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Background: Hand, foot, and mouth disease (HFMD) is an acute infectious

disease caused by human enteroviruses (EVs). EVs are most prevalent in

children under five years of age and have the potential to result in herpangina,

HFMD, and severe complications, including encephalitis and death. Since the first

outbreak was reported in 2008 in Finland, coxsackievirus A6 (CVA6) has spread

rapidly and frequently undergone recombination events worldwide, posing a

threat to the health of pediatric population around the globe.

Aim of review: The dearth of vaccines and anti-CVA6 drugs hinders the efficient

prevention and control of CVA6. However, over the course of the last decade,

researchers have endeavored to develop potential vaccine candidates for CVA6

using various pathways. In this study, we present a systematic review of research

progress pertaining to the CVA6 vaccines, with a particular emphasis on themost

recent advancements in CVA6 vaccine development and evaluation. The

objective of this review is to establish a theoretical foundation for the

formulation of preventive and control strategies, as well as the development of

vaccines against not only CVA6 but also other key serotypes in the future.

Key scientific concepts of review: The review comprehensively addresses the

diverse array of CVA6 vaccine development, encompassing a range of modalities

such as inactivated, virus-like particle, and subunit vaccines, among others. A

systematic analysis was conducted on animal-based assessments of various

CVA6 vaccines, encompassing immunogenicity, protection rate, and cross-

immunization as critical evaluation parameters. In light of the recurrent

recombination of CVA6 and the evolution of pathogen profiles, the

recommendation is made for the future development of multivalent and

mRNA vaccines, which hold significant potential in the prevention and control

of CVA6 and other major dominant serotypes.
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GRAPHICAL ABSTRACT
1 Introduction

Hand, foot and mouth disease (HFMD) is a prevalent infectious

disease that predominantly afflicts young children five years of age

or younger (1). HFMD is caused by human enteroviruses (EVs) and

is characterized by the presence of fever and herpes-like ulcers on

the hands, feet, mouth and buttocks (2). While the majority of cases

are self-limiting and mild, some cases may rapidly progress to

severe neurological and systemic complications, including aseptic

meningitis, encephalitis and myocarditis (3). EVs can be

categorized into four species: EV-A, EV-B, EV-C and EV-D (4).

The EV-A includes coxsackievirus group A (CVA) and various

enteroviruses, which are responsible for over 90% of HFMD cases,

with the particular strain known as EV-A71. EV-A71 and CVA16

were once regarded as major pathogens. Nevertheless, since the first

reported CVA6 outbreak occurred in Finland in 2008,

epidemiological surveillance data on a global scale have

demonstrated a substantial shift of pathogen spectrum (5).

Subsequent surveillance in many countries and regions has shown

a consistent rise of CVA6, and it has become a globally dominant

pathogen of HFMD and herpangina (6–8). The EV-A71-associated

HFMD was responsible for a significant number of fatalities in

China between 2008 and 2012 (9), thus prompting the development

of EVA71 vaccines around 2015 (10). Following the extensive

utilization of the vaccine in China, a substantial decline in EV-

A71 prevalence has been observed, accompanied by a notable

alteration characterized by the domination of CVA6 (10–12).

CVA6 has been demonstrated to result in a greater extent of skin

lesions and more severe tissue destruction. For instance, it has been

shown to cause atypical clinical manifestations such as rashes outside

of the typical lesions, flaking of the palms and soles of the feet, and

nail loss (13–15). These symptoms can be accompanied by flu-like

symptoms and higher fever, which can last longer than typical non-

CVA6 HFMD (16). At present, there is an absence of specified
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treatment and prevention, with management relying on non-

pharmacological interventions (NPIs) (17). Despite the advanced

state of viral vaccine development (Figure 1), the development of a

CVA6 vaccine currently faces a number of challenges: 1) screening of

candidate strains under conditions of frequent recombination events;

2) efficient and safe development of vaccine pathways; 3) conflict

between long-term vaccine research and the rapid shift of pathogen

spectrum (18); 4) The accumulation of mutations in epitopes has the

potential to result in antigenic drift, a process that can diminish the

immunoprotective efficacy of the vaccine. Therefore, in order to

perform a comprehensive evaluation of CVA6 immune evasion,

molecular surveillance, epitope selection pressure analysis, and

serological investigation are necessary. Consequently, the

development of efficient multivalent vaccines has become a

pressing necessity for the prevention and management of HFMD.

