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Multi-omics analysis reveals the
role of ribosome biogenesis in
malignant clear cell renal cell
carcinoma and the development
of a machine learning-based
prognostic model
Zhouzhou Xie1,2†, Shansen Peng1,2†, Jiongming Wang1,2,
Yueting Huang1,2, Xiaoqi Zhou1,2, Guihao Zhang1,2,
Huiming Jiang1,2, Kaihua Zhong1,2, Lingsong Feng1,2

and Nanhui Chen1,2*

1Affiliated Meizhou Hospital of Shantou University Medical College, Meizhou, China, 2Department of
Urology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
Background: Clear cell renal cell carcinoma (ccRCC) is the most common

subtype of renal cancer, marked by high molecular heterogeneity and limited

responsiveness to targeted or immune therapies. Ribosome biogenesis (Ribosis),

a central regulator of cell growth and metabolism, has emerged as a driver of

tumor aggressiveness. However, its role in ccRCC pathogenesis and prognosis

remains poorly defined.

Methods: We integrated bulk RNA sequencing, single-cell RNA sequencing, and

spatial transcriptomics sequencing data to dissect the biological functions and

clinical relevance of Ribosis-related genes in ccRCC. Through pseudotime

trajectory analysis and metabolic flux inference, we examined malignant

progression and metabolic reprogramming. A prognostic model based on a

Ribosis-related signature (RBRS) was built using 118 machine learning algorithm

combinations and validated in internal and external cohorts. A web-based

calculator was also developed. We further analyzed immune infiltration,

genomic alterations, tumor microenvironment features, and drug sensitivity.

Expression of five core Ribosis-related genes (RPL38, RPS2, RPS14, RPS19,

RPS28) was validated by qRT-PCR.

Results: We identified a Ribosis-high malignant subpopulation with enhanced

stemness, poor prognosis, and elevated oxidative phosphorylation. These cells

showed increased metabolic activity, especially in the pyruvate–lactate axis,

potentially facilitating immune evasion. The RBRS model outperformed 32

published signatures (C-index = 0.68). High-risk patients exhibited an

“immune-activated yet immunosuppressed” microenvironment, with increased

CD8+ T-cell infiltration and elevated regulatory T cells, myeloid-derived

suppressor cells, and immune checkpoint expression (e.g., PDCD1, CTLA-4).

Despite active antigen presentation and immune cell recruitment, terminal

tumor-killing capacity was impaired. High-risk tumors also showed higher

mutation burden, frequent copy number loss of tumor suppressor genes, and
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resistance to common targeted therapies. The five RBRS genes were significantly

upregulated in tumor tissues, consistent with bulk RNA-seq data.

Conclusion: We reveal Ribosis as a key driver of ccRCC progression. The RBRS

model demonstrates robust prognostic value and translational utility, linking

Ribosis to metabolism, immune dysfunction, and therapy resistance, offering

new insights for risk stratification and precision treatment in ccRCC.
KEYWORDS

ribosome biogenesis, clear cell renal cell carcinoma, multi-omics analysis, malignant
cells, machine learning, prognostic model
1 Introduction

Renal cell carcinoma (RCC) is a globally prevalent malignancy,

with an estimated 430,000 new cases diagnosed annually (1). Among

its histological subtypes, clear cell renal cell carcinoma (ccRCC) is the

most common, accounting for approximately 70–80% of all RCC

cases (2). Due to its insidious onset and lack of early clinical

symptoms, a substantial proportion of ccRCC patients are

diagnosed at advanced stages, limiting the efficacy of conventional

therapies. Nearly 50% of ccRCC cases develop distant metastases, and

the 5-year overall survival (OS) rate for these patients remains as low

as 14%, reflecting a poor prognosis (3). In recent years, significant

advances have been made in targeted therapies and immunotherapy,

particularly in the emergence of combination regimens such as

pembrolizumab plus axitinib, which has become a first-line

standard treatment for advanced ccRCC (4). Nevertheless, despite

recent therapeutic advancements, the complex pathogenesis of

ccRCC—marked by high intertumoral heterogeneity, the

emergence of drug-resistant subclones, and multifaceted tumor–

microenvironment interactions—continues to limit the clinical

efficacy of current treatment strategies (5). Thus, the identification

of robust biomarkers and molecular signatures is urgently needed to

predict patient outcomes and guide treatment selection.

Ribosome biogenesis (Ribosis) is a fundamental cellular process

essential for protein synthesis, involving the transcription and

processing of ribosomal RNA (rRNA), assembly of ribosomal

proteins, maturation of subunits, and nucleocytoplasmic transport

(6). In cancer cells, this process is often dysregulated, characterized by

increased pre-rRNA synthesis, aberrant rRNA modifications, and

alterations in ribosomal proteins that give rise to so-called “onco-

ribosomes.” These specialized ribosomes preferentially translate

oncogenic mRNAs, contributing to functional reprogramming and

metabolic adaptation that drive tumor progression (7). Aberrantly

elevated Ribosis supports unrestricted cell proliferation and has been

recognized as both a hallmark and a therapeutic vulnerability in

multiple cancers (8, 9). For instance, the ribosomal methyltransferase

SMYD5 promotes hepatocellular carcinoma by methylating lysine

residues on RPL40, thereby enhancing translational activity (10).
02
Similarly, suppression of SMYD5-mediated methylation of RPL40

was shown to inhibit growth in patient-derived xenograft models of

gastric adenocarcinoma (11). Myelocytomatosis (MYC) oncogene is a

key driver of ribosomal biogenesis, directly enhancing ribosomal

DNA transcription and upregulating ribosomal proteins such as

RPL14 and RPL28 to promote lymphomagenesis (12). Moreover,

RAS signaling facilitates ribosome synthesis by phosphorylating

nucleolin, enhancing its affinity for rRNA and accelerating the

proliferation of pancreatic cancer cells (13).

Recent advances in understanding ribosome specialization and the

complexity of Ribosis have unveiled previously unrecognized

opportunities for the development of ribosome-targeted therapies in

cancer (14). Despite growing evidence linking aberrant Ribosis to

tumorigenesis, the molecular characteristics and clinical significance of

Ribosis-related genes in ccRCC remain largely unexplored. To address

this gap, we conducted an integrative multi-omics analysis to delineate

the expression dynamics and metabolic dependencies of Ribosis-

related genes in malignant ccRCC cells. Furthermore, we constructed

a prognostic model—ribosome biogenesis-related signature (RBRS)—

using machine learning algorithms, and comprehensively investigated

its association with genomic alterations, tumor immune

microenvironment, and therapeutic response. We also developed a

web-based RBRS calculator (https://drxie2018510136.shinyapps.io/

shinyapp/) to facilitate clinical translation. A schematic overview

of our study design is presented in Figure 1.
2 Materials and methods

2.1 Data acquisition

Bulk RNA sequencing (bulk RNA-seq) and corresponding

clinical data of ccRCC patients were obtained from The Cancer

Genome Atlas (TCGA, https://portal.gdc.cancer.gov/), including

522 tumor samples and 72 adjacent normal samples, after

excluding those with incomplete survival information. An

independent validation cohort (E-MTAB-1980), comprising 101

ccRCC samples, was retrieved from the ArrayExpress database
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(https://www.ebi.ac.uk/arrayexpress/). Single-cell RNA sequencing

(scRNA-seq) data were derived from the GSE210038 dataset (n=7

tumor samples) via the Gene Expression Omnibus (GEO) database.

Spatial transcriptomics RNA sequencing (stRNA-seq) was acquired

from the “TJ-RCC” cohort (15) (samples “R114T” and “Z43T”)

available through ZENODO (https://zenodo.org/records/8063124).

