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Medulloblastoma is an aggressive central nervous system tumor affecting

children more commonly between the ages of 5-9. It is usually localized in the

cerebellum, leading to diffusion of tumor cells through the cerebrospinal fluid

and metastases to other portions of the brain and spinal cord. Conventional

treatment consists of surgical resection followed by adjuvant radiation and/or

chemotherapy. The side effects of these therapies are critical to consider,

especially given that patients are in a distinct stage of their lives. In addition,

the overall survival is not satisfactory ranging from 50-90% depending on the

type of medulloblastoma. Themolecular characterization has broadly subdivided

medulloblastoma into four subgroups, and more recently, the single-cell

transcriptomics studies have further identified several other subgroups.

Important advances have been reported on the cell origin, their plasticity,

heterogeneity of genetic and epigenetic alteration, and interaction with the

immune and stromal components of the tumor microenvironment. Research

studies on these key points are essential to make advances in planning the

application of conventional therapies together with immunotherapies. Herein,

we discuss the main advances recently obtained on medulloblastoma biology

and immunotherapies. Overall, the biological and molecular features of

medulloblastoma are briefly summarized to understand the reason for the

application of the old and new immunotherapies. Immunotherapies

considered include the identification of potential medulloblastoma

neoantigens and tumor-associated antigens to generate antigen-specific T

lymphocytes. The main antigens expressed by medulloblastoma cells and/or

by components of the tumor microenvironment will be considered as the

molecular targets of antibodies, antibody derivatives, and chimeric antigen

receptor effector cells to improve the conventional therapies. In the last

portion of this review, the brief analysis of the activating and inhibiting

receptors expressed by antitumor T, natural killer, and unconventional T cells

can give new insights into the potential treatment of medulloblastoma.
KEYWORDS
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1 Introduction

Medulloblastoma (MB) is the most common embryonal

malignant tumor of the central nervous system (CNS) in children,

reaching about the 20% of all brain pediatric tumors. Large cohorts

of patients underwent comprehensive omics analyses (genomic,

transcriptional, proteomic, methylomic and epigenetic changes),

resulting in the definition of four consensus molecular subgroups

(1). These subgroups display differences in patient demographics,

pathogenesis, prognosis and response to therapy. World Health

Organization (WHO) criteria now integrate these molecular

findings with the traditional histology classification (2). The four

subgroups have been defined as Wingless and Int-1 (WNT)-

activated, Sonic Hedgehog (SHH)-activated, Group 3 (non-WNT/

non-SHH), and Group 4 (non-WNT/non-SHH), and they have

been well characterized in other reviews and herein will be briefly

considered thereafter (1, 2). The overall 5-year survival for MB can

reach 70-85%, but the toxic effects of surgery, chemotherapy and

radiation have long-term consequences for pediatric patients. It is

necessary to identify more precision therapies to reduce the

morbidity of treatments. The conventional treatments consisting

of surgical resection, chemotherapy and radiation can lead to

relevant drawbacks related to the age of the patient. Indeed, the

major severe adverse effects comprise neuroendocrine dysfunction,

growth alterations, infertility, neurocognitive disabilities and even

secondary malignancies. The surgical intervention is the first line of

treatment, and it tends to eliminate as much tumor mass as possible

without causing more signs and symptoms. Following the surgery,

the irradiation of the brain and spine with a proton beam is

necessary as the MB tends to diffuse from the original site to the

rest of the brain and spine. The reduction or omission of

radiotherapy can result in an ineffective treatment, although this

reduces the above-mentioned side effects (3, 4). Overall, the

treatment will be chosen based on the subtype, its diffusion,

patient response, associated side effects and quality of life,

emphasizing the trade-off between survival and neurocognitive

disabilities (5). Chemotherapy increases the survival of patients,

but it is not effective in many cases as the 5-year overall survival

(OS) can reach about 70% in patient in the high-risk group (6).

The immune system is involved in the control of tumor cell

growth as it can sense the alterations present in tumor cells due to

genetic mutations, which may lead to the expression of tumor

neoantigens, tumor-associated antigens or stress molecules (7–11).

By consequence, the immune system can react against tumors, both

eliciting an adaptive and innate immune response (12–14). The

recognition of tumor cells, can lead to their killing. The recent

literature is full of reports that claimed the key role of immune

system-mediated control of tumor cell growth (15–17). It has been

reported in 1985 that lymphokine-activated killer (LAK) cells were

efficient in some tumors, such as melanoma (18–20). This was one

of the first clear experimental proofs of the concept that the immune

system can check tumor growth. Since that discovery, the following

clinical applications of infusing high doses of interleukin (IL)2 to

treat human melanoma or renal cell carcinoma gave contradictory

results in terms of effectiveness. More importantly, the
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identification of life-threatening IL2-mediated side effects in

humans such as vascular leakage syndrome (VLS) limited its

clinical applications (21, 22). This stimulated researchers to better

define the modalities of administration of IL2 and the use of IL2

derivatives instead of IL2 itself (23–25). Today, several clinical trials

have shown that an immune response can be elicited by stimulating

T lymphocytes, relieving the brake of autoreactivity using immune

checkpoint inhibitors (ICI) and/or chimeric antigen receptor (CAR)

engineered T or natural killer (NK) cells. The incoming approaches

to block tumor cell growth and resistance will use a combo of

targeted therapy together with conventional treatments (26–29).

These treatments show important side effects such as cytokine

release syndrome (CRS), immune effector cell-associated

neurotoxicity syndrome (ICANS) for CAR-T cells or serious

autoimmune reactions in the lungs, intestines, liver, hormone-

making glands, kidneys, or other organs for ICI (30–34).

However, the effective therapeutic responses observed with some

types of tumors, such as hematological malignancies, melanoma

and non-small cell lung carcinomas, justify the use of these

antitumor biological drugs (35–37). Conceivably, these new

therapeutic approaches can be applied to treat MB, limiting the

toxic side effects of conventional therapies (38, 39). Herein, we will

analyze in some detail the biological features of MB cells together

with the molecular targets for triggering an efficient immune

response, analyzing the rationale of using unconventional

therapeutic approaches and suggesting new treatments for this

pediatric tumor.
2 Epidemiology and biological
features of medulloblastoma

Briefly, the epidemiology and biological features of MB will be

considered to give an overall scenario in which the old and new

immunotherapies can be applied. The main point to remark is that

pediatric patients are primarily involved by this tumor. Pediatric

patients have two relevant characteristics, among others, to be

considered when immunotherapies are applied: 1- the immune

response in these patients can be different from an adult; the

immune system is developing; 2- the MB arises in the cerebellum

in which are developing interactions with other portion of the brain

to allow the coordination of the large majority of motor neuron

functions and cognitive properties (40–42).

The designation “medulloblastoma” was first named in 1925 by

neurosurgeons Bailey and Cushing, and reflects its anatomical

origin in the posterior fossa (43). As the most frequent malignant

tumor among pediatric CNS cancers, it accounts for approximately

60% of intracranial embryonal tumors. It arises in the cerebellum, a

hindbrain structure responsible for motor coordination and

learning, situated at the base of the brain near the fourth ventricle

(44, 45). While most MBs occur sporadically, a subset is linked to

genetic predisposition syndromes, notably within the SHH-

activated subgroup (46, 47). These syndromes include Li-

Fraumeni syndrome (TP53 mutations), Turcot syndrome (APC-

associated polyposis), Fanconi anemia subtypes, and Gorlin
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1602930
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Poggi et al. 10.3389/fimmu.2025.1602930
syndrome (nevoid basal-cell carcinoma syndrome) (46, 47).

According to the CBTRUS report, MB is the most common

malignant childhood CNS tumor, comprising the largest

percentage of embryonal tumors (70.2%) and almost 20% of all

pediatric brain tumors (48).

While primarily a childhood disease (approximately 10 cases

per million children), it is rare in adults (approximately 0.54 cases

per million). Pediatric and adult MBs exhibit distinct molecular

profiles, with pediatric tumors typically harboring fewer genetic

mutations in comparison with the adults (44, 49, 50). Notably,

pediatric cases show a sex disparity; males are more likely to develop

than females, suggesting biological sex as a potential risk factor.

However, susceptibility also varies based on tumor histology and

molecular subtypes, which makes it even more difficult to establish a

predefined grade of risk factors (44–46).

Pediatric MB is often metastatic at the time of initial diagnosis,

with a tendency to spread beyond the CNS via cerebrospinal fluid

(CSF), lymphatic circulation, and the bloodstream. While external

CNS metastasis is a rare feature in most brain tumors, it occurs

more frequently in MB compared to other pediatric CNS tumors

(44, 51, 52). External CNS metastases typically emerge later and are

less commonly detected with metastasis, including bones, bone

marrow and to a lesser extent, lymph nodes, liver and lungs (51, 52).

This metastatic potential raises special concerns as it appears to be

associated with a higher likelihood of progression to a specific

subtype, indicating a poor prognosis. The aggressive nature of MB,

coupled with its early metastatic behavior, underscores the

challenges in managing this malignancy and highlights the need

for early detection and targeted therapeutic strategies.
2.1 Classification and biology

Similar to other cancers, MB presents a high heterogeneity, both

in terms of histology and molecular characteristics. Advances in

tumor biology and genetics have led to a classification system that

improves both diagnosis and treatment strategies. Originally, MB

was categorized by histological properties into three main subtypes:

classic (C), desmoplastic/nodular (DN), and large cell/anaplastic

(LCA) depending on cellular phenotype (53–57).

The classic MB group represents the most common subtype,

accounting for 66–72% of cases. Tumoral cells typically do not grow

significantly in volume and rarely show structural alterations such

as desmoplasia or nodules exhibiting a high nucleus-to-cytoplasm

ratio, rounded nuclei, and significant mitotic and apoptotic activity.

The DN group is much less frequent than the classic subtype,

representing about 15% of all the cases. It is often associated with a

favorable prognosis and a distinct molecular subtype (SHH),

facilitating a quicker and more precise diagnosis. MB cells have

the ability to deposit collagen in the pericellular space.

Cytologically, these cells appear small and round, with

characteristic arborizations and pericellular reticulin deposition.

This subtype of MB tumors presents a specific variant - MB with

Extensive Nodularity (EN) – that primarily occurs in newborns (50,

55). The LCA subtype accounts for approximately 15% of the cases
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that have more aggressive behavior. It is characterized by nuclear

pleomorphism, increased cell volume, and a tendency for cells to

cluster. Within this subgroup, the large cell variant is particularly

rare, occurring in only 2–4% of cases. Cells show high proliferative

and apoptotic activity and are associated with a significantly poorer

prognosis compared to other subtypes (54–57).

The 2021 fifth edition of the WHO Classification of CNS

Tumors categorizes MBs into four distinct molecular subgroups:

WNT-activated, SHH-activated with TP53 wild type, SHH-

activated with TP53 mutation, and non-WNT/non-SHH

(formerly classified as groups 3 and 4 (50, 58–60). (Figure 1).

