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PLK1 plays a crucial role in cell cycle regulation and cancer development, and its

dysregulation has been implicated in the prognosis of a variety of malignancies. The

potential of PLK1 inhibitors as cancer therapeutics has been extensively investigated.

However, the underlying biology and mechanisms of PLK1 remain incompletely

understood. In recent years, numerous studies have demonstrated that PLK1

overexpression is associated with resistance to certain chemotherapeutic agents,

while its inhibition can enhance the efficacy of chemotherapy. In addition, PLK1

inhibitors have been shown to selectively target cancer cells as radiation sensitizers

and exert synergistic effects in combination immunotherapy. The underlying

mechanisms may involve the regulation of multiple immune cells and

inflammatory factors, as well as alterations in the tumor microenvironment,

ultimately influencing tumor genesis, migration, and invasion. Moreover, PLK1 can

regulate the expression of immune checkpoint-related proteins, thereby playing a

synergistic role in cancer therapy. Furthermore, PLK1 represents a promising target

antigen for cancer immunotherapy, with potential applications in optimizing cancer

vaccines. Therefore, this review focuses on the applications and underlying

mechanisms of PLK1 in tumor immunotherapy, aiming to provide new insights

for improving patient outcomes and prognosis.
KEYWORDS
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1 Introduction

PLK1, a member of the polo-like kinase (PLK) subfamily of Ser/Thr protein kinases,

plays a pivotal role in regulating diverse cellular processes, including cell cycle progression,

differentiation, survival, DNA damage response, autophagy, apoptosis, and cytokine

signaling (1, 2). Given its frequent overexpression in various tumor types and its
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association with poor clinical outcomes, PLK1 has emerged as a

highly attractive target for the development of anti-cancer therapies

(3). However, due to its critical role in cell cycle regulation,

inhibiting PLK1 activity can lead to aberrant mitosis and

chromosomal instability in normal tissues. As a result, the use of

PLK1 inhibitors carries the risk of inducing new tumors or causing

significant side effects in some patients (4).

In recent years, studies have demonstrated that combining PLK1

inhibitors with other therapies can achieve superior efficacy compared

to monotherapy. By inhibiting PLK1, these combinations can address

the issue of drug resistance to certain chemotherapy agents and act as

radiation sensitizers, thereby enhancing the effectiveness of tumor

chemoradiotherapy (5–7). Additionally, PLK1 is closely linked to

tumor immunotherapy, with its expression showing significant

correlations with immunophenotyping, immune cell infiltration,

tumor mutational burden (TMB), microsatellite instability (MSI),

immune checkpoint gene activity, and therapeutic outcomes across

various tumor types (8). In this review, we discuss the structure and

function of PLK1, its multifaceted role in cancer biology, and its

significance and underlying mechanisms in the context of

cancer immunotherapy.
2 PLK1 structure and function

In humans, five PLK paralogues have been identified, including

PLK1, PLK2 (Snk), PLK3 (Fnk/Prk), PLK4 (Sak), and PLK5 (9).

PLK proteins typically comprise two C-terminal Polo-box domains

(PBDs) and an N-terminal catalytic kinase domain (10). But PLK4

has three polo box regions, making it the most structurally

differentiated member of the PLK family (11). In contrast, PLK5

lacks part of the kinase domain but is still considered a member of

the PLK family due to the retention of the PBD sequence (9, 12).

PLK1 is the most highly conserved member of the polo-like

kinase family (Figure 1). However, PLK1 gene polymorphisms

(such as rs27770, rs40076, rs57973275) may regulate cancer risk

and treatment response by affecting its expression, mRNA stability,

or function. rs27770 is located in the PLK1 coding region, which

can lead to threonine (Thr) to methionine (Met) at position 609. Its

allele shows different secondary mRNA structure (13). There are

studies have shown that the higher frequency of G allele in Asian

population can make PLK1 more susceptible to the inhibition of

human microrna: hsa-miR-100-5p, which is more conducive to the
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prognosis of hepatocellular carcinoma (HCC) (14). rs40076 is

located in the intronic region of PLK1, affects mRNA splicing or

transcriptional regulation, and can be used as a predictor of bladder

cancer susceptibility and survival (15). rs57973275 is located in the

3 ‘-UTR region, and studies have shown that targeting this region

can inhibit the expression of PLK1, thereby inhibiting the

progression of lung cancer (16).

PLK1 plays a critical role in cell division and is predominantly

localized in three distinct subcellular regions: the mitotic

centrosomes, kinetochores, and the cytokinetic midbody (17).