Ribosis-related genes were curated from a recent comprehensive

study (8), yielding a total of 331 genes (Supplementary Table S1).
2.2 Preprocessing of RNA-seq data

Raw count matrices from TCGA were used for differential gene

expression analysis using “DESeq2” R package (16). Transcripts per

million (TPM) values were extracted from all cohorts for downstream

analyses, and genes with mean TPM < 0.1 were excluded. scRNA-seq

data were processed using the Seurat R package (17), employing

standard quality control filters: genes expressed in 3+ cells and within

250–4000 gene count range, total unique molecular identifiers > 500

per cell, mitochondrial content < 10%, hemoglobin genes < 0.1%, and

ribosomal gene quality > 3%. After principal component analysis

(PCA) using the top 2,000 variable genes, batch effects were corrected
Frontiers in Immunology 03
using Harmony (18), and clustering was performed using

FindNeighbors and FindClusters functions. Cells were visualized

via Uniform Manifold Approximation and Projection (UMAP) and

annotated using canonical marker genes.
2.3 Integration of spatial and single-cell
transcriptomes

We employed “cell2location” Python package (19) to map

scRNA-seq-identified cell types onto the spatial transcriptomic

data. A negative binomial regression model was used to estimate

cell-type-specific gene expression at each spatial location, with

N_cells_per_location = 30 and detection_alpha = 20.
2.4 Identification of malignant cells and
Ribosis phenotypes

Malignant epithelial cells were distinguished from non-malignant

counterparts using the “CopyKAT” R package (20), which infers

chromosomal copy number variation (CNV) from single-cell
FIGURE 1

Schematic overview of the study design. Ribosis, ribosome biogenesis; Bulk RNA-seq, bulk RNA sequencing; scRNA-seq, single-cell RNA
sequencing; stRNA-seq, spatial transcriptomics RNA sequencing; DEGs, differentially expressed genes; NMF, non-negative matrix factorization;
C-index, concordance index; C1, cluster 1; C2, cluster 2.
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transcriptomes. Ribosis transcriptional phenotypes in TCGA-ccRCC

were determined using non-negative matrix factorization (NMF)

(21). The “Scissor” R package (22) was applied to integrate bulk

RNA-seq phenotypes with single-cell data, enabling identification of

phenotype-specific malignant cell subpopulations.
2.5 Pseudotime trajectory and stemness
analysis

“Monocle” R package (23) was used to reconstruct the

developmental trajectories of epithelial and malignant cells. The

“CytoTRACE” R package (24) assessed stemness scores to inform

lineage hierarchies. “ClusterGVis” R package (https://github.com/

junjunlab/ClusterGVis) enabled unsupervised clustering and

visualization of temporally regulated genes along the pseudotime axis.
2.6 Single-cell metabolic pathway analysis

To investigate the metabolic heterogeneity across different cell

subpopulations in the scRNA-seq data, we employed the “SCPA”

and “scMetabolism” R packages for evaluation (25, 26). The

“SCPA” algorithm is suitable for comparing metabolic differences

between cell clusters, but it does not provide metabolic activity

scores at the single-cell level. Therefore, we used the

“scMetabolism” algorithm in parallel to quantify enrichment

scores of target metabolic pathways, enabling cross-validation of

results. A curated high-confidence metabolic gene set compiled by

Wu et al. (26) was used as the reference for all analyses

(Supplementary Table S2 for details).
2.7 Metabolic flux and metabolite
abundance analysis

We applied the “scFEA” R package, which leverages graph

neural networks to infer intracellular metabolic fluxes and

metabolite abundances from scRNA-seq data (27). A reference set

consisting of 168 human metabolic modules and 70 metabolites was

used to construct a directed factor graph, where each metabolic

module is represented as a factor node and each intermediate

metabolite as a variable node, with flux balance modeled via a

likelihood function. After computing fluxes and metabolite levels,

we visualized metabolic differences across cell types using heatmaps

based on scRNA-seq data and mapped the spatial distribution of

metabolic activity onto histological slices from the stRNA-seq data.
2.8 Differential Ribosis-related gene
expression

Differentially expressed genes (DEGs) between tumor and

normal samples in TCGA were identified using “DESeq2” with |
Frontiers in Immunology 04
log2FC| > 1 and adjusted P < 0.05 (16). Within scRNA-seq data,

DEGs were identified between Scissor (+) and Scissor (–) malignant

cells using “FindMarkers” function (|log2FC| > 0.5, adjusted P <

0.05). The intersection of DEGs with Ribosis-related genes was

taken as candidate genes for model construction.
2.9 Machine learning–based prognostic
signature development

Univariate Cox regression was performed on intersected

Ribosis-related genes to identify survival-associated candidates.

The TCGA-ccRCC cohort was randomly split (1:1) into training

and test sets using the “caret” R package, and the E-MTAB-1980

cohort was used for external validation. Based on the study by Liu

et al. (28), we constructed a prognostic signature for Ribosis-related

genes by systematically testing 118 algorithmic combinations

derived from 10 machine learning approaches. These included

“random survival forest”, “elastic net”, “Lasso”, “Ridge”, “Stepwise

Cox regression”, “CoxBoost”, “partial least squares regression for

Cox”, “supervised principal components”, “generalized boosted

regression modeling”, and “survival support vector machine”. The

best model was selected based on the highest average concordance

index (C-index) in the test and validation sets. The final RBRS

model formula is:

Risk score = S (coef_i × expression_i)

where coef_i is the gene’s Cox coefficient and expression_i its

expression level.
2.10 Clinical survival analysis and
nomogram construction

Patients were stratified into high- and low-risk groups based on

the median RBRS score. Kaplan–Meier survival and receiver

operating characteristic (ROC) analyses were performed to

evaluate the model’s discriminatory ability across datasets. The

independent prognostic value of RBRS was assessed using Cox

proportional hazards regression. A nomogram was constructed by

integrating RBRS with clinical features, and its performance was

evaluated using calibration plots, C-index, ROC curves, and

decision curve analysis (DCA). An interactive web-based tool was

developed using the “shiny” website (https://www.shinyapps.io/) to

facilitate clinical implementation of the prognostic model.
2.11 Genomic mutation and copy number
analysis

Somatic mutation and CNV data were retrieved from “UCSC

Xena” website (https://xena.ucsc.edu/). Tumor mutation burden

(TMB) and intratumoral heterogeneity were assessed using

“maftools” R package (29). TMB scores were calculated as the

number of somatic nonsynonymous or total mutations per

megabase within the whole exome or targeted sequencing regions
frontiersin.org
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of tumor samples, which is of critical importance for evaluating

tumor heterogeneity (30). Stratified survival analysis was performed

based on TMB and RBRS. Mutation landscapes and CNV profiles

were compared across RBRS groups.
2.12 Functional and enrichment analysis

ClusterProfiler (31) was used for GO (Gene Ontology), KEGG

(Kyoto Encyclopedia of Genes and Genomes), and GSEA (Gene set

enrichment analysis) enrichment of DEGs. “AUCell” (24) and

“GSVA” (32) R packages quantified pathway activity in scRNA-

seq and bulk RNA-seq data, respectively. Gene sets were obtained

from the Molecular Signatures Database (33).
2.13 Immune microenvironment and
checkpoint analysis

Immune cell infiltration was quantified using “ssGSEA” (34)

and “CIBERSORT” R packages (35). “ESTIMATE” (36) scores were

used to assess immune/stromal content and tumor purity. Tumor

Immuno Phenotype (TIP) analysis (37) was performed to assess

anti-tumor immunity across seven immunological steps. Expression

of immune checkpoints was compared across RBRS groups.
2.14 Drug sensitivity and in silico drug
prediction

Drug sensitivity prediction was performed using “oncoPredict”

R package (38). ConnectivityMap (cMap) analysis (https://clue.io/)

was used to identify small molecules capable of reversing RBRS-

associated gene expression signatures.
2.15 Quantitative real-time polymerase
chain reaction validation

Expression levels of the five RBRS genes were validated via qRT-

PCR in 12 paired tumor and adjacent normal tissues collected from

Meizhou People’s Hospital (October 2024–January 2025). RNA was

extracted using TRIzol™ (HaiGene, Harbin, China), and cDNA

synthesis was performed using PrimeScript RT (RR047A, Takara,

Dalian, China). qPCR was conducted using TB Green Premix Ex

Taq II (RR802A, Takara, Dalian, China) on a 7500 ABI platform

(Thermo Fisher Scientific Inc.) under standard cycling conditions.