These subcategories are further segmented into more specific

subtypes using advanced methylation profiling, which has

identified multiple WNT-, SHH- and non-WNT/non-SHH-

associated subtype. This molecular stratification has significantly

enhanced the understanding of the biological diversity and clinical

variability of MB, which enables more precise classification,

prognos i s and therapy (57–70) . In format ion about

epidemiological, clinical and molecular features of MB molecular

subcategories is summarized in Table 1. It is to be noted that the

identification of distinct methylation patterns and histological

features continues to drive research into targeted therapies and

personalized medicine treatment protocols, aiming to improve

outcomes for patients with MB (61, 62). Furthermore, besides the

sporadic medulloblastoma, this tumor can occur in association with

cancer predisposition syndromes such as colon polyps in Turcot

syndrome or basal-cell carcinomas in Gorlin syndrome [reviewed in

(46, 47, 73, 74)]. This event should be considered in relation to each

molecular subgroup and this knowledge can guide oncologist to

perfom the cancer surveillance to diagnose and treat early the

medulloblastoma in collaboration with other specialists. This

topic is of great relevance for MB as germline mutations are 5-6%

and these genetic alteration affect specific molecular pathways

leading to tumor development (75).
2.2 MB cell lines models

Like in other cancers, despite advancements in multimodal

therapy, MB still remains a challenge due to its high

heterogeneity and therapy resistance. To better understand

biology and develop targeted therapies, researchers rely on well-

characterized cell lines as essential tools for studying tumor

pathogenesis, investigating signaling pathways, and screening

therapeutic compounds (Figure 1). Several cell lines have been

established, each representing different molecular subtypes and

biological characteristics. Herein, we present a brief description of

the most used cells, which include DAOY, D283-Med and D341-

Med, UW228, ONS-76, HD-MB03 and D425-Med and D458-Med

(76, 77) (Figure 1, Table 2).

Several others cell lines have been selected and described in the

literature reviewed partly elsewhere (78, and listed in https://

www.cellosaurus.org/search?query=medulloblastoma+cell+line).

WNT and group 4 MB subtype cell lines are underrepresented

compared to the frequency of these MB (78). For instance, the
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CHLA-01-MED and CHLA-01R-MED have been used to

investigate features of primary and metastatic cells of group-4 MB

(79) or the MED6 and MED5R of WNT group and MED1 of group

4 to evaluate the function of the MDR1 (ABCB1 molecule) to study

drug-resistance mechanisms (80).

The most used and represented in literature is the DAOY cell

line. This cell line has been derived from a desmoplastic tumor in a

4-year-old male and categorized within the SHH subgroup (81). It

harbors a heterozygous PTCH1 mutation (c.1312G>T; p.G438X),

leading to constitutive SMO activation (54, 55, 76, 77).

Genomically, it exhibits 9q loss (PTCH1 locus) and 10q gain

(MYCN locus), consistent with SHH-MB. DAOY retains wild-

type TP53, differentiating it from TP53-mutant SHH MB. These

adherent cells form neurospheres under serum-free conditions,

expressing CSC markers such as CD133, nestin, and SOX2 (77).

DAOY xenografts show desmoplastic histology and it expresses

SHH targets (GLI1, MYCN) responding to SMO inhibitors like

vismodegib (82). However, resistance via SUFU mutations or

G88LI2 amplification can emerge (70, 82, 83). DAOY also

displays HDAC1 overexpression, and HDAC inhibitors reduce

cell viability (84). Limitations include non-metastatic behavior in

xenografts and genomic drift over time (78, 85).The D283-Med was

established from a metastatic tumor obtained postmortem from

pediatric patient while the D341-Med were from the primitive

medulloblastoma tumor at craniectomy (71, 86). These cells
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present MYC amplification and aggressive behavior (71, 78). Due

to their non-adherent, suspension-like growth, these models are

widely used to study metastasis and therapy resistance. Both exhibit

MYC proto-oncogene amplification, a hallmark of Group 3 MB,

correlating with their aggressive phenotype and poor prognosis

(71, 87).

D283-Med presents isochromosome 17q (i17q), characteristic

of Group 4, while D341-Med often has chromosome 8 gains. Their

morphology mimics anchorage-independent growth, facilitating

metastasis studies (71, 86). D341-Med xenografts show

leptomeningeal spread; D283-Med is less metastatic but grows

aggressively. Both express CSC markers (CD133, SOX2, nestin)

and show intrinsic resistance to cisplatin and etoposide due to

upregulated ABC transporters (e.g., ABCG2) and anti-apoptotic

proteins (e.g., BCL2) (78, 86, 88–91). Notably, D341-Med responds

to BET inhibitors that suppress MYC transcription (91). However,

long-term culture can lead to genomic divergence, necessitating

periodic validation. Nevertheless, these cell lines present some

indicators of genomic drifts upon prolonged in vitro culture time,

which can lead to unwanted clonal selection and genomic

divergence from the initial primary tumor patients. This

important fact ra i ses the need to per form per iodic

molecular validations.

The UW228 cell line was derived from a MB recurrence (92).

Unlike D283-Med and D341-Med, UW228 cells display moderate
FIGURE 1

MB molecular subgroups and models for studying the biology of MB cells. (A) Four main subgroups of MB have been proposed on the basis of
OMICS analysis. MB cells derive from different regions of the cerebellum, as shown. (B) The major models to study the biology of MB cells are
represented by primary cell lines derived from tumor specimens of patients. Some of them can be stabilized during the culture, maintaining specific
phenotypic and functional features leading to established cell lines (some of which have been listed). The primary and/or well-established cell lines
can be cultured in conventional (inappropriately called 2D culture) or 3D conditions, such as spheroid or organoid. (C) Patients’ tumor specimens or
cell lines can be inoculated subcutaneously or orthotopically in small animals (mice/rats) with an impaired immune response to allow the
engraftment of these xenografts. Also, MB cells from patients or cell lines can be inoculated in blastula of Zebrafish to generate orthotopic models
of MB tumor. The animal models (subcutaneously or orthotopic models) are a key tool to study the growth and metastatic behavior of MB cells.
From xenografts, cell lines can be obtained for in vitro studies. (D) Altogether, these research models are the basis for the selection of novel drugs
and immunotherapeutic tools to be validated in clinical trials.
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differentiation and exhibit a more adherent, epithelial-like

morphology with moderate differentiation (78, 92). It carries

inactivating PTCH1 mutations and wild-type TP53. Genomic

alterations include 9q loss, aligning it with SHH-MB. UW228

expresses intermediate neuronal markers (b3-tubulin, MAP2),

distinguishing it from less differentiated models. Cultured in

monolayers, it supports studies on differentiation and SHH

signaling (93, 94). UW228 shows partial sensitivity to SMO

inhibitors and transient suppression of GLI1, with resistance

mechanisms involving SUFU downregulation or GLI2

amplification. Resistance to cisplatin and etoposide correlates

with elevated ABCB1 expression. It is useful for modeling

therapy-naïve SHH MB and differentiation therapy, though

limited by low metastatic potential and genomic instability in

long-term cultures. This cell line displays a partial sensitivity to

SMO inhibitors, with reduced GLI1 expression and transient

growth suppression. Nevertheless, some resistance arises via

SUFU downregulation of GLI2 amplification (78, 95, 96). Studies

have shown that this cell line also shows medium resistance to

cisplatin and etoposide. UW228 cell line presents low metastatic

potential in vivo, which limits its utility for invasion and tumor

dissemination studies. Like other cell lines, it presents some

genomic instability over in vitro passages, which fosters low-

passage genetic validation.
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The ONS-76 cell line was established in 1989 from a 2-year-

old Japanese patient with nodular/desmoplastic MB (98). ONS-76

cells display neuronal differentiation when exposed to retinoic

acid, making this cell line a suitable model for studying

differentiation therapy and SHH inhibitors (98). Integrated in

the SHH molecular subgroup, ONS-76 has PTCH1 mutations or

deletions, disrupting its inhibitory function on SMO and

promoting GLI-mediated transcription (98). These cells retain

wild-type TP53 and harbor PTCH1 mutations, supporting SHH

pathway activation. ONS-76 expresses neuronal markers (b3-
tubulin, GFAP) and undergoes differentiation upon retinoic acid

exposure, marked by neurite outgrowth and NeuroD1

upregulation (98, 99). It grows as a 2D monolayer and can form

desmoplastic xenografts. ONS-76 is sensitive to SMO inhibitors,

and unlike DAOY, rarely develops GLI2-driven resistance, likely

due to functional TP53. Retinoic acid reduces proliferation via

HDAC inhibition (100). This cell line also shows modest cisplatin

resistance. ONS-76 is ideal for SHH-targeted differentiation

therapies, though differentiation capacity may decline with

extended culturing.

The HD-MB03 cell line, established in 2014 from a MYC-

amplified, represents a critical preclinical model for studying high-

risk, metastatic MB biology (101). It exhibits MYC amplification,

1q/7 gains, and loss of 10q (PTEN) and 16q. These alterations
TABLE 1 Main features of medulloblastoma tumor.

Characteristic
Medulloblastoma molecular subtype

WNT SHH Group 3 Group 4

Prevalence % <5-10 20-30 20-25-40-50 35-40

Female/male ratio 1:1 1:1 2:1 2:1 3:1

Age Children, teens Infants, adults Infants, children Infants, children, adults

Histology Classic Nodular/Desmoplastic, Classic, LCA Classic, LCA Classic, LCA

Cells of origin Lower rhombic Cerebellar granule precursors
of neuron

Hypothesis of neural
stem cells

Upper rhombic
leap progenitors

Metastatic strenght low low high high

Recurrence rare local metastasis metastasis

Prognosis good middle poor middle

Risk level Low risk TP53WT intermediate,
TP53 mutant very high

Intermediate to high intermediate

5-years survival % 95 75 50 75

Genetic
alteration

WNT SHH Group 3 Group 4

Somatic mutation CTNNB1, DDX3X, SMARCA4, TP53,
CSNK2B, PIK3CA, KMTD2, CREBBP

PTCH1, SMO, TP53, SUFU, DDX3,
TERT, IDH1, KMT2D, BCOR

SMARCA4, CTDNEP1,
KMT2D, KBTBD4, MLL2

KDM6A, KMT2C, ZMYM3,
KBTBD4, MLL3

Germline mutation APC (<5%) CREBBP PTCH1, TP53, SUFU

Chromosome
affected

Copy number

Ch 6 loss
monosomy

Ch 3 gain, Ch9p gain,
Ch 9q loss, Ch 10q loss

Ch 17p loss
TERT, MYCN, GLI1/2

Ch 1 gain, Ch 5 loss, 10q
loss,

MYC, PVT1, OTX2, GF11/
1B, GF11 overexpression

IsoCh 17 Ch X loss,
Ch 17p loss

PRDM6, SNCAIP, MYCN,
CDK6, GF11 and GF11B
The table has been generated using information from references 1, 2, 67–72. Please note the high variability in the prevalence are reported in the references cited.
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enhance proliferation and apoptotic resistance (56, 57). HD-MB03

forms floating spheroids and shows robust CSC marker expression

(CD133, SOX2, nestin) (102). In vivo, it replicates leptomeningeal

and spinal metastases. The cell line is intrinsically resistant to

cisplatin and vincristine due to high ABC transporter and BCL2

expression. HDAC inhibitors such as panobinostat disrupt MYC-

driven transcription and reduce tumor growth (91, 103). HD-MB03

serves as a strong platform for testing MYC and epigenetic-targeted

therapies, though periodic molecular verification is necessary due to

potential genomic evolution.