PLK1 plays a crucial role in centrosome maturation. It also affects

the process of centrosome separation in G2/M phase to form

bipolar spindle. PLK1 promotes the recruitment of the g-tubulin
ring complex (g-TuRC) and other Plasma Membrane Calcium-

transporting ATPase (PMC) proteins to centrosomes, while

phosphorylating key proteins such as the kinase Nek9 and the

mitotic motor protein Eg5 (18, 19). On one hand, PLK1 recruits

PP2A to BubR1, facilitating the attachment of centromeres to

microtubules and maintaining the spindle assembly checkpoint

(SAC) (20). On the other hand, once all centromeres are properly

attached to spindle microtubules during metaphase, PLK1 is

ubiquitinated by the active anaphase-promoting complex/

cyclosome (APC/C), leading to its dissociation from centrosomes

and the transition out of metaphase (21, 22). Furthermore, PLK1

activity is essential for cytokinesis, as it regulates phosphorylated

microtubule-associated protein (PRC1) and intermediate

localization protein (CEP55) to mediate cytoplasmic division and

abscission (23–25). If PLK1/PRC1 signaling is blocked, tumor

growth is inhibited, and drug-resistant tumors become more

sensitive to conventional chemotherapy (26).

The process of epithelial cells transdifferentiate into motor

mesenchymal cells is called epithelial-mesenchymal transition

(EMT). Although EMT is integral in development, wound

healing, and stem cell behavior, it also contributes pathologically

to fibrosis and cancer progression (27). Studies have shown that

PLK1 is a key regulator of EMT in tumor cells. In non-small cell

lung cancer, the invasion and metastasis of tumor cells can be

promoted by activating the PLK1/b-catenin/AP-1 or PLK1/TGF b
axis (28, 29). In addition, PLK1 can accelerate or reverse EMT by

regulating the AKT pathway. This phenomenon has been verified in

gastric cancer and osteosarcoma (30, 31). In the prostate, PLK1 acts

primarily as a potent activator of the MAPK signaling pathway,

stimulating cell migration and invasion (32).
FIGURE 1

PLK1 protein domains. PLK1 structure includes two functional polo-box domains (PBDs) at C-terminal and the kinase domain at N-terminal.
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3 PLK1 and tumors

3.1 Effect of PLK1 on tumor development

3.1.1 Tumor-promoting role of PLK1
PLK1 is a key regulator of mitosis and cytokinesis, and its

overexpression is frequently observed in various tumors, often

correlating with poor prognosis (Figure 2). PLK1 phosphorylation

can inactivate the tumor suppressor gene PTEN, thereby activating

the PI3K/AKT pathway, which enhances aerobic glycolysis and

promotes tumorigenesis (33). Meanwhile, PTEN is also known to

be an important regulator of Plk1 dephosphorylation and

chromosome stability during cell division (34). PI3K/AKT could

reduce the binding of PLK1 to 14-3-3g protein, eventually leading to
the inability of PLK1 to be activated by catalysis (35). Inhibition of

PLK1 can further regulate the downstream genes, including the up-

regulation of caspase-3 and Bax and the down-regulation of XIAP

and Bcl-2, ultimately affecting the occurrence and development of

tumors (36). Furthermore, the combined inhibition of PLK1 and

PI3K/AKT, along with FOXO1, exerts synergistic anticancer effects

in anaplastic thyroid cancer and non-small cell lung cancer (37, 38).

Additionally, PLK1 inhibitors have been shown to enhance the

sensitivity of pancreatic cancer to chemotherapy (39).

PLK1 also enhances the stability of the oncogene MYC protein

(40, 41). Inhibition of PLK1 reduces the phosphorylation of FBW7,

preventing its autoubiquitination and proteasome degradation,
Frontiers in Immunology 03
thereby promoting the degradation of MYC and reducing tumor

cell proliferation while increasing apoptosis (42, 43). PLK1 expression

can promote MYC to activate Hedgehog signaling pathway by

degrading PDCD4, and then promote the proliferation of tumor

cells (44). PLK1 inhibitors also synergistically with mTOR inhibitors

to compensatively induce MYC expression, overcome the oxaliplatin

resistance of colon cancer, and enhance the radiosensitivity of

medulloblastoma (6, 45, 46). At the same time, MYC can deactivate

PLK1, preventing PLK1 inhibitors from exerting their effects of

sustained activation of SAC and hindering intermediate separation

(40, 43, 47, 48).