Relative expression levels were quantified using the 2^–DDCt
method (39) (primer sequences in Supplementary Table S4).
2.16 Statistical analysis

All analyses were performed using R (v4.4.1) and Python

(v3.10). Two-group comparisons were assessed using Student’s t-
Frontiers in Immunology 05
test or Wilcoxon test. ANOVA was used for multi-group

comparisons. Categorical variables were analyzed via Chi-square

or Fisher’s exact test. Survival was analyzed using Kaplan–Meier

and log-rank tests. Statistical significance was set at P < 0.05.
3 Results

3.1 Identification of malignant cells from
scRNA-seq data

The overall workflow of this study is outlined in Figure 1.

Following quality control of the scRNA-seq data, a total of 42,262

cells were included in the analysis (Supplementary Figure S1A, B).

Dimensionality reduction was first performed using PCA on the top

2,000 highly variable genes, and Harmony integration was applied

to correct batch effects across multiple samples (Supplementary

Figure S1C, D). Subsequently, unsupervised clustering of all cells

was performed using UMAP, and clustering results at various

resolutions were compared (Supplementary Figure S1E). A

resolution of 0.1 was ultimately selected for downstream analyses

(Figure 2A). Notably, across all tested resolutions, the spatial

distribution of the malignant cell cluster remained highly stable,

highlighting the distinctiveness of this population.

All cells were classified into nine distinct clusters, and cell types

were manually annotated based on canonical markers. Marker gene

expression across these clusters is shown in Figure 2B. MKI67 and

BIRC5 were predominantly expressed in malignant cells and

exhibited partial co-expression (Figure 2C). Figure 2D illustrates

the cellular composition across seven ccRCC samples, showing that

malignant cells represented only a minority of the total

cell population.

To further distinguish malignant from non-malignant epithelial

cells, we isolated the malignant cell cluster and applied the

“CopyKAT” algorithm to infer chromosomal CNV. Aneuploid

cells were annotated as malignant, whereas diploid cells were

classified as epithelial cells (Figure 2E), resulting in the

identification of 308 benign epithelial cells and 811 malignant

cells. Using Ribosis-related genes, we performed NMF algorithm

to identify transcriptional subtypes in the TCGA-ccRCC cohort.

Clustering was optimal at k = 2 (Supplementary Figure S1F,

Figure 2F), and Kaplan–Meier analysis revealed that patients in

Cluster 1 (C1) exhibited significantly worse OS compared to those

in Cluster 2 (C2) (Figure 2G).

To map these transcriptional phenotypes onto the scRNA-seq

data, we applied the “Scissor” algorithm to deconvolve the bulk

RNA-seq-defined C1 and C2 signatures onto single cells. Cells

resembling the C1 phenotype were designated as C1_Scissor+,

indicating potentially poorer prognostic features, whereas those

associated with C2 were termed C2_Scissor–. Cells with no

significant correlation were labeled Scissor0 (Figure 2H). Focusing

on malignant cells, we identified 209 C1_Scissor+ and 37

C2_Scissor– cells—the highest proportions among all annotated

clusters (Figures 2I, J). A comprehensive UMAP representation of

these subtypes is shown in Figure 2K.
frontiersin.org

https://clue.io/
https://doi.org/10.3389/fimmu.2025.1602898
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xie et al. 10.3389/fimmu.2025.1602898
Importantly, we observed that the proportion of C1_Scissor+

malignant cells increased with tumor aggressiveness (tumor

characteristics summarized in Supplementary Table S5),

suggesting that Ribosis-based molecular subtypes may play a
Frontiers in Immunology 06
crucial role in tumor progression (Figure 2L). GSEA revealed

significant enrichment of “OXIDATIVE PHOSPHORYLATION”

(OXPHOS) and “MYC TARGETS V1” pathways in C1_Scissor+

malignant cells (Figure 2M).
FIGURE 2

Single-cell annotation and identification of Ribosis-related malignant subtypes. (A) UMAP plot of nine clusters at resolution 0.1, corresponding to B
cells, vascular smooth muscle cells, NK cells, T cells, endothelial cells, mast cells, macrophages, fibroblasts, and malignant cells. (B) Marker gene
expression across the nine identified cell types. (C) Expression patterns of MKI67 and BIRC5 across single cells. (D) Proportions of different cell types
across seven ccRCC samples. (E) Identification of diploid (non-malignant epithelial) and aneuploid (malignant) cells among malignant clusters.
(F) NMF-based clustering of Ribosis-related gene expression profiles in the TCGA-ccRCC cohort. (G) Kaplan–Meier curves for patients with two
Ribosis-related subtypes in TCGA-ccRCC. (H) Scissor-based mapping of bulk-defined Ribosis-related phenotypes (C1 and C2) to single cells.
(I) Distribution of Ribosis phenotypes across cell clusters. (J) Ratios of C1_Scissor+ and C2_Scissor- malignant cells. (K) UMAP showing 3 malignant, 1
epithelial, and 12 additional cell clusters. (L) Distribution of the three malignant subtypes across clinical parameters. (M) GSEA of hallmark pathways
enriched in C1_Scissor+ versus C2_Scissor- malignant cells. UMAP, uniform manifold approximation and projection; Log-rank, log-rank test; p.adjust,
adjusted P value; ISUP, international society of urological pathology; MYC, myelocytomatosis; DNA, deoxyribonucleic acid; TNFA, tumor necrosis
factor alpha; NFKB, nuclear factor kappa-B; ***p < 0.001.
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3.2 Pseudotime analysis of malignant cell
progression

To elucidate the evolutionary trajectory of malignant cells, we

performed pseudotime analysis using the “Monocle” algorithm.

Epithelial cells were specified as the origin of the trajectory

(Figure 3A), based on their potential to undergo genetic

alterations, aberrant activation, or epithelial-to-mesenchymal

transition—biological events closely linked to malignant

transformation (40, 41).

As shown in Figures 3B, C, C1_Scissor+ malignant cells

predominantly occupied the terminal stages of the trajectory,

indicating a late pseudotemporal state. In contrast, C2_Scissor–

malignant cells were enriched at earlier stages. These pseudotime
Frontiers in Immunology 07
differences were statistically significant across subtypes. We further

validated developmental status using “CytoTRACE” algorithm

(Figure 3D), which confirmed that C1_Scissor+ malignant cells

exhibited the highest stemness, while C2_Scissor– malignant cells

showed the lowest (Figure 3E). Cancer cells possess strong self-

renewal and differentiation capacities, and those at more advanced

stages of malignant progression typically exhibit enhanced stemness

(42), consistent with our findings.

