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Introduction: Anoikis is a distinct form of programmed cell death, differing from

classical apoptosis, and its role in malignant tumor progression, particularly in

hepatocellular carcinoma (HCC), remains insufficiently understood. This study

aims to elucidate the prognostic significance and therapeutic relevance of

anoikis-related genes (ARGs) in HCC.

Methods: We systematically analyzed the expression, mutation, and copy

number variation profiles of 27 known ARGs in HCC using public datasets.

Unsupervised consensus clustering was performed to classify patients into

anoikis subtypes. Weighted Gene Co-expression Network Analysis (WGCNA)

identified hub gene modules, and LASSO Cox regression was applied to

construct a prognostic risk score model. Correlations between the risk model

and clinical outcomes, tumor microenvironment (TME) characteristics, and

immunotherapy responses were evaluated. Single-cell RNA-seq and pan-

cancer analyses were conducted to explore gene expression across cell types

and cancer types. Finally, in vitro experiments were performed to validate the

biological function of model genes.

Results: Two distinct anoikis subtypes with differing prognoses and TME features

were identified in HCC. A two-gene prognostic model (TTC26 and TPX2) was

developed, demonstrating robust performance in predicting patient outcomes.

High-risk patients exhibited lower overall survival and distinct immune infiltration

profiles. Pan-cancer analysis showed widespread dysregulation of TTC26 and

TPX2. In vitro experiments confirmed that TTC26 promotes HCC cell

proliferation, migration, and invasion.
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Discussion: Our findings reveal that anoikis-related molecular classification is

closely linked to HCC prognosis and immune landscape. The established

prognostic model has potential clinical utility for risk stratification and

treatment guidance. TTC26 may serve as a novel biomarker and therapeutic

target in HCC.
KEYWORDS

anoikis, hepatocellular carcinoma, tumor microenvironment, prognostic signature,
immunotherapy response
Introduction

Liver cancer is a common malignancy in digestive system, with

more than 900,000 new cases and over 830,000 deaths annually

worldwide. Among all cancers, liver cancer ranks the sixth and third

positions for morbidity and mortality, respectively (1). HCC is the

most common pathological type of liver cancer, accounting for

approximately 80% of all primary liver cancer cases. Despite

advances in surgical techniques, liver transplantation, and the

development of targeted therapies and immunotherapies, the

prognosis of HCC remains poor, primarily due to late-stage

diagnosis, high recurrence rates, and frequent metastasis (2–4),

highlighting the need for new molecular markers to predict

prognosis and guide personalized treatment strategies.

The tumor microenvironment (TME) plays a crucial role in the

development and progression of HCC, influencing both cancer

progression and the therapeutic responsiveness, especially

immunotherapy (5). TME is a term used to describe the

complicated crosstalk of cancer cells with other cellular (eg.

immune cells, fibroblasts) and non-cellular components (blood

vessels, and extracellular matrix components) within the tumor

lesion (6). As one of the most widely-used immunotherapeutics,

immune checkpoint inhibitors (ICIs), have shown efficacy in several

types of malignant tumors, including HCC. ICI therapies take effect

by overcoming the inhibition of classic immune checkpoints, such as

PD-1, PD-L1 and CTLA-4 on anti-tumor immune lymphocytes,

particularly CD8+ cytotoxic T cells and NK cells, thereby reactivating

bodies’ anti-tumor immune response. However, the effectiveness of

ICIs is often limited by the immunosuppressive elements of the TME,

for instance, some immunosuppressive cells such as TAMs, MDSCs,

CAFs, as well as pro-tumor cytokines such as TGF-beta and IL-10 (7).

Therefore, a deeper understanding of the TME is crucial to identify

patients who are likely to benefit from ICI therapy, allowing for more

personalized and effective treatment strategies.

Anoikis is a form of programmed cell death induced by the loss

of cell anchorage to the extracellular matrix, which could prevent

the aberrant growth and adhesion of cells and is thus essential for

the maintenance of body homeostasis (8). In HCC and other

malignancies, resistance to anoikis is a critical contributor to

tumor progression and metastasis, as it allows cancer cells to
02
survive and disseminate beyond their primary site (9, 10). Anoikis

resistance is closely linked to alterations within TME, where factors

such as hypoxia, inflammation, and stromal components facilitate

the survival of detached cells (11–13). Not surprisingly, multiple

anoikis-related genes, such as FAK, bcl-2 and ITGB1 were

aberrantly expressed in HCC and associated with patients’

survival (14–16). Besides, the dysregulation of anoikis-related

signaling pathways, such as the PI3K/Akt and MAPK pathways,

has been implicated in the enhanced invasiveness of HCC tumor

cells and could render patients’ resistance to chemo- and

immunotherapies (17, 18). Therefore, a deeper understanding of

anoikis-related gene signatures would provide novel insights for the

prognosis prediction and therapeutic instruction of HCC patients.

