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KDDC: a new framework that
integrates kmers, dataset
filtering, dimension reduction
and classification algorithms
to achieve immune cell
heterogeneity classification
Nan Zhang1,2, Shishun Zhao2, Runze Wu2, Xizi Luo3,
Ming Yang3, Zecheng Chang3* and Jianting Xu1*

1Cancer Center, First Hospital of Jilin University, Changchun, China, 2College of Mathematics, Jilin
University, Changchun, China, 3College of Basic Medical Science, Jilin University, Changchun, China
Introduction: Integrating immune repertoire sequencing data with single cell

sequencing data offers profound insights into the diversity of immune cells and

their dynamic changes across various disease states.

Methods: Here, we propose a novel KDDC framework that integrates kmers,

dataset selection, dimensionality reduction and classification algorithms to

facilitate the heterogeneous classification of immune cells.

Results and Discussion: By comparing various kmer length combinations across

seven different classification algorithms, we found that B cell receptor-based

cellsubset classification outperforms T cell receptor-based classification,

achievingan average AUC of over 96%. This finding offers a new perspective on

the classification of immune cells. We also observed that 11 distinct cell

subpopulations exhibited differences in cell proportions, inflammatory

factorexpression, cell communication, and metabolic pathways, with notable

activity in metabolic pathways. These variations may reflect the adaptive changes

of cellsubpopulations in response to different disease states. This study aims to

uncoverthe potential biological significance of immune prediction, target

antigens, andeffective evaluation by analyzing the immune characteristics of

specific cellsubsets at the cellular level. These findings will not only enhance

ourunderstanding of immune system functions but also offer new directions for

the development and optimization of immunotherapy.
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1 Introduction

After pathogens invade the human body, the immune system

serves a crucial protective role, primarily through the immune

response mediated by numerous lymphocyte receptors, including

T cell receptors (TCRs) and B cell receptors (BCRs). Consequently,

inferring the specific binding of immune cell receptors to antigens

has emerged as a prominent research focus. The total count of

unique TCR and BCR reflects the immune system’s capacity to

respond to pathogen invasion (1, 2). Analyzing and annotating

immune repertoire data can offer valuable insights for immune

prediction, target antigens, and effective evaluation (3).

Each TCR and BCR is a dimer composed of two distinct chains.

TCR are encoded by the cell’s neutralizing chain (4), while BCR

consist of a heavy chain (IGH) and a light chain, with the light chain

derived from either the k (IGK) or l (IGL) locus (5). Each antigen-

specific receptor comprises variable (V), diversity (D), joining (J),

and constant (C) gene segments (6). The combination of these gene

segments determines the specificity and diversity of lymphocytes.

TCR and BCR features three complementarity-determining regions

(CDRs): CDR1, CDR2, and CDR3, with CDR3 being the most

variable component of the antigen-binding site (7). The diversity

and uniqueness of TCR and BCR enable their use as distinct

molecular barcodes for T cells and B cells, facilitating the

inference of antigen-specific response functions and elucidating

the differences in the association between cell types and disease

phenotypes. Moreover, the rapid advancement and application of

single-cell sequencing technologies allow researchers to investigate

the changes and mechanisms that occur in cells in response to

pathogen invasion at the cellular level (8). Consequently,

integrating single-cell sequencing with immune repertoire

sequencing can provide a more comprehensive view of the

transcriptional characteristics and immune behaviors of cells,

aiding in the discovery of antibody variations among individuals

and the changes in immune cells under disease conditions.

The research and application of immune repertoire data

primarily encompass two areas. The first involves exploring VDJ

gene rearrangement. For instance, Ren et al. utilized large-scale

single-cell transcriptome maps to reveal the immune characteristics

of COVID-19, employing BCR data to classify patients’ infection

statuses based on a random forest classifier that analyzes VDJ gene

usage frequency (9). Similarly, Zhao et al. proposed a learning-

based machine learning model, VDJMiner, to automatically mine

VDJ gene fragments from TCR data to predict COVID-19

prognosis (10). The second area focuses on structural similarity in

research. For example, Shoukat et al. employed kmer-based

principal component analysis and clustering algorithms to classify

samples from COVID-19 patients using TCR sequencing data (11).

