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Neutrophil Extracellular Traps (NETs), as a crucial defense mechanism of

neutrophils, have garnered increasing attention in recent years for their roles in

central nervous system (CNS) disorders. This review comprehensively

summarizes the fundamental characteristics and formation mechanisms of

NETs, while highlighting the latest research advances regarding their

involvement in various CNS diseases. Specific mechanistic insights are

discussed, including how NETs exacerbate ischemic stroke through

immunothrombosis, promote blood-brain barrier disruption in multiple

sclerosis, and contribute to neuroinflammation in Alzheimer’s disease. The

paper systematically explores the potential mechanistic contributions of NETs

to disease pathogenesis and progression, as well as their prospects as diagnostic

biomarkers and therapeutic targets. Through an in-depth analysis of the

multifaceted roles of NETs in CNS pathologies, this review aims to provide

novel insights and references for advancing the understanding, clinical

diagnosis, and therapeutic management of central nervous system disorders.
KEYWORDS

neutrophil extracellular traps, central nervous system disorders, autoimmune
encephalitis, immune mechanism, therapeutic target
1 Introduction

Neutrophils are essential cells that protect the body from pathogen invasion. They also

serve a vital function in preserving host tissues, reacting quickly to infection barrier

breaches, and sterilizing tissues (1, 2). Soon after infection, neutrophils are drawn to the

infection site, where they are activated by identifying pathogen-associated molecular
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patterns (PAMPs) or damage-associated molecular patterns

(DAMPs) via certain pattern recognition receptors (PRRs) on

their surface (3). Additionally, when neutrophils are stimulated by

different pathogenic bacteria, cytokines, and chemicals, they form a

fibrous network termed NETs, which contribute to the immune

response to pathogen infection (4, 5). NETosis is the term used to

describe this special pathogen eradication mechanism.

Different from necrosis, autophagy, and apoptosis, NETosis is a

unique type of cell death (6, 7). By means of its trapping function, it

successfully protects the host from pathogen infection. NET

overexpression or poor clearance, however, may be a factor in the

development of immune-related disorders (8–10). A number of

disorders, such as systemic lupus erythematosus, rheumatoid

arthritis, atherosclerosis, and cancer, have been linked to NETs,

according to earlier research (8, 11). Immunothrombosis,

disturbance of the blood-brain barrier, and central inflammatory

responses are tightly linked to them (4, 12). Researchers worldwide

have recently focused their attention on the role of NETs in illnesses

of the central nervous system (CNS), making it a major topic of

current research. The most recent research developments on NETs

in CNS illnesses are thoroughly reviewed in this article, covering

their basic properties, methods of creation, distinct functions in

different CNS disorders, and potential as therapeutic targets. The

goal is to provide a theoretical framework for bettering clinical

diagnosis and therapy of CNS disorders while also comprehending

their pathophysiology.
2 Characteristics and formation
mechanisms of NETs

Neutrophil extracellular traps (NETs) are web-like structures

released by neutrophils upon stimulation, first discovered and

reported by Brinkmann and colleagues in 2004 (13). NETs are

primarily made up of circulating free DNA (cfDNA), citrullinated

histones, neutrophil proteases, and other antimicrobial proteins.

This structure can catch and immobilize pathogens including

bacteria, viruses, and fungus, inhibiting their spread and

simplifying their removal. NET creation is a complex mechanism

that distinguishes itself from apoptosis and necrosis. It causes

neutrophil activity, cell membrane rupture, and the release of

DNA and granular proteins. The development of NETs, known as

NETosis, is a different immune response mechanism that differs

from both apoptosis and necrosis, with mitochondrial malfunction,

chromatin decondensation, and nuclear and plasma membrane

disruption (5, 14, 15).