However, the functional role of anoikis in HCC and its interaction

with the immune microenvironment have not yet been

systematically elucidated. To date, studies focusing on HCC

molecular classification and therapeutic guidance based on

anoikis-related features remain limited. Therefore, the present

study aims to comprehensively identify key anoikis-related genes

through multi-omics data integration, define molecular subtypes of

HCC, and construct a robust prognostic risk score model.

Furthermore, we evaluate the potential utility of this model in

predicting patient survival outcomes, immune infiltration

characteristics, and therapeutic responsiveness, thereby providing

a theoretical foundation and clinical reference for personalized

treatment strategies in HCC.
Methods

Data collection

In this study, RNA sequencing (RNA-seq) transcriptomic data

and corresponding clinical information for hepatocellular

carcinoma (HCC) were obtained from The Cancer Genome Atlas

(TCGA)-LIHC database (https://portal.gdc.cancer.gov/). Somatic

mutation counts and copy number variation (CNV) data were

also sourced from the TCGA database. The 27 anoikis-related genes

(ARGs) were retrieved from the Gene Set Enrichment Analysis

(GSEA) database (http://www.gsea-msigdb.org/gsea/index.jsp).
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Characteristics of anoikis-related genes

First, we investigated the interaction network among ARGs,

including analyses of somatic mutation frequency, genomic loci,

and copy number variation (CNV) profiles. The expression patterns

of the 27 ARGs were systematically evaluated across different HCC

subtypes. Univariate Cox regression analysis was performed using

the “coxph” R package to assess the prognostic significance of these

genes, and the results were visualized using forest plots.
Unsupervised consensus clustering

HCC patients were stratified into distinct anoikis-related

molecular subtypes based on ARG expression profiles using the

“ConsensusClusterPlus” package in R. The robustness of

classification was validated through consensus matrix analysis.
WGCNA analysis

Differentially expressed genes (DEGs) between molecular

subtypes were identified using the “limma” R package, with

screening criteria set as |log2 Fold Change (FC)| > 1 and false

discovery rate (FDR) < 0.01. Subsequently, weighted gene co-

expression network analysis (WGCNA) was performed using the

“WGCNA” R package. Specifically, the top 5000 genes with the

highest median absolute deviation (MAD) were selected for

hierarchical clustering. Pearson correlation coefficients were

calculated to assess gene similarity. A soft-thresholding power (b
= 14) was optimized to construct a scale-free network topology. The

adjacency matrix was then transformed into a topological overlap

matrix (TOM), and gene modules were identified using a dynamic

tree-cutting algorithm with a minimum module size of 30 genes.

Pearson correlation analysis was used to evaluate associations

between each module and molecular subtypes or clinical traits,

and the most significantly associated module was designated as the

hub module.
Prognostic risk model construction and
validation

HCC patients were randomly divided into training and

validation cohorts at a 1:1 ratio. In the training cohort, univariate

Cox regression analysis was first conducted using the “survival” R

package to screen prognostically relevant hub genes. Subsequently,

the least absolute shrinkage and selection operator (LASSO) Cox

regression model was applied via the “glmnet” R package to reduce

model overfitting and identify the most robust prognostic markers.

The risk score for each patient was calculated as the sum of the

products of normalized expression levels and their corresponding

regression coefficients for all selected genes: riskScore = Exp1 ×

Coef1 + Exp2 × Coef2 + ... + Expi × Coefi.In this formula, Expi
denotes the normalized expression level of gene i, Coefi represents
Frontiers in Immunology 03
the LASSO-derived regression coefficient of gene i, and n is the total

number of genes included in the final prognostic signature.

Patients in both the training and validation cohorts were then

stratified into high-risk and low-risk groups based on the median

risk score calculated from the training cohort.
Nomogram development

A nomogram integrating risk scores and clinical parameters was

constructed using the “rms” R package to predict survival

probabilities at specific timepoints. Calibration curves evaluated

prediction accuracy, while ROC curves and AUC values quantified

discriminative power. Decision curve analysis (DCA) compared net

benefits among nomogram, risk score, and clinical data alone.
Functional enrichment analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment was performed via GSEA. Terms with |normalized

enrichment score (NES)| > 1 and FDR < 0.05 were deemed significant.
Tumor microenvironment and
immunotherapy response

Immune/stromal scores were computed using ESTIMATE to

quantify TME components. Immune cell infiltration levels were

assessed via ssGSEA based on Charoentong-defined marker genes.

