrogen) in FACS buffer (2% BSA in 1X PBS with 0.1%

NaN3) for 30 minutes on ice. For measuring antigen cross-

presentation, single-cell suspensions were stained with anti-mouse

H-2Kb/SIINFEKL antibody (Clone: 25-D1.16) during surface

staining for markers. The stained cells were washed three times

with FACS buffer and fixed with 2% Paraformaldehyde in 1X PBS.

The cells were analyzed using a full-spectrum flow cytometer,

Cytek Aurora. The data were analyzed with FlowJo v10.10

(BD Biosciences).
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Statistical analysis

Statistical analyses of DC dynamics, activation status, and

antigen presentation of DC subsets in the unvaccinated vs.

vaccinated mice and the presence versus absence of CD4+ T cells

were conducted using a two-tailed unpaired Student’s t-test. DC

kinetics and fungal antigen uptakes were analyzed by one-way

ANOVA with post-hoc tests of Dunnett’s correction and Tukey’s

correction for multiple comparisons, respectively. We performed all

the statistical analyses using Prism 10.2 (GraphPad Software, LLC)

software. A two-tailed p-value of ≤ 0.05 was considered

statistically significant.
Results

Fungal vaccination preferentially expanded
the type 2 dendritic cells

The immunization routes and the nature of the antigen or

pathogen dictate the dominant type of T cell responses associated

with the changes in the dendritic cell subsets (11). For example, in a

viral infection, where most DCs could be infected, the T cell priming

can occur at many regions of the lymph node, and cDC1-lineage

predominantly shapes CD8+ T cell responses (46, 47), possibly due

to their preferential niche or migration into the deep T cell zone

(48). Further, several studies have shown that cDC1-lineage

dendritic cells are required for cross-presentation (25). Previously,

we have shown that antifungal effector and memory CD8+ T cells

can be induced by subcutaneous route immunization using an

experimental vaccine in the absence of CD4+ T cells and mediate

sterilizing immunity to lethal pulmonary infection (30, 39–41). We

noted that the vaccine immunity (efferent phase) directly correlated

with the nature and magnitude of effector CD8+ T cells generated in

the skin-draining lymph nodes (afferent phase) (39, 41, 49).

However, the dendritic cell subset responses that may dictate

antifungal effector CD8+ T cell-responses during afferent phase

are not known. Therefore, we wanted to determine the dynamics

of dendritic cell populations that may dictate the cross-presentation

following fungal vaccination during CD4+ T cell deficiency during

afferent phase. At day 5 post-vaccination, we harvested the draining

lymph nodes (dLN), and single-cell suspensions were stained and

analyzed by flow cytometry. We classified dendritic cell populations

broadly into two groups (I and II) based on the expression levels of

CD11c and CD11b (16, 50) (Figures 1A, B). When we compared

with naïve, non-immunized, controls, the fungal vaccination

significantly enhanced the numbers of Groups I and II cells but

not the frequency of Group I cells (Figure 1C). We found Group I

cells mainly composed of migratory cDC1 and resident cDC1 cells

and Group II cells comprised primarily of Langerin+ DC, migratory

cDC2, resident cDC2, and monocyte-derived DCs (moDCs) (13, 51,

52) (Figure 1D). CD11c-CD11b+ cells (Group III), mainly consisted

of monocytes and neutrophils, significantly increased following

vaccination (Figures 1C, D). We used XCR1 and SIRPa
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FIGURE 1