In nasopharyngeal carcinoma, PLK1 promotes tumorigenesis

by mediating KLF4 overexpression. PLK1 directly phosphorylates

the Ser234 site of KLF4, leading to the recruitment and binding of

the E3 ligase TRAF6, which stabilizes KLF4 through K63-linked

ubiquitination. This stabilization enhances the transcriptional

activity of KLF4, which in turn activates the MYC oncogenic

program, creating a feedforward loop that drives tumor

progression (49).

Regulation of the PLK1-p53 signaling axis eventually induces

cell cycle arrest and inhibits tumor growth (50). P53 can promote

the cytotoxicity of PLK1-targeted therapy and reduce tumor

recurrence and metastasis (51). Other transcription factors

regulated by PLK1 include PLK1 phosphorylation-dependent

REST degradation in triple-negative breast cancer (52), SUZ12

and ZNF198 in hepatitis B virus (HBV)-mediated liver cancer
FIGURE 2

Schematic diagram of the relationship between PLK1 and oncogenes (By Figdraw).
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(53), and transcription of the key tumor suppressor FOXO1 in

prostate cancer cells and rhabdomyosarcoma (54, 55). PLK1 can

also exert a synergistic effect with FOXM1 to affect the prognosis of

liver cancer (56), papillary thyroid cancer (57), bladder cancer (58),

diffuse large B-cell lymphoma (59), kidney cancer (60), lung cancer

(61), breast cancer (62), esophageal cancer (63) and other tumors.

In addition, PLK1 can also coordinate cancer progression by

influencing metabolic reprogramming. PLK1 plays a key role in the

biosynthesis of cancer cells by promoting the formation of glucose-

6-phosphate dehydrogenase (G6PD) active dimers, interacting with

them and directly phosphorylation, thereby activating the pentose

phosphate pathway (PPP) (64). PLK1 is also a valuable molecular

target for angiogenesis, and inhibition of its expression can inhibit

the formation of new tubular structures in non-small cell lung

cancer and prostate cancer, and enhance the chemotherapy

sensitization of paclitaxel in cancer cells (65) (Table 1). Recent

studies have also found that PLK1 is involved in ferroptosis

pathway, and PLK1-CBx8-GPX4 can overcome the drug

resistance mechanism of colorectal cancer by inducing ferroptosis

(66, 67).
3.1.2 PLK1 as a tumor suppressor
Despite its predominant role as a tumor promoter, PLK1 can

also exhibit tumor-suppressive effects under certain conditions. For

instance, PLK1 overexpression has been shown to inhibit the

development of Kras- or Her2-induced breast tumors by

interfering with mitotic processes and cytokinesis (68).

Additionally, high levels of PLK1 have been associated with

improved survival rates in colorectal cancer patients with APC

mutations. In these cases, inhibition of PLK1 in colon cells

expressing mutant APC-DC disrupts spindle assembly checkpoint

(SAC) recruitment by reducing the localization of BUBR1 and

MAD1 at the centromere, leading to chromosomal abnormalities

and an increased number of intestinal tumors in APC Min/+

mice (69).
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3.2 PLK1 as a target for cancer therapy

Given its central role in cell cycle regulation and its elevated

expression in various cancers, PLK1 has emerged as a promising

target for cancer therapy. Inhibition of PLK1 has been shown to

enhance the sensitivity of tumors to chemotherapy and

radiotherapy (70). PLK1 inhibitors can be broadly categorized

into ATP-competitive inhibitors that target the kinase domain

(KD) and compounds that target the polo-box domain (PBD) (71).

BI 2536 is a potent ATP-competitive inhibitor that inhibits

tumor growth in vivo and in vitro (72). Clinical trials have shown

that BI 2536 can exert synergistic anti-tumor effects when combined

with other chemotherapeutic agents, but the efficacy of single

therapy is poor (73). Volasertib, an ATP-competitive inhibitor,

exhibits sustained high-dose exposure in tumor tissues and has

demonstrated antitumor activity and a favorable safety profile in

multiple xenograft models (74). Overexpression of the ATP-binding

cassette (ABC) drug transporter ABCB1 has been shown to cause

ATP hydrolysis, which contributes to drug resistance in Volasertib.