Park et al. also utilized machine learning methods to identify TCR

characteristics in COVID-19 patients (12). However, these studies

predominantly analyze single BCR or TCR data and do not

integrate BCR with TCR data to investigate the changes in

patients across different infection states, nor do they examine the

binding behaviors and mechanisms between cell types in single-

cell sequencing.
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In this study, we proposed a KDDC framework that achieves

heterogeneous classification of immune cells through kmer cutting,

dataset screening, dimensionality reduction, and the selection of

various classification algorithms. We integrated single-cell

sequencing data with immune repertoire data to identify the

characteristics of patients’ immune repertoires through specific

immune cell subsets. This approach enabled us to explore the

binding behaviors and mechanisms of these cells. Our model also

compared seven classification algorithms: Logistic Regression(LR),

Support Vector Machine(SVM), Multi-layer Perceptron(MLP), K-

Nearest Neighbors(KNN), Decision Tree(DC), Random Forest(RF)

and eXtreme Gradient Boosting(XGBoost), to classify and evaluate

infection status based on specific immune cell subsets. This study

aims to uncover the potential biological significance for immune

prediction, target antigens, and effective evaluation by analyzing the

immune characteristics of specific cell subsets at the cellular level.
2 Materials and methods

2.1 Data collection and preprocessing

The data for this study come from two parts: the immune

repertoire data is obtained through the GSE158055 dataset in the

GEO database. The single-cell sequencing data is sourced from the

website http://covid19.cancer-pku.cn/#/dimensional-reduction,

which provides a complete h5 file containing B cell, CD4T cell

and CD8T cell related data. Following data collection, the two

datasets were matched, and we specially screened for B cells

(BCRH_cdr3aa) and T cells (TCRA_cdr3aa) that include the cdr3

amino acid sequences for further analysis.
2.2 Cell clustering and cell annotation

We used the Scanpy library in Python for single-cell sequencing

data analysis (13). The analysis proceed as follows: firstly, we

performed K-Nearest Neighbor(KNN) clustering separately on

the selected B cells and T cells to identify distinct cell

subpopulations. After clustering, we identified the marker genes

of each cell subpopulation based on the significant expression level.

Using the identified marker genes, we employed manual annotation

methods, supported by relevant literature, to classify the cell

subpopulations. Finally, we visualized the cell annotation results

using UMAP diagrams, which effectively illustrate the distribution

and characteristics of the annotated cell subpopulations.
2.3 kmers clipping and dataset screening

The kmers algorithm segments each specific cdr3 amino acid

sequence based on selected lengths. In this study, we chose k values

of 2, 3 and 4. Based on these lengths, we combined the 20 common

amino acid types to generate 400 amino acid concatemers for k=2,

8000 amino acid concatemers for k=3, and 160,000 amino acid
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concatemers for k=4. Next, we constructed a count matrix for

CDR3 amino acid concatemers according to the different states of

the same cell type, assembling the dataset based on the various k

values. This process resulted in seven datasets containing CDR3

amino acid concatemers. During the construction of the count

matrix, any concatemers that did not appear were filled with 0 to

ensure accurate counting.
2.4 Choices of dimensionality reduction
and classification methods

Given the large number of features in the dataset, we first

counted the number of filled 0 values in each column and set a

threshold to eliminate features containing outliers.

The threshold filtering mainly considered the expression of

feature in the sample, which determined whether to retain the

features. Next, we employed analysis of variance (ANOVA) for

feature dimensionality reduction, retaining only those features with

a significance level lower than 0.05. After dimensionality reduction,

we divided each dataset into a training dataset and a test dataset in a

4:1, using seven different classification algorithms to classify and

compare each cell type based on structural similarity. The

algorithms included: LR, SVM, MLP, KNN, DC, RF and XGB. In

the final presentation, we selected the classification algorithm that

exhibited the best performance. Furthermore, the grid search

algorithm was applied to introduce hyperparameters to filter out

the best classification model, with a p-value range of 0.001-0.049.