Fungal vaccination significantly enhanced the populations of dendritic cell subsets in draining lymph nodes following subcutaneous fungal
vaccination. Naïve C57BL/6 mice, upon CD4+ T-cell depletion, were vaccinated subcutaneously with live attenuated strain (#55) of Blastomyces
dermatitidis (~2x105) CFUs). On day 5 post-vaccination (D5PV), draining lymph nodes were harvested to obtain a single-cell suspension. Following
antibody staining, the cells were analyzed by flow cytometry. (A) Gating strategy to obtain Live+Lineage-ve (non-Thy1.2, CD19) cells. (B) Flow plots
show populations I (CD11c+CD11b-), II (CD11c+CD11b+), and III (CD11c-CD11b+) among Lineage-ve cells in unvaccinated and vaccinated C57BL/6
mice. (C) Frequencies among Lineage-ve cells and absolute cell numbers of populations I, II, and III. (D) Further gating includes population I, which
consists of resident cDC1 and migratory cDC1. Population II contains langerin+ DCs, resident cDC2, migratory cDC2, and Ly6C+moDCs, while
monocytes and neutrophils are gated among population III. (E) Absolute cell numbers of resident cDC1, migratory cDC1, resident cDC2, migratory
cDC2, moDCs, Langerin+ DCs, and monocytes in unvaccinated and vaccinated CD4- mice at D5PV. (F) Stacked column graph depicts absolute
numbers of overall DC subsets in unvaccinated and vaccinated mice at D5PV. Data are representative of at least four independent experiments.
N=5-8 mice/group. Values are in Mean ± SD. p*≤0.05, p**≤0.01, p***≤0.001, and p****≤0.0001, unvaccinated versus vaccinated WT. Mice were
injected with GK1.5 (200 mg/mouse) throughout the experiment to deplete CD4+ T cells. DC, dendritic cell; cDC, conventional dendritic cell; moDC,
monocyte-derived dendritic cell; Res, resident; Mig, migratory; Unvac, unvaccinated; Vac, vaccinated.
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(CD172a) markers to classify type-1 and -2 cDCs, respectively (51).

Additionally, we used the expression of CD11c and MHC-II to

classify DC into resident cDCs (CD11chighMHC-IIint) and

migratory cDCs (CD11cintMHC-IIhigh) (52, 53). The moDCs and

pDCs subsets were classified as CD11c+Ly6C+CD11b+MHC-IIint/lo

and CD11cloCD11b-Ly6C+MHC-IIlo, respectively (13, 54, 55). Since

XCR1 and SIRPa can reliably be used to classify cDC1 and cDC2,

and XCR1+ DCs are instrumental in cross-presentation (56–58), we

further evaluated the dynamics of different DC subsets following

vaccination. We found an increase in the numbers and frequencies

of most subsets of resident and migratory cDC1 and cDC2 cells in

vaccinated mice compared with an unvaccinated group (Figure 1E;

Supplementary Figure 1). Notably, the numbers of cDC2 cell

subsets were significantly increased compared with a modest

increase of cDC1 cells (~6-8X vs. ~2X) following vaccination. The

order of significant increase of dendritic cell types following the

vaccination was migratory cDC2, resident cDC2, migratory cDC1,

and moDCs, followed by resident cDC1 and Langerin+ DC

(Figure 1F). Collectively, the fungal vaccination significantly

augmented cDC2 over cDC1-type dendritic cells.
cDC2, but not cDC1, subsets were
enriched during the early phase of fungal
vaccine response

The subcutaneous route of immunization with large microbial

antigens will induce migratory cells to engulf antigens and shuttle

them to draining lymph nodes, an orchestrated process distinct

from the quick passive transfer of soluble small antigens (59). Skin

or local DCs play a larger role in shuttling the antigen cargo into the

draining lymph nodes for antigen deposition and presentation.

Since several dendritic cells carry the antigen cargo from the

subcutaneous space and influence the resident and hematopoietic

cell-derived dendritic cell populations for antigen presentation and

T cell activation in a time-dependent manner, we determined the

kinetics of dendritic cell subsets following subcutaneous vaccination

in the draining lymph nodes. As expected, we did not find major

changes in the resident cDC subsets at day 2 post-vaccination

(Figures 2A, B). However, there was a significant increase in their

numbers by day 5 post-vaccination (PV) that stabilized till day 8

before tapering off. The number of resident cDC subsets remained

elevated even at day 15 PV. In contrast, migratory DCs and

Langerin+ DC numbers were steadily increased starting as early as

day 2 PV, peaking around days 5 to 8 PV before reducing to the

basal levels by day 15 PV (Figures 2A, B). The kinetics of moDCs

were similarly reflected. Not surprisingly, the kinetics of the

monocyte population were distinct and steadily increasing

through day 15 PV. Although the overall kinetics of various

subsets of the dendritic cell population mirrored each other in the

dLN (Figure 2B; Supplementary Figure 2), the numbers of each

subset were noticeably different. Therefore, we evaluated the relative

abundance of dendritic cell subsets, including monocytes, over time,

which may reflect their ability to engage with the T cells. The

relative proportions of potent cross-presenting DC subsets and
Frontiers in Immunology 05
resident/migratory cDC1 subsets were stable or decreased following

the vaccination (Figure 2C). The significant and most abundant DC

cell subset was migratory cDC2 that started to inflate as early as day

2 PV and remained as such till day 8 PV and was replaced by

accumulating CD11b+Ly6C+ monocytes. By day 15 PV,

CD11b+Ly6C+ monocytes were the most abundant cells.