Therefore, combination therapy with ABCB1 modulators can be

considered as a way to solve the problem of drug resistance (75). In

addition, Volasertib exerts synergistic effects when combined with

both MEK inhibitors and histone deacetylase (HDAC) inhibitors

(76, 77). Onvansertib is a novel ATP-competitive PLK1 specific

inhibitor, which can induce mitotic cycle arrest and apoptosis in

tumor cells. Thus, the growth of xenograft tumors was inhibited

(78). It is currently being tested in three clinical trials in

combination with standard therapy (KRAS-mutated metastatic

colorectal cancer, acute myeloid leukemia, and castration-resistant

prostate cancer) and has shown promising drug resistance and

safety profiles (79–81). However, this ATP-competitive PLK1

inhibitor has certain limitations. Firstly, the kinase domains of

PLK family members (such as PLK1/2/3) are highly similar,

resulting in reduced selectivity of existing drugs and easy to cause

off-target effects. Secondly, PLK1 has complex and pleiotropic

functions in the cell cycle regulatory network. When the inhibitor

concentration is too high, PLK2/3 and other paraloproteins are

unspecifically inhibited, resulting in dose-dependent cytotoxicity

(such as bone marrow suppression and gastrointestinal reactions)

(4). Finally, acquired mutations in the ATP-binding domain in

tumor cells, such as Gatekeeper mutations in the kinase domain,

may lead to decreased drug-binding affinity for PLK1 inhibitors and

thus the phenomenon of acquired resistance (82).

Non-ATPcompetitive inhibitors, such as Rigosertib, which

targets the PBD and inhibits both PLK1 and PI3K, have shown

efficacy in killing tumor cells in vitro and in vivo. PBD inhibitors are

more specific because of their high affinity for specific residues of

PLK1 compared to ATP competitive inhibitors (71). Poloxin, a PBD

inhibitor developed in 2008, causes mitotic arrest and apoptosis of

cancer cells by inducing centrosome fragmentation and abnormal

arrangement of spindles and chromosomes. In the xenograft mouse

model, Poloxin was also shown to inhibit tumor growth. However,

Poloxin is easily degraded in vitro and in vivo, resulting in a short

half-life and difficult to maintain its efficacy. Moreover, due to its
TABLE 1 Overview of PLK1 substrates and functions related to cancer.

Substrate/Pathway activation P-Site

Inhibition of tumor suppressors

PTEN Ser385

REST Ser1030

SUZ12 Ser539,546

ZNF198 Ser305

FOXO1 Ser75

Activation of tumor promotors

FBW7 Ser58/Thr284

KLF4 Ser234

Metabolism

G6PD Thr406,466
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large molecular polarity and poor transmembrane permeability, it is

difficult to reach an effective concentration in tumor cells (83, 84).

However, Rigosertib has underperformed in clinical trials for high-

risk myelodysplastic syndromes and metastatic pancreatic cancer,

with patients showing no significant benefits over standard care. On

the one hand, the phosphopeptide binding interface of PBD is

relatively shallow. On the other hand, it may activate other mitotic

kinases (such as Aurora A/B, WEE1) to compensate for PLK1

function (71, 85). However, some studies have shown that

Rigosertib can also target the RAS pathway and overcome

chemotherapy resistance. Therefore, combining this inhibitor

with chemotherapy may improve efficacy in patients with KRAS

mutations (86). Therefore, further research is needed to improve

the specificity and reduce the resistance of PLK1 inhibitors, making

them more effective in clinical applications. Recent studies have

found that dual-target inhibitors targeting PLK1/BRD4 and PLK1/

MEK can produce cumulative effects and exert long-term inhibitory

effect on cancer cell growth (87–89) (Table 2).
4 PLK1 and immunity

PLK1 has been found to play a significant immunomodulatory

role in almost all types of cancer. The following pathways are

mainly involved: immune cell infiltration, inflammatory signaling,

immune checkpoint inhibitors and cancer vaccines. Increased PLK1

expression can inhibit the function of immune cells, such as NK

cells and T cells, thereby promoting tumor immune escape (90).

PLK1 also regulates inflammatory mediators and cellular effectors,

thereby altering the local tumor microenvironment to promote

tumor cell proliferation and survival while disrupting the adaptive

immune response (91). Additionally, PLK1 exhibits positive

associations with multiple immune checkpoints, encompassing

both immunosuppressive and immunostimulatory checkpoints

(92, 93). Moreover, PLK1 represents an attractive target antigen
Frontiers in Immunology 05
for cancer immunotherapy, playing a crucial role in the

optimization of cancer vaccines (94) Figure 3).
4.1 PLK1 and immune cells infiltration

The tumor microenvironment (TME) is a critical determinant

of cancer cell survival and metastasis, and the infiltration of

immune cells into the tumor is a key factor influencing the

efficacy of immunotherapy (95, 96). Accumulating evidence

indicates that PLK1, beyond its well-established role in mitosis,

exerts significant effects on the tumor microenvironment and is

involved in tumor cell metastasis and immune cell infiltration

(8, 97).