The formation of NETs occurs through two main pathways: the

classical pathway, known as suicidal NETosis, and the non-classical

pathway (12, 13). In suicidal NETosis, the activation of particular

signaling pathways (e.g., MEK/ERK, AKT) causes cell membrane

rupture and NET release, followed by neutrophil death. In contrast,

the non-classical pathway involves the vesicular release of NETs

without cell death, allowing neutrophils to survive with intact

nuclear and plasma membranes while still contributing to

inflammatory processes. Both routes may have a role in central
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nervous system (CNS) illnesses, although the specific processes may

differ depending on the kind of disease and the stimuli (16).

The development and clearing of NETs are dynamic

equilibrium processes. Under normal conditions, the production

of NETs is strictly controlled to ensure that they play an appropriate

role in fighting infections and modifying immunological responses

(6, 17). However, in pathological settings, this equilibrium can be

upset, resulting in excessive NET creation or insufficient clearance,

which can contribute to the development of immune-related

illnesses (18, 19). Typically, the blood-brain barrier (BBB)

prevents neutrophils from entering the central nervous system.

Nonetheless, when the CNS is subjected to trauma or disease, the

BBB’s integrity is impaired, allowing neutrophils to enter the brain

parenchyma and cerebrospinal fluid. Concurrently, neutrophil

infiltration and subsequent NET release aggravate CNS damage

and disrupt the BBB (20, 21). NETs have been linked to the

pathological processes of many neurological illnesses, including

stroke, autoimmune encephalitis, Alzheimer’s disease, multiple

sclerosis, traumatic brain injury, and brain tumors (16, 18, 19, 22,

23). However, the precise processes via which NETs contribute to

the development and progression of these disorders are unknown.

This article will provide an outline of the involvement of NETs in

CNS disorders.
3 The role of neutrophil extracellular
traps in central nervous system
disorders

3.1 NETs and stroke

Stroke is a cerebrovascular disease that can include focal or

global brain tissue impairment due to vascular dysfunction brought

on by a variety of reasons (24). Hemorrhagic and ischemic stroke

are its two primary varieties. Stroke is a serious risk to a patient’s

health and life because of its high incidence, disability, recurrence,

and fatality rates (25). New data emphasizes how important NETs

are to the pathophysiology of stroke. A focused or global disruption

of the cerebral blood supply can result from the migration of

peripheral thrombi or the creation of local thrombi, which can

cause an ischemic stroke. The impacted brain tissue sustains

irreparable damage as a result (26, 27).

Ischemic damage activates an immunological response,

allowing immune cells to migrate and infiltrate the brain

parenchyma. Within 24 hours of ischemia, active neutrophils and

the production of NETs have been seen in ischemic brain tissue,

according to studies. NETs secrete a variety of cytotoxic proteases,

including histones, myeloperoxidase (MPO), and elastase, which

can directly cause endothelial cell damage, increase vascular

permeability, and disrupt the blood-brain barrier (BBB) (28, 29).

In 2019, Kim et al. discovered that high-mobility group box 1

(HMGB1) is implicated in NET-mediated neuronal injury in

ischemic stroke. HMGB1 can cause NET formation through the

CXCR4 and TLR4 signaling pathways (30). NETs also contribute to

the formation of thrombus by providing a scaffold, promoting the
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coagulation cascade, and participating in the stroke’s pathological

process. Demyanets et al. demonstrated that NETs enhance the

coagulation cascade by linking vWF and TFPI, which contributes to

thrombosis stabilization (31). Coagulation factor XII is activated by

the DNA backbone of NETs in the absence of platelets, and along

with coagulation factor XI, it supports the coagulation cascade and

the generation of thrombin (32). Furthermore, NET-related

changes have been seen in the thrombus structure of ischemic

stroke patients as well as individuals with other vascular disorders

such coronary artery disease and peripheral artery disease. These

changes have been found to have a considerable impact on

thrombus stability (33). Furthermore, NETs have been linked to

changes in cerebral revascularization and vascular remodeling

following ischemic stroke (19).