This review aims to analyze existing vaccine development strategies

and preclinical evaluation approaches, with a view to providing

valuable strategies for the development of efficient enterovirus

vaccines, particularly multivalent vaccines.
2 Biological characteristics of CVA6

CVA6 belongs to the species EV-A, genus Enterovirus, in the

family Picornaviridae (19, 20). It is a single-stranded, positive-sense,

non-enveloped RNA virus with a genome of approximately 7,400

nucleotides (Figure 2) (5). Following entry into the host cell, the

genome is translated to produce polyproteins. The P1 region is

responsible for encoding four structural proteins (VP1-VP4), while

the P2/P3 region encodes seven non-structural proteins, including

2A-2C and 3A-3D (21). The capsid structure consists of four

subunits: VP1, VP2, VP3 and VP4.The process of viral

adsorption, infection and immune escape is mediated by the

spatial conformation formed by the exposed VP1-VP3 proteins
frontiersin.org
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on the surface of the capsid (Figure 2). The process of viral assembly

and infection is facilitated by the VP4 protein attached to the inner

surface of the capsid, and the hydrophobic pocket below the bottom

of the protein canyon usually contains lipid pocket factors, which
Frontiers in Immunology 03
VP1 uses to stabilize the viral particle (20). Furthermore, the VP1

pocket in the CVA6 VLP was found to be devoid of any protein, a

factor which has been demonstrated to have a negative effect on the

stability of the particles (22).
FIGURE 2

Diagram of CVA6 genome structure. The genome (~7400bp) is translated to produce polyproteins P1-P3. The P1 region encodes four structural
proteins VP1-VP4, while the P2/P3 region encodes seven non-structural proteins, including 2A-2C and 3A-3D. The viral genome is covalently linked
to the viral protein VPg (3B), which is required as a primer for replication. Genome translation yields a single polyprotein, which is subsequently
proteolytically cleaved into two distinct groups of proteins. The first group consists of the replication proteins (2A–2C and 3A–3D), while the second
group comprises the capsid proteins (VP0, VP1, and VP3). The maturation process of the virus involves the synthesis of three structural proteins (VP0,
VP1, VP3) in the P1 region of the CVA6 virus, followed by the cleavage of VP0 into VP2 and VP4 to form a complete capsid protein. The process of
genome replication by the viral RNA-dependent RNA polymerase (3Dpol) commences with the synthesis of a negative-strand (–) RNA molecule that
functions as a template for the subsequent synthesis of new (+) RNA molecules. Replication occurs within membranous replication organelles,
where a conducive lipid environment is established by viral proteins 2BC and 3A.
FIGURE 1

Diagram of main pathways of viral vaccine development and mouse model-based pre-clinical evaluation. Multiple technology pathways of viral
vaccines (not limited to the diagram) play a key role in eradication of infectious diseases such as smallpox and polio. Vaccine assessment is a crucial
process to evaluate the efficiency and safety. Cell culture provides strain isolation and clone, while animal models serve for evaluation of
pathogenicity, immune response and protection.
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As indicated by the extant literature, the identification of

divergent EV serotypes is predicated on the analysis of the VP1

sequence (23). The VP1 surface loop structure has been shown to be

the key antigenic epitope (24). It has been determined that the most

significant structural differences occur in the CVA6, CVA16, and

EVA71 four surface loops (BC, DE, EF, and HI), and that these

differences in the structure of key antigenic epitopes of different

serotypes may be an important mechanism for the low cross-

protection rate of existing vaccines (24, 25).
3 Evolutionary feature and
recombination events of CVA6

CVA6 was first isolated in the United States in 1949, and the

first CVA6 outbreaks was recorded in Finland in 2008 (5). CVA6

have become a predominant agent globally, particularly in Asia-

Pacific (17, 26–28) and Southeast Asia (29–32), and Europe (8, 33).

CVA6 mainly affects children under 5 years of age, and is more

likely to infect adults than other serotypes (34).

The classification of CVA6 is determined by VP1 genotyping,

which reveals four distinct genotypes (A-D). Genotype A serves

as the prototype (Gdula), while genotypes B, C, and D are

subdivided into respective sub-genotypes (B1-B2, C1-C2, and
Frontiers in Immunology 04
D1-D3) (Figure 3). The D3 subtype can be further subdivided

into sub-branches D3a, D3b, and so on (6, 27, 35–37). Clinical

samples collected from different geographic regions of China

indicated that the evolution of strains has been characterized by

distinct phases: D2 CVA6 was predominant before 2009,

genotypes D2 and D3 co-circulated from 2009-2012, and the

majority of the CVA6 strains after the outbreak in 2013 belonged

to the D3a branch (35). The most recent common ancestor

(tMRCA) of the D3 subtype in China was dated to 2005, which

preceded its initial identification in 2011, thereby indicating that

this subtype had already been implicitly transmitted prior to the

outbreak. Phylogenetic analysis revealed that the D3 subtype in

China exhibited a close relation to strains isolated from Vietnam,

Thailand, and France, suggesting widespread cross-regional

transmission (Figure 3) (10, 38).