On one hand, PLK1 regulates the infiltration of a variety of

immune cells. In lung cancer, PLK1 inhibits DC maturation and T-

cell enrichment (98, 99).Moreover, PLK1 expression is positively

correlated with myeloid-derived suppressor cells (MDSCs) and

regulatory T cells. In addition, PLK1 was positively correlated

with myeloid-derived suppressor cells (MDSCs) and regulatory T

cells in breast cancer and node-predominant Hodgkin’s lymphoma

(100–102). In summary, PLK1 modulates the function of immune

cell infiltration, providing a foundation for the development of

inhibitors targeting innate immune maintenance.

On the other hand, PLK1 has been shown to promote the

polarization of tumor-associated macrophages (TAMs) from the

M1 to the M2 phenotype (103). Tumor-associated macrophages can

be polarized into two distinct phenotypes: M1 macrophages, which

activate T-helper type 1 (Th1) T cells to induce a cytotoxic T-cell

response against pathogens, thereby exerting tumor-killing activity

and increasing hypoxia; and M2 macrophages, which promote

tissue repair and wound healing, participate in angiogenesis, and

secrete a variety of pro-inflammatory factors with pro-tumorigenic

effects, thereby contributing to cancer progression (104, 105). In

hepatocellular carcinoma, PLK1 interacts with PTEN and interferes
TABLE 2 PLK1 inhibitors in clinical trials.

Compound Target Clinical Trial Phase Indication NCT number

BI 2536 ATP- binding I Advanced solid tumors 00526149

II Small cell lung cancer 00412880

II AML/MDS 00422890

Volasertib ATP- binding III AML 01721876

Onvansertib ATP- binding II Metastatic colorectal cancer with a
KRAS mutation

03829410

II Metastatic castration-resistant prostate cancer 03414034

II Metastatic pancreatic ductal adenocarcinoma 04752696

Poloxin Polo-box domain

Rigosertib Polo-box domain III Untreated metastatic pancreatic cancer 01360853

III Myelodysplastic syndrome 01928537

III Myelodysplastic syndrome 02562443
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with its nuclear translocation, leading to the inhibition of natural

killer (NK) cell and T cell function by enhancing aerobic glycolysis

and promoting M2macrophage polarization (106). High expression

of PLK1 inhibits the infiltration of M1 macrophages and their

associated chemokines and marker genes into the glioblastoma

immune microenvironment, whereas knockdown of PLK1

increases the infiltration and polarization of M1macrophages (107).

In addition, PLK1 inhibitors can prevent and treat acute graft-

versus-host disease (aGvHD) that may occur after leukemia

transplantation by preventing activation and inducing apoptosis

of already activated alloreactive T cells (Tallo cells) while inhibiting

the molecular chaperone Hsp90 and inhibiting Tallo cell

proliferation (108). There is also a link between PLK1 and Toll-

like receptor (TLR) signaling, which plays a key role in innate

immunity. TLRs are important sentinels of bacterial and viral

infections, and PLK inhibitor-mediated blockade of TLR signaling

can lead to adverse effects. Thus, in some patients receiving PLK1

inhibitors during cancer treatment, the risk of infection with

invading microorganisms may be increased due to the impaired

ability of the TLR recognition system to sense and initiate a cytokine

response (109).
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4.2 PLK1 and inflammatory factor

Inflammatory factors are a wide range of effector molecules

involved in inflammatory response, including a variety of cytokines

and chemokines. Many cancers arise from sites of infection, chronic

irritation, and inflammation. Studies have shown that inflammatory

factors can act directly on tumor cells. Inflammatory cells also

modulate tumor growth by orchestrat ing the tumor

microenvironment and influencing the adaptive immune response.

Exploring the role of inflammatory factors in tumor immunity can

provide a new way for cancer treatment in the future (110, 111).

An earlier study in 2013 found that PLK1 inhibitors could help

treat colon cancer or early-stage lesions with high levels of

inflammatory cell infiltration (112). Some studies have suggested

that the high selectivity of PLK1 inhibitors for the BET

bromodomain is the reason why PLK1 inhibitors can be used as

drug targets for cancer and inflammation (113). Further studies

have found that the activation of PLK1 inhibits the expression of

TNF-induced cyclin D1, providing a potential mechanism for TNF-

a’s involvement in inflammation-induced cancer (114). Recently,

PLK1 has been identified as a novel negative regulator of the RIG-I
frontiersin.or
FIGURE 3

PLK1 decreased the levels of TNF-a, RIG-1 and IFN, promoted the polarization of tumor-associated macrophages from M1 to M2, and increased the
levels of IL-1A, VEGFA and IL-6. PLK1 was negatively correlated with DC cells, T cells and NK cells, and positively correlated with myeloid suppressor
cells (MDSCs) and regulatory T cells. PLK1 affects PD-L1 expression by regulating MAPK, TGF-b and NF-ĸB signal transduction pathways. (By
Figdraw).
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and IFN-inducing pathways. RIG-I is capable of upregulating the

expression of pro-inflammatory cytokines, inducing inflammation

in the tumor environment, and activating neighboring immune

cells, while IFN plays an important role in T cell proliferation,

antigen sensitivity, cytokine production, and migration (115, 116).