D425-Med and D458-Med were established in the late 1990s

from high-risk, recurrent cases, both showing MYC amplification

(104). Both have high proliferative and metastatic capacities. D425-

Med shows 7q gain and 10q loss (PTEN), driving PI3K/AKT

pathway activation, while D458-Med presents i17q and

chromosome 8 amplification. Both grow as suspension spheroids

and demonstrate strong in vivo metastatic capabilities. D425-Med

shows leptomeningeal dissemination in orthotopic models; D458-

Med metastasizes to lung and liver via systemic injection (104, 105).

D425-Med may harbor MYCN amplification in subclones,

enhancing proliferation. These models are vital for studying

hematogenous dissemination and high-risk MB mechanisms.
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3 Conventional and advanced models
for studying MB biological properties

It is becoming evident that some features of tumor cells are better

resembled in vitro using three-dimensional (3D) cultures instead of

conventional cell cultures in flat-bottomed plates with adherent cells

to plastic or matrix substrate (106–111). 3D cultures such as

organoids and spheroids together with orthotopic animal models of

MB can be useful to study the mechanisms of resistance to therapy as

well as the interaction with other components of the Tumor

microenvironment and immune system (Figure 1). The next

chapters will deal with these up-to-date unconventional cultures

and animal models in MB.
3.1 In vitro models: from conventional to
3D spheroid and organoid models

Like in other human tumors, traditional cultures of cell

monolayer remain widely used in research, providing a controlled

environment for rapid drug screening and genetic manipulation.
frontiersin.or
TABLE 2 Features of some MB cell lines.

Cell
line

DAOY UW228 ONS-76 HD-MB03 D425-Med D341-Med D283-
Med

D458-
Med

Subtype SHH (DN) SHH SHH (DN) Group 3 Group 3 Group 3 Group 3/4 Group3/4

Growth
Type

Adherent
and Suspension

Adherent
(epithelial like)

Adherent
(differentiation

with RA)

Suspension Suspension Suspension Suspension Suspension

Key
Alterations

PTCH1
mutation, 9q
loss, 10q gain
(MYCN),
WT TP53

PTCH1
mutation, 9q loss,

WT TP53

PTCH1
deletion/
mutation,
WT TP53

MYC amp, 1q/7
gain, 10q (PTEN)

& 16q loss

MYC amp,
MYCN

subclones, chr 7
gain, 10q

loss (PTEN)

MYC and
sometimes
MYCN

amplification,
chr 8 gain

MYC
amplification,

i17q
(Group 4)

MYC amp,
i17q (Group 4),

chr 8 amp

Stemness
Markers

CD133,
Nestin, SOX2

Moderate: b3-
tubulin, MAP2

b3-tubulin,
GFAP,

NeuroD1
(with RA)

CD133,
SOX2, Nestin

Not specified CD133,
Nestin, SOX2

CD133,
Nestin, SOX2

Not specified

Drug
Sensitivity

SMO inhibitor
(vismodegib),

HDAC
inhibitor

(panobinostat)

Partial SMO
inhibitor
response,

ABCB1-mediated
drug resistance

Vismodegib,
RA modest
cisplatin
resistance

HDAC inhibitors
(panobinostat),
resistant to
cisplatin/
vincristine

Not specified Resistant to
cisplatin/

etoposide, BET
inhibitors

(MYC-targeted)

Resistant to
cisplatin/
etoposide,
drug efflux
via ABCG2

Not specified

Models
Strengths

CSC dynamics,
SHH

pathway,
plasticity

Differentiation
studies,

SHH pathway

Differentiation
therapy model

High-risk,
metastatic,
CSC studies

Leptomeningeal
metastasis
model

Metastatic
behavior,
therapy
resistance

Metastasis
formation,

drug resistance

Hematogenous
metastasis
(lung/liver)

Limitations Low metastasis
in vivo,

genomic drift

Low metastasis,
genomic
instability

Differentiation
potential lost

in long-
term culture

Genomic drift
with time

Not specified Genomic drift Genomic drift,
moderate
metastasis

Not specified
ABCB1, ATP-binding cassette sub-family B member (P-glycoprotein); BET, bromodomain and extra-terminal domain; DN, desmoplastic/nodular; GFAP, glial fibrillary acid protein; HDAC,
histone deacetylase inhibitor; MAP2, microtubule -associated protein 2; PTCH1, protein patched homolog 1; PTEN, phosphatase and tensin homolog; SOX2, sex determining region Y-box2;
SMO, smoothened; RA, retinoic acid; SHH, sonic hedgehog protein; CSC, cancer stem cells; The features of the cell lines are described in detail in the site https,//www.cellosaurus.org/ and the
references from 71, 76–105, and reviewed in ref. 78.
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Still, in vitro culture conditions can influence both phenotype and

cell signaling and drug sensitivity to a large extent. Simplistic

conventional, also inappropriately called 2D, monolayer cultures

with a single layer of cells attached to treated polystyrene have

unnaturally low cell densities, lack cell-cell interaction or cell-peri

and extracellular matrix interactions, and lack the exhibition of the

brain tumor nutrient gradients or physiological levels of oxygen

(112). For instance, it has been shown that some MB cell lines

including DAOY (SHH), ONS-76 (SHH), D458 (Group-3), HD-

MB03 (Group-3), CHLA-01-MED (Group-4) and CHLA-01R-

MED (Group-4) showed the growth and metastatization features

of MB tumors of each subgroup they belong only when they were

cultured in a 3D hyaluronic acid hydrogels but not when cultured in

conventional conditions as adherent cells (113). This would suggest

that 3D cultures may be used to study MB behavior and drug

sensitivity, mimicking better the in vivo physical conditions (113).

Ivanov et al. highlighted the importance of using different 3D

culture systems with the relevant tissue architecture and phenotype

as well as normal tissues and how the establishment of a

collaborative online database linked to distinct cell banks would

catalyze preclinical MB research (78, 112–114). The use of 3D

spheroid models from cell lines and patient-derived xenografts

(PDX) demonstrates having more representative resistance to

conventional chemotherapies, e.g. etoposide and cisplatin, in

comparison to conventional cultures, and the same 3D

experiments were key to identifying hypoxia-induced genes that

drive resistance. Brabetz and his co-authors generated PDX-derived

3D organoids retaining genetic and transcriptional heterogeneity of

primary tumors that were strategic to demonstrate that group 3

organoids withMYC amplification exhibit invasive growth patterns

depending on the 3D extracellular matrix (ECM) (such as collagen)

and that venetoclax (a BCL-2 inhibitor) synergizes with

chemotherapy, overcoming apoptosis resistance (115, 116). The

use of 3D culture assays has become central in research due to their

ability to recapitulate key aspects of tumor biology, such as CSC

niche enrichment, intra-tumoral heterogeneity preservation, and

therapy resistance modeling. Using 3D models, Vinci et al. have

identified and demonstrated MYC-dependent metabolic

vulnerabilities in Group 3, including sensitivity to glutaminase

inhibitors (117). In the past decade, many 3D bio-printed brain

tumor models were developed for glioblastoma aiming for the

recapitulation of TME and developing better drug screening

platforms (118, 119). Still, to the best of our knowledge, there are

no studies that developed 3D bio-printed constructs for other brain

tumors such as MB. (Figure 1).
3.2 In vivo models

Similar to other brain malignancies, the study of MB frequently

relies on established cell lines, from murine and/or human origin,

and PDX models. Models have provided critical insights into tumor

biology and therapeutic response. The heterogeneity of MB has

been addressed in vivo through the development of genetically

engineered mouse models (GEMMs), through the orthotopic
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implantation of murine cerebellar progenitor cells and by PDX

murine models. This section aims to provide a concise and short

overview of the MBs in vivo models employed in research. It is not

intended to serve as a comprehensive account of all available

models, but rather to offer a general perspective on the principal

systems currently utilized in the field. For more exhaustive

information on in vivo models applied for MB research, readers

are referred to the detailed reviews (120, 121).

GEMMS involve targeted modifications of the murine genome,

such as gene knockout (deletion), knock-in (mutagenesis), or

transgenic overexpression, enabling the study of tumor biology

wi th in an intac t immune sys tem and nat ive t i s sue

microenvironment. Unlike transplantation-based systems,

GEMMs recapitulate spontaneous tumorigenesis, providing

insights into the multistep progression from initiation to

malignancy (120, 121). In research, GEMMs have been pivotal in

confirming genetic drivers and elucidating the cellular origins of

molecular subgroups, particularly SHH and WNT. Despite their

high cost, technical complexity, and time-intensive nature, GEMMs

remain among the most informative and widely utilized systems in

cancer biology (120, 121). This model has been instrumental in

validating oncogenic drivers and elucidating the cellular origins of

distinct molecular subgroups, particularly SHH and WNT MB. For

example, key studies on SHH MB utilized PTCH1 heterozygous

mice (PTCH1+/−), which develop tumors at low penetrance (~20%)

following loss of the wild-type PTCH1 allele (122). Subsequent

conditional or global knockout models have identified cooperative

oncogenic alterations and solidified the granule cell progenitor

(GCP) lineage as the cell of origin, with GCP identity being

essential for SHH-driven tumorigenesis (123).

In contrast, WNT MB is proposed to arise from dorsal

brainstem progenitors derived from the lower rhombic lip, rather

than cerebellar compartments. Conditional knock-in models

expressing a constitutively active b-catenin variant demonstrated

that aberrant WNT pathway activation induces pathological cell

accumulation in the brainstem but not the cerebellum, which can be

aligned with putative extra-cerebellar origins (124). Additionally,

transgenic mouse models overexpressing NMYC in cerebellar tissue

have further revealed oncogenic versatility by inducing resembling

MB in multiple subgroups, such as groups 3, 4, and SHH. This fact

highlights the fact that the context-dependent effects of oncogene

activation on pathogenesis.

PDX models have gained prominence in oncology research due

to their capacity to closely mirror the biological and

histopathological characteristics of the primary tumors from

which they originate. In the context of MB, PDXs are typically

generated by engrafting freshly resected tumor tissue either

subcutaneously or within the cerebellar parenchyma-orthotopic

engraftment into immunodeficient mice (125). The genetic

diversity of recipient mice—covering inbred, outbred, or hybrid

strains—does not preclude successful xenotransplantation.