Intracerebral hemorrhage (ICH) is a frequent cerebrovascular

condition, and neuroinflammation is thought to play an important

role in its pathogenesis. In experimental ICH models, neutrophil

infiltration is considerable in both the core and periphery of

hematomas (34). Neutrophil extracellular traps (NETs) have also

been discovered as significant factors to the pathogenesis of ICH.

An experimental ICH rat model revealed that using DNAse 1 to

break down NETs enhanced the fibrinolysis of hematomas induced

by tPA, reduced brain swelling, lowered cell death, and improved

functional outcomes. They found that NETs impaired the action of

tPA in breaking down clots in rats with ICH, and targeting NETs

could be a new option to improve fibrinolytic therapy after ICH

(35). Wang et al. (36) found that NETs could aggravate tissue

plasminogen activator (tPA)-induced brain damage in stroke

patients by inhibiting cyclic GMP-AMP synthase (cGAS) (36).

Furthermore, RNase has been demonstrated to suppress NET

formation in a mouse model of subarachnoid hemorrhage,

indicating its potential therapeutic efficacy (37).

In summary, NETs play a pivotal role in ischemic brain injury,

and targeting NETs may represent a promising therapeutic strategy

for stroke. Despite substantial proof from clinical and animal

studies clarifying the mechanisms and roles of NETs in stroke,

few NET-targeting treatments have been implemented in clinical

practice. More research is critically needed to close the gap and

promote treatment development.
3.2 NETs and central nervous system
autoimmune inflammatory diseases

NETs play a pivotal role in autoimmune diseases, particularly in

central nervous system (CNS) autoimmune disorders such as

multiple sclerosis (MS), autoimmune encephalitis, and

neuropsychiatric systemic lupus erythematosus (NPSLE) (19, 38,

39). In these conditions, NETs act as reservoirs for autoantibodies,

exacerbating autoimmune responses by promoting the production

and deposition of autoantibodies (19). Furthermore, NETs can

exacerbate the inflammatory environment by activating the

complement system and promoting the production of pro-

inflammatory cytokines, ultimately causing brain tissue damage.

For example, in multiple sclerosis, NETs have been found to be
Frontiers in Immunology 03
strongly correlated with disease activity and severity (38, 39).

Studies have shown that NET biomarkers in MS patients’ serum

are significantly enhanced, and that they correlate favorably with

disease relapse and progression. Further research has revealed that

NETs can directly damage neurons and glial cells, contributing to

disease exacerbation (19). According to studies on SLE murine

models, the activation of the BBB by anti-NR2A/B antibodies

results in higher expression of endothelial cell adhesion

molecules, which aids in the recruitment, rolling, adhesion, and

transmigration of neutrophils, ultimately causing more NETosis

within the spinal canal. The release of NETs into the spinal canal

contributes to neurotoxicity by causing neuronal cell death, which

subsequently leads to the neuropsychiatric symptoms of SLE

(40, 41).

The role of NETs in autoimmune encephalitis is also gaining

increasing attention. In a study investigating the pathogenesis of

anti-NMDAR encephalitis, Qiao et al. identified NETosis in the

serum of patients with anti-NMDAR encephalitis (42). Neutrophils

from the peripheral blood of individuals with anti-NMDAR

encephalitis showed a higher propensity to generate NETs than

healthy controls. These individuals had elevated levels of TNF-a,
IL-6, and IL-8, which were positively correlated with H3Cit levels.

