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Introduction: The conventional tumor-node-metastasis (TNM) classification

system remains limited in accurately forecasting prognosis and guiding

adjuvant chemotherapy decisions for patients with colorectal cancer (CRC). To

address this gap, we introduced and validated a novel pathomics signature

(PSCRC) derived from hematoxylin and eosin-stained whole slide images,

leveraging a deep learning framework.

Methods: This retrospective study analyzed 883 slides from two independent

cohorts. An interpretable multi-instance learning model was developed to

construct PSCRC, with SHapley Additive exPlanations (SHAP) and gradient-

weighted class activation mapping (Grad-CAM) for the improvement of model

interpretability and the identification of critical histopathological features,

respectively. The transcriptomic data was provided by The Cancer Genome

Atlas (TCGA) and integrated to investigate the biological mechanisms

underpinning PSCRC.

Results: The results demonstrated that PSCRC was proven to be an independent

prognostic indicator for both overall and disease-free survival. It significantly

enhanced the prognostic performance alongside TNM staging, as shown by

improvements in net reclassification and integrated discrimination indices.

Furthermore, patients in stages II and III with low PSCRC levels were more likely

to benefit from chemotherapy. Morphologically, PSCRC reflected features such as

tumor infiltration, adipocyte presence, fibrotic stroma, and immune cell
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engagement. Transcriptome analysis further revealed links between PSCRC and

pathways involved in tumor progression and immune evasion.

Discussion: Our findings suggested that the application of deep learning to

histopathological images could be an efficient method to improve the prognostic

accuracy and evaluate the treatment responses in CRC. The PSCRC offers a

promising aid for clinical decision-making by shedding light on key pathogenic

processes. Nevertheless, further validation through prospective studies

remains essential.
KEYWORDS
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1 Introduction

Globally ranked the third in terms of diagnostic frequency,

colorectal cancer (CRC) remains the second major cause of cancer

mortality (1). Current clinical management predominantly depends

on the tumor-node-metastasis (TNM) classification system (2).

Nonetheless, notable variability in patient outcomes persists even

among individuals categorized within the same clinical stage (3).

This outcome disparity underscores the limitations of the TNM

system alone and highlights the urgent need for more refined and

individualized prognostic biomarkers.

Although recent advances in molecular omics have uncovered

critical biomarkers linked to CRC prognosis and progression (4),

their translation into routine clinical practice has been hindered by

issues such as sample integrity, processing time, and financial

burden. In addition, individual driver mutations and RNA-based

signatures have demonstrated limited prognostic value and

insufficient utility in informing treatment decisions (5, 6).

Consequently, there is an ongoing need for novel robust

biomarkers that can classify patients into clinically meaningful

subgroups, enabling personalized therapeutic approaches,

enhancing clinical decision-making, and reducing the risk of

inappropriate treatment intensity (7).

The integration of whole-slide imaging and artificial intelligence

(AI) has recently transformed the analysis of hematoxylin and eosin

(H&E)-stained tissues, a standard yet pivotal step in solid tumor

diagnosis. This advancement has enabled more widespread and

quantitative evaluation of pathological features. High-resolution

digital slides capture rich biomedical information that remains

largely untapped, yet hold potential for inferring molecular

profiles and predicting clinical outcomes (8, 9). Leveraging such

data offers a cost-efficient strategy for enhanced risk stratification by

using routinely available histopathological slides.

Despite significant progress, several barriers hinder the clinical

integration of deep learning-based pathology analysis. A major

limitation is the lack of model interpretability, commonly

described as the “black-box” dilemma (10, 11). Additionally, the
02
generalizability of these models remains constrained because of

their dependence on the size and heterogeneity of training datasets

(12). Other persistent issues include overfitting, limited

reproducibility, substantial computational demands, and ethical

considerations in medical practice (13, 14).

To overcome these limitations, this study applied weakly

supervised learning to analyze whole-slide images (WSIs) and

establish a novel prognostic marker for patients with primary

CRC. In addition, visualization methods were employed to

uncover consistent histopathological patterns correlated with

clinical outcomes. To further enhance biological interpretability,

we integrated transcriptomic data with morphological features

using bioinformatic analyses to elucidate the potential

pathobiological mechanisms underlying risk stratification

produced by the pathomics model.
2 Materials and methods

This study received approval from the institutional ethics

committee (ID: KY2024-16) and adhered to the Reporting

Recommendations for Tumor Marker Prognostic Studies

(REMARK) guidelines (15). Written informed consent was

obtained from all participants prior to surgery, including

permission to use the tissue specimens and clinical data for

research purposes. All the adopted procedures involving human

participants followed the ethical principles of the Declaration

of Helsinki.
2.1 Patient cohorts and study design

This retrospective multicenter cohort research included patients

experiencing radical resection for CRC, drawing from three

independent cohorts: TCGA-COAD, TCGA-READ, and real-

world (HMUCH) cohort. The TCGA-COAD and TCGA-READ

cohorts were combined to form a unified meta-cohort, designated
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as TCGA-CRC. The training cohort consisted of 485 consecutive

patients treated at HMUCH between January 2012 and

December 2013.

Patients were eligible for inclusion if they met the following

criteria: (1) histopathologically confirmed CRC with R0 surgical

margins; (2) survival of at least 90 days postoperatively to minimize

bias from surgical quality (16, 17); (3) no prior history of

malignancy; and (4) availability of complete clinical, pathological,

and follow-up records. Individuals who received neoadjuvant

therapy were excluded, as such treatment may alter tissue

morpho logy in H&E- s t a in ed s l i d e s and a ff e c t the

prognostic assessment.

A total of 398 CRC patients meeting the same eligibility criteria

were obtained from TCGA database through the National Cancer

Institute’s Genomic Data Commons (https://gdc.cancer.gov/).

These cases, which included complete prognostic data and high-

quality digital H&E-stained histopathological images, served as the

validation cohort.

Baseline clinical and pathological characteristics were

comprehensively collected, including patient age, sex, tumor site,

invasion depth, perineural invasion, lymphovascular invasion,

vascular invasion, lymph node involvement, TNM stage, follow-

up information (duration and survival status), and receipt of

postoperative adjuvant chemotherapy.