Comparing multiple classification models through changes in p-

value to find the best combination and improve the generalization

ability. To address the imbalance in data distribution, we utilized

the ROC curve and the average AUC value as evaluation indicators

for the classification results. The advantage of ROC curve was that it

was intensive to data imbalance and effectively demonstrate the

classification performance across the entire threshold range. The

average macro AUC was calculated independently for each

category, avoiding the influence of large categories and not

relying on the number of categories (14, 15).
2.5 Connections between cell
subpopulations and metabolic pathway
score

To explore the connections between cell subpopulations, we

measured the interaction between them based on the membrane

protein pairs present on the surface of the cells in different states

(16). This assessment provided insights into the interactions among

cell subpopulations. For calculating the metabolic pathway scores of

different cell subpopulations, we accessed the KEGG database

(KEGG, https://www.kegg.jp/) and utilized the KEGGREST

package in R to screen 84 human-related metabolic pathways

(17). We then combined the expression levels of metabolic genes

associated with each pathway to compute a score for each pathway

in various states. Additionally, we conducted significance testing for
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each metabolic pathway to highlight the differences among cell

subpopulations under different states. The t test method was used

for pairwise comparison, while the Kruskal Wallis test method was

used for multiple comparison. This approach allowed us to identify

key metabolic pathways that may be relevant to the functional

characteristics of the cell subpopulations in response to

different conditions.
3 Results

3.1 KDDC framework: classification of cell
heterogeneity based on amino acid
sequence similarity

We propose a novel framework that integrates k-mer cutting,

dataset screening, dimensionality reduction and classification

algorithms for a joint analysis of immune repertoire data and

single-cel l sequencing data. This framework achieves

heterogeneous classification of immune cells based on the

structural similarity of CDR3 amino acid sequences, providing

new insights for personalized disease treatment. The framework

consists of five main parts: the first part realizes cell clustering and

cell annotation through single-cell sequencing data, and then uses

the immune repertoire data to extract the cdr3 amino acid

sequences of the same cell type under each cell type and

construct the corresponding dataset. The second part is to

perform kmers processing on the cdr3 amino acid sequences in

the dataset to cut out amino acid concatemers of different kmer

lengths. The third part is to generate the corresponding count

matrix for the amino acid concatemers according to different

cutting lengths. The fourth part is to reduce the dimension of the

count matrix of the amino acid concatemers using feature selection

methods. The fifth part is to classify and compare the count matrix

after dimensionality reduction using seven different classification

algorithms to achieve heterogeneous classification of immune cell

subsets. A schematic diagram of the framework is provided in

Figure 1, illustrating the workflow and interconnections among

these components.
3.2 Demonstration of immune cell subset
distribution in COVID-19 patients based on
single-cell sequencing data

We investigated the shared cells between the immune repertoire

data and single-cell sequencing data, ultimately identifying 278,298

B cells and 220,968 T cells, as illustrated in Supplementary Figure 1.

Using single-cell sequencing data, we generated B cell and T cell

profiles of COVID-19 patients, as shown in Figure 2A and

Figure 2B. For B cells, we identified three cell subpopulations,

with the marker genes of each cell subpopulation displayed in

Supplementary Figures 2A–C. We found that the proportion of

B_c1_TCL1A cell subpopulation increased significantly after

COVID-19 infection, and the proportion of B_c3_TNFRSF1B
frontiersin.org
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Cell State BCRH_cdr3aa

B_c3 hc CARDFHASGSFDFW

B_c3 mild CASGIVATNPDYW

B_c3 severe CARAYRLDQDYW

... ... ... ... ... ...

... ... ... ... ... ...

B_c02_CD27 CD4_T_c1_FOS CD8_T_c2_CD8B

populations of BCR populations of TCR
M N

M K

FIGURE 1

A summary diagram of the KDDC framework.
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subpopulation cells decreased significantly, as shown in Figure 2C.