The prognostic model was applied to the IMvigor210 cohort (anti-

PD-L1-treated patients) to compare risk scores between

responders/non-responders and survival outcomes.
Single-cell expression of ARGs

The Tumor Immune Single-Cell Hub (TISCH) database,

comprising single-cell transcriptomic profiles of ~2 million cells

from 27 cancer types, was utilized to delineate ARG expression

across TME cell subtypes in HCC.
Pan-cancer analysis

Tumor mutation burden (TMB), microsatellite instability

(MSI), and CD274 (PD-L1) levels were compared across 33

cancers. Correlations between risk scores, TME features, and

stemness indices were evaluated.
Cell culture

Human hepatocellular carcinoma cell lines Huh7 and Hep3B

were obtained from the Cell Bank of the Chinese Academy of
frontiersin.org
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Sciences (Shanghai, China). Cells were cultured in high-glucose

Dulbecco ’s Modified Eagle Medium (DMEM, Gibco ,

C11995500BT) supplemented with 10% fetal bovine serum (FBS,

Procell, 164210-500) and 1% penicillin-streptomycin solution

(Gibco, 15140122). Cultures were maintained at 37 °C in a

humidified incubator with 5% CO2. Hypoxic conditions (1% O2,

5% CO2, 94% N2) were established using a tri-gas incubator

(Eppendorf Galaxy 48 R), and the culture duration under hypoxia

was consistent with normoxic controls unless otherwise specified.

Cell line identity was verified by short tandem repeat (STR)

profiling, and mycoplasma contamination was routinely tested

using PCR-based MycoBlue™ Mycoplasma Detection Kit

(Vazyme, D101-01).
RNA analysis and qPCR

Total RNA was extracted using TRIzol Reagent (Vazyme, R401-

01) following the manufacturer’s protocol, including chloroform-

mediated phase separation and isopropanol precipitation. RNA

purity and concentration were assessed using a NanoDrop 2000

spectrophotometer (Thermo Fisher). Subsequently, 1 mg of total

RNA was reverse-transcribed into cDNA using the HiScript II Q

Select RT SuperMix for qPCR (+gDNA wiper) (Vazyme, R233-01)

according to the recommended protocol (20 mL reaction volume).

Quantitative PCR was performed using Taq Pro Universal

SYBR qPCR Master Mix (Vazyme, Q712-02) in a 20 mL reaction

system on the QuantStudio 5 Real-Time PCR System (Applied

Biosystems). The thermal cycling conditions were as follows: initial

denaturation at 95 °C for 30 s, followed by 40 cycles of denaturation

at 95 °C for 10 s and annealing/extension at 60 °C for 30 s. Melt

curve analysis was performed to confirm amplification specificity.

Each sample was analyzed in triplicate. Gene expression levels were

normalized to GAPDH and calculated using the 2^−DDCt method.
Protein immunoblotting

Proteins extracted with RIPA buffer (Beyotime) containing

inhibitors were quantified by BCA assay. Equal protein amounts

were separated via SDS-PAGE and transferred to PVDF

membranes. After blocking (5% milk), membranes were probed

with primary antibodies overnight (4°C), followed by HRP-

conjugated secondary antibodies. ECL substrate (Tanon) enabled

band visualization, with quantification performed using ImageJ.
Proliferation and clonogenic evaluation

CCK-8 assays involved seeding 2×10³ cells/well (96-well plates)

with absorbance (450 nm) recorded at 24–72 h post-reagent

addition. For colony formation, 500 cells/well (6-well plates) were

cultured for 10–14 days, followed by fixation (4% PFA), crystal

violet staining, and manual colony counting.
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EdU and migration/invasion assays

EdU incorporation was assessed using BeyoClick™ kits,

followed by fixation (4% PFA). Photograph the labeled cells

under a fluorescence microscope. Transwell chambers (Corning)

coated with (invasion) or without (migration) Matrigel received

5×104 serum-starved cells. Migrated cells were stained and counted

after 36 h.
Wound healing analysis

Confluent monolayers in 6-well plates were scratched using

sterile tips. After PBS washing, serum-free medium was added, and

wound closure was tracked at 0/24/48 h via phase-contrast

microscopy (Nikon). Migration rates were quantified by ImageJ-

based analysis of wound area reduction.
Statistical analysis

All analyses were conducted in R 4.1.1. Wilcoxon and Kruskal-

Wallis tests compared two or multiple non-parametric groups,

respectively. T-tests and ANOVA were used for parametric data.

Significance thresholds: *P < 0.05; **P < 0.01; ***P < 0.001.
Results

Genetic alterations of anoikis-related
genes in HCC

A total of 27 anoikis - related genes were included in this study.