Cellular stemness was positively correlated with expression of

Ribosis-related genes RPLP1, RPL10, and RPL15 (Figure 3F), and

overall Ribosis activity also increased significantly along pseudotime

(Figure 3G), suggesting a key role for Ribosis in malignant

progression. “ClusterGVis” algorithm-based trajectory clustering

revealed two dominant branches (Figure 3H): Cluster 1 cells,
FIGURE 3

Pseudotime analysis and stemness evaluation. (A–C) Monocle trajectory and pseudotime inference of epithelial and malignant cells. (D, E)
CytoTRACE-based quantification of cellular stemness. (F) Correlation between stemness scores and representative Ribosis genes. (G) Positive
correlation between Ribosis activity and pseudotime progression. (H) ClusterGVis identifies early- and late-stage malignant cells based on
pseudotime, with GO and KEGG enrichment of their associated pathways. ANOVA, analysis of variance; BP, biological process; KEGG, Kyoto
Encyclopedia of Genes and Genomes; PI3K, phosphoinositide 3-kinase; mTOR, mammalian target of rapamycin.
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enriched at the pseudotime endpoint, were associated with Ribosis

and OXPHOS pathways, while Cluster 2 cells, enriched at early

stages, were associated with cell cycle-related processes.
3.3 Metabolic profiling of malignant cells at
the single-cell level

Aberrant metabolism contributes to cancer initiation,

progression, metastasis, therapeutic resistance, and maintenance

of cancer stemness via multiple mechanisms. A deeper

understanding of these metabolic alterations may reveal

fundamental aspects of tumor biology and inform the

development of novel therapeutic strategies (43). Using curated

KEGG and Reactome pathway datasets, we applied “SPCA”

algorithm to analyze metabolic differences between malignant cell

subtypes. The analysis revealed striking differences between

C1_Scissor+ and C2_Scissor– malignant cells, with the top 10

most divergent pathways primarily related to energy,

carbohydrate, nucleotide, and protein metabolism (Figure 4A).
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We next quantified the activity of these pathways using the

“scMetabolism” algorithm (Figures 4B, C). Among all malignant

subtypes, C1_Scissor+ malignant cells exhibited the highest overall

metabolic activity, followed by Scissor0 malignant cells, while

C2_Scissor– malignant cells displayed the weakest activity.

To explore metabolic flux and metabolite abundance, we further

applied the “scFEA” algorithm across epithelial cells and the three

malignant subtypes. In C1_Scissor+ malignant cells, intermediate

pathways such as glycolysis–tricarboxylic acid cycle, serine

metabolism, and aspartate metabolism were significantly upregulated,

contrasting sharply with the patterns observed in C2_Scissor–

malignant cells (Supplementary Figures S2A, B). We highlighted

three of the most distinctive metabolic pathways in C1_Scissor+

malignant cells and visualized their associated metabolite abundances

(Figure 4D), where scores above zero indicated metabolite

accumulation and scores below zero indicated depletion.

Interestingly, C1_Scissor+ and C2_Scissor– malignant cells

exhibited almost opposite patterns in metabolite abundance. The

most notable di fference was observed in the “M_6:

Pyruvate_Lactate” axis, where pyruvate was markedly depleted,
FIGURE 4

Single-cell metabolic pathway and metabolite analysis. (A) Top 10 differentially enriched metabolic pathways between C1_Scissor+ and C2_Scissor-

malignant cells (SPCA). (B, C) Enrichment of five core metabolic pathways across cell types using KEGG and Reactome databases. (D) scFEA-based
flux and abundance estimates for intermediate modules and metabolites across epithelial and malignant subtypes. (E) Spatial localization of tumor
core regions and three malignant subtypes in samples “Z43”. (F-H) Spatial flux and abundance patterns for three metabolic modules and their
corresponding metabolites. Padj, adjusted P value; TCA, tricarboxylic acid; M_6, metabolic module 6; Pyruvate_Lactate, pyruvate-to-lactate
conversion pathway.
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and lactate accumulated in C1_Scissor+ malignant cells—a pattern

reversed in the other malignant subtypes (Figure 4D). This

phenomenon reflects the well-established Warburg effect, in

which cancer cells preferentially convert pyruvate to lactate rather

than fueling mitochondrial OXPHOS. Lactate accumulation

acidifies the tumor microenvironment (TME), promoting tumor

invasion and metastasis while impairing immune function and

facilitating immune evasion (44). These results suggest that the

pyruvate–lactate axis may be a key contributor to the poor

prognosis of C1_Scissor+ malignant cells and highlight Ribosis-

associated metabolic reprogramming—particularly the pyruvate–

lactate pathway—as a potential therapeutic target for combined

metabolic and immunologic intervention.
3.4 Spatial metabolic landscape of
malignant cells

To investigate the spatial distribution of malignant subtypes

and their metabolic activity, we employed the “cell2location”

algorithm to project scRNA-seq-defined cell states onto stRNA-

seq data. This analysis was performed on two tumor specimens,

“R114T” and “Z43T,” and revealed spatial distributions of the three

malignant cell subtypes that closely mirrored tumor regions.

Notably, C1_Scissor+ malignant cells occupied a slightly broader

spatial area compared to C2_Scissor– malignant cells (Figure 4E,

Supplementary Figure S3A). Subtype proportions were highly

similar between the two samples (Supplementary Figure S4A),

suggesting minimal inter-sample heterogeneity and justifying

integrated metabolic analysis across both datasets.

We next applied the “scFEA” algorithm to evaluate metabolic

flux and metabolite abundance within the spatial context. We

focused on the same three intermediate pathways and six

metabolites highlighted in Figures 4D (Figures 4F-H,

Supplementary Figures S3B–D). Apart from the “M_6:

Pyruvate_Lactate” pathway, spatial features of the other two

pathways and associated metabolites remained consistent with

those observed in single-cell data, suggesting that C1_Scissor+

malignant cells are the dominant contributors to these

metabolic activities.

For the “M_6: Pyruvate_Lactate” pathway, pyruvate abundance

was generally positive across tumor regions in the spatial

transcriptomic data, indicating metabolite accumulation. When

interpreted alongside Figure 5E, this suggests that the combined

accumulation of pyruvate by C2_Scissor– and Scissor0 malignant

cells may exceed the consumption by C1_Scissor+ malignant cells,

given their overlapping spatial distributions—ultimately resulting in

pyruvate accumulation in spatial data.
3.5 Construction of a Ribosis-
relatedsignature using machine learning

To develop a Ribosis-related prognostic signature, we first

performed differential gene expression analysis between tumor and
Frontiers in Immunology 09
normal tissues in the TCGA-ccRCC cohort using the “DESeq2”

algorithm. A total of 3,800 upregulated and 2,091 downregulated

genes were identified (Figure 6A, Supplementary Table S6). In

parallel, differential expression between the C1_Scissor+ and

C2_Scissor– malignant cells were assessed using the “FindMarkers”

function, yielding 286 upregulated and 147 downregulated genes

(Figure 6B, Supplementary Table S7). By intersecting these DEGs

with Ribosis-related genes, 11 candidates were preliminarily

identified (Figure 6C). We next conducted univariate Cox

regression analysis to evaluate the prognostic relevance of these 11

genes. Given the small number of candidates, a relaxed p-value

threshold of 0.1 was used. Multivariate Cox regression further

refined the selection, ultimately identifying five prognostically

significant genes (Supplementary Table S8). To enhance clinical

applicability, we developed a prognostic model based on these five

genes using 118 combinations of 10 machine learning algorithms.

The TCGA-ccRCC cohort was randomly divided into training and

test sets at a 1:1 ratio (Supplementary Table S9). The training set was

used for feature selection and model construction, while the model

was validated in both the test set and an external cohort (E-MATB-

1980). C-index values were computed across all datasets (Figure 6D).

Among all models, Ridge regression yielded the highest average C-

index (0.68) across the validation cohorts and was thus selected to

define the RBRS. The final RBRS risk score was computed using the

following formula: Risk score = 0.1886866 × RPL38 + 0.3353690 ×

RPS2 – 0.4759008 × RPS14 + 0.3914829 × RPS19 – 0.5451182

× RPS28.

These five Ribosis genes exhibited spatial expression patterns

highly concordant with tumor core regions in the “R114T” and

“Z43T” spatial transcriptomic samples (Supplementary Figures

S4B, C). Moreover, their expression levels were significantly

positively correlated with pseudotime progression (Supplementary

Figure S4D), consistent with previous findings that aberrant Ribosis

activity is associated with late-stage tumors (45).