For T cells, we identified eight cell subpopulations, and the marker

genes for each cell subpopulation are shown in Supplementary

Figures 2D–K. We found that the proportion of CD4T_c1_FOS and

CD8T_c4_LDHA cell subpopulation increased after COVID-19
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i n f e c t i on . The propor t i on o f CD4T_c4_CCR7 and

CD8T_c1_CCL5 cell subpopulation shown a notable decrease, as

shown in Figure 2D. We examined the inflammatory factors related

to immune cells and discovered that the expression of MT-CO2 and

MT-ND3 genes was significantly elevated in both B cell and T cell
FIGURE 2

The immune cell populations signatures in COVID-19 patient. (A) Map of B cell subsets in COVID-19 patients based on BCR data. (B) Map of T cell
subsets in COVID-19 patients based on TCR data. (C) Changes in the proportion of B cell subsets. (D) Changes in the proportion of T cell subsets.
The legend of C and D should be consistent with A and B respectively. (E) Differential expression of inflammatory factors in B cell subsets.
(F) Differential expression of inflammatory factors in T cell subsets.
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subsets following COVID-19 infection. The B_c3_TNFRSF1B

populations shown a significant increase in the expression of

NFKB1, NFKB2, ID3, SKIL and TNF genes. Conversely,

B_ c 1 _TCL1A , CD4T_c 1FOS and CD8T_c3_GZMK

subpopulations exhibited overexpression of DUSP1 and JUN

genes. This result displayed in Figures 2E, F.
3.3 The KDDC framework identifies
heterogeneous classification of cell subsets
in B cells

To characterize the structure of cdr3 amino acid sequences

among different immune cell subsets, we applied the KDDC

framework to achieve heterogeneous classification of immune

cells. We constructed a count matrix using cdr3 sequence amino

acid concatemers of varying lengths and compared the classification

results to reflect the heterogeneity of different immune cell subsets.

Using variance analysis, we performed dimensionality reduction on

the count matrix and evaluated several classification algorithms for

comparison. ultimately, we selected the most suitable classification

algorithm for our study. The classification results of each algorithm

are shown in Table 1. Our findings indicate that the classification

performance for the three B cell subsets was notably strong.
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Specifically, the average AUC value for the B_c1_TCL1A cell

subset using kmer3 reached 96.5%, as shown in Figure 3A. The

average AUC value for the B_c2_CD27 cell subset across kmer2,

kmer3 and kmer4 reached an impressive 99%, depicted in

Figure 3B. Additionally, the average AUC value for the

B_c3_TNFRSF1B cell subset with kmer2, kmer3 and kmer4

reached 93.2%, illustrated in Figure 3C. The relevant parameters

of the best model can refer to Supplementary Table 1. Afterwards,

we conducted an interactive analysis on the three kmers datasets

that demonstrated the best classification results. We discovered

share amino acid concatemers among the kmers dataset, which

reflect the structural similiarities with cdr3 sequences. The structure

of DLW and FDL were high importance in B_c1_TCL1A and

B_c2_CD27. Meanwhile, the structure of YDY and RGGF were

great importance in B_c2_CD27 and B_c3_TNFRSF1B, as

displayed in Figure 3D.
3.4 KDDC framework identifies
heterogeneous classification of cell subsets
in T cells

The cell subsets within T cells were classified and compared

using the KDDC framework, with the results of different
TABLE 1 B cell subset classification and assessment based on BCR sequencing.

BCR kmer Model macro_AUC p-value H M S

B_c1_TCL1A

kmer2 RF 0.879 0.041 0.935 0.855 0.848

kmer3 RF 0.965 0.006 1 0.947 0.947

kmer4 XGB 0.933 0.046 0.88 0.918 1

kmer2_3 RF 0.96 0.012 0.995 0.934 0.95

kmer2_4 RF 0.924 0.031 0.977 0.889 0.907

kmer3_4 RF 0.962 0.025 1 0.932 0.955

kmer2_3_4 RF 0.958 0.006 0.991 0.925 0.957

B_c2_CD27

kmer2 RF 0.938 0.048 1 0.929 0.886

kmer3 RF 0.97 0.045 1 0.927 0.982

kmer4 RF 0.935 0.047 0.92 0.944 0.94

kmer2_3 RF 0.978 0.012 1 0.934 1

kmer2_4 RF 0.977 0.037 0.981 0.987 0.962

kmer3_4 MLP 0.986 0.045 1 0.957 1

kmer2_3_4 RF 0.99 0.046 1 0.989 0.982

B_c3_TNFRSF1B

kmer2 RF 0.593 0.05 0.667 0.667 0.444

kmer3 RF 0.889 0.028 0.87 0.889 0.907

kmer4 RF 0.881 0.033 0.829 1 0.813

kmer2_3 RF 0.926 0.04 0.981 0.944 0.852

kmer2_4 RF 0.923 0.018 0.926 0.917 0.926

kmer3_4 RF 0.889 0.025 0.87 0.889 0.907

kmer2_3_4 RF 0.932 0.039 1 0.945 0.852
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classification algorithms summarized in Tables 2 and 3. We