Interestingly, resident cDC2, rather than conventional cross-

presenting cDC1, population was the third most abundant cell

type throughout the vaccine response period.

Collectively, cDC2, but not cDC1, subsets were abundant in the

early phase of vaccine response and gradually replaced by the

monocytic population later.
Fungal vaccination differentially induces
the activation of resident cDC, migratory
cDC, and moDC

DC status largely dictates its phagocytosis, antigen presentation,

and the activation of T cells’ abilities. While immature DCs are

highly phagocytic, their activation and maturation are accompanied

by higher expression of costimulatory and MHC molecules

optimized for activation of T cells (60). Here, we evaluated the

expression of different costimulatory molecules and MHC

molecules on different dendritic cell subsets following fungal

vaccination. We found that vaccination induced the upregulation,

albeit in a disparate manner, of CD80 and CD86 molecules on

resident DC subsets (Figure 3A). Similarly, the upregulation of

costimulatory molecules, CD80 and CD86, was significant on

migratory DC and moDC subsets following vaccination

(Figures 3B, C) However, the expression of the costimulatory

molecule CD40 remained unaltered following the vaccination in

all the subsets. Despite DCs constitutively expressing high levels of

MHC-I and MHC-II molecules (61), their expression may increase

following their activation (62). However, we did not find significant

upregulation of either of the MHC molecules on any DC subsets

(Figures 3A, B). Thus, our data suggest that fungal vaccination

efficiently fosters the activation of DC subsets by upregulating CD80

and CD86 but not CD40 molecules in the absence of CD4+ T cells.
Different dendritic cell subsets efficiently
uptake the fungal antigens and present
them following vaccination

Our aforementioned data suggested that fungal vaccination

predominantly enhances the cDC2 subsets and expression of

CD80 and CD86 costimulatory molecules on most DC subsets.

Antigen uptake is an essential event before presentation in the

context of MHC molecules, and immature DCs readily engulf large

antigens by phagocytosis. Subcutaneously inoculated antigens are

picked up by local dendritic cells, which facilitates their migration to

the draining lymph nodes as part of migratory DC subsets.

Although several overlapping markers are noted between

migratory and lymph node resident DC subsets, making it
frontiersin.org
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difficult to distinguish, migratory DCs can transfer the antigen

cargo to tissue-resident DC subsets. Our data suggested that PKH-

labelled fungal antigen is readily detected by flow cytometry, which

enabled us to assess fungal antigen-engulfed DC subsets (Figure 4A

& Supplementary Figure 4A). The fungal antigens were found in all

the subsets, but predominantly in migratory cDC2 subset, followed

by migratory cDC1 and moDCs (Supplementary Figure 4B), in line
Frontiers in Immunology 06
with their augmented numbers at day 5 post-vaccination

(Figure 2C). Next, we evaluated their ability to cross-present the

fungal antigens. The MAb staining for SIINFEKL-bearing MHC-I

(H-2Kb) following vaccination with non-Tg and Tg yeasts showed

the utility of the MAb to assess the presentation (Figure 4B). Using

this technique, we assessed the cross-presenting ability of different

DC subsets (Figure 4C) and found that all DC subsets were able to
FIGURE 2

cDC2 expanded during the early phase of subcutaneous fungal vaccination. Naïve CD4-depleted C57BL/6 mice were vaccinated subcutaneously
with live attenuated strain (#55) of Blastomyces dermatitidis (~2×10^5 CFUs). On days 0, 2, 5, 8, 11, and 15 post-vaccination, dLNs were harvested to
analyze the kinetics of various DC subsets by flow cytometry. (A) The absolute cell number kinetics and (B) frequency (among lineage-ve cells)
kinetics of resident cDCs, migratory cDCs, monocyte-derived DCs, and monocytes in unvaccinated and vaccinated mice. (C) Stacked column graph
depicts absolute cell numbers and proportions (within time-point) of overall DC subsets in unvaccinated and vaccinated mice at different time points
post-fungal vaccination. Data are representative of at least two independent experiments for the indicated days post-vaccination. p*≤0.05, p**≤0.01,
p***≤0.001, and p****≤0.0001, comparison of different time points with unvaccinated (day 0) control. N=5-8 mice/group/time-point. Values are in
Mean ± SD. Mice were injected with GK1.5 (200 mg/mouse) throughout the experiment to deplete CD4+ T cells. dLN, draining lymph node.
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FIGURE 3