To benchmark the RBRS model, we compared its prognostic

performance with 32 published ccRCC signatures retrieved from

PubMed (Supplementary Table S10). Notably, RBRS displayed

relatively stable and robust performance across all datasets

(Figure 6E). Using the RBRS formula, individual risk scores were

calculated for each patient across datasets. Patients were stratified

into high- and low-risk groups based on the median score, revealing

a progressive increase in mortality with rising risk score

(Figures 6F, G). Kaplan–Meier survival analysis confirmed that

patients in the high-risk group exhibited significantly poorer

prognosis (P < 0.05) (Figure 6H). Similar trends were observed in

the merged TCGA training and test cohorts (FigureS 5I, J).

Furthermore, high RBRS scores were consistently associated with

inferior outcomes across OS, disease-specific survival (DSS), and

progression-free interval (PFI) (P < 0.001) (Figure 6K). The area

under the curve (AUC) values demonstrated stable performance

across datasets: in the TCGA training set, AUC at 1, 3, and 5 years

were 0.679, 0.661, and 0.712, respectively; in the test set, 0.673,

0.655, and 0.645; in the merged cohort, 0.671, 0.657, and 0.678; and

in the external E-MATB-1980 cohort, 0.704, 0.720, and 0.705

(Supplementary Figure S5A).
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We further investigated the relationship between RBRS and

clinical characteristics in the TCGA-ccRCC cohort (Supplementary

Table S11). Significant differences were observed between high- and

low-risk groups in terms of OS, survival status, histological grade,
Frontiers in Immunology 10
clinical stage, pT, pN, and pM classifications (Supplementary

Figures S5B, C). Due to the high proportion of missing pN data

and the small number of patients with lymph node metastases, pN

stage was excluded from further subgroup analyses. Patients with
FIGURE 5

Development and validation of the nomogram. (A–F) Univariable and multivariable Cox analyses identifying independent prognostic factors for OS,
DSS, and PFI. (G) Nomogram integrating RBRS, age, grade, and stage. (H, I) ROC and C-index comparisons of nomogram versus clinical features.
(J) Calibration curves. (K–M) DCA for 1-, 3-, and 5-year OS. 95% CI, 95% confidence interval; OS, overall survival; DSS, disease-specific survival; PFI,
progression-free interval; pT, pathological tumor stage; pM, pathological metastasis stage; AUC, area under the curve; TCGA, The Cancer Genome
Atlas; ccRCC, clear cell renal cell carcinoma.
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FIGURE 6

Construction of the RBRS prognostic model. (A) Volcano plot of DEGs between tumor and normal samples in TCGA-ccRCC. (B) Volcano plot of
DEGs between C1_Scissor+ and C2_Scissor- malignant cells. (C) Intersection of DEGs from bulk RNA-seq, scRNA-seq, and Ribosis-related genes.
(D) Performance of 118 machine learning models in TCGA training, test, and E-MATB-1980 cohorts (C-index). (E) Comparison of RBRS with 32
published ccRCC prognostic signatures. (F–H) RBRS score, survival status, and Kaplan–Meier curves in three cohorts. (I, J) Combined TCGA cohorts.
(K) Kaplan–Meier analysis of OS, DSS, and PFI based on RBRS scores. TCGA, The Cancer Genome Atlas; ccRCC, clear cell renal cell carcinoma;
DEGs, differentially expressed genes; RNA-seq, RNA sequencing; RBRS, ribosome biogenesis-related signature; DSS, disease-specific survival; PFI,
progression-free interval.
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pT3–4, M0, Stage III–IV, and Grade III–IV exhibited significantly

higher RBRS scores than those with pT1–2, M1, Stage I–II, and

Grade I–II, respectively (Supplementary Figures S5D–G). Except in

the Grade I–II subgroup, high RBRS scores consistently correlated

with worse OS across all clinical subgroups (Supplementary Figures

S5H–M). Collectively, these findings indicate that RBRS is closely

associated with poor prognosis in ccRCC.
3.6 Development and validation of an
integrated prognostic model for ccRCC

To assess the independent prognostic value of RBRS, both

univariate and multivariate Cox regression analyses were

performed. In univariate analysis, RBRS was significantly

associated with OS (hazard ratio [HR] = 4.14; 95% confidence

interval [CI] = 2.85–6.03), DSS (HR = 6.43; 95% CI = 4.05–10.21),

and PFI (HR = 4.24; 95% CI = 2.88–6.24) (Figures 5A–C). In

multivariate analysis, RBRS remained an independent prognostic

factor for OS (HR = 2.66; 95% CI = 1.03–4.07), DSS (HR = 3.33;

95% CI = 1.89–5.86), and PFI (HR = 2.22; 95% CI = 1.41–3.51)

(Figures 5D–F).

To further extend the clinical utility of RBRS, we constructed an

integrated prognostic nomogram incorporating RBRS along with

age, tumor grade, and clinical stage (Figure 5G). The nomogram

demonstrated robust predictive performance for 1-, 3-, and 5-year

OS with AUC of 0.859, 0.809, and 0.778, respectively

(Figures 5H, I). Calibration curves revealed excellent concordance

between predicted and observed survival probabilities (Figure 5J),

while DCA confirmed that the nomogram provided superior net

clinical benefit compared to individual prognostic factors at all time

points (Figures 5K–M).

To facilitate broad clinical application, we deployed the

nomogram as a web-based tool using the Shiny platform (https://

drxie2018510136.shinyapps.io/shinyapp/), enabling users to input

clinical features and RBRS scores to obtain dynamic, individualized

survival predictions for ccRCC patients.
3.7 Genomic mutation landscape

Intratumoral heterogeneity, a hallmark of cancer, is primarily

driven by the accumulation of somatic mutations and plays a

central role in tumor progression, therapeutic resistance, and

disease relapse (46). Using the “maftools” algorithm, we evaluated

TMB across ccRCC patients and found that high-risk individuals

exhibited significantly elevated TMB scores compared to the low-

risk group (P < 0.01), along with worse survival outcomes

(P = 0.003) (Figures 7A, B). Stratified survival analysis integrating

both TMB and RBRS risk scores revealed that patients with the

“High TMB + high risk” combination had the poorest prognosis (P

= 3.75e-07) (Figure 7C).

We next examined the mutational profiles across risk groups.

Canonical mutations in ccRCC—such as VHL, SETD2, PBRM1,
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and BAP1—were recurrently observed (Figures 7D, E), and have

been previously described as trunk mutations contributing to

genomic instability and impaired DNA repair (47). Among the

top six most frequently mutated genes in the high-risk group, TTN,

SETD2, BAP1, and MTOR showed significantly increased mutation

frequencies (P < 0.05), while VHL and PBRM1 did not differ

significantly between groups (P > 0.05) (Supplementary

Figure S6A).

Additionally, we analyzed patterns of co-occurrence and mutual

exclusivity among the top 20 mutated genes across risk groups. The

high-risk group demonstrated a greater degree of co-occurring

mutations (Figure 7F). CNV, another driver of tumorigenesis, can

alter oncogene or tumor suppressor gene expression (48). CNV

analysis of the top 10 frequently mutated genes revealed that

PBRM1, VHL, SETD2, and BAP1 had the highest rates of copy

number loss, while copy number gains were less prominent

(Figure 7G). These four genes are well-established tumor

suppressors in ccRCC (47), and loss of one or both alleles often

leads to complete functional inactivation. For instance, deletion of

the VHL gene due to CNV loss is a frequent event in ccRCC (49).

Expression and survival analyses using bulk RNA-seq data

revealed that these four tumor suppressor genes were significantly

downregulated in tumor tissues compared to normal controls

(Supplementary Figures S6B–E). Moreover, lower expression of

SETD2, PBRM1, and BAP1 was associated with worse prognosis,

while VHL expression showed no significant survival impact

(Supplementary Figure S6F–I). These results suggest that CNV

loss may alter tumor suppressor gene expression and influence

patient outcomes.