discovered that the CD4T_c2_AQP3 subset had a strong

classification performance in kmer4, achieving an average AUC

value of 93.5%, as illustrated in Figure 4A. The CD4T_c3_LEF1

subset demonstrated effective classification with kmer4, yielding an

average AUC value of 92.7%, as shown in Figure 4B. The

classification performance for the CD8T_c2_CD8B subset was

optimized using kmer2, kmer3 and kmer4, attaining an

impressive average AUC value of 99%, represented in Figure 4C.

The CD8T_c3_GZMK subset exhibited a better classification

performance in kmer2 and kmer3, resulted in an average AUC

value of 91.2%, depicted in Figure 4D.
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3.5 Close connections between immune
cell subsets in different infection states in
COVID-19 patients

We investigated the interactions among 11 immune cell subsets by

selecting immune cell surface protein pairs. This approach allowed us

to evaluate the connectivity of the immune cell subsets in COVID-19

patients under different infection states, based on the affinity of each

pair of proteins and the expression of the encoding genes. When

comparing the post-COVID-19 infection state to the normal state, we

observed a weakened binding affinity between the CD4T_c4_CCR7

and CD8T_c2_CD8B subset. Conversely, the binding strength of
FIGURE 3

Comparison of specific B cell subsets based on structural similarities. (A) Classification and comparison of B_c1_TCL1A cell subsets based on
structural similarity. (B) Classification and comparison of B_c2_CD27 cell subsets based on structural similarity. (C) Classification and comparison of
B_c3_TNFRSF1B cell subsets based on structural similarity. The number of class 0, 1 and 2 are normal group, mild and severe infection, respectively.
(D) Interactive analysis of structural features for optimal classification of three specific cell subpopulations.
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CD8T_c1_CCL5 to both CD8T_c4_LDHA and CD4T_c1_FOS was

found to be enhanced. In comparisons between the mid-term and

severe states following COVID-19 infection, we noted a significant

reduction in the binding affinity between the B_c1_TCL1A and

CD4T_c1_FOS subset, as illustrated in Figures 5A–C.
3.6 Metabolic changes of immune cell
subsets in COVID-19 patients under
different infection states

Furthermore, we explored the specific metabolic pathways

associated with the 11 immune cell subpopulations. By comparing

the post-COVID-19 infection state with the normal state, we observed
Frontiers in Immunology 08
that these cell subpopulations exhibited active engagement in various

metabolic pathways, revealing metabolic heterogeneity across different

infection states, as shown in Figure 6A. Meanwhile, we also conducted

significant hypothesis tests on the metabolic pathways involved, as

shown in the Supplementary Figure 3. The Glycerophospholipid

metabolism, Oxidative phosphorylation, and Purine metabolism

metabolic pathways were significantly expressed in B_c1_TCL1A,

B_c2_CD27, and CD8T_c1_CCL5 cell subpopulations, particularly

notable during the mid-stage of infection, as illustrated in Figure 6B.

The CD4T_c4_CCR7 subpopulation shown significant changes in the

scores of Pyrimidine metabolism, Nicotinate and nicotinamide

metabolism metabolic pathways post-COVID-19 infection, as

followed in Figure 6C. Additionally, the metabolic scores for the

B_c3_TNFRSF1B , CD4T_c2_AQP3 , CD4T_c3_LEF1 ,
TABLE 2 Evaluation of CD4T cell subsets based on TCR sequencing.