PLK1 also promotes the polarization of tumor-associated

macrophages to upregulate the expression of IL-1A/1B, VEGFA,

and IL-6, and the increased activity of these genes and factors is

inversely associated with survival in patients with advanced lung

adenocarcinoma (61).

Studies have highlighted the role of PLK1 in regulating

inflammatory factors in sepsis and related diseases, offering potential

insights for anti-inflammatory strategies in tumor treatment. Sepsis

and cancer share several pathophysiological features, and the immune

dysfunction associated with sepsis may influence the progression of

malignant tumors (117, 118). For instance, in sepsis-induced acute

lung injury (ALI), the activation of the ROS-mediated NLRP3

inflammasome is suppressed through modulation of the PLK1/

AMPK/DRP1 signaling axis (119). Additionally, PLK1 has been

identified as a key contributor to sepsis-induced myocardial

dysfunction (SIMD). Its expression is upregulated in

lipopolysaccharide (LPS)-treated mouse hearts and neonatal rat

cardiomyocytes (NRCM). Inhibition of PLK1 attenuates the

activation of the NF-kB signaling pathway, thereby mitigating LPS-

induced myocardial injury, inflammation, and cardiac dysfunction

(120). In contrast, PLK1 exhibits a protective role in sepsis-induced

intestinal barrier dysfunction. Overexpression of PLK1 reduces IL-6

levels by suppressing NF-kB signaling, thereby alleviating intestinal

epithelial damage (121, 122).
4.3 PLK1 and immune checkpoint inhibitors

Programmed death-ligand 1 (PD-L1) is widely expressed in

human tumors and plays a critical role in immune evasion. By

binding to its receptor PD-1 on activated T cells, PD-L1 inhibits T

cell activation signaling, thereby promoting tumor immune escape

(123). Blockade of the PD-L1/PD-1 pathway has shown significant

anti-tumor effects in patients with advanced cancer and is

considered the gold standard for developing new immune

checkpoint blockade (ICB) therapies and combination treatments.

However, the response rate to anti-PD-L1 antibodies remains

limited in several solid tumors (124). Consequently, improving

the sensitivity of cancer patients to immune checkpoint inhibitors

and expanding the population benefiting from immunotherapy are

critical areas of future research.

Recent studies have revealed that PLK1 inhibitors can synergize

with PD-L1 immune checkpoint inhibitors in tumor

immunotherapy. Analysis of the TCGA dataset identified PLK1 as

one of the proliferation-related kinases highly expressed in cancers

with chromosome 9p copy number gains (CNGs) involving PD-L1.

This finding is relevant to a variety of cancers, including lung

cancer, melanoma, bladder cancer, head and neck cancer, cervical

cancer, soft tissue sarcoma, prostate cancer, gastric cancer, ovarian

cancer, and triple-negative breast cancer (125).
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Research has shown that PLK1-induced phosphorylation of

Vimentin promotes PD-L1 expression by activating TGF-b
signaling and interacting with p-Smad2/3, contributing to

metastatic progression in lung adenocarcinoma (LUAD) (126).

Meanwhile, in vivo experiments confirmed that PLK1 inhibitor

combined with PD-L1 inhibitor could significantly reduce tumor

progression in mice compared with the two drugs alone. Because

inhibition of PLK1 can induce the up-regulation of PD-L1 through

the MAPK pathway and enhance the sensitivity of tumor cells to

immune checkpoint inhibitors (127). Additionally, there are studies

reported that PLK1 inhibition suppresses Rb phosphorylation in

lung cancer. In various cancer cell lines, phosphorylated Rb inhibits

the transcriptional activity of NF-kB and the expression of PD-L1

mRNA (128, 129). These findings suggest that PLK1 inhibitors may

influence tumor immunotherapy efficacy in lung cancer by

modulating the Rb/NF-kB/PD-L1 axis.