Nevertheless, the fact that these animals are immunosuppressed, a

condition needed to allow tumor engraftment excluding the

rejection in adult mice, represents a restraint in their use as

immunotherapies testing (126). PDX models have been
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successfully established from all major molecular MB subgroups

and have demonstrated stability across multiple passages, although

subclonal populations may undergo selection during serial

transplantation. We highlight that most of the PDX models have

been derived from high-risk cases, suggesting that tumors with

more aggressive phenotypes are more amenable to engraft. Also,

orthotopic implantation into the cerebellum has been associated

with improved engraftment efficiency, particularly for tumors with

lower proliferative potential, compared to subcutaneous approaches

(127, 128). These types of in vivo models have been instrumental in

validating key molecular drivers of pathogenesis and serve as

versatile platforms for evaluating a range of therapeutic strategies

for preclinical assessment of pharmacologic agents, dosing

regimens, delivery routes, and combination treatments, but not so

key for cell-based and immunotherapies due to animal

immunodeficient environments. (Figure 1).

More recently, both MB cell lines and patient-derived cells

(from SHHMB, SHH PDX, the Group 3 MB PDX cell line MB-LU-

181) have been transplanted into blastula stage of zebrafish embryos

leading to orthotopic MB growth (129) The localization to the

hindbrain region of transplanted cells was increased by culturing

MB cells in neural stem cell-like medium. This model could be used

to test the efficacy of SMO inhibitor sonidegib and an active

metabolite of cyclophosphamide (129). The model of zebrafish

has been also used for group-3 MB cells (130) to identify the

subgroup MB cellular origin (131), to mimic the SHH-MB with

specific mutations (132), to generate transcription activator-like

effector nucleases TALEN-mediated somatic gene inactivation of

CDKN2A/B or RB1 tumor suppressor genes (133). Altogether,

zebrafish models can well resemble the growth and the

aggressiveness of MB in humans to analyze the effects on MB

biology due to the genome editing and the presence of specific

mutation and/or activation of oncogenes (130–134) (Figure 1).
4 MB immune response and
immunotherapy

As defined by the National Cancer Institute, “immunotherapy is

a type of cancer treatment that helps your immune system fight

cancer.” The immune system interacts with autologous cells, and it

is educated for not reacting with self but only with something that is

sensed as “foreign” (7–11). MB cells are autologous cells and, by

definition, should not have been recognized by the adaptive arm of

the immune system (69). Indeed, T lymphocytes should be

impaired to eliminate self-cells, as self-reacting T lymphocytes

have been deleted during thymic central selection (135, 136).

Mistakes in the mechanisms of deletion allow the insurgence of

an autoimmune disease if the peripheral tolerance does not work

too (135–137). On the other hand, innate cells such as NK cells do

not react with self-cells as they bear inhibitory receptors that

interacting with self-major histocompatibility (MHC) class I

alleles can impair killing of autologous cells. The innate arm of

the immune system can kill target cells when tumor cells do not
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express MHC or when the activating signals are stronger than the

inhibiting ones (138–142). The relevance of T lymphocyte response

against MB can be exploited by two main tools: T cell-specific for

associated peptide antigen or neoantigen expressed on MB cells

presented by antigen-presenting cells (APC) or engineered chimeric

antigen receptor (CAR) T cells recognizing surface receptors on MB

cells (143). First, we will analyze the immune cells potentially

involved in the response to MB namely: NK cells, lymphocytes

subsets with functional properties between NK and classical abTCR
T cells and finally anti-MB specific abTCR T cells. Second, the

targeting of MB surface antigens with immunotherapeutic tools will

be considered. Finally, we considered some potential molecular

target expressed by the TME which can help to relieve the TME-

mediated immunosuppression.
4.1 Innate immune response

It has been reported that NK cells can recognize and kill the MB

cells (Figure 2) (160–164). The established cell lines DAOY and

D283-Med and the primary cell line 1603-Med from an anaplastic

MB can express different levels of ligands for the NK cell activating

receptor NKG2D including MICA/B and ULBP3; further, they

express nectin-2 and PVR, ligands for the DNAM1 activating

receptor, low levels of LFA3/CD58 (a ligand of CD2 antigen

express by most lymphocytes) and intercellular adhesion molecule

(ICAM) 1, 2 and 3 ligands for the lymphocyte function associated

antigen (LFA) 1. More relevantly, the use of specific mAb against

NK cell activating receptors such as NKG2D, DNAM1, NKp30 and

NKp46 could inhibit the NK cell-mediated cytolysis of these cell

lines (161). The expression of ligands for NKG2D has been further

confirmed both in immunohistochemistry of MB specimens and in

cell lines, together with the relevance of NKG2D and HLA-class I

molecules in NK cell-mediated recognition of the MB cell line

DAOY (162). This finding indicates that several counter-ligands of

NK cell-triggering molecules may be considered suitable targets for

the elimination of MB cells in patients (162). The adoptive transfer

of IL15-activated NK cells can induce a delay in the growth of the

MB DAOY cell line in a subcutaneous xenograft mouse model

(160), leading to an increase in the OS rate. The infiltration of these

xenografts was characterized by NK cells showing expression of

several activating receptors and bearing several markers of cytotoxic

cells, including perforin, granzyme, tumor necrosis factor (TNF)a,
and interferon (IFN)g. It is well known that NK cells can recognize

tumor cell targets independently by the recognition of HLA-I

differently from T lymphocytes (141, 142). In this context, it is

essential to be better able to define the role of HLA-I expressed on

MB cells, as typically NK cells express potent inhibitory receptors

for self-HLA-I, leading to blocking of autologous cell killing (141,

142). It has been reported in a series of 10 MB primary tumors the

absence of reactivity with anti-HLA-class I antibodies in

immunohistochemistry assays (165). This finding has been

confirmed on a large series (n=106) of MB, but in addition, it has

been shown that high levels of HLA-I are strongly expressed only in
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MB with evident anaplastic features in association with MYC

expression (166). A role of HLA-I peptide complexes and the

endoplasmic reticulum aminopeptidase (ERAP)1 in the regulation

of MB cell killing has been reported (167). However, the increase of

cell killing upon blocking of HLA-I recognition by NK inhibitory

receptors was faint (161, 167). Furthermore, the degree of killing of

the polyclonal NK cell populations against the same target (DAOY

cell line) used in these reports is markedly different (161, 167). This

variability would indicate a variable expression of the activating

receptors expressed on NK cells. Thus, the killing of MB cells is the
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result among positive and negative signals transduced by activating

or inhibiting receptors upon binding with the corresponding

ligands on MB cells (Figure 2). It is of note that an evident

cytotoxic effect was also detected by injecting 19F-labeled NK cells

intratumorally or contralaterally to an orthotopic MB tumor in

immunodeficient mice (168). Further, it is of note that NK cells are

more infiltrated in patients with a better prognosis (169).

Altogether, these findings further support the possibility of using

adoptive NK cell transfer as a useful tool to eliminate MB cells and

control tumor expansion.
FIGURE 2

Activating and inhibiting receptors expressed on antitumor NK effector cells. Antitumor effector NK cells can express a plethora of receptors, whose
engagement through the corresponding ligands expressed on MB cells can deliver an activating (green) or inhibiting signal (red). These ligands may
be expressed also by other cellular components of the MB TME including stromal cells, cancer stem cells, endothelial cells and astrocytes. NKp30,
NKp46, NKG2D, DNAM1 are some of the main activating receptors typically expressed on NK cells and subsets of T cells (effector cells). Some
inhibiting receptors are represented by TIGIT (T cell immunoreceptor with Ig and ITIM domains), KIR (Killer Ig-like inhibitory receptor), NKG2A (killer
cell lectin-like receptor subfamily C, member 1) and PD1 (programmed cell death receptor 1). The interaction of these receptors with the
corresponding ligands on target cells can activate or inhibit the effector function of NK cells or subsets of T cells. The final outcome is related to the
degree and/or affinity of each receptor/ligand interaction. The presence of the ligands on target cells regulates the fate of MB cells. The reported
low expression of HLA-I on MB cells could limit the negative signal in self-NK cells of the killing of tumor cells, favoring the activation through the
engagement of activating receptors. The production of IFNg can lead to upregulation of HLA-I, PDL1 and ICAM1 exerting opposing effects on NK
cell-mediated killing. The TIGIT (inhibitory) and the DNAM1 (activating) receptors recognize the same surface ligands, CD115/PVR and/or CD112/
nectin2. The expression on effector cells of the CD16/FCgRIIIa can trigger cytolysis of target cells (antibody dependent cellular cytotoxicity, ADCC) in
the presence of an antibody that links the CD16 on effector cells through its FC portion and makes a bridge with target cells by binding the antigen
through its Fab component. CD16 is one of the main activating receptors of NK cells. Typically, the ADCC is mediated by antibodies of the g1 (IGG1)
isotype but not by the g4 isotype (see Table 3). In this figure, activating and inhibiting ligands of MB cells are artificially shown on separate target
cells, but this is an oversimplification. All these ligands may be present on the same MB cells. It is to note that the expression of the ligands for the
various activating receptors is determined either by the reported expression on MB cells using 1- specific anti-ligand antibody; 2- with covering of
the activating receptor with anti-receptor antibody leading to a reduction of cytolysis of target cells. Only the effects on MB cells are depicted but
similar effects may be exerted on the other component of the TME such as stromal cells, astrocytes and MB cancer stem cells.
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TABLE 3 Monoclonal antibodies therapies targeted to some receptors expressed on MB cells and associated tumor microenvironment.

Target
molecule

Antibody
name

Type
of

antibody

Functional
effect on
target cells

Functional
effect on
immune
cells

Tumor target Reference

GD2 131I-3F8 IGG3 Killing target cell Not done Medulloblastoma patients (144)

B7H3 8H9 humanized IGG1 Blocking
cell proliferation

ADCC Neuroblastoma LAN-1 cell line (145)

B7H3 MGA271
Fully human

IGG1 Blocking
cell proliferation

ADCC ND
Renal and bladder carcinoma

(146)

B7H3 MJ18
rat

IGG1 Blocking
cell proliferation

CD8+cell
infiltration and
killing target cell

Pancreatic cancer (147)

B7H3xCD3
nanorings

8H9 scFv bispecific Killing target cell
Independent from

HLA-I

Increase T
lymphocytes
memory
phenotype

medulloblastoma (148)

B7H3xCD16
Bike

8H9 scFv
anti-CD16
scFv 3G8

bispecific Killing target cell
Altered

glucose metabolism

ADCC NK
cell killing

Non-small cell lung cancer (149)

B7H3x4-1BB
Bike

mAb B5 murine
mAb ID8
murine

bispecific Blocking
cell proliferation

Costimulation
Upregulation
activation

antigens, IFNg
release CD8

Murine models
CT26
MC38
B16-F10

(150)

B7H3
duocarmycin ADC

PRCA157 mAb
MGCO18

IGG1 Killing target cell Not done PDX of head and neck, prostate, breast
carcinoma

Toxicity tests Cynomolgus

(151)

B7H3
DNA Topoisomerase I

ADC

DS-7300a IGG1 Killing tumor cell Not done PDX small lung cancer, non-small cell
lung cancer, head and neck. bladder

(152)

B7H3 Monomethyl
auristatin (MMA) E-

and
pyrrolobenzodiazepine

ADCs

m276
fully humanized

IGG1 MMAE kills target cell
Pyrrolobenzodiazepine
kills medulloblastoma
and endothelial cells