The determination of follow-up duration was performed from

the surgery date to the most recent follow-up, with survival status

documented at the final visit. Overall survival (OS) was set as the

interval between either last follow-up or death and surgery. Disease-

free survival (DFS) refers to the time from surgery to the first

occurrence of recurrence at any site or death from any cause,

whichever occurs earlier.
2.2 Image acquisition and data
preprocessing

Slides from the HMUCH-CRC cohort were prepared through

routine histopathological processing involving fixation in 4%

neutral formaldehyde, paraffin embedding, 4 mm sectioning, and

H&E staining. TNM staging was subsequently reassessed according

to the 8th edition criteria of the American Joint Committee on

Cancer (AJCC). For each case, representative sections illustrating

the invasion depth were carefully selected. Following quality

control, the slides were scanned using an Aperio AT2 scanner

(Leica Biosystems, Germany) at 20× optical magnification (0.5 mm/

pixel). The resulting digital images were stored in SVS format and

managed using Aperio ImageScope software (version 12.4.6).

To facilitate the processing of WSIs approaching 10 gigapixels

in size, we first applied the OTSU thresholding algorithm to remove

white background regions (18). Subsequently, we partitioned the

non-background region into non-overlapping image patches

measuring 512 × 512 pixels at a 20-fold optical magnification and

recorded their respective locations, resulting in over 7.7 million

patches. Note that the batch size is 32, the initial learning rate is

0.01, the cosine decay optimizer is SGD and the momentum is 0.9.
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Additionally, we applied the Macenko method to normalize the

color of small tiles (19), followed by z-score normalization on RGB

channels to achieve a standard normal distribution of

image intensities.

To enhance model generalization, various data augmentation

strategies, such as flipping, mirroring, blurring, mild color

perturbations, and progressive sprinkling, were randomly applied

to the images in the validation and training sets. Notably, no

augmentation was conducted on test images.
2.3 Pathomics feature extraction from
images

In this study, we designed an advanced deep learning

framework to address the complexity and heterogeneity inherent

in large-scale tumor histopathology images. The model adopts a

two-stage architecture, beginning with patch-level inference and

subsequently integrating patch probabilities through a multi-

instance learning (MIL)-based feature fusion algorithm to

generate WSI-level predictions.

During training, each image patch was assigned the same label

corresponding to the patient’s 5-year survival status. For patch-level

classification, we employed ResNet-18, an established convolutional

neural network architecture renowned for its success in the

ImageNet challenge, to estimate patch-level survival likelihoods.

Model optimization was performed using softmax cross-entropy

loss and mini-batch stochastic gradient descent (SGD).

To enhance generalizability across heterogeneous cohorts, we

applied transfer learning by initializing model weights using pre-

trained parameters from the ImageNet dataset. The learning rate

was fine-tuned via a cosine annealing schedule, defined as

ht = hi
min +

1
2
(hi

max − hi
min) 1 + cos

Tcur

Ti
p

� �� �

hi
min = 0 indicates the minimum learning rate, and hi

max = 0:01

represents the maximum learning rate. The term Ti = 30 denotes

the number of iteration epochs used in the model training. We also

utilize transfer learning algorithms to ensure optimal model fitting,

by fine-tuning the backbone component parameters when Tcur =
1
2 Ti. The learning rate for the backbone component is defined as

follows:

hbackbone
t =

                    0                                                                    if    Tcur ≤
1
2 Ti

hi
min +

1
2 hi

max − hi
min

� �
1 + cos Tcur

Ti
p

� �� �
      if    Tcur >

1
2 Ti

 

8<
:

Following the model training, each patch was assigned a prediction

label along with its corresponding probability. These patch-level

likelihoods were then aggregated using a classifier to generate the

WSI-level outcomes. To facilitate this process, we developed two

distinct MIL pipelines: the Patch Likelihood Histogram (PALHI)

method and the Bag of Words (BoW) method, inspired by

histogram-based and vocabulary-based strategies, respectively.

In the PALHI pipeline, a histogram-based representation is

used to quantify the distribution of patch-level likelihoods within
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each WSI. In contrast, the BoW approach encodes each patch as a

floating-point value using term frequency–inverse document

frequency (TF-IDF) with a feature vector representing the

entire slide.

Using these two distinct pipelines, patch-level outputs were

effectively transformed into WSI-level features. Each method

contributed 101 probabilistic features and 2 categorical label

features. These individual feature sets were then integrated

through early fusion, resulting in a unified feature vector of 206

dimensions for subsequent analysis.
2.4 Construction of the pathomics
signature

The least absolute shrinkage and selection operator (LASSO)

Cox regression model that incorporates an L1 penalty for the

toward-zero reduction of feature coefficients is a well-established

method for survival analysis in high-dimensional settings (20, 21).

Referred to as the tuning constant, the penalty parameter l governs

the penalty strength.

In this study, the 10-fold cross-validation with the minimum

criteria was applied for obtaining the optimal l by minimizing the

partial likelihood deviance within the training set. This approach

enabled the identification of key prognostic features and

construction of a formula for calculating the pathomics signature.

The application of the derived formula to the validation set helped

compute the corresponding signature scores.
2.5 Prognostic value of the pathomics
signature

Through using the maximally selected rank statistics within the

training cohort, the identification of the optimal cutoff for the

pathomics signature was achieved, which was subsequently tested

within the validation set. This threshold was adopted for the

classification of the patients into high- and low-signature

categories for prognostic evaluation. The differences in OS and

DFS between both categories were analyzed using restricted mean

survival time (RMST) metrics and Kaplan-Meier (K-M) survival

curves (22).

The independent prognostic significance of the pathomics

signature was assessed through performing univariate and

multivariate Cox regression analyses. Subgroup heterogeneity was

examined using interaction-based subgroup analysis. To evaluate

the potential influence of unmeasured confounding, E-value

analysis was conducted as a sensitivity assessment (23).

To measure discriminative performance, we calculated the

concordance index (C-index) and the area under the receiver

operating characteristic curve (AUROC). The agreement between

predicted and observed survival probabilities was evaluated through

applying calibration plots. The clinical utility of the pathomics
Frontiers in Immunology 04
model was further examined using decision curve analysis (DCA),

which quantifies net benefit across varying decision thresholds (24).

To determine the added value of the pathomics signature

beyond conventional TNM staging, we evaluated its impact on

discrimination, calibration, clinical benefit , integrated

discrimination improvement (IDI), net reclassification

improvement (NRI), and prediction error curves (25).
2.6 Interpretation of the pathomics
signature

To mitigate the interpretability limitations of deep learning

models, we applied SHapley Additive exPlanations (SHAP), a

method rooted in cooperative game theory, to quantify the

contribution and relative importance of individual features to

model outputs (26). This technique enables both global and

instance-level interpretation of the predictions generated by the

trained model.