CD4T kmer Model macro_AUC p-value H M S

CD4T_c1_FOS

kmer2 MLP 0.848 0.018 0.856 0.841 0.846

kmer3 DC 0.818 0.036 0.706 0.767 0.981

kmer4 RF 0.861 0.015 0.981 0.765 0.838

kmer2_3 RF 0.839 0.03 0.781 0.756 0.981

kmer2_4 XGB 0.826 0.017 0.799 0.756 0.923

kmer3_4 RF 0.827 0.03 0.754 0.767 0.962

kmer2_3_4 MLP 0.831 0.018 0.77 0.779 0.942

CD4T_c2_AQP3

kmer2 RF 0.608 0.049 0.486 0.686 0.652

kmer3 MLP 0.847 0.03 0.791 0.769 0.981

kmer4 MLP 0.937 0.026 1 0.935 0.876

kmer2_3 MLP 0.784 0.021 0.684 0.774 0.893

kmer2_4 XGB 0.801 0.003 0.667 0.735 1

kmer3_4 KNN 0.832 0.035 0.852 0.824 0.821

kmer2_3_4 KNN 0.797 0.032 0.739 0.724 0.929

CD4T_c3_LEF1

kmer2 DC 0.839 0.031 0.757 0.762 1

kmer3 RF 0.903 0.017 0.876 0.869 0.965

kmer4 RF 0.927 0.02 0.94 0.894 0.946

kmer2_3 RF 0.875 0.046 0.867 0.8 0.96

kmer2_4 MLP 0.875 0.041 0.899 0.767 0.96

kmer3_4 RF 0.889 0.004 0.879 0.898 0.89

kmer2_3_4 RF 0.891 0.004 0.909 0.855 0.91

CD4T_c4_CCR7

kmer2 LR 0.854 0.049 0.889 0.81 0.864

kmer3 SVM 0.733 0.049 0.722 0.476 1

kmer4 RF 0.706 0.049 0.625 0.867 0.625

kmer2_3 RF 0.575 0.049 0.444 0.69 0.591

kmer2_4 MLP 0.868 0.049 0.889 0.714 1

kmer3_4 SVM 0.788 0.049 0.722 0.643 1

kmer2_3_4 MLP 0.868 0.049 0.889 0.714 1
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CD8T_c2_CD8B, and CD8T_c3_GZMK subpopulations displayed a

trend of increasing followed by a decrease, as summarized in Figure 6D.

The CD8T_C4_LDHA subpopulation exhibited notable changes in the

scores for the Starch and sucrose metabolism metabolic pathways

following COVID-19 infection, as summarized in Figure 6E.
3.7 The KDDC framework can also be used
to classify COVID-19 patients in different
infection states

Finally, we employed the KDDC algorithm to classify COVID-

19 patients in different states based on BCR and TCR sequencing
Frontiers in Immunology 09
data. We first analyzed the distribution of cdr3aa sequence lengths

in both BCR and TCR across different infection states. The cdr3aa

length distribution exhibited significant differences post-COIVD-19

infection, as depicted in Figures 7A, B. The KDDC framework was

applied to compare datasets with different kmer lengths. We

identified the datasets and classification algorithms yielded the

best classification performance, as summarized in Table 4. The

classification performance of COVID-19 patients based on BCR

sequencing data was exceptional, achieving an average AUC value

of 98.8% in kmer3, as shown in Figure 7C. In contrast, the

classification performance of COVID-19 patients based on TCR

sequencing data was good, with an average AUC value of 83.3% in

kmer4, as followed in Figure 7D.
TABLE 3 Evaluation of CD8T cell subsets based on TCR sequencing.