Fungal vaccination increased the activation of resident cDCs, migratory cDCs, and moDCs. The activation status of various DC subsets in dLNs of
CD4- C57BL/6 mice following fungal vaccination was determined by flow cytometry. The activation status of (A) resident cDC1, resident cDC2, (B)
migratory cDC1, migratory cDC2, and (C) monocyte-derived DCs was marked by the expression (MFI) of co-stimulatory molecules such as CD80,
CD86, and CD40 at day 5 post-vaccination, depicted in overlay histograms. The cyan histogram shows unvaccinated mice, and the red histogram
depicts vaccinated mice. Data are representative of at least two independent experiments. N=3-5 mice/group. MFI values are in Mean ± SD.
p*≤0.05, and p**≤0.01. Mice were injected with GK1.5 (200 mg/mouse) throughout the experiment to deplete CD4+ T cells. dLN, draining lymph
node; UV, unvaccinated; V, vaccinated; MFI, mean fluorescent intensity.
Frontiers in Immunology frontiersin.org07
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FIGURE 4

Dendritic cell subsets effectively uptake fungal antigens and cross-present following fungal vaccination. (A) Naïve CD4- were subcutaneously
vaccinated with PKH26+ labeled or unlabeled live attenuated strain (#55) of Blastomyces dermatitidis (~6-8x106) CFUs). The bar graphs show the
overall number of PKH26+ yeast cells among Live+Lineage-ve dLN cells at day 5 post-vaccination. The grouped bar graphs depict the distribution of
PKH26+ yeast among the DC subsets in dLNs, shown in absolute numbers at day 5 post-vaccination. Values denote the mean ± SD of at least two
independent experiments from N=3-5 mice/group. p*≤0.05, p**≤0.01, p***≤0.001, and p****≤0.0001, analyzed by one-way ANOVA with Tukey’s
multiple comparison test. (B, C) The cohorts of naïve CD4 depleted C57BL/6 mice were vaccinated subcutaneously with non-transgenic (live
attenuated strain #55) Blastomyces dermatitidis (Blue) or mCherry (OT-I #55) transgenic Blastomyces dermatitidis (Red) or OVA257-264 incubated
non-transgenic yeast (Black) (~2x105 CFUs). (B) The overlay histograms and (C) grouped bar diagrams depict the cross-presenting ability of the
SIINFEKL antigen by DC subsets. This is quantified by flow cytometry staining of dLNs with 25-D1.16 monoclonal antibody that recognizes the
SIINFEKL-H-2Kb complex at day 5 post-vaccination. Data are representative of at least two independent experiments. N=4-6 mice/group. Number
and MFI values are in Mean ± SD. p*≤0.05, p**≤0.01, p***≤0.001, and p****≤0.0001, analyzed by one-way ANOVA with Tukey’s multiple comparison
test. dLN, draining lymph node. Mice were injected with GK1.5 (200 mg/mouse) throughout the experiment to deplete CD4+ T cells. MFI, mean
fluorescent intensity.
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cross-present the fungal antigens, with a modestly higher level by

migratory cDCs and lower by moDCs.

Collectively, despite all DC subsets being able to cross-present,

the migratory cDC2 population predominates in gorging and

presenting the fungal antigens.
CD4+ T cell depletion augments the
activation and numbers of cDC2 and
moDC subsets

Our data so far suggested that cDC2 and moDC subsets were

predominantly enriched with higher activation in the model of

fungal vaccination. We asked if cDC2 and moDC subsets are

enriched due to CD4 depletion. We evaluated the kinetics of

cDC2 and moDC subsets. We found that despite there being an

increase in these subsets in the CD4+ T cell-sufficient group, the

CD4+ T cell-deficient group had augmented numbers that were

sustained through days 5 to 8 post-vaccination (Figure 5A).

Similarly, the frequency and numbers of monocytes were

significantly increased in the CD4+ T cell-deficient group

compared with the sufficient group (Supplementary Figures 5A,

B). Similarly, the frequency of cDC2 subsets and moDCs was

significantly lower in the CD4+ T cell-sufficient group than in the

deficient group (Figure 5B). Since CD4+ T cells are known to

help activation of dendritic cells, we evaluated the upregulation

of costimulatory molecules on dendritic cells. We found that the

presence of CD4 T cells did not help in upregulating costimulatory

molecules, including CD40 andMHC-II (Figure 5C; Supplementary

Figure 5C). Since the expression of MHC-I is essential for

augmenting CD8+ T cell responses, we measured its expression

levels. We found similarities in dendritic cell subsets of both CD4+

T cell-sufficient and -deficient groups (Supplementary Figure 5D).