The gradient-weighted class activation mapping (Grad-CAM)

was utilized to produce heatmaps over selected image tiles for

further exploration of prognostically relevant morphological

patterns (27), highlighting crucial regions that influenced network

predictions. This visualization technique utilized gradient

information from the last convolutional layer of our deep

learning network, providing a visual explanation that facilitates

understanding and validating of the model ’s decision-

making process.
2.7 Bioinformatics analyses of the
pathomics signature

Transcriptomic profiles from TCGA cohort were retrieved with

the TCGAbiolinks package (28). Gene set enrichment analysis

(GSEA) was performed to infer the biological processes related to

the pathomics signature (29). Additionally, pathway activity was

quantified using gene set variation analysis (GSVA) via the GSVA

package (30), allowing the identification of significantly enriched

pathways across different patient subgroups. Functional

interpretation was based on the well-curated “hallmark gene

sets” (31).

Weighted correlation network analysis (WGCNA) was

performed using the WGCNA package, which aims to identify

the pathomics signature-related gene modules (32). The scale-free

topology fitting index of 0.85 was set as the threshold to construct

the signed weighted gene co-expression network. The minimum co-

expression module size was set to 30, and the merge cut minimum

module merge cut height was set to 0.25. A biweight midcorrelation

coefficient (bicor) > 0.1 and P-value < 0.05 were selected as the

thresholds to find gene modules significantly associated with the

pathomics signature. Gene annotation enrichment analysis was

performed using the clusterProfiler package (33).
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Furthermore, according to the guideline for transcriptome-

based cell-type quantification methods, we utilized the

MCPcounter and xCell algorithms to quantify the proportions of

specific immune and stromal cells within the CRC samples (34–36).
2.8 Statistical analysis

The comparison of the continuous variables with normal

distributions were performed using unpaired two-sample t-tests,

while the analysis of the non-normally distributed variables were

achieved via the Mann-Whitney U test or Kruskal-Wallis test. The

assessment of the categorical variables was achieved via either

Fisher’s exact test or the chi-squared (c2) test. Survival curves

were generated through applying the K-M method and evaluated

via the log-rank test. Univariate and multivariate associations were

examined using Cox regression analysis with 95% confidence

intervals (CIs) and hazard ratios (HRs). The associations between

continuous variables were analyzed through the calculation of the

Spearman rank correlation coefficients. All statistical analyses were

conducted using R software (v4.0.5) and SPSS (v19.0). Deep

learning experiments were implemented in Python (v3.7.12). All

tests were two-sided, with P-value < 0.05 considered

statistically significant.
3 Results

3.1 Clinicopathological characteristics

Detailed clinicopathological features of patients from the

training cohort (n = 485) and the validation cohort (n = 398) are

summarized in Supplementary Table S1. Across all 883 patients, the

median age was 62 years with the interquartile range (IQR) of 54–

71, where males accounted for 54.9% (485/883) of the population.

The majority (86.2%, 761/883) was diagnosed at stage II or III. In

the training set, the median follow-up period was 72.5 months

(IQR: 56.47–121.23), with 5-year DFS and OS rates of 75.51% and

81.28%, respectively. In contrast, the validation cohort had a shorter

median follow-up of 24.33 months (IQR: 15.24–36.53), with

corresponding 5-year DFS and OS rates of 61.89% and 70.97%.

The differences observed in the clinicopathological profiles between

cohorts reflect real-world clinical diversity, thereby enhancing the

generalizability of our results.
3.2 Pathomics signature construction

The development framework for the pathomics signature is

depicted in Figure 1. In the training cohort, a LASSO-Cox

regression model with 10-fold cross-validation was employed to

construct the signature. Using the optimal penalty parameter l
(Supplementary Figure S1), eight selected pathomics features were

integrated into a composite risk score. The final formula for

calculating the pathomics signature is as follows:
Frontiers in Immunology 05
Pathomics   signature

= 0:464259187� HistogramBoWProb _ 0:15 + 0:516838374

� HistogramBoWProb _ 0:66 + 0:76054024

� HistogramBoWProb _ 0:72 + 0:000727042

� BoWProb _ 008 − 0:379252147� BoWProb _ 06

− 0:475519653� BoWProb _ 063 − 0:090370453

� BoWProb _ 068 + 0:050898359� BoWPred _ 0

The optimal cutoff point, identified based on the maximum

standardized log-rank statistic, was 0.1139008. Patients in both the

training and validation cohorts were stratified into high- and low-

signature groups accordingly. Associations between the pathomics

signature and clinicopathological characteristics are presented in

Supplementary Table S2. Notably, a potential correlation was

observed between the signature and lymph node counts.
3.3 Prognostic value of the pathomics
signature

Supplementary Figure S2 illustrates the distribution of

pathomics signature values by survival status along with selected

feature profiles, indicating a positive association between elevated

signature scores and a higher risk of recurrence or mortality. K-M

survival analysis (Figure 2) demonstrated significant differences in

both OS and DFS between the low- and high-signature groups in

the training and validation cohorts.

RMST analysis revealed a sustained survival advantage for patients

with low pathomics signature scores across multiple time points, with

themagnitude of the benefit increasing over time (Table 1). Specifically,

the low-signature group exhibited an OS advantage of approximately 2

months at year 3, 8 months at year 5, and a notable 15 months by year

7 when compared to the high-signature group.

Univariate and multivariate Cox regression analyses confirmed

the pathomics signature as an independent predictor of both DFS

and OS in the training cohort (Table 2). Consistent findings were

observed in the validation cohort (Supplementary Table S3). To

assess the robustness of these associations against potential

unmeasured confounding, E-value sensitivity analyses were

conducted based on ad jus ted HRs in both cohort s

(Supplementary Table S4).

Stratified analyses based on clinicopathological variables

demonstrated that the pathomics signature remained a significant

prognostic marker across all subgroups, except for patients with

perineural invasion in the validation cohort (Table 3). A potential

interaction between age and lymph node harvest was suggested by

the subgroup difference testing. No other significant interaction

effects were observed, thereby supporting the overall robustness of

the pathomics signature as a prognostic factor.