Not done Murine models
B16, MC38, Py230), 4T1 DLD-1, HCT-

116, KM12, KM12SM, MDA–231,
HT29, DMS-273 SW620, UACC

CB17 OVCAR3

(153)

B7H3-DM1 ADC 14A2 Not
determined

Killing target cells Not done Craniopharyngioma organoids (154)

EGFR Cetuximab +
neuromedin B

receptor antagonist
BIM-23127

IGG1 Inhibition
DAOY proliferation

ADCC Medulloblastoma models (155)

HER2 Trastuzumab
Deruxtecan

IGG1 Killing target cells Not done Reduction brain metastasis of refractory
breast carcinoma

(156)

PDPN NZ-1
NZ-1-

(scdsFv)-
PE38KDEL

IGG1k Killing target cells Not done Glioblastoma (157)

CD47 Hu5F9-G4 IGG4 Blocking interaction
CD47 and SIRP1alpha
Increase phagocytosis

No ADCC Primary, metastatic, recurrent
glioblastoma

(158)

VEGF-A Bevacizumab
combo with

Temozolomide
irinotecan

IGG1k antiangiogenic Not done Medulloblastoma patients (159)
F
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GD2, disialoganglioside, B7H3, B7 homolog 3; DM1, mertansine/emtansine; EGFR, epidermal growth factor receptor; HER2, human epidermal growth factor receptor 2; PDPN, podoplanin;
VEGF-A, vascular endothelial growth factor-A; ADC, antibody drug conjugate; ADCC, antibody dependent cellular cytotoxicity.
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4.2 Effector lymphocyte with phenotypic
and functional properties between NK and
T cells and recognition of MB cells

The relevance of some unconventional T cells, such as invariant

NK-like T cells, Vd2 (gd TCR) T cells, CD1-restricted T cells,

mucosal associated invariant T cells (MAIT) and other NK-like T

cells, has not been studied in detail with MB cell lines and MB

preclinical mouse models (65, 170–175). It has been reported that

MB do not express CD1d, besides HLA-I, suggesting a molecular

mechanism involved in MB escape from recognition by

unconventional T cells (173). Furthermore, the molecular MB

SHH subgroup can express elevated levels of CD1d mRNA

compared to other MB subgroups (173). Importantly, CD1d-

positive MB cells (DAOY and MED8A cell lines) presented

glycolipid antigens (a-galactosylceramide) to NK T cells, inducing

the production of cytokines such as IFNg and IL4. Along this line,

NKT cells induced remission of orthotopic injected MB xenografts

of DAOY MB cells. In addition, the NKT cells in MB patients were

present and functional, suggesting the possibility of using these

NKT cells to kill MB cells at least in a subset of patients (173). More

recently, it has been reported that gdT cells can infiltrate the MB,

and in particular the group 4 MB, but there was not a significant

correlation between the infiltration of gdT cells and patients OS.

Furthermore, EphA2-expressing MB cells trigger Vg9Vd2T cell

activation while amino bisphosphonates sensitize MB cells but

not healthy neuronal cells to Vg9Vd2T cell lysis (175). This

would indicate that gdT cells can be a useful tool to target MB

cells. In this context, we reported that antibodies to tumor antigens

conjugated with the aminobisphosphonate zoledronic acid can kill

efficiently tumor and stromal cells (176). Thus, we can hypothesize

that the use of antibodies to MB antigens conjugated with

aminobisphosphonates can be effective in eliminating MB cells, as

shown for colorectal carcinoma (176). Finally, it has been reported

that six MB cell lines (DAOY, ONS-76, UW228, D341, D425 and

D283) can be a good target for protein tyrosine kinase (PTK)7-

targeted CAR gd T cells against MB (177). Altogether, these findings

support the idea that besides conventional T cells and NK cells,

other effector lymphocytes can be an immunotherapeutic tool to

eliminate MB cells (Figure 3).
4.3 Tumor antigens of MB

The antigen-specific immune response could be considered one

of the cellular-mediated mechanisms by which MB cells can be

eliminated. Briefly, an adaptive immune response should be elicited

against neoantigens and/or tumor-associated antigens (TAA) (178).

The presence of neoantigens and TAA is also necessary for awaking

exhausted tumor-infiltrating lymphocytes (TIL) upon treatment

with immune checkpoint inhibitors (ICI) such as anti-CTLA4 or

anti-PD1/PDL1 antibodies (179–183). Importantly, the possibility

of evoking an adaptive immune response is one of the requisites to

plan ICI therapy, and the identification of neoantigens or TAA

together with antigen-specific TIL justify the cost of the treatment
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and predict, at least in principle, the response (183). Conceivably,

more are the neoantigens and TAA present together with their

immunogenic potency; more probable is that the immune system

will control the tumor growth. As reported above, the patients can

be subdivided on the basis of subgroup-specific genetic alterations,

and more recently it has been shown that it is possible to identify

potential tumor antigens, possibly suggesting the development of

antigen-directed cellular therapies for MB (184). In detail, it has

been developed an algorithm predicting antigens able to trigger an

immune response in the context of the patients’ HLA-class I and

class II. This point is relevant as it is well-known that the immune

response needs both the help mediated by the recognition of CD4+

T cells of MHC-II-restricted peptides and the lytic activity of CD8+

T cells restricted to MHC-I antigens to eliminate tumor cells (185)

(Figure 4). The antigens considered include neoantigens, TAA and

fusion antigens (184). This pipeline has been named Open Reading

frame Antigen aNalysis (ORAN) and it uses the gene expression

data for identifying different classes of antigens (184). Importantly,

the algorithm can predict putative peptide antigens that indeed

trigger an efficient antitumor immune response after vaccination in

preclinical glioblastoma models (186). It is of note that ORAN

identified that only a subset of the genes mutated in MB could be

immunogenic, and this subset was present in about 80% of patients;

also, 44% of patients expressed three or more neoantigens. This

would indicate that not all the MB patients may benefit from

neoantigen-based immunotherapy. About 90% of MB expressed

at least one TAA, and a quite high proportion of these patients

expressed three TAA. Noteworthy, the TAA prediction showed a

strong and better concordance with respect to neoantigens with

proteomic data. The overall survival (OS) and the progression-free

survival (PFS) of patients in the Group 3 of MB well correlate with

the presence of MHC-I and MHC-II peptides of TAA. This work

analyzed by RNA-seq 170 cases of MB of which 18 WNT, 46 SHH,

41 Group 3, and 65 Group 4, and it used a data set of microarray

technology of 763 MB (64, 184). Moreover, the immune landscape

and the pathways for antigen processing and presentation in tumor

cells have been studied using up-to-date deconvolution

computational methods. This analysis has given some insights on

the possibility of identifying the so-called “recurring antigen”. It is

conceivable that to design an MB vaccine potentially functional in

any patient independently of the molecular subgroup and stage of

development, a good immunogenic antigen should be identified. It

is of note that MB expressed several private and immunogenic

antigens. Except for the SHH-MB subgroup, several TAA were

usually expressed. Furthermore, some cancer testis and

neurodevelopmental antigens were expressed throughout all the

subgroups. In detail, neoantigens from oncogenic driver mutations

including CTNNB1, DDX3X, and SMARCA4 and TAA such as

NEUROG1 and PIK3R3 could be considered as potential

therapeutic targets for immunotherapy. None of these identified

potential targets have been validated in experiments showing that it

is possible to trigger an immune response upon the use of a

personalized vaccine. However, the same ORAN pipeline applied

to the murine glioma GL261 cell line identified, after appropriate

selection, 192 putative neoantigens and 37 TAA with a predictive
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immunogenic effect (186). Importantly, it has been developed a

gene enrichment platform for the production of tumor open

reading frames that are unique (TOFU) specific for tumor

antigens. This platform allowed the generation of mRNA by in

vitro transcription for immunogenic tumor antigens without the

need of providing large tissue samples from patients to obtain these

mRNAs, overcoming this bottleneck to produce vaccines.

Noteworthy, the TOFU mRNA vaccine was efficient to evoke an

antitumor response in a murine model of glioma when loaded into

dendritic cells in combination with immune-checkpoint inhibitors

(ICI) and/or adoptive cell therapies (72, 187).

It is clear that these novel approaches in identifying the MB

neoantigens and TAA support the idea that immunotherapy might

be feasible and efficient. Previous observations in MB on the

immunogenic property of the fusion proteins composed by the
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enhancer of polycomb homolog 2 (EPC2) and GULP PTB domain

containing engulfment adaptor 1 (GULP1) have shown that this

protein can trigger the release of IFNg by CD8+ T cells (188). Also,

the finding that a CD8-specific T-cell response can be elicited in

neoepitopes derived from Histidine Ammonia-Lyase (HAL),

Neuraminidase 2 (NEU2), Proprotein Convertase Subtilisin

(PCSK9), Programmed Cell Death 10 (PDCD10), Supervillin

(SVIL) and tRNA Splicing Endonuclease Subunit 54 (TSEN54)

variants is in line with the notion that specific T cell-mediated

immunotherapy can be applied for MB (189). Finally, the

proteogenomic approach allowed the identification of neoantigens

from MB tumors with a low mutational burden and a limited

amount of tissue (189). It is of note that T cells with different T cell

antigen receptors (TCR) and producing several antitumor cytokines

can be obtained using these neoantigens. This finding further
FIGURE 3

Additional effector cells targeting the MB cells. Several effector cell subsets can recognize the MB cells on the basis of the expression of some of the
activating receptors expressed typically by NK cells. These subsets comprise invariant NK-like T cells, Vd2 and Vd1 (gd TCR) T cells, CD1-restricted T
cells, mucosal associated invariant T cells (MAIT) and other NK-like T cells. Typically, these cell subsets can show functional features of NK cells,
such as killing of tumor target cells independently of the recognition of HLA-I antigens. Some of them express activating and inhibitory receptors
like NK cells, and the final outcome of their engagement is similar to what is observed in NK cells. In detail, the Vd2T cells can trigger TCR-mediated
activation through the recognition of small phosphate antigens (pAg, such as isopentenyl pyrophosphate, IPP) presented by the butyrophilin
members, including BTN3A1 and BTN2A1. pAg are derived from intermediates of the cholesterol synthesis of mevalonate pathway.
Aminobisphosphonate such as zoledronic acid can increase the presentation of small pAg on tumor MB cells while Vd1T cells can recognize the
EPHA2 leading to the killing of MB. MAIT cells can recognize the major histocompatibility complex class I-related gene protein (MR1) presenting
intermediates of riboflavin synthesis. On the other hand, CD1-restricted T cells can recognize lipid antigens instead of peptide antigens, like the
majority of ab TCR T cells. Lipid antigens can derive from endogenous or foreign origins. Overall, these cell subsets can recognize tumor cells if they
express the corresponding counter-ligands (see also the Supplementary Figures 1, 2).
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supports the more recent publications (184, 186, 189) that it is

possible to discover immunogenic-specific peptides that are the

basis for generating appropriate anti-MB vaccines.
4.4 Targeting molecules expressed by MB:
antibodies and CAR cells

Beside targeting tumor-specific antigens, immunotherapy can

target receptors present on MB cells but widely expressed on other

cell types (144, 190–207). The first point to consider for an efficient

therapeutic effect without too many side effects is the expression of

appropriate target molecules at the cell surface of MB cells (196–

198). The ideal target should be expressed mainly, if not exclusively,

on MB cells but not on healthy cells. The second critical point is the

degree of the immune response; it should be enough strong to

control and eliminate tumor cells, but sufficiently milder not to

damage large amounts of healthy cells. This second point is much
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more important, more relevant: it is the function of healthy cells as a

potential target of therapy. Proved target receptors on MB cells

include HER2, B7H3 (CD276), Epha2 and GD2 (144, 196, 197,

199–203). These antigens can be targeted mainly by two therapeutic

tools: monoclonal antibodies (mAb) (Figure 5) and CAR

cells (Figure 6).