This suggests that NETs are important regulators of the

immunoinflammatory processes that underlie anti-NMDAR

encephalitis. NET research in autoimmune encephalitis is still in

its infancy, nevertheless. Even while certain NET mechanisms in

this context have been discovered, there are still a lot of unanswered

questions. In order to provide new approaches for the treatment of

autoimmune encephalitis, future research is required to clarify the

precise molecular pathways of NETs in the pathophysiology of

autoimmune encephalitis and to pinpoint particular therapeutic

targets against NETs.
3.3 NETs and neurodegenerative diseases

Recent studies suggest that NETs may play a role in the

pathogenesis of neurodegenerative diseases, such as Alzheimer’s

disease (AD) and Parkinson’s disease (PD) (16, 43, 44). Although

the precise mechanisms remain incompletely understood, it is

hypothesized that NETs contribute to pathological processes such

as inflammatory responses and oxidative stress. Research has

indicated that the deposition of b-amyloid (Ab), a characteristic

clinical feature of Alzheimer’s disease, is linked to the creation of NET

(45). Ab can cause neutrophil activation and the development of

NETs (16, 19). NET constituents including DNA and histones have

the ability to attach to Ab and form complexes that worsen oxidative

stress and inflammatory reactions. Additionally, NETs may hasten

neuronal degeneration by encouraging the release of oxidative stress

products and pro-inflammatory cytokines. The study by Leon et al.

revealed an elevation in neutrophil levels in AD brains and in the

murine APP/PS1 model (46). In mouse models of Alzheimer’s

disease, findings suggest that vascular alterations may encourage

neutrophil adhesion and NETosis, with MPO from neutrophils

possibly leading to oxidative stress in the vascular system (46).
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There is growing evidence that NETs may also play a role in the

pathophysiology of Parkinson’s disease. Degeneration of

dopaminergic neurons in the substantia nigra and the

development of Lewy bodies are hallmarks of Parkinson’s disease

(43). Researchers noted that in tissue sections from primary

amyloidosis patients, amyloid fibrils significantly prompted NETs

release, which relied heavily on the NADPH oxidase system (47).

NETs may increase oxidative stress and inflammatory reactions,

which could lead to neuronal degeneration. The development of PD

is believed to be closely tied to inflammation caused by microglia.

Previous research has indicated that CADM3 is involved in the

adhesion of inflammatory cells to endothelial cells and in microglia-

mediated inflammation (48). According to Qiang et al., CADM3

might play a role in the progression of PD via NETs (43). The

research further demonstrated that the co-DEGs of GPR78,

CADM3, and CACNA1E connect NETs with Parkinson’s disease

and established a nomogram model for diagnosing PD based on

these genes. An association between NETs and PD exists, and the

expression of genes GPR78, CADM3, and CACNA1E might serve

as biomarkers for PD related to NETs. Therefore, in

neurodegenerative diseases, reducing inflammation and oxidative

stress by preventing NET formation or encouraging the removal of

preexisting NET structures may slow the course of the disease.
3.4 NETs and traumatic brain injury

The formation of immunothrombosis after traumatic brain

injury (TBI) is a critical pathophysiological mechanism

contributing to poor outcomes (49). Numerous studies have

indicated the possible involvement of NETs in TBI pathology,

despite the fact that the relationship between NETs and

immunothrombosis in TBI remains unclear (7). Unfavorable

prognoses are frequently the result of circulatory disruptions,

cerebral blood vessel damage, and blood-brain barrier impairment

after traumatic brain injury. After traumatic brain injury (TBI),

studies show a large rise in NETs in brain tissues, where they are

strongly linked to thrombus formation and inflammatory reactions.

The release of NETs by neutrophils is linked to poorer outcomes in

TBI and stroke by hindering revascularization and vascular

remodeling (23). Coagulopathy is a major factor in the deaths and

disabilities linked to TBI. The generation of NETs was driven by

HMGB1 from activated platelets, contributing to the procoagulant

activity observed in TBI. Moreover, coculture experiments

demonstrated that NETs compromised the endothelial barrier and

led these cells to adopt a procoagulant phenotype (50). Thus,

exploring the processes of NETs in TBI may offer new therapeutic

approaches to enhance results as well as deeper understanding of the

pathophysiology alterations that occur after TBI.
3.5 NETs and brain tumors

In brain tumors, the formation and release of neutrophil

extracellular traps (NETs) are closely associated with tumor
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malignancy, invasiveness, and prognosis (7, 19). Research by