In pancreatic cancer, PLK1 inhibition similarly upregulates PD-

L1 expression but also enhances sensitivity to PD-L1 blockade,

ultimately leading to tumor suppression. This combination therapy

can transform immunologically “cold” tumors into “hot” tumors,

thereby improving anti-tumor immune responses. Mechanistically,

PLK1 inhibition or depletion increases nuclear localization of NF-

kB by reducing Rb phosphorylation, which upregulates PD-L1

expression (130). This mechanism supports the proposed role of

the PLK1/Rb/NF-kB/PD-L1 axis in lung cancer and highlights its

potential relevance across multiple cancer types.

The article published reported that PLK1 has the ability to alter

the transcriptional profile of Her2+ breast tumors in the living

environment, affecting the effector capacity of NK and T cells. This

coordinated interaction in the tumor microenvironment ultimately

upregulates PD-L1 and CD206 in the later stages of tumor

progression and induces the NF-kb signaling pathway, promoting

immune evasion (131).
4.4 PLK1 and cancer vaccines

Genetic instability in tumor cells often results in a high

frequency of mutations, and the expression of non-synonymous

mutations can generate tumor-specific antigens known as

neoantigens. These neoantigens are highly immunogenic because

they are not expressed in normal tissues. Neoantigen-targeting

cancer vaccines primarily include nucleic acid vaccines, dendritic

cell vaccines, tumor cell vaccines, and synthetic long-peptide

vaccines (SLPs) (132).

In recent years, it has been found that PLK1 may be a universal

tumor antigen recognized by cytotoxic T lymphocytes for cancer

immunotherapy. PLK1-specific CD4(+) and CD8(+) T cells can be

induced by mPLK1 RNA/DC vaccine and exert anti-tumor effects

(94). Inoculation of bone marrow cells CD8 T against the cellular

epitope synthesis of PLK1: PLK1122 (DSDFVFVVL) yields a large

number of long-lasting antigen-specific CD8 T cells. The use of a

peptide vaccine that simultaneously targets PLK1 and blocks PD-L1

can lead to complete tumor eradication and long-term survival in

mice with clonal heterologous C1498 myeloid leukemia (133).
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However, PLK1 as a target of direct immunotherapy still faces

multiple challenges, mainly involving target specificity,

immunogenicity and tumor heterogeneity. PLK1 still has basal

expression in normal proliferating cells. Systemic targeting of PLK1

may cause “on-target, off-tumor” toxicity, leading to bone marrow

suppression or gastrointestinal injury. Such risks may be further

amplified by the long-term activating effects of immunotherapy

(134). PLK1 did not show strong immunogenicity in human

models, and experimental data showed that PlK1-derived peptides

only weakly activated T cells in peripheral blood of patients (135). In

addition, in a study utilizing a DNA vaccine model to compare the

immunogenicity of G2/M-related antigens, it was observed that PLK1-

immunized mice did not exhibit any anti-tumor effects. This may be

related to the fact that PLK1 is not preferentially expressed in the

cancer stem cell (CSC) or cancer initiation cell (CIC) population (136).

In summary, PLK1 may be an attractive target antigen for cancer

immunotherapy, but is more likely to act as an accessory target rather

than an independent immunotherapy antigen.
5 Conclusions and future perspectives

PLK1 is a key regulator of mitosis, playing critical roles in

centrosome maturation and separation, spindle assembly

formation, and cytokinesis. Due to its central role in cell division,

aberrant expression of PLK1 can have profound detrimental effects,

particularly in carcinogenesis. This review focuses on the

relationship between PLK1 and cancer development. On one

hand, PLK1 promotes tumor progression through the PLK1/b-
catenin/AP-1 axis or the PLK1/TGF-b axis, while on the other

hand, it activates the AKT and MAPK pathways, leading to

epithelial-mesenchymal transition (EMT) and ultimately

facilitating tumor cell invasion and metastasis. Additionally, PLK1

is widely recognized as a cancer-promoting gene that regulates

multiple tumor suppressor gene inactivation and proto-oncogene

expression. Inhibition of PLK1 has been shown to enhance

chemosensitivity, highlighting its potential as a therapeutic target.

PLK1 also modulates the expression of transcription factors

across various cancer types, further contributing to its tumor-

promoting functions. However, despite its oncogenic role, only a

limited number of PLK1 inhibitors have demonstrated promising

therapeutic effects in clinical trials. This is largely due to challenges

such as toxicity at high doses, the pleiotropic functions of PLK1 in

mitotic cells, and off-target effects. Interestingly, PLK1

overexpression has been found to inhibit tumor development in

certain contexts by disrupting mitotic progression, spindle assembly

checkpoint recruitment, and cytokinesis. These dual roles suggest

that PLK1 acts as a double-edged sword, capable of either

promoting or suppressing tumor development depending on the

context. This complexity complicates the therapeutic application of

PLK1 inhibitors and underscores the need for further research to

fully understand its functions.