CVA6 recombination, linked to pathogenicity (39, 40),

primarily occurs in non-structural regions (2A-2C, 3D, 5′-UTR),
facilitating viral evolution (41). Analysis of 1032 genomes identified

24 recombinant forms (RF-A to RF-X) (6). Shifts in predominant

strains, such as D3/A to D3/H and D3/N in France (8), and D3-Y in

India (32), suggest recombination drives epidemiological changes.

Enhanced viral diversity complicates vaccine development and

outbreak control, necessitating continuous molecular surveillance

to guide effective prevention strategies.
FIGURE 3

Maximum clade credibility (MCC) tree of 309 representative VP1 sequences (915bp) of CVA6 strains worldwide. MCC tree was constructed using
TreeAnnotator, and the burn-in option was used to remove the first 10% of the sampled trees; the resulting tree was visualized using FigTree (v1.4.4).
The Markov chain Monte Carlo (MCMC) method implemented in BEAST (v1.8.4) was used to estimate the divergence time, temporal phylogenies and
rates of evolution. Blue line: Bayesian skyline plots of viral relative genetic diversity; The light blue shadow: 95% CI.
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4 CVA6 vaccine research and
development

Since 2015, the inactivated monovalent EV-A71 vaccines based on

C4a subtypes have been available (42). The vaccine was the first EV

vaccine to be approved by the China FDA, and it demonstrated non-

toxicity, high safety, and immunogenicity in clinical investigations (43,

44). However, the inactivated EV-A71 vaccine did not cross-protect

against other serotypes, leading to a shift in the pathogen spectrum

after vaccination (45). This phenomenon underscores the necessity for

the development of multivalent vaccines. Despite the unavailability of

CVA6 vaccine, approximately 20 studies have been dedicated to its

development globally over the past decade (Table 1). Here, we present
Frontiers in Immunology 05
and discuss in detail the progress of CVA6 vaccine research with

different vaccine platforms (Figure 4).
4.1 Inactivated vaccines

Inactivated vaccines constitute a substantial proportion of viral

vaccine development, owing to their numerous advantages,

including a more mature production process , strong

immunogenicity and long-lasting protective efficacy. Notable

vaccine candidate cells include African green monkey kidney cells

(Vero) and human embryonic lung diploid fibroblasts (MRC-5,

KMB17) (63). However, the development of an inactivated vaccine
TABLE 1 Progress of CVA6 vaccine development worldwide, 2015-2025.

Nation Year
Vaccine
type

Serotype(s) Inactivation Purification
Structural
characterization

Ref.

China 2025
VLP,
mRNA

CVA6 NA

VLP: Sucrose Gradient
Centrifugation
mRNA: RNeasy
Mini Purification

Transmission electron
microscopy (TEM)

(46)

China 2025 VLP CVA6 NA
linear 15–45% sucrose gradient
at 153,900 g for 4.5 h at 4°C

NA (47)

China 2024 VLP CVA6 NA
Sucrose
Gradient Centrifugation

SDS-PAGE, TEM (48)

Thailand 2024 DNA
CVA6, CVA10,
CVA16, EV-A71

NA NA NA (49)

China 2022 Inactivated CVA6 56°C for 30 min NA NA (50)

China 2021 Inactivated CVA6 Formaldehyde inactivation NA NA (51)

China 2021 Inactivated CVA6 56°C for 30 min NA NA (52)

China 2020 Sub-unit
CVA6, CVA10,
CVA16, CVB3,
EV-A71

NA NA NA (53)

China 2018 VLP
CVA6, CVA10,
CVA16, EV-A71

NA
10–50% sucrose-
gradient ultracentrifugation

TEM (54)

Korea 2018 Inactivated
CVA6, CVA10,
CVA16

1. formaldehyde at 37°C for 5
days;2. 0.025% BPL at 4°C for
3 days.