A network diagram was used to visualize the comprehensive and

intricate relationship between anoikis - related genes and the

prognosis of HCC (Figure 1A). We investigated the somatic

mutation rates of the 27 anoikis - related genes in HCC

(Figure 1B). Among them, CENPF had the highest mutation rate

(up to 20%), while the mutation rates of other genes were relatively

low. Figure 1C shows the specific chromosomal locations of the

anoikis - related genes. In addition, the copy number variation

(CNV) of the 27 anoikis - related genes was analyzed. As shown in

Figure 1D, CNV was prevalent. S100A11, NDRG1, BIRC5,

YWHAZ, CENPF, SKP2, HMGA1, CDK2, MAPK3, and PLK1

showed widespread CNV increases, while DNMT1, SLC2A1,

MMP3, BRCA1, BUB3, and PBK showed CNV deletions.

Compared with normal tissues, most of the anoikis - related

genes were significantly up - regulated in HCC tissues

(Figure 1E). When we explored the impact of the 27 anoikis -

related genes on the overall survival (OS) of the comprehensive

GEO dataset, we found that the expression of ANXA5, CDKN3,

SLC2A1, BUB3, MAD2L1, NDRG1, and CENPF was statistically

correlated with the OS of HCC patients (Figure 1F).
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FIGURE 1

Analytical approaches for characterizing anoikis-related genetic alterations in hepatocellular carcinoma. (A)Network analysis of gene-prognosis
interactions. (B) Somatic mutation frequency profiling. (C) Chromosomal localization mapping. (D) Copy number variation (CNV) landscape. (E)Differential
gene expression analysis between tumor and normal tissues. (F) Survival correlation assessment using integrated GEO datasets. Data are expressed as mean
± SEM. Statistical significance was determined by a two-tailed Student’s t-test. *p < 0.05, ***p < 0.001.
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Identification of anoikis subtypes

We used the consensus clustering algorithm to divide 370 HCC

patients into two subtypes, named C1 and C2 (Figure 2A).

According to the heatmap in Figure 2, all 27 anoikis - related
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genes had higher expression levels in the C2 subtype. The results of

the Kaplan - Meier analysis showed that the overall survival rate of

patients in the C1 subtype was significantly better than that in the

C2 subtype (p < 0.001) (Figure 2C). According to the mRNAsi

analysis, the C2 subtype showed higher stemness compared with the
FIGURE 2

Analytical framework for anoikis-related molecular subtyping in hepatocellular carcinoma. (A) Consensus clustering analysis. (B) Gene expression
profiling by subtype. (C) Survival probability assessment (Kaplan-Meier). (D) Tumor stemness evaluation (mRNAsi scoring). (E) Tumor
microenvironment characterization (ESTIMATE algorithm). (F) Immune cell infiltration analysis. (G, H) Pathway enrichment analysis (GSVA) based on
KEGG/GO gene sets. Data are expressed as mean ± SEM. Statistical significance was determined by a two-tailed Student’s t-test. *p < 0.05, **p <
0.01, ***p < 0.001, ns: not significant.
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C1 subtype, indicating stronger invasiveness of its tumor cells

(Figure 2D). We also calculated the immune score and stromal

score based on the ESTIMATE algorithm. The stromal score of C2

was lower than that of C1, while there was no significant difference

in the immune score and tumor purity between the two (Figure 2E).

Regarding the differences in the tumor microenvironment (TME)

between the two subtypes, we observed that C2 was rich in the

infiltration of several immune cells, such as Activated CD4 T cell,

Central memory CD4 T cell, Effector memory CD4 T cell, T

follicular helper cell, Type 1 T helper cell, etc. (Figure 2F). In

addition, we conducted a Gene Set Variation Analysis (GSVA) on

the two subtypes of patients based on the Kyoto Encyclopedia of

Genes and Genomes (KEGG) and Gene Ontology (GO) gene sets.

In the KEGG gene set, entries such as Unsaturated Fatty Acids,

Citrate Cycle TCA Cycle, Porphyrin and Chlorophyll Metabolism,

and Cysteine and Methionine Metabolism were more highly

enriched in C1, suggesting higher metabolic activity. While

entries such as DNA Replication, Spliceosome, Progesterone

Mediated Oocyte Maturation, and Mismatch Repair were more

active in C2, indicating stronger proliferative capacity of its tumor
Frontiers in Immunology 07
cells (Figure 2G). In the GO gene set, similarly, metabolism - related