In recent years, increasing evidence has highlighted the

significant role of PLK1 in cancer immunotherapy. Firstly, PLK1

plays a crucial role in cancer progression by modulating the tumor
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microenvironment, particularly through the regulation of immune

cell infiltration and inflammatory factors. PLK1 inhibits the

recruitment of immune-promoting cells such as dendritic cells

(DCs), T cells, and NK cells, while positively correlating with the

presence of myeloid-derived suppressor cells (MDSCs) and

regulatory T cells. Additionally, PLK1 acts as a negative regulator

of key inflammatory mediators, including TNF-a, RIG-1, and IFN,

and is implicated in inflammation-driven cancer processes.

Furthermore, PLK1 promotes the polarization of tumor-

associated macrophages (TAMs) from the M1 to the M2

phenotype, upregulating the expression of chemokines such as IL-

1A/1B, VEGFA, and IL-6, which are associated with poor survival

outcomes in cancer patients.

Secondly, PLK1 inhibitors have shown synergistic effects when

combined with PD-L1 immune checkpoint inhibitors in tumor

immunotherapy. These effects are primarily mediated through the

TGF-b, MAPK, and NF-kB signaling pathways, enhancing the anti-

tumor immune response. Lastly, PLK1 has emerged as a universal

tumor antigen recognized by cytotoxic T lymphocytes, making it a

promising target for cancer immunotherapy. Dendritic cell vaccines

targeting PLK1-specific CD4(+) and CD8(+) T cells have

demonstrated potent anti-tumor effects. Similarly, peptide

vaccines derived from PLK1 epitopes have been shown to

generate long-lasting antigen-specific CD8 T cells, leading to

complete tumor eradication and prolonged survival in murine

models. Notably, a polypeptide vaccine targeting both PLK1 and

PD-L1 has shown remarkable efficacy in eliminating tumors and

improving survival outcomes in mice.

In conclusion, expanding our understanding of PLK1 signaling

in immunotherapy offers new avenues to enhance the efficacy of

PLK1 inhibitors and improve the sensitivity of immunotherapeutic

approaches. These insights also provide a foundation for the

development of novel therapeutic strategies, paving the way for

more effective cancer treatments.
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Glossary
Abbreviations Full
English
name

Definition

TMB Tumor
Mutational
Burden

Measure of mutations carried by
tumor cells

MSI Microsatellite
Instability

Condition of genetic
hypermutability due to impaired
DNA mismatch repair

PBD Polo-Box Domain Protein interaction domain of PLK
family kinases

PMC Perivascular
Macrophage
Cluster

Specialized macrophage subset
around blood vessels

PRC1 Protein Regulator
of Cytokinesis 1

Key regulator of mitotic
spindle formation

CEP55 Centrosomal
Protein 55

Essential component of
the centrosome

EMT Epithelial-
Mesenchymal
Transition

Cellular reprogramming process
in metastasis

G6PD Glucose-6-
Phosphate
Dehydrogenase

Rate-limiting enzyme in pentose
phosphate pathway

SAC Spindle
Assembly
Checkpoint

Critical mitotic quality
control mechanism

KD Kinase Domain Catalytic domain of protein kinases

HDAC Histone
Deacetylase

Enzyme modifying
chromatin structure

TME Tumor
Microenvironment

Cellular environment
surrounding tumors

DC Dendritic Cells Professional antigen-
presenting cells

MDSCs Myeloid-Derived
Suppressor Cells

Immunosuppressive
myeloid population

TAMs Tumor-
Associated
Macrophages

Pro-tumor macrophages in TME

aGvHD acute Graft-
versus-
Host Disease

Donor immune cell attack
on recipient

TCR T Cell Receptor Antigen recognition complex of
T cells

ACI Adoptive
Cell
Immunotherapy

Therapeutic T cell transfer

SIMD Spindle and
Midbody Database

Repository of mitotic proteins

NRCM Neonatal
Rat
Cardiomyocytes

Common cardiac cell model
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Abbreviations Full
English
name

Definition

ICB Immune
Checkpoint
Blockade

Therapy targeting PD-1/CTLA-
4 etc.

CNGs Cancer
Neoantigens

Tumor-specific mutated antigens

LUAD Lung
Adenocarcinoma

Major NSCLC subtype

SLPs Synthetic
Lethal Pairs

Gene pairs where dual loss is lethal

CSC Cancer Stem Cells Tumor-initiating cell population

CIC Cancer
Initiating Cells

Alternative term for CSCs
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