Time-dependent receiver operating characteristic (ROC) curves

demonstrated that the pathomics signature achieved favorable

predictive performance for 3-, 5-, and 7-year OS and DFS in both
frontiersin.org
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the training and validation cohorts (Supplementary Figure S3). The

corresponding calibration plots further confirmed a strong

agreement between the predicted and observed survival

probabilities across the same time intervals (Supplementary

Figure S4).
Frontiers in Immunology 06
Moreover, decision curve analysis (DCA) showed that

incorporating the pathomics signature into prognostic assessment

yielded greater net clinical benefit than either the “treat-all” or

“treat-none” strategies in both cohorts (Supplementary Figure S5),

supporting its potential for real-world clinical application.
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3.4 Incremental value of the pathomics
signature added to the TNM stage

The combinedmodel, which were based on the combination of the

pathomics signature and the TNM staging system, exhibited a

significantly higher C-Index than the TNM stage, and these results

could also be found in the validation cohort (Supplementary Table S5).

Furthermore, the AUROCs of the 3 models also confirmed the

superior discrimination ability of the combined models for

estimating DFS and OS in the training and validation cohorts
Frontiers in Immunology 07
(Supplementary Figure S6). Additionally, compared with the

TNM stage models, the combined models were the most accurate

models (Supplementary Figure S7) and showed greater net benefits

across most of the range of reasonable threshold probabilities

(Supplementary Figure S8).

Finally, the combined model showed a significant NRI and IDI

for prognosis estimation compared with the TNM stage model

(Supplementary Table S6), indicating that the pathomics signature

could provide additional prognostic value to the TNM staging

system for CRC.
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FIGURE 2

Kaplan-Meier survival curves according to the pathomics signature. (A) The OS rate difference between the high- and low- PSCRC patients in the
training cohort. (B) The DFS rate difference between the high- and low- PSCRC patients in the training cohort. (C) The OS rate difference between
the high- and low- PSCRC patients in the validation cohort. (D) The DFS rate difference between the high- and low- PSCRC patients in the validation
cohort; OS, overall survival; DFS, disease-free survival; PSCRC, pathomics signature of colorectal cancer.
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3.5 Pathomics signature and benefits of
adjuvant chemotherapy

To evaluate the predictive utility of the pathomics signature in

the context of adjuvant chemotherapy, we analyzed its association

with survival outcomes in stage II and III CRC patients stratified by

postoperative adjuvant chemotherapy status. In both the training

and validation cohorts, adjuvant chemotherapy significantly

improved OS and DFS in these subgroups (Supplementary Figure

S9). Furthermore, the pathomics signature demonstrated a
Frontiers in Immunology 08
significant correlation with OS and DFS, regardless of whether

the patients received adjuvant therapy (Supplementary Figure S10).

Among the patients in the low-pathomics signature group,

adjuvant chemotherapy was significantly associated with

improved OS and DFS. In contrast, this survival benefit was not

observed in the high-pathomics signature group (Figure 3). Further

interaction analysis revealed a significant effect modification,

indicating that individuals with low pathomics signature scores

derived greater benefits from adjuvant chemotherapy than those

with high scores (Supplementary Table S7).
TABLE 1 Restricted mean survival time (RMST) difference analyses in the training and validation cohorts.

Time point

High PScrc Low PScrc RMST difference#

P value
RMST 95% CI RMST 95% CI

Effect
size

95%CI

Training cohort (n = 485)

OS

2 years 23.196 22.821 23.571 23.997 23.992 24.002 -0.801 -1.176 -0.427 <0.0001

3 years 33.052 32.032 34.073 35.734 35.57 35.897 -2.681 -3.715 -1.648 <0.0001

5 years 50.092 47.585 52.6 58.407 57.734 59.079 -8.314 -10.911 -5.718 <0.0001

7 years 63.754 59.612 67.896 78.913 77.475 80.351 -15.159 -19.543 -10.774 <0.0001

9 years 76.173 70.186 82.16 98.394 95.958 100.831 -22.221 -28.685 -15.757 <0.0001

DFS

2 years 21.632 20.769 22.495 23.541 23.25 23.832 -1.909 -2.82 -0.999 <0.0001

3 years 30.345 28.774 31.915 34.824 34.287 35.362 -4.48 -6.14 -2.82 <0.0001

5 years 45.619 42.437 48.8 56.114 54.909 57.318 -10.495 -13.897 -7.093 <0.0001

7 years 59.176 54.253 64.1 75.346 73.273 77.42 -16.17 -21.512 -10.828 <0.0001

9 years 72.303 65.501 79.105 94.002 90.895 97.109 -21.699 -29.177 -14.221 <0.0001

Validation cohort (n = 398)

OS

2 years 22.317 21.598 23.035 23.398 23.049 23.746 -1.081 -1.879 -0.282 0.008

3 years 32.245 30.859 33.631 34.431 33.634 35.227 -2.186 -3.784 -0.588 0.0074

5 years 48.735 45.231 52.239 54.738 52.502 56.974 -6.003 -10.16 -1.847 0.0046

7 years 59.781 52.06 67.501 73.245 68.559 77.931 -13.464 -22.496 -4.433 0.0035

9 years 66.717 54.053 79.381 91.192 83.142 99.242 -24.475 -39.481 -9.469 0.0014

DFS

2 years 21.74 20.911 22.569 23.05 22.57 23.53 -1.309 -2.267 -0.351 0.0074

3 years 30.988 29.423 32.554 33.824 32.877 34.771 -2.836 -4.665 -1.006 0.0024

5 years 44.217 40.326 48.108 52.867 50.344 55.391 -8.651 -13.288 -4.013 0.0003

7 years 50.548 42.671 58.425 69.194 64.038 74.35 -18.646 -28.061 -9.231 0.0001

9 years 56.097 43.008 69.186 84.089 74.872 93.305 -27.992 -43.999 -11.984 0.0006
OS, overall survival; DFS, disease-free survival; PSCRC, pathomics signature of colorectal cancer; RMST, restricted mean survival time; CI, confidence interval; #, RMST difference = RMSThigh-

pathomics signature - RMSTlow-pathomics signature.
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TABLE 2 Univariate and multivariate Cox regression analyses of the pathomics signature and clinicopathological characteristics for overall survival and disease-free survival in the training cohort.