Antibodies represent a key therapeutic tool for several kinds of

cancers, including tumors of the nervous system (204, 205) and

CAR cells could be considered one of the more recent tools

developed from classical mAb (206–209). As for the native mAb,

CAR shows a component of the engineered chimeric receptor that

recognizes the target molecule at the cell surface of MB cells (202–

206). The antigen recognition domain of the CAR molecule is

typically derived from the variable regions of a mAb as a single-

chain variable fragment (scFv) recognizing a tumor expressed

antigen. The main difference consists in the molecular and

cellular mechanisms of the therapeutic effects (210, 211).

Antibodies can affect receptor-ligand interactions and signaling,
FIGURE 4

Tumor microenvironment (TME) in MB. (A) MB is a tumor usually localized in the cerebellum leading to metastasis in the spinal cord. (B) The TME is
characterized by the presence of several cells of the immune system as macrophages (MF), dendritic cells (DC), and T cells together with
mesenchymal stromal cells (MSC) and astrocytes (As). MB cancer stem cells (MB CSC) can be considered a major target of therapy to eradicate the
tumor. Typically, the TME leads to the impairment of the immune response against tumor cells. Angiogenesis is an essential process that favors the
growth of this tumor and possible spreading to other regions of the brain. The brain-blood barrier is a key anatomical and functional structure
involved in the regulation of infiltration of antitumor effector cells, as well as tumor spreading and drug effectiveness. (C) Adaptive specific T cell
immune response can be elicited against the MB cells and MB cell antigens potentially presented to either CD4+ or CD8+ T cells can be identified
mainly by OMICS analysis.
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as well as trigger complement- and/or antibody-dependent cellular

cytotoxicity (CDC and ADCC) and cytokine release (212). On the

other hand, CAR cells, upon the interaction of the CAR molecule,

deliver an activating signal that leads to the killing of the target cells

(69). Also, CAR cells produce and/or release cytokines typical for

the type of cell in which the CAR has been transduced (69). CAR

molecules can be transduced into classical CD4+ or CD8+ab T cells,

gd T cells, innate cells including NK cells, monocyte/macrophages

(Mo/MF) and in vitro assays show that both mAb and CAR cells

are efficient tools to eliminate MB cells (213–215). The main matter

with both antibodies and CAR cells is the tumor localization of the

antibody and the effector cells (216, 217). This could be considered

the key factor that distinguishes the strong efficacy reported for

CAR cells in hematological malignancies, compared to the

disappointing results found for solid tumors (217–220).

4.4.1 Targeting of GD2 in MB
The GD2 is a disialoganglioside expressed during fetal

development and by several tumors, but not in normal adult tissues
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(197). Both mAb and CAR-T cells against GD2 are enrolling patients

for the treatment of different brain tumors, including MB (196, 209,

220). Recently, it has been reported in an orthotopic MB murine

model that CAR-GD2.CD28.4-1BBz (CAR.GD2)-T construct,

including the suicide gene inducible caspase-9 can control tumor

growth and prolong the OS of treated mice. In addition, the use of the

drug AP1903 induced the dimerization of caspase-9 leading to

apoptosis of peripheral blood circulating and brain tumor-

infiltrating CAR-T cells. These findings indicate the possibility to

efficiently eliminate tumors and limit the side effects due to antitumor

effector cells. Importantly, the in vitro pretreatment with tazemetostat,

a first-class inhibitor of activating enhancer of zeste homolog 2

(EZH2), can upregulate the GD2 expression on GD2dim MB cells

(196). This upregulation of GD2 was sufficient to sensitize theMB cells

to CAR-GD2 T cell-mediated cytotoxicity. A clinical trial of phase I/II

is ongoing (NCT05298995) to determine the safety and effectiveness

of CAR-GD2 T cell therapy in high-risk patients (196).

Furthermore, the preclinical evidence of treating a genetically

engineered mouse model of MB with the ultra-high dose rate
FIGURE 5

Surface MB receptors as targets for immunotherapy with antibodies. Several surface-expressed receptors of MB cells can be a target for therapy
with monoclonal antibodies (mAb), radiolabeled-mAb (radio-mAb) or antibody drug conjugates with cytotoxic molecules (ADC). Some representative
molecules are shown. EGFR, HER2 and HER3 are members of the epidermal growth factor receptor family: PDPN: podoplanin, PDL1/2: ligands for
PD1, GD2: disialoganglioside, EPHA2 ephrin receptor A2, IL3 receptor alpha2. Not necessarily all these molecules are expressed at the cell surface of
the same MB tumor cell. The antibodies directed against these molecules can inhibit (A) the proliferation of MB cells by blocking the binding with
the natural ligand as growth factors (e.g., anti-EGFR Ab). (B) The Ab can trigger antibody-dependent cellular cytotoxicity (ADCC) by lymphocytes
(such as anti-EGFR mAb), monocyte/macrophages and other innate cells or complement dependent cytotoxicity. (C) Antibodies can block the “do
not eat me” signal (e.g., CD47) leading to phagocytosis or (D) they deliver cytotoxic drugs or radio-isotopes leading to the killing of tumor cells.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1602930
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Poggi et al. 10.3389/fimmu.2025.1602930
FIGURE 6

CAR-T cells are a suitable means to kill MB cells and other cellular components of the TME. Several CAR-T cells have been used in preclinical
murine models and some clinical trials to target surface molecules expressed by MB cells, including B7H3, GD2 (disialoganglioside), EPHA2 (ephrin
A2 receptor), HER2 (human epidermal growth receptor 2), PRTG (protogenin), PDPN (podoplanin) and IL13Ra2 (interleukin 13 receptor a2).
Importantly, some CAR-T cells can recognize not only MB cells but also components of the TME, such as endothelial cells, stromal cells, and/or
cancer stem cells (CSC). The majority of CAR-T cells can express CD4 or CD8 antigens. Usually, CD8+ CAR-T cells can recognize MB cells
expressing the antigen recognized by the scFv portion leading to the signal transduction through the intracellular component of the CAR-T
molecule. This elicited the release of perforin and granzyme and consequent killing of the MB cell. CAR-T can produce proinflammatory cytokines
(IFNg and TNFa) with potent antitumor effects.
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radiotherapy (FLASH-radiotherapy (RT)) in association with CAR-

GD2 T cells has demonstrated that the immunosuppressive MB TME

can be reversed to a pro-inflammatory one giving optimal anti-MB

responses (208). In detail, the FLASH radiation delivered in

milliseconds can abrogate the oxidation of the lipids, reducing the

activity of peroxisome proliferator-activated receptor-g (PPARg). This
is in contrast with the generation of reactive oxygen species triggered

by the standard radiation, at a lower dose but for a longer time than

FLASH-RT, leading to the PPARg activation and consequent lipid

peroxidation. These events hit mainly the macrophages present in the

TME, together with a reduction of arginase 1 expression. In summary,

the FLASH radiation reprograms the macrophages from an

immunosuppressive to a pro-inflammatory behavior favoring the

CAR-GD2 T cell infiltration and MB cell killing (208). The fact that

preclinical studies suggest that FLASH-RT induces fewer side effects

on healthy tissues than conventional (CV) RT would suggest that

FLASH-RT could modify the TME and eventually the clinical

outcome of disease.

4.4.2 HER2, EPHA2 and IL13 receptor a2 as
therapeutic targets of MB

The systematic characterization of the tumor of the CNS

identified HER2, HER3, NECTIN4, TROP2, CLDN6, CLDN18.2,

and CD276/B7H3 proteins as potential therapeutic targets (Figures 3,

4). Also, EPHA2 and IL13 receptor a2 are well expressed in someMB

(221) and it has been reported that several cell lines as well as a

consistent group of primary MB cells can express HER2 and other

members of the EGFR family (156, 201, 207, 214, 215, 218, 221–233).

Other molecular targets expressed by MB will be considered later in

chapter 4 of this review in the context of the targeting of MB and

TME. The HER2 and HER3 can be targeted by antibodies; antibody

drug conjugates and CAR-T cells have been reported or present on

the market (156, 229). It has been reported in different animal models

that the treatment with the HER2-BBz-CAR T cells effectively clears

MB tumors (227). Orthotopically implantation in the posterior fossa

of NOD.Cg-Prkdc scid Il2rg tm1Wjl/SzJ (NOD scid gamma deficient,

NSG) mice of the DAOY or D283-Med cells led to the generation of

tumors. These tumors were efficiently treated with regional or

intravenous HER2-BBz-CAR T cells.

This effect was further confirmed in non-human primates

(Rhesus macaques, Macaca mulatta, NHP). It is to note that the

dose necessary for regional delivery was a log lower for locoregional

vs. intravenous delivery. Also, no systemic toxicity was detected in

NHP after intraventricular delivery of autologous HER2-BBz-CAR

T cells. It is of interest that the HER2-CAR-T cells contained the

CD3z and 4-1BB signaling motifs and showed robust anti-MB

activity, indicating this kind of CAR-T cells can induce a complete

and long-lasting regression of established tumors when

administered regionally (227). This locoregional delivery of CAR-

T cells with a medium-length CAR spacer increases the therapeutic

efficacy of HER2-CAR T cells in an orthotopic xenograft model with

the cell lines D283-Med and Med411FH, but not against the HER2-

negative D431 cell line (234). Indeed, it appears that the cytotoxic
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effect of HER2-CAR-T cells with a short spacer was not evident on

HER2+ MB cell lines. This would indicate that the length of the

spacer in the case of recognition of HER2 antigen on MB cell lines is

a key point to consider. Furthermore, some patients suffering from

other brain tumors (ependymoma or anaplastic astrocytoma, of the

BarinChild-01 NCT03500991 clinical study) did not show dose-

limiting toxicity after infusion of the HER2-CAR-T cells via CNS

catheter into either the tumor cavity or the ventricular system.