Pathway enrichment of mutated genes revealed associations

with several oncogenic pathways (Figures 7H, I). NOTCH and PI3K

signaling pathways were enriched among high-risk patients

(P < 0.05), whereas other pathways showed no significant group

differences (P > 0.05) (Supplementary Figure S6J). Prior studies

have shown that targeting the Notch pathway, both in vitro and in

vivo, can suppress ccRCC growth (50). Similarly, PI3K signaling is a

major oncogenic driver and therapeutic target in ccRCC, strongly

implicated in disease progression (51). These findings suggest that

the prognostic divergence between RBRS-defined subgroups may be

closely linked to distinct genomic mutation landscapes.
3.8 Pathway enrichment analysis across
risk subgroups

To explore the molecular mechanisms underlying differential

gene expression between RBRS-defined risk subgroups, we

performed enrichment analysis using the “clusterProfiler”

algorithm. KEGG pathways were enriched for cancer-related

processes, immune regulation, inflammation, metabolism, and

TME remodeling (Figure 7J). ccRCC is characterized by complex

interactions and dysregulation across multiple signaling pathways,

including PI3K–Akt, Hippo, Wnt, TGF-b, and p53, which are

known to drive cancer progression (52).
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Extracellular matrix remodeling is a hallmark of tumor growth

and metastasis. Extracellular matrix components and their

receptors not only facilitate tumor dissemination but also serve as

a mechanical barrier that hinders therapeutic penetration (53).

Cholesterol metabolic reprogramming is a distinct feature of

ccRCC. Studies have shown that ccRCC cells heavily rely on

exogenous cholesterol uptake rather than endogenous

biosynthesis. Targeting SCARB1, a key cholesterol transporter,

can induce cell cycle arrest, apoptosis, and PI3K/AKT pathway

inhibition in ccRCC (54).
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GO analysis revealed key biological processes including renal

epithelial growth, tumor development, extracellular matrix (ECM)

remodeling, and cytokine signaling (Figure 7K). GSEA further

showed that high-risk patients were enriched for gene signatures

involved in tumor invasion and initiation, angiogenesis,

inflammation, chemoresistance, and p53 pathway suppression

(Figure 7L). Given the well-documented roles of these pathways

in cancer biology, detailed discussion is omitted here. Collectively,

these findings reinforce the connection between RBRS and

oncogenic biological and metabolic processes in ccRCC.
FIGURE 7

Genomic landscape and pathway enrichment in high- vs low-risk RBRS groups. (A) TMB distribution by risk. (B, C) Survival curves by TMB and
combined TMB/RBRS status. (D, E) Mutation waterfall plots. (F) Co-occurrence and mutual exclusivity of top mutated genes. (G) CNV
frequency of top 10 mutated genes. (H, I) Oncogenic pathway enrichment. (J) KEGG; (K) GO; (L) GSEA. TMB, tumor mutation burden; Log-
rank, log-rank test; CNV, copy number variation; RTK, receptor tyrosine kinase; RAS, rat Sarcoma; PI3K, phosphoinositide 3-kinase; IL-17,
interleukin-17; TGF, transforming growth factor; ECM, extracellular matrix; p53, protein 53; BP, biological process; MF, molecular function;
CC, cellular component; p.adjust, adjusted P value; TP53, tumor protein 53; TP73, tumor protein 73; DN; down; TNF, tumor necrosis factor;
NFKB, nuclear factor kappa-B; **p < 0.01 .
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3.9 Immune microenvironment and
immune checkpoint expression across risk
subgroups

The immunosuppressive nature of the TME is a major barrier to

effective immunotherapy. Understanding how to reshape the

immune microenvironment is crucial for overcoming resistance

and identifying new therapeutic targets (55). We used the “GSVA”

algorithm to evaluate 15 immune-related pathways. Except for the

RIG-I-like receptor pathway, high-risk patients exhibited stronger

activation across pathways related to innate immunity, adaptive

immune response, immune cell development, and inflammatory

cytotoxic signaling (Figure 8A).

Using “ssGSEA” algorithm, we assessed the correlation between

immune cell infiltration and risk score. High-risk patients displayed

increased infiltration of adaptive immune cells such as activated

CD4+ and CD8+ T cells (Figure 8B). However, suppressive immune

cells—including myeloid-derived suppressor cells (MDSCs) and

regulatory T cells (Tregs)—were also more abundant in this

group. Similar trends were observed using CIBERSORT analysis:
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CD8+ T cells and memory-activated CD4+ T cells coexisted with

Tregs in the high-risk group (Figure 8C). These findings suggest

that high-risk tumors may exist in a state of “co-activation and co-

suppression” within the immune microenvironment.

Given the complexity of the TME, immune status cannot be

evaluated solely by immune cell abundance (56). We therefore

applied TIP analysis to examine seven steps of the cancer–

immunity cycle (Figure 8D). The high-risk group showed

enhanced activity in antigen release (Step 1) and immune cell

infiltration (Steps 4–6), but no corresponding increase in final

tumor cell killing (Step 7), suggesting ineffective immune clearance.

We also used the “ESTIMATE” algorithm to compute immune

scores, tumor purity, and stromal scores across subgroups (Figures 8E-

G). High-risk patients exhibited higher immune scores, indicating a

more active immune environment, but had lower tumor purity and

higher stromal scores, implying greater infiltration of non-malignant

components such as fibroblasts, mesenchymal stem cells, and ECM.

These stromal elements cooperatively contribute to tumor progression,

metastasis, and resistance (57), highlighting the need for combined

immunotherapy and stroma-targeting strategies.
FIGURE 8

Tumor immune microenvironment landscape in RBRS subgroups. (A) Heatmap of immune pathway activity. (B, C) Infiltration of immune cells
quantified via ssGSEA and CIBERSORT. (D–F) Immune score, tumor purity, and stromal score comparisons. (G) Anti-cancer immunity cycle activity.
(H) Immune checkpoint expression. RIG-I, retinoic acid-inducible gene I; DNA, deoxyribonucleic acid; IGA, immunoglobulin A; MDSC, myeloid-
derived suppressor cell; ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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Finally, expression of immune checkpoint molecules—

including PDCD1, CTLA4, TIGIT, and LAG3—was significantly

elevated in the high-risk group (Figure 8H), indicating potential

targets for immune-based combination therapies.
3.10 Drug sensitivity prediction and
validation of RBRS-related genes

Therapeutic resistance remains a major challenge in cancer

treatment, largely due to the dynamic and heterogeneous nature of

the TME (58). To evaluate drug response across RBRS subgroups,

we used the “oncoPredict” algorithm. All significantly different
Frontiers in Immunology 15
compounds are listed in Supplementary Figure S6K. In the

context of advanced RCC, first-line therapies often include multi-

kinase inhibitors (MKIs) and mammalian target of rapamycin

(mTOR) inhibitors (4). Our analysis revealed that high-risk

patients exhibited greater resistance to MKIs and PI3K/AKT/

mTOR pathway inhibitors (Figures 9A–E), with drug IC50 values

positively correlated with RBRS scores (Figures 9F–J).

To identify candidate compounds with potential to reverse the

high-risk gene expression profile, we submitted the top 150

upregulated and 150 downregulated genes from each risk group

to the cMap database (Supplementary Table S12). Ten compounds

with the lowest connectivity scores and defined mechanisms of

action were selected (Figure 9K). These agents may inhibit ccRCC
FIGURE 9

Drug sensitivity and gene expression validation. (A–E) Sensitivity to five targeted therapies by RBRS subgroup. (F–J) Correlation between RBRS score
and drug IC50. (K) Top 10 candidate drugs predicted by cMap. (L) qRT-PCR validation of five RBRS genes in paired tumor and adjacent tissues from
ccRCC patients. IC50, half-maximal inhibitory concentration; PI3K, phosphoinositide 3-kinase; mTOR, mammalian target of rapamycin; DNA,
deoxyribonucleic acid; SIRT, sirtuin; HDAC, histone deacetylase; FGFR, fibroblast growth factor receptor; KIT, tyrosine kinase; PDGFR, platelet-
derived growth factor receptor; VEGFR, vascular endothelial growth factor receptor; CDK, cyclin-dependent kinase; PKC, protein kinase C; JAK,
Janus kinase; ccRCC, clear cell renal cell carcinoma; qRT-PCR, quantitative real-time PCR; *p < 0.05; **p < 0.01; ***p < 0.001.
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progression and offer therapeutic opportunities for targeting

malignant transformation.