Overall survival Disease-free survival

alysis Multivariate analysis

P value HR (95% CI) P value

) <0.0001 1.027 (1.012, 1.044) 0.0006

) 0.174

) 0.414

) 0.518

) 0.0031 1.451 (0.875, 2.406) 0.149

) 0.00034 1.583 (1.067, 2.350) 0.023

) 0.089

) 0.249

5) 0.109

) 0.0037 1.506 (1.023, 2.216) 0.038
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Variables Samples Univariate analysis Multivariate analysis Univariate an

HR (95% CI) P value HR (95% CI) P value HR (95% CI)

Age, years 485 1.036 (1.020, 1.053) <0.0001 1.035 (1.019, 1.052) <0.0001 1.032 (1.017, 1.04

Sex

Male 274 Reference Reference

Female 211 0.724 (0.509, 1.030) 0.073 0.792 (0.566, 1.10

Tumor location

Left side 213 Reference Reference

Right side 212 0.893 (0.618, 1.290) 0.547 0.863 (0.605, 1.23

Rectum 60 1.285 (0.765, 2.159) 0.343 1.180 (0.714, 1.95

VELI

No 440 Reference Reference

Yes 45 1.863 (1.117, 3.107) 0.0171 1.132 (0.656, 1.952) 0.656 2.047 (1.273, 3.29

Perineural invasion

No 398 Reference Reference

Yes 87 1.735 (1.165, 2.584) 0.0067 1.422 (0.929, 2.177) 0.105 1.972 (1.359, 2.85

Lymph node harvest

≤ 12 106 Reference Reference

> 12 379 0.878 (0.590, 1.307) 0.521 0.727 (0.503, 1.05

Depth of invasion

T1-2 16 Reference Reference

T3 265 1.326 (0.417, 4.223) 0.633 2.286 (0.560, 9.33

T4 204 1.713 (0.538, 5.456) 0.362 3.160 (0.775, 12.8

Lymph node metastasis

N0 329 Reference Reference

N1 117 1.983 (1.354, 2.905) 0.0004 1.892 (1.278, 2.803) 0.0015 1.736 (1.196, 2.51
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TABLE 2 Continued

Overall survival Disease-free survival

lysis Multivariate analysis

a P value HR (95% CI) P value

1 0.00028 2.029 (1.185, 3.474) 0.01

2 0.0035 1.692 (0.486, 5.891) 0.409

5 0.329

0 <0.0001 2.235 (1.886, 2.650) <0.0001

c

r

= 398)

urvival Disease-free survival

l
r

CI)
P value for
interaction

HR (95% CI)
P value for
interaction

1 0.0493 0.1311

, 30.246) 4.978 (2.151, 11.516)

, 4.149) 2.470 (1.814, 3.364)

0.1774 0.1817

, 4.514) 2.699 (2.039, 3.572)

04)
8.442 (1.591, 44.786)

0.0643 0.1467

, 4.284) 2.310 (1.582, 3.372)
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Variables Samples Univariate analysis

HR (95% CI) P v

Lymph node metastasis

N2 39 2.492 (1.446, 4.293) 0.00

Distant metastasis

M0 481 Reference

M1 4 6.144 (1.939, 19.461) 0.00

MSI status

MSI-H 17 Reference

MSS 60 1.203 (0.255, 5.666) 0.81

Pathomics signature 485 3.598 (2.919, 4.435) <0.0

VELI, venous emboli and/or lymphatic invasion; MSI, microsatellite instable; MSS, m
The bold value means the P < 0.05.

TABLE 3 Subgroup analysis for the pathomics signature among diffe

Variables

Training cohort (n = 485)

Samples

Overall survival

HR (95% CI)
P va
inte

Elderly 0.000

No (age ≤ 65) 340 4.771 (3.556, 6.403)

Yes (age > 65) 145 2.537 (1.831, 3.514)

Early-onset 0.195

No (age ≥ 50) 380 3.431 (2.735, 4.304)

Yes (age < 50) 105 4.822 (3.039, 7.653)

Sex

Male 274 3.900 (2.924, 5.202) 0.896
i

9

8

Multivariate analysis Univariate ana

ue HR (95% CI) P value HR (95% CI)

2.033 (1.157, 3.572) 0.014 2.593 (1.551, 4.336)

Reference

1.943 (0.529, 7.129) 0.317 5.560 (1.758, 17.587

Reference

2.799 (0.354, 22.100

1 3.475 (2.785, 4.336) <0.0001 2.378 (2.024, 2.793)

osatellite stable; HR, hazard ratio; CI, confidence interval.

nt clinical features in the training and validation cohorts.

Validation cohort (n

Disease-free survival

Samples

Overall s

e for
ction

HR (95% CI)
P value for
interaction

HR (95%

0.0043

2.545 (2.068, 3.130) 181 9.035 (2.699

2.185 (1.628, 2.934) 217 2.931 (2.070

0.0058

2.238 (1.881, 2.663) 346 3.264 (2.360

4.623 (2.919, 7.322) 52
13.388
(1.619, 110.7

0.6993

2.253 (1.847, 2.748) 211 2.759 (1.776
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TABLE 3 Continued

Training cohort (n = 485) Validation cohort (n = 398)

rvival Disease-free survival

I)
P value for
interaction

HR (95% CI)
P value for
interaction

.227) 3.781 (2.348, 6.089)

.032) 0.9829 2.755 (2.009, 3.776) 0.7906

.726) 2.994 (1.747, 5.132)

0.5554 0.2733

2.574) 6.496 (2.536, 16.639)

0.122) 2.651 (1.695, 4.146)

.968) 2.892 (1.669, 5.011)

0.2667 0.4625

.676) 3.073 (2.211, 4.270)

.915) 2.252 (1.207, 4.203)

0.3829 0.2557

.936) 2.909 (2.203, 3.841)

1.639) 1.037 (0.153, 7.045)

0.1467 0.134

4.811) 4.907 (1.652, 14.581)

.774) 2.669 (1.964, 3.628)

0.8108 0.6741

.176) 2.572 (1.849, 3.579)

.977) 3.158 (1.727, 5.778)

0.9192 0.694

.169) 2.534 (1.809, 3.548)

.697) 3.143 (1.755, 5.631)

value for interaction analysis.

Lo
u
e
t
al.