To exclude the possibility of depletion-independent antibody effects

of GK1.5 MAb, we used isotype control MAb, and we found non-

significant effects of depletion-independent functions of MAb on

dendritic cell responses to the immunization.

Thus, the depletion of CD4+ T cells did not alter the kinetics but

the dynamics and activation of cDC2 and moDC subsets.
CD4+ T cell help is dispensable for
conventional cross-presenting cDC1
responses following fungal vaccination

Since CD4+ T cells “license” cDC1 for cross-presentation of

exogenous antigen, we next evaluated if CD4+ T cells are required to

bolster the cDC1 that are relevant to the model of fungal vaccination

targeted to elicit CD8+ T cell responses. The kinetics of the resident

and migratory cDC1 subsets remained similar in CD4+ T cell-

sufficient and -deficient groups through day 8 post-vaccination

(Figure 6A). Further, the frequency of cDC1 subsets were relatively

similar in CD4+ T cell-sufficient and -deficient groups at days 0, 5,

and 8 post-vaccination (Figure 6B). Notably, the expression of

classical licensing costimulatory molecule, CD40, on cDC1
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subsets, were similar in CD4+ vs. CD4- groups (Figure 6C).

However, the activation status of cDC1 subsets were higher in

CD4+ T cell-deficient group than in CD4+ T cell-sufficient group.

We further comprehensively analyzed the landscape of different DC

subsets in the CD4+ T cell-deficient group, contrasting with the

CD4+ T cell-sufficient group (Figure 6D). We found that

proportions of the DC subsets remained largely similar, with a

significant increase in cDC2 subsets in the CD4+ T cell-

deficient group.

Collectively, CD4+ T cell help is dispensable following fungal

vaccination to augment dendritic cell responses.
Discussion

Dendritic cells are essential to bridge innate immunity with

adaptive immune responses, and understanding dendritic cell

responses to fungal vaccines helps design and develop efficacious

vaccines. This study addressed four key questions regarding fungal

vaccine eliciting the dendritic cell responses: What is the

predominant vaccine-elicited DC subset? Do DC subsets have

dissimilar cross-presentation abilities to an experimental fungal

vaccine? Whether CD4+ T cell help is required for cDC1 responses

for cross-presentation? Does an experimental fungal vaccine

overcome the need for CD4+ T cell help? Our study showed that

fungal vaccination without CD4+ T cells disparately enhances

different DC subsets, driving pronounced cDC2 responses. Fungal

vaccination induced the activation and upregulation of classical

costimulatory molecules CD80 and CD86, but not CD40 and

MHC molecules, and CD4+ T cells were dispensable for dendritic

cell responses and antigen presentation.

Dendritic cell responses to different antigens/immunogens vary

and are largely dictated by the nature of the antigen, adjuvant, and

soluble vs. cell-associated. Despite the plasticity and the

involvement of different subsets of DCs, intracellular pathogens

largely drive cDC1 responses, whereas cDC2 responses dominate

during allergen exposure, parasites, and other extracellular

pathogens. Pattern recognition receptors (PRRs) signaling upon

recognition with PAMPs may conceivably intensify and diversify

cDC1 vs. cDC2 responses. For example, combining an antigen with

poly (I:C) or type B CpG ODN potentiates cDC1 responses (63, 64),

helping robust Th1 and CD8+ T cell responses. Similarly, many viral

infections boost cDC1 responses (65, 66). However, aeroallergen

sensitization primarily drove cDC2 response and allergic responses

(67). Although all the DC subsets, including moDCs, were

significantly enhanced following vaccination in our study, we

found a dominant cDC2 response, only replaced by monocytes

during the second week following immunization. Although

infection with Aspergillus fumigatus induces predominant type 1

T cell responses, it induced cDC2 responses in the model of

allergy sensitization (68). In line with this, the model of dermal

candidiasis using Batf3-/- mice showed cDC1 dispensability for

immunity (69), whereas cDC1 was important during pulmonary

histoplasmosis and systemic candidiasis (70, 71). Nevertheless, our

model system was deficient in CD4+ T cells, and CD8+ T cell
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FIGURE 5