Ultracentrifugation at
25,000 rpm

NA (55)

China 2018 Inactivated CVA6, CVA10 Formaldehyde
Sucrose
Gradient Centrifugation

TEM and SDS-PAGE (56)

China 2017 Inactivated CVA6 Formaldehyde NA NA (57)

China 2016 Inactivated
CVA6, CVA10,
CVA16, EV-A71

Formaldehyde
sucrose
gradient ultracentrifugation

SDS-PAGE (58)

China 2016 VLP CVA6 NA
Sucrose
Gradient Centrifugation

TEM (59)

China 2016 VLP CVA6 NA NA NA (60)

China 2016 Inactivated CVA6 Formaldehyde NA NA (61)

USA 2015 Inactivated
CVA6, CVA16,
EV-A71

Ethyleneimine
Sucrose
Gradient Centrifugation

NA (62)
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is currently hindered by critical bottlenecks: 1) CVA6 proliferates

inefficiently in conventional vaccine-producing cell lines Vero and

MRC-5; 2) human rhabdomyosarcoma (RD) cells, which can be

used for CVA6 isolation, do not meet the criteria for vaccine

production as its tumorigenic risk. Consequently, there are two

primary avenues for enhancing cultured cell lines: 1) enhancing the

yield of conventional vaccine-producing cell lines; 2) developing

new cell lines with high yield that meet the vaccine production

standards. Zhang et al. utilized the principle of key cell receptor

KREMEN1 (KRM1) for CVA6 infection, and constructed the Vero

cell line Vero-KRM1_#1 with overexpressed KRM1 to promote

CVA6 infection using isolated strain CVA6-TW-00141 (GenBank

accession no. KR706309, D1 subtype) and infectious clones

prepared from CVA6-HLJ11 stain (GenBank accession no.

MN845762, D2 subtype), CVA6-YN17 strain (GenBank accession

no. MN845882, D3 subtype) and CVA6-GD13 strain (GenBank

accession no. KF682363, D3 subtype) (47). The study revealed that

Vero-KRM1_#11 cells, which express elevated levels of KRM1,

exhibited a substantial augmentation in the infection efficiency of

CVA6 strains. These cells demonstrated a growth rate that was

analogous to that of the wild-type Vero cells. Furthermore, the

KRM1 expression level exhibited stability following successive

passages, a property that facilitated the acquisition of high-titer

virus batches through consecutive passages, thereby addressing the

requirements for vaccine production. Although the modification of

Vero cell lines to express the KRM1 receptor provides new ideas
Frontiers in Immunology 06
and tools for the development of CVA6 vaccines, genetic

modifications that lead to the overexpression of receptors may

have regulatory implications. Therefore, the application of receptor

overexpressing modified cell lines in human vaccine production

necessitates further validation in terms of safety, stability, and

other factors.

To date, in vivo results have indicated that the inactivated vaccines

have induced immune responses and demonstrated different levels of

protection in different laboratories (Supplementary Table 1). For

instance, a Korean study of an inactivated trivalent vaccine found

significant differences in immune protection with CVA6, CVA10 and

CVA16 challenge in BALB/c (55). A recent study evaluated the

efficacy of a coxsackievirus A6 vaccine candidate in an actively

immunized mouse model, in which 1.5 and 4.5 µg of the inactivated

CVA6 vaccine were used to challenge two clones (CVA6-R5 and

CVA6-R10) of different virulence. The mice were completely

protected from death in 14 days (51).

Previous studies indicated that the immunogenicity of

inactivated vaccines produced by different inactivation methods

may differ (Supplementary Table 1). Qian et al. conducted a

comparative analysis of the immunogenicity of a trivalent vaccine

(CVA6, CVA10 and CVA16) and two types of inactivators,

formaldehyde and b-propiolactone (BPL) (51). The results

demonstrated that the two inactivators exerted divergent effects

on the immunogenicity of CVA6, CVA10 and CVA16, with BPL

exhibiting superior immune response induction for CVA10 and
FIGURE 4

Vaccine development process of different vaccine platforms. Major steps from vaccine design to in vivo evaluation were displayed. The purification
process entails the use of sucrose gradient centrifugation, while the observation of structure involves the utilization of electron microscopy. The
inactivation process was predominantly achieved through the use of formaldehyde or 56°C for 30 minutes.
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CVA16. Consequently, the evaluation of inactivators in preclinical

evaluation is of paramount importance. Besides, there were two

CVA6 vaccines inactivated by heating at 56°C for 30 minutes

(Table 1), which is actually not practical in the vaccine scale-

up process.
4.2 Live attenuated vaccines

The development of live attenuated vaccines (LAVs) is

contingent on the screening of highly attenuated and genetically

stable strains. Currently, research on live attenuated vaccines is at

the stage of screening low-toxicity strains. Wang et al. constructed

two mutant strains, CVA6-G64S and CVA6-G64T, by genetically

engineering the 64th glycine position (G64) in the RNA-dependent

RNA polymerase (3D polymerase) (64). These mutant strains

exhibited a significantly reduced pathogenicity compared to the

wild type, and the mutation frequency was significantly lower than

that of the wild type under the mutagenic effect of ribavirin,

suggesting that their replication fidelity was higher. This provides

a theoretical basis for the use of CVA6 LAVs. However, the study

did not include an immunogenicity assessment. Furthermore, it

only examined the effect of mutations at a single locus without

comparing the effect of mutations at other loci. In the future, further

screening of highly attenuated vaccine candidates is needed to

elucidate the key pathogenesis and to investigate the safety and

immunogenicity of highly attenuated strains.