10
.3
3
8
9
/fim

m
u
.2
0
2
5
.16

0
2
9
0
9

Fro
n
tie

rs
in

Im
m
u
n
o
lo
g
y

fro
n
tie

rsin
.o
rg

11
Variables
Samples

Overall survival Disease-free survival

Samples

Overall su

HR (95% CI)
P value for
interaction

HR (95% CI)
P value for
interaction

HR (95% C

Female 211 3.114 (2.264, 4.282) 2.477 (1.886, 3.253) 187 5.077 (2.793,

Tumor type

Colon cancer 425 3.757 (3.004, 4.699) 0.3512 2.408 (2.037, 2.847) 0.7078 242 3.499 (2.433,

Rectal cancer 60 2.935 (1.766, 4.879) 2.207 (1.413, 3.448) 156 3.470 (1.791,

Tumor location 0.6628 0.9222

Left side 213 3.804 (2.878, 5.028) 2.425 (1.960, 3.000) 104 7.335 (2.383,

Right side 212 3.202 (2.196, 4.670) 2.120 (1.598, 2.813) 138 4.837 (2.311,

Rectum 60 2.759 (1.571, 4.844) 2.945 (1.702, 5.096) 156 3.157 (1.670,

VELI 0.8869 0.368

No 440 3.581 (2.835, 4.524) 2.335 (1.962, 2.779) 247 4.673 (2.844,

Yes 45 3.574 (2.121, 6.023) 3.154 (1.814, 5.483) 151 2.461 (1.233,

Perineural invasion 0.5998 0.857

No 398 3.276 (2.466, 4.353) 2.249 (1.774, 2.851) 352 3.545 (2.546,

Yes 87 3.367 (2.396, 4.732) 2.498 (1.905, 3.275) 46 1.500 (0.193,

Lymph node harvest 0.1059 0.0108

≤ 12 106 3.060 (1.805, 5.187) 1.786 (1.316, 2.424) 43 6.527 (1.717,

> 12 379 3.885 (3.066, 4.922) 2.752 (2.260, 3.351) 355 3.324 (2.314,

Lymph node metastasis 0.409 0.2053

N0 329 3.498 (2.649, 4.618) 2.289 (1.858, 2.819) 242 3.339 (2.154,

N+ 156 4.389 (2.958, 6.511) 2.860 (2.124, 3.851) 156 3.686 (1.947,

TNM stage 0.4018 0.2009

Early (Stage I and II) 328 3.495 (2.647, 4.614) 2.288 (1.858, 2.818) 239 3.300 (2.107,

Advance (Stage III
and IV)

157 4.403 (2.966, 6.536) 2.866 (2.127, 3.860) 159 3.625 (1.962,

TNM, tumor-node-metastasis; VELI, venous emboli and/or lymphatic invasion; MSI, microsatellite instable; MSS, microsatellite stable; HR, hazard ratio; CI, confidence interval; #, P
The bold value means the P < 0.05.
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3.6 Interpretation of the pathomics
signature

SHAP values were used to interpret the contribution of

individual features to the model predictions. As illustrated in the

SHAP summary plot (Figure 4A), HistogramBoWProb_0.15

emerged as the most influential feature, closely followed by

HistogramBoWProb_0.66 , HistogramBoWProb_0.72 , and

BoWProb_008. In contrast, BoWProb_068 contributed the least

among the eight pathomics features.

To further interpret the spatial features linked to patient

prognosis, prediction heatmaps were generated to highlight the

key regions contributing to the model output (Figure 4B). High-risk

cases are typically marked by dense tumor stroma, abundant tumor

cells, and muscle tissue infiltration. In contrast, low-risk regions

were predominantly characterized by normal mucosa, loose stroma,

and inflammatory infiltration.

To further elucidate the model’s decision-making process,

Grad-CAM was applied to extract informative visual cues. The

top 500 most influential regions were selected to explore the

dominant histopathological patterns associated with patient

survival. By clustering the highest-ranked image patches, four

distinct histological clusters were identified using a random tree

algorithm (Figure 4C).

Subsequently, expert pathologists reviewed and annotated the

representative regions identified using the model. Key histological

components, including tumor cells, adipocytes, fibrous tissue, and

stroma, were highlighted in red (Figure 4D). These features

appeared to be closely associated with an elevated risk of

recurrence and mortality, offering a morphological interpretation

of the predictive elements underlying the pathomics signature.
3.7 Association between the pathomics
signature and biological features

GSEA was initially conducted to investigate potential biological

mechanisms associated with the pathomics signature (Figure 5A).

CRC samples with low pathomics signature scores exhibited

significant enrichment in pathways related to DNA repair,

proliferation, metabolism, and immune functions. Conversely,

samples with high pathomics signature scores showed the

activation of canonical oncogenic signaling and invasion-

related pathways.

GSVA further confirmed the significant functional differences

between the high- and low-pathomics signature groups (Figures 5B,

C). Angiogenesis, epithelial-mesenchymal transition (EMT), and

other invasion-associated pathways were significantly upregulated

in the high-pathomics signature group. In contrast, pathways such

as spermatogenesis, E2F targets, and G2M checkpoint were more

active in the low-pathomics signature group.

To identify gene co-expression patterns linked to the pathomics

signature, WGCNA was performed using the top 5,000 most

variable genes defined by the median absolute deviation (MAD).

A cluster dendrogram was generated with an optimal soft threshold
Frontiers in Immunology 12
power of 14 (Supplementary Figure S11A), resulting in 32 distinct

colored modules (Supplementary Figure S11B). Unassigned genes

were grouped into the grey module and excluded from further

analysis. Correlation analysis between module eigengenes and the

pathomics signature identified two modules, blue and midnight

blue, as significantly associated (|bicor| > 0.1 and P-value < 0.05)

(Figure 5D). Within these modules, gene significance was strongly

correlated with module membership (Supplementary Figure S11C),

suggesting that these genes may play pivotal roles in shaping

essential biological roles related to the pathomics signature.

Subsequent functional enrichment analysis of these modules

revealed distinct biological profiles (Figure 5E). Genes in the

midnight blue module were predominantly enriched in

proliferation-related pathways, whereas genes in the blue module

were associated with invasion, metastasis, and immune-related

processes. These findings indicate that the pathomics signature

accurately reflects the underlying biological features associated with

the multiple crucial hallmarks of CRC.
3.8 Association between the pathomics
signature and tumor microenvironment

The MCPcounter algorithm was applied to estimate the relative

abundance of stromal and immune cell subsets in relation to the

pathomics signature. Both fibroblasts and endothelial cells were

positively correlated with the pathomics signature and were

significantly enriched in the high-pathomics signature group

(Figures 6A, B).

To further characterize tumor microenvironment heterogeneity,

the xCell algorithm was used (Figure 6C). Consistent with

MCPcounter results, a positive correlation was observed between the

pathomics signature and various endothelial and stromal cell types.