Lastly, we validated the expression of the five RBRS genes

(RPL38, RPS2, RPS14, RPS19, and RPS28) using qRT-PCR on

tumor and adjacent normal samples from 12 ccRCC patients at

Meizhou Hospital. All five genes were significantly upregulated in

tumor tissues (Figure 9L), consistent with TCGA-ccRCC

transcriptomic data (Supplementary Table S6), supporting their

potential functional relevance in ccRCC development

and progression.
4 Discussion

4.1 Biological context and novelty

ccRCC, the most prevalent subtype of renal cancer, remains

clinically challenging due to its high heterogeneity and therapeutic

resistance (2, 4). Dysregulated Ribosis has recently emerged as a

central oncogenic mechanism in multiple malignancies, driving

tumorigenesis via onco-ribosome-mediated metabolic

reprogramming and selective translation of oncogenic transcripts

(7–9). However, its molecular characteristics and clinical

significance in ccRCC have not been systematically investigated.

In this study, we integrated multi-omics data—including bulk

RNA-seq, scRNA-seq, and stRNA-seq—to comprehensively

elucidate the associations between Ribosis and malignant

evolution, metabolic rewiring, and immune microenvironment

remodeling in ccRCC. Moreover, we developed a RBRS

prognostic model using advanced machine learning strategies.

RBRS demonstrated robust predictive performance and

translational potential, offering new mechanistic insights and a

precision medicine framework for ccRCC.
4.2 Ribosis and malignant progression

Aberrant Ribosis is not merely a passive consequence of

tumorigenesis, but a key driver of cancer progression (59). In the

TCGA-ccRCC cohort, patients with high Ribosis-related gene

expression (Cluster 1) had significantly worse OS, suggesting its

role in malignant progression and its potential as a biomarker for

patient stratification. At the single-cell level, Ribosis activity was

markedly elevated in C1_Scissor+ malignant cells, which were

enriched at the terminal end of the pseudotime trajectory and

exhibited enhanced stemness features.

We observed a positive correlation between cellular stemness and

expression of several Ribosis-related genes (e.g., RPLP1, RPL10, RPL15),

as well as a progressive increase in Ribosis activity along pseudotime.

These findings suggest that Ribosis may promote ccRCC progression by

sustaining stem-like states and facilitating malignant evolution—

consistent with the aggressive features of advanced-stage tumors,

which exhibit enhanced stemness and hyperactive Ribosis (42, 45).

In terminal-stage malignant cells, we also noted a concurrent

upregulation of OXPHOS. GSEA revealed significant enrichment of
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OXPHOS and MYC target pathways in C1_Scissor+ relative to

C2_Scissor–malignant cells, suggesting a possible synergistic role in

driving tumor progression. MYC is a well-known upstream

regulator of Ribosis that enhances ribosomal DNA transcription

and ribosomal protein production, thereby promoting cancer cell

growth (12). OXPHOS, on the other hand, supplies energy for

Ribosis and is also implicated in T cell dysfunction and immune

resistance under hypoxic conditions in ccRCC (60, 61). This

metabolic-oncogenic interplay may help explain the persistence of

aggressive phenotypes and resistance to therapy in metabolically

reprogrammed tumors (62). By contrast, early-stage malignant cells

were enriched for cell division-related pathways, consistent with the

hyperproliferative phenotype of early tumor evolution driven by

clonal competition (63).
4.3 Ribosis and metabolic reprogramming

Cancer cells undergo metabolic reprogramming to meet the

high biosynthetic, energetic, and immune-evasive demands of

tumor growth (43). As the central engine of protein synthesis,

Ribosis directly contributes to remodeling metabolic networks to

support sustained tumor proliferation and invasion (7). In our

study, C1_Scissor+ malignant cells with high Ribosis activity

exhibited elevated expression across key metabolic pathways,

including glycolysis, amino acid, and nucleotide metabolism.

These cells also showed pronounced pyruvate depletion and

lactate accumulation, hallmarks of the Warburg effect. Lactate

acidification of the TME can impair T cell function, thereby

promoting immune escape and metastasis (44).

Ribosis requires abundant biosynthetic precursors and energy,

necessitating reprogrammed metabolism. Cancer cells often

enhance aerobic glycolysis to generate adenosine triphosphate

and intermediates to support macromolecule synthesis (44).

Notably, ribosomal stress can itself feedback into metabolism,

promoting secondary mutations and adaptation (64). The

enrichment of multiple metabolic pathways in C1_Scissor+

malignant cells reflect this adaptation to a high-biosynthesis state.

Metabolic products like lactate not only reflect reprogramming

but also shape immune microenvironments. Importantly, Ribosis and

metabolism are bidirectionally regulated: nutrient-sensing and growth

factor pathways (e.g., PI3K–AKT–mTOR) activate rRNA synthesis

when metabolite levels are sufficient, whereas tumor suppressors like

p53 inhibit Ribosis under energy stress or ribosomal damage (59).

Thus, malignant cells often exist in a “high-metabolism, high-

synthesis” state, wherein metabolic rewiring both enables and

reinforces Ribosis and tumor aggressiveness.
4.4 Ribosis and immune microenvironment
remodeling

The ccRCC immune microenvironment is highly complex,

posing significant challenges to therapeutic efficacy (65). Our

results indicate that high RBRS risk scores are associated not with
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immune exclusion, but with a state of “coexistent immune

activation and suppression.” While high-risk tumors exhibited

increased infiltration of effector CD4+ and CD8+ T cells, they also

harbored elevated levels of immunosuppressive cells such as Tregs

and MDSCs. This composition suggests the presence of antitumor

immunity that is simultaneously dampened by suppressive

elements, leading to T cell exhaustion and immune evasion (65,

66). Immune evasion in ccRCC is primarily driven by T cell

exhaustion (67), and may also involve tumor-mediated

recruitment and alteration of immune cells to establish an

immunosuppressive microenvironment, a common mechanism

observed in many cancers (68). Tregs are known to be major

inhibitors of effective immune responses in ccRCC, suppressing

CD8+ T cell activation via cytokines such as transforming growth

factor-b and interleukin 10, and depleting Interleukin 2 to block

clonal expansion (69, 70). MDSCs further aggravate immune

suppression by producing reactive oxygen species, arginase, and

promoting M2-like macrophage polarization (71). TIP analysis

revealed that while high-risk tumors are active in antigen release

and T cell recruitment (Steps 1 and 4–6), they are impaired in

tumor-killing capacity (Step 7). This “active initiation but exhausted

t e rmina t i on ” pa t t e rn h igh l i gh t s the dominance o f

immunosuppressive signaling in ccRCC TME (67). Furthermore,

ECM rigidity and the recruitment of tumor-associated macrophages

contribute to constructing an immune-suppressive niche, further

hindering therapeutic response (62, 72). These structural and

cellular features underscore the critical need to decode Ribosis-

associated immune remodeling.