entries such as response to cortisol and regulation of carbohydrate

metabolic process had a higher enrichment level in the C1 subtype,

while entries related to tumorigenesis and development such as ER

tubular organization and PPAR signaling pathway were more active

in the C2 subtype (Figure 2H).
Construction and validation of risk scores

In order to obtain the key gene modules most closely related to

clinical characteristics, we first used the limma package to obtain the

differentially expressed genes (DEGs) between the C1 and C2

subtypes. Under the criteria of |logFC| > 1.0, FDR < 0.05, a total

of 1755 DEGs were obtained. Next, we performed Weighted Gene

Co-expression Network Analysis (WGCNA) on the above-

mentioned genes and determined the optimal soft-thresholding

power as 14 to further identify the gene modules most closely

associated with stemness and tumor microenvironment (TME)

scores (Figures 3A–C). As shown in Figure 3D, the MEblue
FIGURE 3

Construction and validation of the anoikis-related prognostic risk model. (A, B) Identification of the optimal soft-thresholding power. (C) Differential gene
expression analysis between molecular subtypes. (D) Weighted gene co-expression network (WGCNA) module-trait correlation analysis. (E) Univariate
Cox regression for preliminary prognostic gene screening. (F, G) LASSO regression-based gene selection and model optimization. (H, I) Survival
probability stratification (Kaplan-Meier curves). (J, K) Predictive performance evaluation (ROC curves). (L, M) Model calibration analysis.
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module exhibited the strongest correlation with clinical traits.

Subsequently, all HCC patients were divided into a training set

and a validation set at a ratio of 1:1. In the training set, a univariate

Cox regression algorithm was used to initially obtain 251 genes

related to HCC prognosis, and the distribution curve of their hazard

ratios (HRs) is shown in Figure 3E. Next, we attempted to use the

LASSO algorithm to eliminate over - fitting among genes, and

finally identified two genes, TTC26 and TPX2 (Figures 3F, G), for

constructing a risk - scoring model. Subsequently, the model was

applied to the validation set, and patients were divided into high -

risk and low - risk groups using the same criteria as the training set.

According to the survival curves, the overall survival (OS) of

patients in the high - risk group was significantly shorter than

that of patients in the low - risk group (Figures 3H, I). The receiver

operating characteristic (ROC) curves confirmed the good

predictive performance of the risk score for the 1 - year, 3 - year,

and 5 - year survival rates of HCC patients, as their area under the

curve (AUC) values were all over 0.6 (Figures 3J, K). In addition,

calibration curves were drawn to analyze the gap between the

predicted values of the risk score for the survival rates at different

time points and the actual observed situations. As shown in

Figures 3L, M, the predicted values were highly consistent with

the actual situations. The above results indicate that our prognostic

model has good discriminatory and predictive abilities for the

survival outcomes of HCC patients.
Correlation of risk score with
clinicopathological features of HCC

We further analyzed the correlation between the prognostic

model and the clinicopathological features of HCC. As shown in

Figure 4A, there were significant differences in the stage between

HCC patients in the high-risk and low-risk groups. Specifically,

HCC patients with higher AFP levels and advanced TNM stages

(stage III and IV) were more frequently distributed in the high - risk

group (Figure 4B). Compared with other clinicopathological

features, the risk score had a higher predictive efficacy for the

prognosis of HCC patients (Figure 4C). Univariate and multivariate

COX analyses indicated that the risk score could serve as an

independent factor for predicting the prognosis of HCC patients

(Figure 4D). To strengthen the connection between the model and

clinical practice and further improve its predictive effect on the

prognosis of HCC patients, this study further constructed a

nomogram that incorporated the risk score and other clinical

factors (Figure 4E). According to the ROC curves, the nomogram

demonstrated good predictive efficacy for the 1 - year, 3 - year, and 5

- year survival rates (Figure 4F). Based on the calibration curves,

there was a high degree of consistency between the predicted values

of the nomogram and the actual observed situations, suggesting

good predictive accuracy (Figure 4G). Additionally, the decision

curve analysis (DCA) showed that the nomogram had a higher net

benefit rate for prognostic prediction overall compared to the

simple risk score and clinical data alone (Figure 4H).
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Correlation of risk score with TME
characteristics in HCC

Regarding the TME scores, the stromal score was higher in

patients of the low - risk group, while there was no significant

difference in the immune scores between the two groups of patients

(Figure 5A). In addition, the ssGSEA algorithm analysis revealed

significant differences in the contents of different types of immune

cells between the high - risk and low - risk groups. For example, the

contents of CD4+ effector and memory T cells were higher in the

high - risk group, while CD8+ effector and memory T cells were

more inclined to infiltrate into the TME of patients in the low - risk

group. Moreover, the two types of immunosuppressive cells, MDSC

and Th2 cells, had a higher degree of infiltration in the high - risk

group, while Th1 cells with anti - tumor activity had an advantage in

content in the low - risk group (Figures 5B, C). Given the differences

in TME characteristics between the two groups of patients, this

paper further evaluated the predictive value of the prognostic model

for the efficacy of immunotherapy. First, multipile immune

checkpoint genes were differentially expressed between high and

low risk groups (Figure 5D), then we applied the prognostic model

to the IMvigor210 cohort, compared the differences in risk scores

among patient groups with different treatment responses, and

examined the survival of patients in the high-risk and low-risk

groups after receiving ICI treatment. As shown in Figures 5E, F, the

risk scores of patients with CR/PR were significantly lower than

those of patients with SD/PD. The overall survival (OS) of patients

in the low - risk group after receiving ICI treatment was

significantly better than that of patients in the high - risk group.