Ablation of CD4+ T-cells enhanced the kinetics and activation status of cDC2 and moDCs. Naïve CD4+ and CD4 depleted C57BL/6 mice were
vaccinated subcutaneously with live attenuated strain (#55) of Blastomyces dermatitidis (~2x105 CFUs). On indicated days post-vaccination, dLNs
were harvested to analyze various DC subsets by flow cytometry. The kinetics of (A) cell number and (B) frequencies (among lineage-ve cells) of
resident cDC2, migratory cDC2, and moDCs are depicted. Values are Mean ± SD. (C) The bar graphs depict the activation status of resident cDC2,
migratory cDC2, and moDCs marked by the expression of co-stimulatory molecules (CD80, CD86, and CD40) and surface marker MHC-II (I-A/I-E)
at day 5 post-vaccination. N=3-5/mice/group/time-point. Data are representative of at least two independent experiments. Percent, numbers, and
MFI values are in Mean± SD. p*≤0.05, p**≤0.01, p***≤0.001, and p****≤0.0001. Groups of mice were injected with GK1.5 (200 mg/mice) throughout
the experiment to deplete CD4+ T cells. dLN, draining lymph node; moDC, monocyte-derived dendritic cell.
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responses are cross-presentation dependent (whole cell-based

antigen). Thus, future studies may help understand the relative

contributions of cDC1 and cDC2 subsets for inducing CD8+ T

cell responses.
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The efficient cell-associated antigen uptake and transport of

antigen cargo by DCs to draining lymph nodes are necessary for

eliciting T cell responses (9, 11). Our study showed that migratory

cDC2 was the predominant subset in the uptake of fungal antigens.
FIGURE 6

CD4+ T cell help is not required for the activation and kinetics of conventional cross-presenting cDC1 subsets following fungal vaccination. Naïve
CD4+ and CD4 depleted C57BL/6 mice were vaccinated subcutaneously with live attenuated strain (#55) of Blastomyces dermatitidis (~2x105 CFUs).
On indicated days post-vaccination, dLNs were harvested to analyze various DC subsets by flow cytometry. The kinetics of (A) cell number and (B)
frequencies (among lineage-ve cells) of resident cDC1 and migratory cDC1 are depicted. Values are Mean ± SD. (C) The bar graphs depict the
activation status of resident cDC1 and migratory cDC1 marked by the expression of co-stimulatory molecules (CD80, CD86, and CD40) and surface
marker MHC-II (I-A/I-E) at day 5 post-vaccination. (D) Stacked column graph depicts absolute numbers and proportions of DC subsets in CD4+ and
CD4- vaccinated WT at day 5 post-fungal vaccination. N=3-5/mice/group/time-point. Data are from at least two independent experiments. Percent,
numbers, and MFI values are in Mean± SD. p*≤0.05, p**≤0.01, p***≤0.001, and p****≤0.0001. Groups of mice were injected with GK1.5 (200 mg/
mice) throughout the experiment to deplete CD4+ T cells. moDC, monocyte-derived dendritic cell; Res, resident; Mig, migratory; Unvac,
unvaccinated; Vac, vaccinated.
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~70-80% of migratory cDC2 were PKH26+ve, followed by migratory

cDC1 and moDCs, and were correlated with their frequency and

numbers. Similarly, several others have shown that migratory cDC

and moDC mainly uptake tumors, eukaryotic pathogens, and viral

antigens (16, 48, 50, 72). Although our model requires cross-

presentation for efficient CD8+ T cell responses (39, 40), we did not

see cDC1 as a predominant subset, including antigen uptake.

Nevertheless, mig cDC1 and moDCs were significantly increased

following vaccination, but the question remains if they are

dispensable due to a compensatory role by other DCs. The resident

cDC1 showed lower efficacy of antigen uptake, which may be due to

the predominant positioning of resident cDC1 in the deeper

medullary region of dLN (11, 73). The efficient cDC2 role in

antigen uptake may be due to the nature of antigens and their

localization in the cortex of the LN near the afferent lymphatics (11,

73). Further, subcutaneous immunization may predominate with

antigen-engulfed cDC2 due to the inherent scarcity of dermal cDC1;

thus, fewer cDC1 cells are likely to engage in the uptake of antigens

(74, 75). However, soluble antigens can equally be taken up by

migratory cDC1 and cDC2 to be transported to the mediastinal LNs

following lung infection (75, 76). Notably, our data showed that all the

DCs could cross-present model antigen (SIINFEKL), slightly better by

migratory cDC subsets, insinuating that the CD8+ T cell responses, in

our model, are mainly governed by the uptake of antigen by the

dominant subset of DC. Our study was in contrast with the others

where cDC1 subset was instrumental subset for cross-presentation to

CD8+ T cells. For example, the cutaneous melanoma antigens were

cross-presented preferentially by migratory CD103+XCR1+ and

CD103-XCR1+ skin-derived DC (77), and migratory cDC1

dominantly cross-presented herpes simplex virus and skin-derived

self-antigens (47).