Zhang et al. showed that platelets from glioma patients were

more likely to induce NET formation than those from healthy

individuals, contributing to the hypercoagulable state in these

patients (51). In another glioma study, it was observed that high-

grade glioma caused more neutrophil infiltration and NETs

formation than low-grade glioma. Excessive NETs production

enhanced the proliferation, migration, and invasion of glioma

cells. Moreover, their findings indicate that NETs generated by

neutrophils infiltrating tumors facilitate communication between

glioma development and the tumor microenvironment by

modulating the HMGB1/RAGE/IL-8 pathway (52). Initial

evidence suggested that NET-associated proteins like elastase,

proteinase-3, and cathepsin G facilitate brain tumor invasion by

breaking down extracellular matrix structures (20). Current

research has highlighted the role of NETs in brain tumors, but

additional studies are required to understand the molecular

mechanisms and aid in developing precise targeted treatments.
4 Discussion

Recently, the involvement of NETs in disorders of the central

nervous system has attracted growing scientific interest. This

extensive review methodically assesses and integrates the newest

research developments in this area. Despite significant

advancements in comprehending the mechanisms and clinical

impacts of NETs in neurological disorders, there remain

substantial challenges and unanswered questions that require

further research (5, 7, 12, 16, 19, 53).

At the outset, further studies should aim to clarify the exact

mechanistic roles that NETs play in central nervous system

disorders. Essential tasks include: researching the molecular

regulatory mechanisms of NETs in autoimmune disorders;

identifying their pathogenic roles to CNS infections; and outlining

their pathological roles in neurodegenerative diseases. Special

attention should be given to understanding the spatiotemporal

patterns of NETs formation, their interactions with neurovascular

units, and the downstream inflammatory processes throughout

different stages of disease.

Secondly, an in-depth analysis of therapeutic targets related to

NETs is a critical area of research. Creating drugs that can either

prevent the formation of NETs or promote the clearance of existing

NETs structures is important, along with systematically evaluating

their clinical applications in central nervous system pathology. By

targeting these dual pathways of NETs generation and resolution,

we may establish novel therapeutic paradigms that address current

treatment limitations in neurological disorders. The ultimate

objective is to translate these mechanistic insights into effective

clinical interventions that improve patient outcomes. Given the

critical role of NETs in central nervous system (CNS) diseases, an

increasing number of studies are exploring NETs as a potential

therapeutic target (8, 19, 20). There may be a way to reduce

inflammatory reactions, safeguard brain tissue, and eventually

enhance illness outcomes by preventing NET creation or reducing
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the amount of NET structures that are already present. A number of

therapeutic agents that target NETs, including the DNA-degrading

enzyme DNase, are currently undergoing clinical studies (54–57).

The structure and function of NETs are disrupted when DNase

breaks down their DNA component. DNase has shown promise as a

treatment for a number of central nervous system disorders in

animal experiments, such as multiple sclerosis and Alzheimer’s.

However, there are obstacles to overcome in the therapeutic use of

DNase, including best practices for administration, dosage

selection, and safety. To confirm the effectiveness and safety of

DNase and other NET-targeting treatments in CNS disorders, more

clinical research is therefore required. Other tactics, such as

protease inhibitors, CXCR2 antagonists, and antibiotic therapies,

may also indirectly affect NET production in addition to

pharmaceutical interventions (7, 58). Targeting the dual processes

of NETs formation and resolution might lead to innovative

treatment strategies that tackle the limitations of current therapies

for neurological disorders.
5 Conclusions and future perspectives

In conclusion, NETs are crucial in disorders of the CNS.

Regarding the role of NETs in CNS diseases, considerable

advancements have been made in recent years. However,

numerous challenges and unresolved questions remain. Therefore,

a deeper understanding of the specific mechanisms by which NETs

contribute to CNS diseases, as well as the exploration of effective

therapeutic strategies targeting NETs, is of paramount importance

for improving disease outcomes. Moving forward, with continued

advancements in research and technology, we anticipate more

precise modulation of NETs’ functions, offering novel approaches

and methodologies for the treatment of CNS disorders.
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