These results support a greater likelihood of patients in the low -

risk group benefiting from ICI therapy.
Single-cell analysis of prognostic models

To analyze the expression of ARGs in different types of cells

within the TME, we analyzed the single - cell sequencing data of

HCC from GSE140228 through the TISCH database. A total of 20

cell populations and 10 cell types were identified (Figures 6A–D).

Among them, TPX2 was mainly expressed in proliferative T cells,

while TTC26 had a relatively low expression level in all cell types

(Figures 6E–H).
Pan-cancer and drug sensitivity analysis of
model genes

We further investigated genetic alterations of the prognostic

model genes across pan-cancer. TPX2 and TTC26 are mainly

significantly upregulated in a variety of malignant tumors.

(Figures 7A, B). Both genes displayed positive correlations

between expression levels and copy number variation (CNV),

with heterozygous amplificat ion (het .amp) being the

most frequent CNV subtype (Figures 7C, D). Additionally, TPX2
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and TTC26 expression inversely correlated with DNA

methylation levels (Figure 7E), suggesting that CNV alterations

and epigenetic modulation may synergistically drive their

dysregulation in cancer.

To assess the clinical utility of these genes in therapeutic

decision-making, we analyzed their associations with drug
Frontiers in Immunology 09
sensitivity using the GDSC and CTRP databases. Strikingly, both

TPX2 and TTC26 demonstrated positive correlations with IC50

values for the majority of chemotherapeutic and targeted agents

(Figures 7F, G). These findings imply that tumors with low TPX2 or

TTC26 expression may exhibit enhanced responsiveness to

conventional chemotherapy and targeted therapies.
FIGURE 4

Clinical correlation and prognostic utility of the anoikis-based risk model. (A) Clinicopathological feature stratification by risk groups. (B) Distribution
patterns of AFP levels and TNM stages. (C) Prognostic predictive performance comparison across variables. (D) Univariate and multivariate Cox
regression analyses for prognostic independence. (E) Nomogram integrating risk scores and clinical parameters. (F) Time-dependent predictive
accuracy evaluation (ROC curves). (G) Model calibration assessment. (H) Clinical benefit analysis via decision curve methodology.
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FIGURE 5

Tumor microenvironment characterization and immunotherapy response evaluation. (A) Stromal and immune score comparison between risk
groups. (B, C) Immune cell infiltration profiling via ssGSEA algorithm. (D) Immune checkpoint genes were significantly upregulated in patients in
the high-risk group. (E, F) Survival outcomes stratification by risk groups in ICI-treated cohorts. Data are expressed as mean ± SEM. Statistical
significance was determined by a two-tailed Student’s t-test. *p < 0.05, **p < 0.01, ***p < 0.001, ns: not significant.
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FIGURE 6

Single-cell transcriptomic profiling of anoikis-related genes in hepatocellular carcinoma. (A–D) Single-cell clustering and cell type annotation using
the TISCH database (GSE140228 dataset). (E–H) Cell type-specific expression patterns of ARGs in the tumor microenvironment.
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TTC26 is identified as a key driver of HCC
progression

Western blot analysis demonstrated that the protein expression in

the constructed TTC26 knockout and overexpression cell models

confirmed the successful establishment of the corresponding cell

lines.(Figure 8A). TTC26 knockout/overexpression models were

rigorously validated through qRT-PCR (Figure 8B). Comprehensive
Frontiers in Immunology 12
functional characterization revealed TTC26’s critical role in modulating

HCC malignancy through oncogenic mechanisms: TTC26

overexpression enhanced proliferative capacity as evidenced by CCK-

8 assays, while knockdown models showed proliferation reduction

(Figure 8C). Consistent with the above findings, Transwell assays

demonstrated that TTC26 overexpression significantly enhanced

cellular invasion, while knockout treatment markedly reduced

invasive capacity (Figures 8D, E). Clonogenic assays revealed that
FIGURE 7

Pan-cancer genomic and pharmacogenomic characterization of prognostic genes. (A, B) Pan-cancer expression profiling of TPX2 and TTC26.
(C, D) CNV association analysis across cancer types. (E) Association with DNA methylation levels. (F, G) Drug sensitivity correlation analysis
(GDSC and CTRP databases). Data are expressed as mean ± SEM. Statistical significance was determined by a two-tailed Student’s t-test.
*p < 0.05, **p < 0.01, ***p < 0.001.
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TTC26-overexpressing cells exhibited a substantial increase in colony-

forming ability, whereas the knockout group showed a significant

decrease in colony formation (Figures 8F, G). In addition to the

CCK-8 assay confirming alterations in proliferative capacity, EdU

assays further validated TTC26’s functional role in tumor cells:

TTC26 overexpression significantly enhanced proliferative activity,

while the knockout group displayed markedly reduced proliferation
Frontiers in Immunology 13
(Figures 8H, I). Regarding cellular migration, scratch assays

corroborated this migratory phenotype, with TTC26-overexpressing

cells demonstrating accelerated wound closure compared to delayed

healing in knockout models (Figures 8J, K). Statistical confirmation of

TTC26’s tumor-promoting effects was consistent across all experimental

paradigms (P<0.05). Data represent mean ± SEM from triplicate

experiments (n=3). Significance thresholds: *P<0.05, P<0.01, *P<0.001.
FIGURE 8

Experimental validation and functional characterization of TTC26 in HCC models. (A) Western blot validation of genetic modifications. (B) qRT-PCR
confirmation of TTC26 expression levels. (C) Cell proliferation assessment (CCK-8 assay). (D, E) Invasion capacity evaluation (Transwell assay).
(F, G) Clonogenic potential analysis. (H, I) Proliferative activity quantification (EdU assay). (J, K) Migration capability assessment (scratch wound
healing assay). Data are expressed as mean ± SEM of three independent experiments. Significance was determined by two-tailed Student’s t-test.
*p < 0.05, **p < 0.01, ***p < 0.001.
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Discussion

Hepatocellular carcinoma (HCC) is a significant cancer

threatening human health, and the exploration of its molecular

markers has been a research focus. Apoptosis is a classic form of

programmed cell death. During cancer development, tumor cells

could gain resistance to apoptosis, which is regarded as a hallmark

of cancer (19). Inducing apoptosis in cancer cells has emerged as an

effective anti-tumor therapeutic strategy (20). Anoikis is a specific

form of apoptosis that occurs when cells lose adherence or

improperly adhere to the extracellular matrix. Tumor cells can

resist anoikis through various strategies, such as regulating the

expression of adhesion molecules and undergoing epithelial-

mesenchymal t rans i t ion (21) . Th i s s tudy a imed to

comprehensively analyze the genetic alterations of anoikis-related

genes in HCC and utilize these genes for molecular subtyping of

HCC patients. Additionally, we constructed an anoikis-related risk

score prognostic model to quantify the survival risk of HCC

patients, providing novel insights into the prognosis prediction

and comprehensive management of HCC.

Our study first revealed the global transcriptional alterations of

anoikis-related genes (ARGs) in HCC patients. Next, based on the

expression patterns of ARGs, we used an unsupervised consensus

clustering method to divide TCGA-HCC patients into two anoikis

subtypes, termed as C1 and C2. This subtyping system showed

outstanding performance regarding the differentiation of prognosis,

functional enrichment, and tumor microenvironment (TME)

characteristics for HCC patients. To enhance the clinical utility of

anoikis-based subtyping, we further developed a simplified anoikis

score prognostic model following the protocols below. First,

differentially expressed genes (DEGs) between two subtypes were

identified, followed by weighted gene co-expression network

analysis (WGCNA) to select gene modules most strongly

associated with subtypes, TME scores, and cancer stemness. Next,

univariate Cox regression analysis was conducted to identify

prognostic-related DEGs. Patients were then divided into training

and validation cohorts in a 1:1 ratio, and a two-gene model was

constructed in the training set using LASSO Cox regression

analysis, with its predictive efficacy later verified in the validation

sohort. Survival curves showed that patients in the low-risk group

had significantly better overall survival (OS) than those in the high-

risk group. The prognostic model demonstrated good predictive

efficacy for 1-, 3-, and 5-year survival rates according to ROC

curves. A nomogram integrating the risk score with other

prognostic clinical factors enabled more accurate patient

prognosis predictions.

In our study, HCC patients in the C2 subtype and high-risk

group demonstrated higher tumor stem cell scores and biological

functions mainly related to cell proliferation, indicating a higher

degree of tumor malignancy and poorer prognosis. Regarding the

TME, the stroma score of the C1 subtype was significantly higher

than that of the C2 subtype, while no significant differences in

immune scores were observed among patients with different

subtypes and risk levels. Regarding the specific immune cell

subtypes, various antitumor lymphocytes displayed distinct
Frontiers in Immunology 14
distributions between the two subtypes, as well as two risk

groups. For instance, CD4+ effector and memory T cells were

more abundant in the C2 subtype and high-risk group, whereas

CD8+ effector and memory T cells preferred to infiltrate in the TME

of low-risk patients. In addition, two types of pro-tumor immune

cells, MDSC and Th2 cells, had a higher degree of infiltration in C2

subtype and/or high-risk group, while Th1 cells with anti-tumor

activity were more dominant in C1 subtype and low-risk group.