This suggests the feasibility of repeated dosing regimens and

well-toleration of intra-CNS HER2-CAR-T cells delivery in young

patients, supporting the notion that this way of administration of

CAR-T cells could be adopted in MB as well. This idea is further

supported by additional experimental evidence obtained using

locoregional therapy with other CAR-T cell models (221). In fact,

it has been validated the intrathecal delivery of a trivalent EPHA2,

interleukin 13 receptor a2, besides HER2, CAR-T cell against

primary, metastatic and recurrent group 3 MB xenografts in

mouse models. Furthermore, these CAR-T cells alone or in coo

with azacytidine is an efficient therapeutic regimen mouse model

with multiple metastases of this highly aggressive MB, providing the

rationale for application of the delivery of these types of CAR-T

cells intracranially in humans (221). EPHA2, ephrin receptor A2,

plays a key role in cancer development and its expression shows

association with poor prognosis, elevated metastatic potential, and

reduced survival of tumor patients (200). Also, the interleukin 13

receptor a2, the receptor for the anti-inflammatory cytokine IL13,

is overexpressed in several brain tumors, playing a role in invasion

and metastasis (235, 236). Overall, the three targets considered

using the trivalent CAR-T cells were well expressed on the different

stages of development of the MB of group 3. Conceivably, the

definition of CAR-T cells to use for patient treatment should satisfy

the condition of expression of the molecular targets through the

primary, metastatic and recurrent MB. This condition would allow

the response against the relapse of the MB.

4.4.3 B7H3 inhibitory immune receptor targeting
MB

The B7 homolog 3 (CD276) is a transmembrane molecule

expressed in several types of cancers where it functions as an

immune checkpoint receptor, and it can be targeted efficiently by

both CAR-T cells andmAb (237–241). InMB, it can be involved in the

angiogenesis migration, invasion (see the 4.5.1 chapter of this review),

as well as MB escape from the immune system (205, 242–246). The

counter receptor expressed on immune cells of B7H3 has not been

identified yet, but it is conceivable that activated CD4+ and CD8+ T

cells express a receptor interacting with APC cells or tumor cells

through B7H3 and this interaction leads to inhibition of lymphocyte

functions such as tumor cell killing and cytokine production (247–

249). Four putative candidates have been suggested, including the

triggering receptor expressed on myeloid cells (TREM)-like transcript

2 (TLT-2), interleukin-20 receptor subunit a (IL20RA), phospholipase

A2 receptor 1 (PLA2R1), angio-associated migratory cell protein

(AAMP) and possibly other molecules (249–254).
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4.5 Targeting the MB tumor
microenvironment

The features of the tumor microenvironment (TME) are

relevant for the growth and diffusion of several cancers, including

MB (255). The knowledge of the features of MB during the

interaction with the components of the TME could be considered

as a therapeutic target in order to enhance the immune response to

MB together with the impairment of the growth and spreading of

the MB itself (255). This targeting can either reduce, or even

convert, the immunosuppressive TME to immunostimulatory.

The characteristics of the MB TME have been described in detail

in several reviews elsewhere (255). Herein, we will point out in

evidence the relevance of some components of the TME, such as the

angiogenic factors, the role of podoplanin (PDPN) in MB

spreading, “do not eat me” signals, and the interaction between

the astrocytes and MB cells (Figure 5). This is to show some of the

key cellular and molecular players against which it is conceivable to

use old and new immunotherapeutic tools as antibodies or CAR-T

cells to further improve the outcome of MB patients.

4.5.1 Angiogenesis and novel factors involved in
the regulation of MB spreading

The TME is responsible for the presence of several growth

factors that can allow the generation of new blood vessels, such as

vascular endothelial growth factor (VEGF) that in turn are essential

for the growth and possible spreading of cancer cells (237, 238). The

limitation of tumor angiogenesis may help the efficacy of

immunotherapy by limiting the growth of tumor cells. For

example, the neo-angiogenesis in MB is associated with the most

aggressive Group 3 (256). The level of mRNA coding for VEGF-A

was markedly increased in this subgroup compared to the other

molecular subgroups, correlating negatively with the OS of patients.

Furthermore, in rat models, the increased vascularity was associated

with less survival. Group 3 of MB is strongly associated with the

amplification of MYC and this amplification is linked to the

expression of VEGF-A in several solid tumors, including colon

rectal carcinomas, breast cancer and gliomas (257–261). This is not

surprising, as MYC is involved in the regulation of many genes

(262). By consequence, the targeting of angiogenesis is possible by

interfering with MYC transcription and molecular target of

rapamycin (mTOR) translation with small molecule inhibitors

demonstrating synergistic antitumoral effects against MYC-

dependent driven MB both in vitro and in vivo models (263).

Also, MB cells express several factors responsible for angiogenesis

besides VEGFA, such as VEGFB, VEGFC, VEGF189, VEGF165,

VEGF121, angiopoietin (Ang)1, Ang2, transforming growth factor

(TGF)a, and basic fibroblast growth factor (bFGF) (264, 265).

The antiangiogenic therapy using the anti-VEGFA mAb

bevacizumab did not lead to consistent improvements of OS and

PFS, but increased its tolerability together with irinotecan (plus or

not with temozolomide) (266). Similarly, the association of

intravenous bevacizumab, intraventricular therapy and oral

etoposide and cytarabine alternate to oral administration of

thalidomide, fenofibrate, and celecoxib was well-tolerated and
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better responses (although limited in time, about six months)

have been detected (267). However, these results are far to be

considered an advancement in treatment. It is evident that the

complex interactions among these factors and the possibility that

different portions of the tumor mass can express different factors do

not allow a precise targeting of vascularization of the MB.

Furthermore, the recent finding that the VEGFC may negatively

regulate the metastatic properties of MB would suggest that not all

the factors involved show a pro-tumor effect (102). In fact, VEGFC

is involved in lymphangiogenesis, and it has been shown that

VEGFC can decrease proliferation and migration of MB cells,

inhibiting the formation of pseudo-vessels in vitro. Further,

irradiation of resistant MB cells with strong expression of VEGFC

inhibits the formation of vessel-like in vitro, and these irradiated

cells generated smaller tumors in nude mice (98). In detail,

bioinformatic analysis of several databases of MB suggested that

the lower the level of VEGFC expression in theWNTMB group, the

worse the outcome of patients. While it was detected the opposite

analyzing the SHH, 3 and 4 subgroups in which high levels of

VEGFC corresponded to a worse prognosis. This finding would

suggest the dual function of VEGFC in MB. In addition, using some

in vitro models of MB, some experimental evidence supports that

the overexpression of VEGFC/VEGFC receptor axis is not only

associated with lymphangiogenesis but exerts a beneficial effect in

pediatric MB. This finding is based on the use of few cell lines

compared to the large array of cell lines present, indicating that

these results should be considered with attention (102). It has been

shown that the irradiation of DAOY and HDMB03 cell lines

increases their epithelial phenotype compared to mesenchymal

phenotype, reducing the ability to disseminate like in

glioblastoma (268). This would imply that VEGFC-reducing

proliferation/migration of MB cells could keep the tumor in a

condition more prone to being attacked by antitumor immune

cells. This would be typical of MB of the WNT group, while in

group 3 the excess of VEGFC would lead to a too strong generation

of lymphatic vessels and consequently to metastasis. It is clear that

these findings should be taken cautiously because they have been

demonstrated with some MB cell lines. However, they can be the

explanation of the role of the immune system in checking MB

growth. Furthermore, it appears that the expression of VEGFC

could be essential to favor immune response against MB at least in

the early stages of development of the tumor. These findings would

suggests that to plan efficient therapies for MB, combo therapies to

TME and triggering of immune response are necessary. Also, it has

been reported that B7H3 expression levels are relevant in

promoting angiogenesis; this angiogenesis can be inhibited by

miR-29 overexpression, leading to a downregulation of B7H3

(242). Thus, the targeting of B7H3 can hit MB cells and MB-

associated angiogenesis.
4.5.2 Podoplanin as a potential target in MB
The role of PDPN in brain cancers has been reviewed recently

(269). Briefly, it is expressed on several cell types of different

embryonal origins, and it is involved in many processes related to

brain system development and diseases. These processes, such as
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thrombosis, lymphangiogenesis, angiogenesis and inflammation,

play a key role in regulating the growth of any tumor, including

the MB. PDPN can be considered a marker of neoplasia trending to

generate metastases (270, 271). Indeed, it is associated with

malignant progression leading to epithelial-mesenchymal

transition (EMT) and consequent tumor tissue diffusion and

metastasis (272–274). This has been demonstrated in a particular

mouse model with breast carcinoma cells, or with the antibody NZ-

1 anti-PDPN for lung metastatization of CHO-expressing human

(h)PDPN, or using point-mutated hPDPN-expressing CHO cells.

The PDPN is present on lymphatic endothelial cells in the lumen

only in aggressive MB, while in the absence of metastasis this

marker was diffusely expressed on the whole surface of endothelial

cells. Importantly, PDPN is upregulated in several types of cells

during inflammation, including epithelial cells, fibroblasts,

fibroblast-like reticular cells, APC and T helper cells interacting

with several potential ligands, among which C-type lectin domain

family 1 member B (CLEC1B/CLEC-2), CD44 and galectin 8

(274–276).

It has been shown in mice xenografts that the MB cell lines

D283-Med, D425-Med and DAOY were sensitive to a novel

recombinant single-chain antibody variable region fragment

(scFv) of NZ-11 (anti-PDPN antibody) fused to Pseudomonas

exotoxin A with a C-terminal KDEL peptide (NZ-1-PE38KDEL).

This immunotoxin was further stabilized with a disulfide bond to

generate the NZ-1-(scdsFv)-PE38KDEL complex, displaying good

stability at 37°C. This construct exerted a strong cytotoxic effect in

vitro against MB xenograft cells; it delayed markedly the in vivo

subcutaneous growth of the D283-Med xenograft and, more

importantly, it increased by over 40% the OS when administered

to mice with intracranial MB tumor xenograft. Also, CAR-T cells

directed to PDPN by a construct composed of NZ-1-based single-

chain variable fragments and CD28, 4-1BB and CD3 z intracellular
domains have shown good efficiency against glioma cells both in

vitro and in vivo glioma xenografts (277). Altogether, these findings

suggest that PDPN could be considered a target in MB by using

CAR-T cells, antibodies and lectins as shown for several types of

cancers (257). Conceivably, the elimination of PDPN+ cells in the

MB TME may reduce the immunosuppression exerted by different

types of mesenchymal stromal cells allowing the triggering of NK or

T cell responses as shown in other tumor models (278–281).

4.5.3 Do not eat me signaling and MB growth
Among the several surface receptors involved in the regulation

of antitumor immunity, the relevance of CD47 is well-established

(262). This is also true for the MB (282–285). The CD47, also

known as integrin-associated protein (IAP), binds to

thrombospondin 1 (TSP-1) and signal regulatory protein alpha

(SIRP-a). The binding of CD47 with SIRP-a on macrophages gives

a “don’t eat me” signal that can spare the expressing CD47 cells.

Typically, CD47 can allow tumor cells to evade macrophage-

mediated elimination; consequently, the use of specific anti-CD47

antibodies can restore this event, and this is the rationale for the

anti-CD47 antibody used in tumor therapy (282). In the context of

MB, it has been recently shown that the humanized anti-CD47
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antibody termed Hu5F9-G4 shows therapeutic efficacy on

orthotopic PDX models. In addition, the intracranial

administration of Hu5F9-G4 can inhibit the dissemination of MB

to leptomeninges while exerting minimal effects on healthy neural

cells (158). In more detail, the MB of group 3 expresses well the

CD47 at the cell surface (86-99% of cells (158); this expression was

evident on primary and xenograft-derived cells. More importantly,

the use in vitro and in vivo of Hu5F9-G4 led to strong phagocytosis.