CD8T kmer Model macro_AUC p-value H M S

CD8_T_c1_CCL5

kmer2 MLP 0.818 0.049 0.731 0.794 0.929

kmer3 RF 0.843 0.007 0.761 0.779 0.988

kmer4 DC 0.853 0.041 0.95 0.819 0.79

kmer2_3 RF 0.839 0.03 0.781 0.756 0.981

kmer2_4 MLP 0.778 0.015 0.63 0.739 0.964

kmer3_4 RF 0.782 0.039 0.67 0.653 0.994

kmer2_3_4 LR 0.7801 0.047 0.761 0.723 0.857

CD8_T_c2_CD8B

kmer2 RF 0.846 0.049 0.829 0.87 0.839

kmer3 SVM 0.936 0.031 0.912 0.907 0.988

kmer4 MLP 0.96 0.03 0.912 0.967 1

kmer2_3 SVM 0.972 0.024 0.978 0.937 1

kmer2_4 MLP 0.98 0.034 0.974 0.967 1

kmer3_4 MLP 0.955 0.042 0.912 0.953 1

kmer2_3_4 SVM 0.99 0.015 0.987 0.983 1

CD8_T_c3_GZMK

kmer2 SVM 0.766 0.049 0.83 0.744 0.725

kmer3 MLP 0.87 0.012 0.897 0.786 0.928

kmer4 SVM 0.861 0.045 0.806 0.833 0.942

kmer2_3 RF 0.912 0.012 0.928 0.869 0.939

kmer2_4 RF 0.879 0.012 0.909 0.821 0.906

kmer3_4 MLP 0.865 0.019 0.815 0.824 0.956

kmer2_3_4 RF 0.888 0.012 0.927 0.839 0.899

CD8_T_c4_LDHA

kmer2 RF 0.745 0.049 0.833 0.7 0.7

kmer3 RF 0.622 0.049 0.667 0.6 0.6

kmer4 RF 0.622 0.049 0.667 0.6 0.6

kmer2_3 RF 0.744 0.049 0.833 0.7 0.7

kmer2_4 RF 0.744 0.049 0.833 0.7 0.7

kmer3_4 RF 0.622 0.049 0.667 0.6 0.6

kmer2_3_4 RF 0.744 0.049 0.833 0.7 0.7
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4 Discussion

In this study, we implemented the KDDC framework to

integrate single-cell sequencing data with immune repertoire data,

achieving heterogeneous classification of immune cell subsets based

on the structural similarity of cdr3aa sequences. The integration of

immune repertoire data and single-cell sequencing data enhance

our understanding of the changes, behaviors and mechanisms of

cell subsets at the cellular level. We observed that the classification

performance of BCR-based cell subsets under different infection

states was notably superior to that of TCR-based cell subsets. This

highlights the advantages of utilizing BCR data in understanding

immune responses. Additionally, we placed emphasis on comparing
Frontiers in Immunology 10
the classification performance of BCR and TCR across individual

cases, providing valuable insights into the distinct roles these

receptors play in immune classification.

After COVID-19 infects the host, the expression of BCR and TCR

receptor-related cell subpopulations shows heightened activity in terms

of cell proportions, cell communication, and metabolic pathways. We

observed a increase in the expression of MT-CO2 and MT-ND3 genes

in both B cells and T cell subsets post-COVID-19 infection. This

upregulation may activate oxidative phosphorylation and other related

pathways, triggering immune responses (18). The B_c1_TCL1A

subpopulation exhibited distinct changes in the cell proportions

compared to the B_c3_TNFRSF1B subpopulation. The

B_c3_TNFRSF1B subpopulation shown a marked increase in the
FIGURE 4

Comparison of specific T cell subsets based on structural similarities. (A) Classification and comparison of CD4T_c2_AQP3 cell subsets based on
structural similarity. (B) Classification and comparison of CD4T_c3_LEF1 cell subsets based on structural similarity. (C) Classification and comparison
of CD8T_c2_CD8B cell subsets based on structural similarity. (D) Classification and comparison of CD8T_c3_GZMK cell subsets based on structural
similarity. The number of class 0, 1 and 2 are normal group, mild and severe infection, respectively.
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expression of NFKB1, NFKB3, ID3, SKIL and TNF genes, potentially

activating TGF-beta signaling pathway, which may contribute to cell

proliferation (19). Conversely, the B_c1_TCL1A, CD4T_c1FOS and

CD8T_c3_GZMK subpopulations were highly expressed in DUSP1

and JUN genes, suggesting activation the innate immune system and

inflammatory response pathways (20). This may influence the

production and expression of the corresponding cell subpopulations.

Comparing the states before and after COVID-19 infection revealed a

weakening of binding affinity between the CD4T_c4_CCR7 and
Frontiers in Immunology 11
CD8T_c2_CD8B subpopulations. In contrast, the binding strength

between the CD8T_c1_CCL5, CD8T_c4_LDHA and CD4T_c1_FOS

populations increased post-COVID-19 infection. These findings

highlighted the complex interplay of immune cell subsets during

COVID-19 infection, emphasizing the dynamic changes in gene

expression and cell communication that contribute to the overall

immune response.