MDSCs, defined as pathologically activated neutrophils and

monocytes, can inhibit the function of antitumor lymphocytes by

secreting cytokines like TGF-b and IL-10 (22). Additionally, the

pro-tumor effects of MDSCs relate to their induction of cancer cell

stemness and epithelial-mesenchymal transition (23). T helper cells,

based on secreted cytokines, are categorized into Th1, Th2, and

Th17 types. Th1 cells enhance antitumor immune responses by

secreting interferon-g (IFN-g), while Th2 cells create an

immunosuppressive TME by secreting IL-4 and IL-10, weakening

cell-mediated immune responses and promoting tumor immune

evasion (24). Th17 cells secrete IL-17, influencing antitumor

immunity in a more complex manner. On the one hand, IL-17

promotes dendritic cell activation, thus enhancing the antitumor

activity of CD8 T cells. On the other hand, IL-17 could implement

pro-tumor functions by activating oncogenic pathways like MAPK

and STAT3 in tumor cells or via the interactions with other TME

components (25). As expected, MDSCs and Th2 cells with

immunosuppressive features were also more prevalent in the C2

subtype and high-risk group. Moreover, several immune checkpoint

molecules also exhibited higher expressions in the high-risk group,

further corroborating the pronounced immunosuppressive TME in

this group of HCC patients.

Considering the significantly disparant TME landscapes

between the two risk groups, we evaluated the model’s potential

utility in predicting immunotherapeutic efficacy. First, the tumor

mutation burden was markedly higher in the low-risk group than

that in the high-risk group. Moreover, by applying the model to the

IMvigor210 tumor ICI treatment cohort, we found that the low-risk

group demonstrated more significant post-therapeutic survival

improvements. These findings suggest that the low-risk group

may gain greater benefit from immunotherapy. For high-risk

patients, combining conventional ICI therapies with treatments

targeting specific immunosuppressive components in the TME,

such as MDSCs and novel immune checkpoint molecules like

LAG3, TIGIT, and HAVCR2, may represent a more suitable

strategy (7).

The prognostic model developed in this study consists of two

genes, TPX2 and TTC26. Encoding a microtubule-associated

protein responsible for spindle assembly, TPX2 was overexpressed

in many cancers and significantly correlated with high proliferation

and aneuploid tumors (26). In HCC, TPX2 overexpression indicates

advanced TNM staging and poor tumor differentiation and

correlates with unfavorable prognosis (27). Mechanistically, TPX2

may enhance the proliferation, migration, and invasion of HCC

cells by activating the PI3K/AKT pathway (28). Additionally, TPX2

can act as a transcriptional coactivator for pregnane X receptor

(PXR) and enhance PXR’s binding to the promoter and enhancer
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regions of the target gene CYP3A4, resulting in accelerated

sorafenib clearance in body and leading to sorafenib resistance

(29). However, TPX2’s impact on anoikis in malignant tumors has

not been reported. TTC26 is a highly conserved protein involved in

the generation of intraflagellar transport (IFT) complex, which is a

structure essential for the formation and normal function of cilia

(30). Dysregulation of TTC26 is closely associated with ciliopathies

(31). Nevertheless, the correlation of TTC26 with malignant tumors

remains poorly understood. So far, TTC26 was only mentioned in

two HCC prognostic models, where high TTC26 expression

correlates with higher risk and poorer prognosis (32, 33). In the

present study, TTC26 was found to be overexpressed in HCC tumor

samples. Besides, TTC26 knockdown significantly impaired the

proliferation and migration, while increased the apoptosis of

HCC cells, which was indicative of the tumor promoting role of

TTC26 in HCC. In addition, these two genes demonstrated certain

expression patterns at the single cell and pan-cancer levels, and

showed varying degrees of correlations with the therapeutic efficacy

of multiple anti-tumor chemotherapeutic and targeted drugs, which

would provide novel insights for future studies.

This study has certain limitations. First, it is a retrospective

study based on public databases. Although validated in multiple

patient cohorts, large-scale prospective studies are still needed to

further confirm these findings. Second, while in vitro experiments

preliminarily identified TTC26 as a novel oncogene in HCC, further

in-depth in vitro and in vivo studies are required to explore their

specific pro-tumorigenic mechanisms.
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