The activation of dendritic cells coupled with upregulation of

costimulatory molecules is necessary for optimal priming of T cells,

including CD8+ T cells. Our study showed that antigen uptake is DC

subset-dependent, but cross-presentation was largely intact, suggesting

that all DCs can cross-present in our model. The provision of cross-

presentation ability improvement to increase the vaccine efficacy may

not be contentious in our model, as the vaccination induces sterilizing

immunitymediated by CD8+ T cells. Further, vaccination did not alter

the expression of MHC-I and MHC-II molecules on DC subsets,

possibly due to the nature of the cells, i.e., the constitutive expression

ofMHCmolecules and optimal induction of T cell responses with that

threshold level of expression. However, the expression of MHC

molecules among different subsets differed: highest expression levels

on migratory DCs, followed by resident DCs, and lower expression

levels on moDC, and the MHC expression patterns on different DCs

were in line with published studies (13). However, we did see a

disparate pattern of CD80 and CD86 expression on DC subsets.

Although both costimulatory molecules were significantly upregulated

on many DC subsets, we found a significant fold increase of CD86

over CD80. Although CD80 and CD86 interact with CD28 and

CTLA-4 ligands to regulate T cell responses, the studies have shown

that CD86 has more potential in driving immune activation and T cell

proliferation than CD80, which has a major role in immune tolerance
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(78–80). Interestingly, we did not find any differences in expression

levels of CD40 on all DC subsets following vaccination.

CD4+ T cells are aptly called helper cells due to their myriad

helper functions for immunity and tolerance. Apart from helping B

cells secrete high-affinity antibodies and form long-lived memory and

helping innate immune cells to enhance their direct effector

functions, CD4+ T cells help in CD8+ cell activation, effector

functions, and memory homeostasis (81, 82). Further, CD4+ T cells

help CD8+ T cells by licensing dendritic cells, especially the cDC1

subset, by enhancing cross-presentation (19, 23, 24, 62, 83) and by

secreting IL-2 (81, 84). The dendritic cell licensing further helps CD8+

T cell programming appropriately (85–87). However, we have

undeniably shown that our model of fungal vaccination induces

robust effector CD8+ T cells mediating sterilizing immunity

following lethal challenge and programs to generate and maintain

stable, long-lived memory independent of CD4+ T cells (32, 39–42).

In line with this, we did not find upregulation of CD40, the “licensing

molecule”, following the vaccination, nor was it affected by the

presence of CD4+ T cells. Further, we found that CD4+ T cells

were dispensable for DC responses, upregulation of costimulatory

molecules, and antigen presentation. Similarly, CD4+ T cells did not

influence the expression levels of MHC-I molecules in any of the DC

subsets in our vaccine model. The enhanced number and ability of

DC subsets may be due to the arsenal of immunostimulatory PAMPs,

which directly activate the DCs and bypass the requirement for CD4+

T cell help (8, 9, 88–91).
Conclusion

Our study showed that fungal vaccination significantly enhanced

the frequencies, numbers, activation, fungal antigen uptake, and

antigen cross-presenting ability of cDC2 subsets over cDC1 subsets.

The CD4+ T cell-help was dispensable for the dendritic cell responses

and retained the cDC2 dominant phenotype. Thus, our study offers

new insights into type of DC responses to a fungal vaccine that elicits

long-lasting CD8+ T-cell memory providing sterilizing immunity and

help develop efficacious and safer vaccine platforms tailored for

immunocompromised individuals.
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SUPPLEMENTARY FIGURE 1

Dynamics of dendritic cell subsets, monocytes, and neutrophils following

subcutaneous fungal vaccination. Naïve C57BL/6 mice after CD4 depletion

were vaccinated subcutaneously with live attenuated strain (#55) of
Blastomyces dermatitidis (∼2x105 CFUs). The draining lymph nodes (dLN)

were harvested on day 5 post-vaccination and stained for dendritic cell (DC)
subsets to be analyzed by flow cytometry. The bar graphs depict the

frequency (among lineage-ve cells) of resident cDCs, migratory cDCs,
monocyte-derived DCs, langerin+ DCs, monocytes, and neutrophils. Data

is representative of at least four independent experiments. N=5-8 mice/

group. Values are in Mean ± SD. p*≤0.05, p**≤0.01, and p***≤0.001. Mice
were injected with GK1.5 (200 µg/mouse) throughout the experiment to

deplete CD4+ T cells.