Given the immunogenic yet evasive nature of ccRCC, immune

checkpoint inhibitors have gained traction (73). Expression of

checkpoint molecules—PDCD1 (PD-1), CTLA-4, TIGIT, and

LAG3—was significantly elevated in the high-risk group. PD-1

inhibitors (e.g., nivolumab, pembrolizumab) and CTLA-4

inhibitors (e.g., ipilimumab) are already approved for advanced

ccRCC (4). TIGIT suppresses antitumor immunity by expanding

Tregs and promoting M2 macrophages (74). A phase II trial of the

TIGIT inhibitor (tiragolumab) in advanced RCC is underway

(NCT05805501). LAG3, linked to T cell exhaustion via binding to

MHC-II or FGL1, is another promising target (75). A phase II trial

showed that nivolumab plus LAG3 blockade (relatlimab) achieved

comparable efficacy to nivolumab plus ipilimumab with improved

safety in advanced RCC (76), and two additional trials

(NCT05148546 and NCT06708949) are ongoing. Notably, when

evaluating new anticancer drug candidates, it is essential to carefully

assess potential toxicity to ensure both safety and efficacy in clinical

translation (5).
4.5 Translational potential of the RBRS
model

In the era of precision medicine, robust biomarkers are critical

for stratifying risk and guiding ccRCC treatment. The RBRS model,

derived from Ribosis-related gene expression, demonstrated high

prognostic accuracy (AUC of 0.859, 0.809, and 0.778 at 1, 3, and 5
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years, respectively), underscoring its clinical potential. To enhance

usability, we developed a dynamic online tool (https://

drxie2018510136.shinyapps.io/shinyapp/) enabling individualized

risk assessment to support clinical decision-making.

In addition to its prognostic value, the RBRS model holds

promise as a clinical decision-support tool for guiding therapeutic

strategies in ccRCC. To further translate this potential into practice,

RBRS-based risk stratification could be integrated with established

clinicopathological parameters and molecular markers to optimize

individualized treatment selection. Specifically, patients with high

RBRS scores—who tend to exhibit immunosuppressive tumor

microenvironments—may benefit more from combination

strategies involving immune checkpoint inhibitors and anti-

angiogenic agents, such as pembrolizumab plus axitinib, rather

than monotherapies. RBRS scoring could thus serve as a triage tool

to prioritize patients for combination regimens early in their

treatment course.

Moreover, incorporating RBRS into future clinical trial designs

could refine patient selection criteria and improve response rate

predictability for emerging therapeutics. Our cMap analysis further

revealed several small-molecule compounds with potential anti-

Ribosis activity. Although these candidates are still at the

computational prediction stage, future efforts should include their

functional validation in preclinical models to assess mechanisms of

action, therapeutic efficacy, pharmacokinetics, and toxicity profiles.

Particular attention should be paid to repurposed drugs with known

safety margins, which may expedite translation into early-phase

trials. Ultimately, integrating RBRS-based profiling with therapeutic

response data could pave the way for a more tailored and responsive

approach to managing ccRCC, advancing RBRS from a prognostic

biomarker to a clinically actionable precision oncology tool.
4.6 Adjunctive therapeutic prospects
beyond Ribosis

While the RBRS model provides a robust framework for risk

stratification and therapeutic guidance, its integration with

emerging adjunctive strategies may further enhance clinical

benefit in ccRCC. The rapid development of novel physical

therapies has opened new avenues for ccRCC treatment. Physical

st imulat ion modal i t ies— including ionizing radiat ion,

phototherapy, electricity, magnetic fields, and ultrasound—have

been reported to modulate the TME by remodeling vasculature,

altering ECM composition, and activating immune responses,

thereby enhancing tumor antigen exposure and immune cell

infiltration. These effects have shown superior efficacy compared

to immune monotherapies (77). In particular, low-frequency

magnetic fields disrupt actin polymerization dynamics, impairing

cytoskeletal integrity and selectively inhibiting tumor cell migration,

while concurrently promoting local immune infiltration (78).

In the field of nanomedicine, surface-engineered and hybrid

nanoparticles are enabling deeper tumor penetration and more

precise delivery of therapeutic payloads. These features may

indirectly support the future delivery of anti-Ribosis compounds
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while reducing systemic toxicity (79, 80). Additionally, systemic

interventions such as regular physical activity have been shown to

reprogram tumor-associated metabolic and immune networks (81),

potentially counteracting the immunosuppressive and hypoxic

niches characteristic of high-RBRS tumors.

Although direct evidence in ccRCC remains limited, the TME-

modulating properties of these strategies may complement Ribosis-

targeted metabolic and immunologic interventions. Their

conceptual compatibility with the RBRS framework warrants

further mechanistic investigation and broader integration into

combination regimens or supportive care paradigms.
4.7 Limitations

Despite the comprehensive insights into Ribosis and the

development of a robust prognostic model, several limitations

must be acknowledged. First, our analyses were based on publicly

available datasets (e.g., TCGA, GEO), and validation in large, real-

world multicenter cohorts is still lacking. The number of scRNA-

seq and stRNA-seq samples was also limited, potentially

underrepresenting ccRCC heterogeneity. Second, further

optimization of RBRS detection methods is needed for application

to routine pathology specimens. Third, the mechanistic links

between Ribosis and tumor progression were only preliminarily

validated via bioinformatics and qRT-PCR. Due to experimental

and technical constraints, this study lacks systematic in vitro and in

vivo functional validation. Future investigations should incorporate

mechanistic studies to further elucidate the causal role of Ribosis in

ccRCC progression.
5 Conclusions

This study systematically characterized the expression and

functional significance of Ribosis in ccRCC and developed a high-

performance RBRS prognostic model. The RBRS offers a novel tool

for risk stratification and precision therapy in ccRCC and lays a

foundation for future investigations into Ribosis-driven

mechanisms and targeted interventions.
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SUPPLEMENTARY FIGURE 1

Single-cell QC and NMF clustering. (A, B) Pre- and post-QC for seven single-

cell samples. (C, D) Before and after PCA batch correction. (E) UMAPs at
various resolutions. (F) Selection of optimal NMF clusters. mt, mitochondrial

genes; ribo, ribosomal genes; hb, hemoglobin genes; PCA, principal
component analysis; RNA, ribonucleic acid; snn, shared nearest neighbor;

res, resolution; NMF, negative matrix factorization

SUPPLEMENTARY FIGURE 2

Panoramic overview of single-cell metabolic pathways and metabolite
profiles. (A, B) Flux and abundance estimates for intermediate modules and

metabolites across epithelial and malignant subtypes.
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SUPPLEMENTARY FIGURE 3

Spatial distribution of metabolic modules and metabolites. (A) Spatial

localization of tumor core regions and three malignant subtypes in samples

“R114”. (B–D) Spatial flux and abundance patterns for three metabolic
modules and their corresponding metabolites. M_6, metabolic module 6;

Pyruvate_Lactate, pyruvate-to-lactate conversion pathway

SUPPLEMENTARY FIGURE 4

Spatial and pseudotime expression of RBRS genes. (A) Distribution of three

malignant subtypes in spatial transcriptomics. (B, C) Spatial localization of five

RBRS genes. (D) Correlation of gene expression with pseudotime. ns, not
significant; R114_T, R114 tumor; Z43_T, Z43 tumor

SUPPLEMENTARY FIGURE 5

Evaluation of the RBRS model. (A) ROC curves for predicting 1-, 3-, and 5-
year OS across datasets. (B, C) Clinical feature distribution between RBRS risk

groups. (D–G) Risk scores across clinical subgroups (pT, pM, stage, grade).

(H–M) Kaplan–Meier curves of OS stratified by RBRS and clinical subgroups.
TCGA, The Cancer Genome Atlas; ccRCC, clear cell renal cell carcinoma;

AUC, area under the curve; RS, risk score; OS, overall survival; pT, pathological
tumor stage; pN, pathological node stage; pM, pathological metastasis stage;

Log-rank, log-rank test; *, p < 0.05; **, p < 0.01; ***, p < 0.001

SUPPLEMENTARY FIGURE 6

Mutation differences and drug responses in RBRS subgroups. (A) Differential
mutation profiles. (B–I) Expression and survival associations for four high-

frequency CNV genes. (K) Drug sensitivity across RBRS subgroups.
(L) Enrichment of oncogenic pathways in mutated genes from high-

and low-risk patient groups. OR, odds ratio; 95% CI, 95% confidence
interval; RTK, receptor tyrosine kinase; RAS, rat Sarcoma; PI3K,

phosphoinositide 3-kinase; TPM, transcripts per million; Log-rank, log-rank

test; ***, p < 0.001
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