Moreover, a higher proportion of lymphoid and myeloid cells was

detected in samples with elevated pathomics scores. In contrast, several

stem, stromal, and lymphoid cells exhibited negative associations with

the pathomics signature, underscoring their relevance in reflecting

CRC tumor microenvironment (Figure 6D).

Finally, we explored the prognostic relevance of these

pathomics signature-related cells in CRC (Supplementary Table

S8). Survival analysis showed that cell types positively correlated

with the pathomics signature were linked to poorer outcomes,

whereas those negatively correlated were associated with favorable

prognosis. These findings suggest that the pathomics signature

captures distinct non-tumor cellular components that contribute

to differential clinical trajectories in CRC.
4 Discussion

Accurate prognostic assessment and identification of adjuvant

chemotherapy benefits remain essential for the effective risk

stratification and clinical management of CRC. In this study, we

developed a pathomics signature comprising eight features derived

from digital H&E-stained slides using LASSO-Cox regression
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modeling. The signature consistently demonstrated strong prognostic

value across different follow-up periods and was applicable to both

colon and rectal cancer cases. Notably, incorporating the pathomics

signature into conventional TNM staging systems significantly

improved predictive performance compared to the use of the TNM

staging system alone, underscoring its potential as a complementary

tool for CRC prognosis.

Adjuvant chemotherapy remains the standard treatment for

patients with advanced CRC (7). However, the considerable

variability in clinical outcomes among individuals with identical
Frontiers in Immunology 13
TNM staging and treatment regimens indicates that a significant

proportion of patients do not derive meaningful benefits from

adjuvant chemotherapy (3). Our findings revealed that patients with

low pathomics signature scores were more likely to benefit from

adjuvant chemotherapy, whereas those with high scores exhibited

limited therapeutic gain. These results suggest that the pathomics

signature may serve as a valuable stratification tool to guide

personalized treatment decisions and optimize therapeutic efficacy.

Consistent with our results, previous studies have shown that

AI-derived pathomics signatures can function as novel
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prognostic biomarkers for CRC. Some of these approaches rely on

handcrafted features extracted from pathologist-annotated

regions of interest (ROIs) within WSIs using specialized tools

to compute predefined descriptors (20, 37). However, such
Frontiers in Immunology 14
methods are often time-consuming, prone to subjectivity,

and difficult to reproduce (38). Meanwhile, these predefined

image f ea tu re s have a l imi t ed ab i l i t y to repre sen t

image information.
BoWProb_068

BoWProb_06

BoWProb_063

BoWPred_0

BoWProb_008

HistogramBoWProb__0.72

HistogramBoWProb__0.66

HistogramBoWProb__0.15

−0.2 0.0 0.2 0.4
SHAP value

Low

High

F e
at

ur
e 

va
lue

PPrediction value
H&E WSI slide

Prediction heatmap

B

A

C D
Fat cells Tumor cells

Fibrous tissue Stroma

FIGURE 4

Interpretation of the pathomics signature. (A) SHAP values for the individual features of pathomics signature. (B) Representative H&E slide and their
predicted heatmaps. (C) The four potential features extracted from heatmaps were separated by the random tree algorithm. (D) Visualisation of the
heatmaps of high-risk features related to the pathomics signature.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1602909
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lou et al. 10.3389/fimmu.2025.1602909
Recently, an increasing number of studies have employed deep

neural network-based approaches to directly predict survival

outcomes from histopathological images (39–44). Although deep

learning has demonstrated excellent performance in medical image
Frontiers in Immunology 15
analysis, its “black-box” nature has raised high concerns, which may

limit acceptability by clinicians and researchers, and may not be

appropriate for high-level decision-making, such as those related to

oncological prognosis or predicting treatment benefits (10).
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Biological features of the pathomics signature. (A) GSEA of the hallmark gene sets for the pathomics signature. (B) Heatmap shows GSVA
enrichment scores of the hallmark gene sets. (C) The bar plot shows the different analysis outcomes for GSVA scores of hallmark gene sets between
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Unlike traditional “black-box” deep learning models, our

approach integrates the predictive power of deep learning with

the interpretability of the LASSO method, enabling a more

physically interpretable model construction that facilitates
Frontiers in Immunology 16
assessing the significance of each input variable through SHAP

values. Additionally, we employed the Grad-CAM technique to

visualize the regions that contributed most to our model, aiding in

identifying critical morphological features for survival status. Our
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findings suggest that for patients with poor prognosis, the model is

more attentive to the adipose tissue surrounding the tumor, which

is in line with previous research (40, 42).

We further explored the transcriptomic associations to uncover

the molecular underpinnings of our model. Significant differences

in stromal and immune cell infiltration were observed between the

high- and low-pathomics signature groups. The high-pathomics

signature group demonstrated significantly elevated stromal

infiltration, particularly involving endothelial cells and fibroblasts.

Such stromal enrichment has been implicated in promoting tumor

progression and resistance to therapy, leading to poor prognosis

(45). Moreover, this enhanced stroma infiltration suggests that

patients in the high-pathomics signature group might exhibit an

immune-excluded or immune-desert phenotype and display

reduced responsiveness to immunotherapy (46).

Meanwhile, GSEA analyses revealed that differentially

expressed genes between two groups were enriched in pathways

related to proliferation, metabolism, immune dysregulation, and

EMT. This finding suggests that tumors in the high-risk group

displayed enhanced invasiveness and metastatic potential.

Furthermore, the enrichment results suggest that the cell cycle

might play a pivotal role in CRC prognosis, as evidenced by the

enriched gene sets associated with E2F targets, MYC targets, and

G2M checkpoints. These results highlight the potential of targeting

the cell cycle as a therapeutic strategy for the treatment of CRC.

In addition to the advantages in interpretability, in feature

mining, the conventional strategy was sampling based on tumor

area (20, 39, 42), which may result in the loss of other critical

prognostic features present in the tumor microenvironment.

Moreover, random single-patch sampling from the entire WSI fails

to retain important spatial relationships between patches (47).

However, utilizing our MIL deep learning model with a dataset

consisting of 7.7 million patches extracted from WSIs of 883

patients, we are able to automatically adjust the contribution of

each patch to the overall WSI-level prediction in a learnable manner

by assigning higher weights to key patches. This approach not only

preserves histological features of tumors and peri-tumoral tissues but

also retains spatial information among patches, resulting in improved

predictive performance compared to conventional methods.