SUPPLEMENTARY FIGURE 2

Kinetics of langerin+ DCs following subcutaneous fungal vaccination. Naïve

C57BL/6 mice (CD4 depleted) were vaccinated s.c. with live attenuated strain

(#55) of Blastomyces dermatitidis (~2x105 CFUs). Frequency (among
lineage-ve cells) kinetics of Langerin+ DCs. Data are representative of at

least four independent experiments. Values are Mean ± SD. p*≤0.05 and
p****≤0.0001. Mice were injected with GK1.5 (200 µg/mouse) throughout

the experiment to deplete CD4+ T cells.

SUPPLEMENTARY FIGURE 3

MHC class-I and -II expression levels on dendritic cell subsets following
fungal vaccination. The bar graphs show the expression levels (mean

fluorescent intensity-MFI) of (A) MHC class I (H-2Kb) and (B) MHC class II
(I-A/I-E) on the surface of resident cDCs, migratory cDCs, and monocyte-

derived DCs at day 5 post-fungal vaccination in C57BL/6 mice depleted of
CD4+ T cells. Data are representative of at least two independent

experiments. N=3-5 mice/group. Values are in Mean± SD. p*≤0.05,

p**≤0.01, and p***≤0.001.

SUPPLEMENTARY FIGURE 4

Frequency of PKH26+ cells among DC subsets. Naïve CD4- were

subcutaneously vaccinated with PKH26+ labeled or unlabeled live attenuated
strain (#55) of Blastomyces dermatitidis (∼6-8x106 CFUs). The bar graphs show

the frequency of PKH+ cells among lineage -ve cells (A) and among the DC
subsets (B) in draining lymph nodes at day 5 post-vaccination. The grouped bar

graphs depict the distribution of PKH26+ yeast among the DC subsets in dLN,

shown in absolute numbers at day 5 post-vaccination. Values are in mean ± SD
of at least two independent experiments. N=3-5 mice/group..

SUPPLEMENTARY FIGURE 5

Role of CD4+ T cells in the kinetics of monocytes, the activation status of
moDCs, and the expression of MHC-I (H-2Kb) among DC subsets. Naïve

CD4+ and CD4 depleted C57BL/6 mice were vaccinated subcutaneously with

live attenuated strain (#55) of Blastomyces dermatitidis (∼2x105 CFUs). On
indicated days post-vaccination, dLNs were harvested to analyze various DC

subsets and monocytes by flow cytometry. The kinetics of (A) cell number
and (B) frequencies (among lineage-ve cells) of monocytes are depicted.

Values are Mean ± SD. N=3-5/mice/group/time-point. (C) The bar graphs
show the activation status of monocyte-derived DCs marked by the

expression of co-stimulatory molecules (CD80, CD86, and CD40) and

surface marker MHC-II (I-A/I-E) and MHC-I at day 5 post-vaccination. (D)
The bar graphs show the expression levels (MFI) of MHC class I (H-2Kb) on the

surface of resident cDCs and migratory cDCs at day 5 post-fungal
vaccination. Values are in Mean ± SD. N=3-5/mice/group. Data is

representative of at least two independent experiments. p*≤0.05, p**≤0.01,
and p***≤0.001, comparison between CD4+ and CD4- vaccinated WT.

Groups of mice were injected with GK1.5 (200 µg/mice) throughout the

experiment to deplete CD4+ T cells..

SUPPLEMENTARY FIGURE 6

CD4+ T-cell depletion enhances cDC2 responses. Naïve C57BL/6 mice were

administered with GK1.5 MAb or Isotype control (200 µg/mouse @3 days)
were vaccinated subcutaneously with live attenuated strain (#55) of

Blastomyces dermatitidis (∼2x105 CFUs). On day 5 post-vaccination, dLNs

were harvested to analyze various DC subsets by flow cytometry. The analysis
was done as mentioned in Figure 5 and Supplementary Figure 5. Values are

Mean ± SD. N=5/mice/group. Percent, numbers, and MFI values are in Mean
± SD. p*≤0.05, p**≤0.01, and p****≤0.0001.
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