Two primary and three MYC-amplified cell lines localized at

the cerebellum and disseminated at leptomeninges have been

treated with Hu5F9-G4 antibody (also named Magrolimab)

intraperitoneally, and a reduction of tumor burden and increase

of OS in mice have been detected. Importantly, MB tumors were

consistently infiltrated with macrophages in animals treated with

the antibody, while the diffusion to leptomeninges of MB cells was

strongly reduced. The metastatic recurrence of MYC overexpressing

MB is a major fatal event that can hit pediatric patients (286).

Strikingly, the use of Hu5F9-G4 was able to clear spinal metastasis

in this xenograft model using MYC-amplified MB cells, and this

antibody targets CD15+ CSC. The administration into the blood of

Hu5F9-G4 revealed that it can pass through the blood-brain

endothelial barrier (BBB) apparently even when the tumor was

not present. Overall, these findings strongly suggest that the

targeting of CD47 on MB cells can affect the growth and diffusion

of MB within the CNS. As for PDPN targeting, the relief of the

inhibitory signal delivered through the CD47-SIRP-a binding on

macrophages could generate a pro-inflammatory TME favoring the

anti-MB immune response, as indicated for other tumor types

(287, 288).

4.5.4 MB and astrocytes
Astrocytes are a star-shaped subtype of glial cells supporting the

neuronal development, metabolism and function of the brain (289–

292). They can express glial fibrillary acidic protein (GFAP) but also

GFAP-negative astrocytes can be identified, indicating they are a

quite heterogenous cell population (290–294). Astrocytes can play a

role in innate immunity in the brain by interacting with microglia

and undergoing proliferation and activation induced by danger-

associated molecular patterns and/or pathogen-associated

molecular patterns (293–295). The molecular analysis of

astrocytes at the single cell level has identified that several other

subsets of this cell population can exist in specific brain regions

(296, 297). In addition, it has been reported that astrocytes present

in the cerebellum are different from those of other brain regions

(274). Detailed reviews on the protein markers of astrocytes present

in different regions of the CNS as well as during inflammation and

diseases have been published (268, 297, 298). Overall, the astrocytes

play a trophic role of MB TME as they secrete the ligand sonic

hedgehog (SHH) and this factor triggers the expression of nestin in

MB cells; the elimination of MB-associated astrocytes led to

suppression of nestin expression, blocking the tumor growth

(299). This finding supports the notion that astrocytes are

essential for the expansion of MB of the SHH-subgroup (300–

303). Furthermore, the secretion of the CCL2 chemokine by

astrocytes is essential for the stemness of MB cells and the
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generation of metastases throughout the CNS (304, 305). The

impairment of astrocyte-mediated functions or their elimination

by specific targeting may relieve the immune downregulation

increasing the effect of immunotherapy.

5 Overall considerations and future/
putative therapies and
immunotherapies for MB

The MB is an aggressive tumor characterized by a relevant

molecular and cellular heterogeneity The advances in genomic and

transcriptomic have identified several subtypes within the four

subgroups (52, 56, 65, 71, 74, 79, 88, 306). This can give insights

to modify the therapeutic approaches in favorable and very high-

risk groups (58, 306–308). There is no doubt that the molecular

classifications have improved the prediction of the clinical outcome,

and they provide key markers for a therapy tailored to the risk

group. Nevertheless, the old and new therapeutic approaches do not

have a striking effect on the OS rate of MB patients, indicating that

these attempts should be improved. Recently, some relevant

advances in tumor therapy have been reached with the use of

immune checkpoint inhibitors (ICI) (178–180, 309). To relieve of

the brake of tumor immunity related to the exhaustion of

antitumor-specific T lymphocytes should be considered as a

requisite to justify therapy with ICI (178–180). The use of

pembrolizumab, an anti-PD1 antibody, is under investigation in

some clinical trials (NCT02359565 and NCT06514898) in recurrent

groups 3 and 4, but results have not been published yet. One report

on the treatment of MB considers as ICI the anti-PD1 antibody

nivolumab with or without the anti-CTLA4 antibody ipilimumab in

15 patients each (310). An evident difference in OS was present

between the MB treated with the combo of nivolumab and

ipilimumab (85%) versus nivolumab (40%) only. Unfortunately,

this difference was not present after 24 months, showing about 35%

of OS for both treatments. This discrepancy could be justified with

the subgroups of the MB treated, but this detail is not reported in

the original article (310) Also, using nivolumab in a little series of

CNS tumors (with just one MB), it appears that a difference in the

median survival was associated with the expression of PDL1 and

high tumor mutation burden (311). This finding would suggest that

the high mutation burden possibly associated with the generation of

neoantigens and TAA together with the expression of the ligand of

PD1on tumor cells are requisites to elicit a response in CNS tumors.

Nevertheless, the results obtained are far from exciting. In this

context, a key point is to define whether the MB expresses the

ligands for IC molecules such as PDL1 and/or CD80/CD86

antigens. Indeed, it has been shown that the TME in MB shows a

variable expression of ligands for IC (312–318). In detail, using K-

means clustering, it has been shown that the immune cell

infiltration was low in all the four groups of MB while the PD1/

PDL1 expression was absent in the cohort analyzed of 19 MB (314).

This finding is in agreement with other reports (38, 284, 317), but

the PDL1 was markedly expressed in single WNT or SHH cases

(312). This would suggest that the therapy with anti-classical IC
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(CTLA4 and PD1) is not appropriate as there is no possibility to

relive the brake of the immune system. It is to be noted that several

others IC receptors can be expressed by effector lymphocytes (142,

319–323) and further studies should show how much these

additional IC are involved in the impairment of the MB

recognition. On the other hand, favoring a pro-inflammatory MB

TME, instead of an immunoregulatory one, can trigger the

upregulation of ligands for classical IC molecules justifying their

use for treatment (322, 323).

The definition of an atlas of naturally presented T cell antigens

from 28 MB upon mapping of the HLA ligandome (WNT (n = 4);

SHH (n = 9); Group 3 (n = 7); Group 4 (n = 8)) could help to the

further characterization of how to target efficiently MB cells (318). It

is determinant that the putative antigens show peptides presented in

the context of both HLA-I and HLA-II. Indeed, a few candidate

proteins: IGFBPL1, INSM1, and INSM2 satisfied this condition.

The clinical relevance of the CD4+ T helper cells is considered a key

point to elicit a durable and efficient anti-MB response. It is of note

that the demonstration of the potential immunogenicity of these

peptides has been obtained by tetramer staining (318) not by a

functional assay. However, this atlas can facilitate the development

of mRNA vaccines, primed DC with the peptides identified, and the

possible adoptive transfer of antigen-specific T cells. Also, the

targeting with the CT-179 drug of a basic helix-loop-helix

(bHLH) transcription factor (TF) OLIG2 can suppress the

recurrence of the MB of the SHH subgroup (324). Interestingly,

OLIG2 promotes differentiation in oligodendrocyte lineage, but it

favors the maintenance of an undifferentiated condition of neural

stem cells and progenitor cells (325–328).

The block of the dimerization, phosphorylation and DNA

binding of TF leads to prolonged survival of SHH-MB PDX and

GEM models and potentiates radiotherapy (RT) in vivo. These

findings could suggest the targeting of OLIG2+ CSCs that remain

quiescent upon conventional therapy with a better clinical outcome

for some patients. This would indicate that the targeting of

appropriate TF regulating the fate of CSCs is a key tool to avoid

resistance to therapy and relapse. The CT-179 increases the

differentiation and upregulates the cyclin-dependent kinase

(CDK) 4, favoring the proliferation. The further combination

with the CDK4/6 inhibitor palbociclib prolongs the survival of

the PDX and GEM models. Altogether, these findings indicate that

the targeting of the TF in combination with other drugs can

improve the clinical outcome. However, it should be considered

the role of OLIG2 as a master regulator of oligodendrocyte lineage

in early stages of differentiation as well as other components of the

same family of TF (325). It is still undefined whether the blocking of

one TF does not influence the others and how much the blocking of

OLIG2 during the maturation of the CNS can affect its correct

development. The treatment of a tumor during the development of

the CNS is conceivably a challenging condition that is not so

relevant if the tumor has been developed in an adult (325).

Certainly, the targeting of OLIG2 is feasible for gliomas in adults,

but it should be noted that the degree of expression can vary in

glioblastomas and astrocytoma while it is usually well expressed in

oligodendrogliomas (325). The use of OLIG2 as a target for MB
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therapy should be considered cautiously as OLIG2 involved in the

motor neuron fate and in neural repair as well (327, 328). It is

conceivable that the combo of inhibitors of OLIG2 TF and

immunotherapy can increase the efficiency of lymphocytes in

eliminating CSC. This targeting has been demonstrated for the

anti-MB protogenin (PRTG) CAR-T cells recognizing CSC of MB

group 3 with a strong expression of PRTG (PRTGhigh) and for the

anti-PRTG blocking antibodies (329). Altogether, these findings

suggest that the precise identification of the stem cells of MB could

be the future target of the therapy. Another point to be discussed is

the possible use of combinatiotn of immunotherapy and

chemotherapy. It has been shown the associat ion of

chemotherapy and adoptive immunotherapy is more efficient in

eliminating MB cells bot in vitro and in vivo subcutaneously

injected MB cell line DAOY (330). It is to be noted that in this

experimental system the addition of LPS can further increase the

anti-MB effect of the combo therapy, indicating that the activation

of antigen presenting cells could be involved.
6 Conclusions

MB is an aggressive pediatric tumor, and although great

advances have been reached, the present immunotherapeutic tools

are not enough to modify the outcome of this disease. The detailed

study of the expression of receptors on immune cells together with

that of ligands on MB cells as well as other components of the TME

could suggest the main molecules to be targeted by immunotherapy.

MB groups show some relevant differences for the expression of

ligands of several activating receptors of antitumor effector cells,

immunecheckpoint molecules, MHC-I and II as well as

inflammatory cytokines (Supplementary Figures 1, 2) (72, 331,

332). However, there is no a unique pattern of expression of these

molecules for each subtype suggesting that each patient should be

considered as a specific case. Also, there is a certain heterogeneity

regarding the degree and type of immune cell infiltration

(Supplementary Figure 3) (72) among the different groups of MB.

This suggests that a tailored therapy is necessary on the basis of the

results of molecular analysis. The identification of specific markers

of MB stem cells could allow the study of the counter receptors

expressed on immune cells to trigger the elimination of the source

of the disease. Furthermore, the TME influencing MB and immune

cells could influence the effectiveness of immunotherapy modifying

the expression of the molecules involved in the recognition of MB

cells by anti-tumor effector cells. Further studies focused on new

effector cell subsets, novel antibodies and ADC, besides those listed

in Table 3, and combination of drugs with immunotherapeutic tools

may open new avenues to fight this tumor.
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