Despite these promising results, several limitations of this study

should be acknowledged. First, its retrospective design introduced

potential biases and unmeasured confounders. However, it is

unlikely that unmeasured confounding alone could completely

explain our findings due to the substantial E-values observed in

the main results. We employed rigorous statistical analysis methods

to ensure the reliability and interpretability of our findings, offering

a foundation for the evolution of algorithmic devices, and

facilitating the execution of prospective cohort studies and phase

2 and 3 randomized controlled trials (RCTs). Second, the

bioinformatic analyses conducted were based on post hoc

correlations and do not constitute mechanistic evidence. Thirdly,

considering the computational costs, in this study, we adopted a

relatively concise model architecture. We utilized only ResNet-18

for patch-level feature extraction and employed the PALHI and

BoW methods for WSI-level aggregation. Nonetheless, we still
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achieved promising results. In recent years, numerous

groundbreaking technologies have emerged in the field of

pathological image analysis. Recent advances in pathology

foundation models and attention-based MIL methods have shown

improved performance in feature aggregation. These technologies

effectively address the challenges posed by the high-resolution and

multi-scale characteristics of pathological images through

contrastive learning, graph network optimization, and feature

space reshaping, providing new tools for precision medicine. We

believe that these complex and advanced network architectures

would further optimize the model’s performance. Finally, although

the pathomics signature was developed and externally validated

using multicenter data from patients across different countries and

hospitals, further validation is required to ensure its robustness

across diverse populations, sample preparation protocols, and

image acquisition platforms encountered in global clinical practice.

Unlike molecular biomarkers, which often require additional

testing and incur extra costs, the pathomics signature offers a cost-

effective alternative as it is derived from routinely available H&E-

stained slides. This approach enables seamless integration into

clinical workflows without imposing financial burden.

Importantly, the pathomics signature can support more informed

decision-making by refining the risk–benefit evaluation of adjuvant

chemotherapy, aiding both clinicians and patients in

treatment planning.

Based on our findings, for patients with a high pathomics

signature, characterized by an unfavorable prognosis and limited

benefit from adjuvant chemotherapy, it is crucial to explore

alternative treatment strategies such as targeted therapy,

immunotherapy, and participation in new clinical trials.

Furthermore, rigorous postoperative surveillance is indispensable

for promptly identifying any indications of recurrence or

metastasis, enabling the timely initiation of appropriate

therapeutic interventions.

For patients with a low pathomics signature, it is advisable to

consider omitting adjuvant treatment to avoid unnecessary

exposure to potentially toxic effects. By sparing these patients

from the morbidities and costs associated with adjuvant

chemotherapy, it would greatly enhance the current management

of CRC. However, further validation in prospective, international,

and multicenter randomized trials is warranted to test the clinical

utility of the pathomics signature for individualized decision-

making. Moreover, current research has confirmed that

biomarkers for neoadjuvant chemotherapy can be constructed

using deep learning and preoperative biopsy tissue. Given the

growing importance of neoadjuvant chemotherapy for individuals

with locally advanced CRC, future clinical trials should focus more

on this area to investigate the potential clinical value of

computational pathology in the management of CRC.
5 Conclusion

Our study developed and validated a pathomics signature using

MIL deep learning analysis of H&E-stained WSIs to directly predict
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prognosis for CRC patients. The integration of pathomics

signatures can enhance the prognostic value of the TNM staging

system and identify patients who may benefit from adjuvant

chemotherapy, thereby supporting more informed clinical

decision-making. Nevertheless, further verification through

prospective studies involving multicenter large patient cohorts is

still needed.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The studies involving humans were approved by the ethics

committee at Harbin Medical University Cancer Hospital (ID:

KY2024-16). The studies were conducted in accordance with the

local legislation and institutional requirements. Written informed

consent for participation was not required from the participants or

the participants’ legal guardians/next of kin in accordance with the

national legislation and institutional requirements due to the

retrospective nature of the study.
Author contributions

SL: Writing – original draft, Writing – review & editing, Data

curation, Formal analysis, Investigation, Methodology, Software,

Supervision, Validation, Visualization. YMH: Writing – review &

editing, Data curation, Formal analysis, Investigation, Software,

Validation, Visualization, Writing – original draft. FD: Writing –

review & editing, Data curation, Formal analysis, Supervision,

Validation, Visualization, Writing – original draft. JX: Writing –

review & editing, Data curation, Formal analysis. GM: Writing –

review & editing, Data curation, Formal analysis. HL: Writing – review

& editing, Data curation, Formal analysis. ZY: Writing – review &

editing, Data curation, Formal analysis. YL: Writing – review & editing,

Data curation, Formal analysis. HW: Writing – review & editing, Data

curation. YZH:Writing – review& editing, Data curation. HX:Writing –

review & editing, Data curation. WS: Writing – review & editing, Data

curation. XZ: Writing – review & editing, Formal analysis, Software.

HYL:Writing – review& editing, Software, Validation, Visualization. CL:

Writing – review & editing, Methodology, Software. PH: Writing –
Frontiers in Immunology 18
review & editing, Conceptualization, Funding acquisition, Methodology,

Project administration, Resources, Supervision.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This study was supported by

Heilongjiang Provincial Higher Education Institutions Collaborative

Innovation Cultivation Project (LJGXCG2023-087), Harbin Medical

University Cancer Hospital Ascend Leading Disciplines Plan (PDYS-

2024-14), Heilongjiang Provincial Natural Science Foundation of China

(LH2023H096), the Postdoctoral Research Project in Heilongjiang

Province (LBH-Z22210), the China Postdoctoral Science Foundation

(2023MD744213), and the Scientific research project of Heilongjiang

Provincial Health Commission (20230404080339).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2025.

1602909/full#supplementary-material
References
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer
statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. (2018) 68:394–424.

2. Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK,
et al. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge
from a population-based to a more “personalized” approach to cancer staging. CA
Cancer J Clin. (2017) 67:93–9.

3. O’Connell JB, Maggard MA, Ko CY. Colon cancer survival rates with the new
American Joint Committee on Cancer sixth edition staging. J Natl Cancer Inst. (2004)
96:1420–5.
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1602909/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1602909/full#supplementary-material
https://doi.org/10.3389/fimmu.2025.1602909
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lou et al. 10.3389/fimmu.2025.1602909
4. Parent P, Cohen R, Rassy E, Svrcek M, Taieb J, André T, et al. A comprehensive
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