During the metabolic process after COVID-19 infection, the

B_c1_TCL1A, B_c2_CD27, and CD8T_c1_CCL5 subpopulations
FIGURE 5

Demonstration of interactions between immune cell subsets under different infection states. (A) Interactions among immune cell subsets in normal
states of COVID-19 patients. (B) Interactions among immune cell subsets in mild states of COVID-19 patients. (C) Interactions among immune cell
subsets in severe states of COVID-19 patients.
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shown significant expression in the Glycerophospholipid

metabolism, Oxidative phosphorylation, and Purine metabolism

metabolic pathways, particularly during the middle stage of

infection. Glycerophospholipid metabolism played a crucial role

in maintaining the fluidity and integrity of cell membranes and was
Frontiers in Immunology 12
involved in inflammatory and immune responses during signal

transduction (21). The increase in oxidative phosphorylation

indicated that immune cells require substantial energy to support

heightened activity during the immune response (22). Alterations in

purine metabolism may drive cell proliferation and apoptosis,
FIGURE 6

Metabolic heterogeneity of immune cells under different infection states. (A) Metabolic pathway scores of 11 immune cell subsets; (B) Significant
expression of B_c1_TCL1A, B_c2_CD27 and CD8T_c1_CCL5 in three specific metabolic pathways. (C) Significant expression of B_c3_TNFRAF1B,
CD4T_c1_FOS, CD4T_c2_AQP3, CD4T_c3_LEF1 and CD8T_c2_CD8B in three specific metabolic pathways. (D) Significant expression of
CD4T_c4_CCR7 in two specific metabolic pathways. (E) Significant expression of CD8T_c4_LDHA in the specific metabolic pathway.
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impacting overall cell function and survival (23). the

CD4T_c1_FOS cell subpopulation exhibited significant increases

in Retinol metabolism, Glycine, serine and threonine metabolism,

and Arachidonic acid metabolism metabolic pathways after

COVID-19 infection. The scores of these pathways for the

B_c3_TNFRSF1B , CD4T_c2_AQP3 , CD4T_c3_LEF1 ,

CD8T_c2_CD8B and CD8T_c3_GZMK subpopulations displayed
Frontiers in Immunology 13
a trend of increasing following by a decreased. The Retinol

metabolism was involved in the development and function of B

cells and T cells and had anti-inflammatory properties (24). The

Glycine, serine and threonine metabolism reflected the metabolic

activity and energy demands of cells (25). The Arachidonic acid

metabolism played a vital role in inflammatory responses, with its

upregulation likely linked to enhanced immune regulation post-
FIGURE 7

KDDC framework realizes classification and comparison of COVID-19 patients in different states. (A) BCR length distribution in different states of
COVID-19 patients. (B) TCR length distribution in different states of COVID-19 patients. Different colors represent different states of patients, with
blue indicating normal group, green mild or moderate infection, orange indicating severe infection. (C) Classification comparison of COVID-19
patients in different states based on BCR data. (D) Classification comparison of COVID-19 patients in different states based on TCR data.
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COVID-19 infection (26). The CD4T_c4_CCR7 subpopulation

demonstrated significant shifts in the Pyrimidine metabolism,

Nicotinate and nicotinamide metabolism metabolic pathways,

potentially related to viral immune evasion mechanism and the

metabolic reprogramming. The CD8T:C4_LDHA subpopulation

shown notable changes in the Starch and sucrose metabolism

pathway, suggesting adaptations in energy supply and the

regulation of immune responses (27). Cell therapy based on TCR

and BCR had significant advantages in immunotherapy, as it can

accurately target immune cells, avoid damaging normal cells and

improve treatment efficacy. This study provides valuable insights

into the integrated analysis of immune repertoire data and single

cell repertoire data. By revealing the metabolic changes and

mechanisms of cell subpopulations at a cellular level, it offered

new directions for personalized treatment strategies and antibody

development in the context of COVID-19.
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IR kmer Model macro_AUC p-value H M S
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kmer2_4 RF 0.978 0.01 0.991 0.981 0.962
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