Despite the fact that endeavors to develop LAV of CVA6 have

been extremely limited, LAVs have played a pivotal role in the

prevention of viral infections, including smallpox, polio, and

measles. Conventional LAVs are time-consuming involving the

adaptation of virulent viruses to novel hosts, cell cultures, or

suboptimal environments, resulting in a reduction in

pathogenicity while retaining immunogenicity (65). Currently,

genome editing, particularly CRISPR-Cas9, revolutionizes vaccine

development by enabling precise modifications of pathogen

genomes, leading to enhanced vaccine efficacy and safety (66). It

has been posited that gene editing in inactivated vaccines might be a

viable approach that merits further exploration.
4.3 Virus-like particle vaccines

Virus-like particle (VLP) vaccines employ the protein capsid of

a virus devoid of genetic material, rendering it unable to infect but

still capable of stimulating the human immune system to produce

antibodies (67). Due to its unique advantages, such as its

resemblance to natural virus particles and absence of viral genes,

VLP has shown great promise in vaccine development with a high

safety profile. The utilization of VLP in diverse research domains,

including picornavirus vaccine development, has resulted in

substantial advancements, as evidenced by notable breakthroughs

in the field (68). Several studies have demonstrated the efficacy of

CVA6 VLP vaccines in providing protection in mouse

models (Table 1).
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Production platforms for VLP vaccines encompass bacterial,

yeast, baculovirus/insect cell (B/IC) expression systems, among

others. Generally, co-expression of the P1 and 3CD genes is the

main pathway to produce VLP (46). Bacterial and yeast platforms

are suitable for simple and high-yield non-enveloped VLPs, B/IC

platforms are suitable for complex and high-yield VLPs,

mammalian cell platforms are best suited for complex enveloped

VLPs, and plant platforms are suitable for low-cost VLPs (69).

Existing studies have shown that CVA6 VLPs can be readily

expressed in the B/IC expression system (59), Picrosporum (60),

and Chinese hamster ovary (CHO) cells (70). However, these

studies have lacked a comparison of the production efficiency of

different systems and the quality of the products, and it is therefore

recommended that future studies compare those produced by

different expression systems.

In order to conduct a more in-depth investigation into the

factors that affect the production efficiency of CVA6 VLPs, and to

improve this efficiency, Xing et al. used CHO cells to produce

recombinant CVA6 virus-like particles and constructed the first

kinetic model for the vaccine (70). This model is distinct from

traditional recombinant protein production models in that it takes

cell lysis into account in order to evaluate its effect on VLP release.

This model has been shown to address the challenge of monitoring

VLP release patterns, thus providing a more reliable tool for the

development of CVA6 VLP vaccines.

It has been demonstrated that, due to the properties of the viral

structure, CVA6 VLPs exhibit certain defects. A recent study by

Kuijpers and colleague found that these defects manifest in two

ways (71): first, the mechanical stability of CVA6 VLPs is poor, as

evidenced by nanoindentation experiments which indicated that the

force leading to the rupture of the viral capsid of CVA6 VLPs was

significantly lower than that of mature virus particles. Second,

CVA6 VLPs have RNA fragments encoding the viral protein,

which increases their infectious potential. Addressing these

shortcomings is crucial for enhancing the vaccine manufacturing

process to ensure the stability and safety of the vaccine.
4.4 Subunit vaccines

Subunit vaccines consist of a portion of the immunogenic

protein component of a vaccine virus that has been purified to act

as an antigen and usually needs to be mixed with an immune

adjuvant to enhance efficacy (72). The diversity of enterovirus

serotypes increases the complexity of vaccine design, and the

selection of highly conserved epitopes for subunit vaccine design

can avoid the challenges of vaccine development posed by the high

mutation rate of different enterovirus RNAs and enterovirus

recombination between strains. Deng et al. developed a

multivalent vaccine comprising EV-A71, CV-A16, CV-A10, CV-

A6 and CV-B3, based on an immunoinformatics screen for

antigenic epitopes exhibit ing high conservat ism and

immunogenicity (53). Initially, a number of non-toxic and highly

conserved antigenic epitopes in B cells, helper T lymphocyte (HTL)

and cytotoxic T-cell lymphocyte (CTL) cells were predicted by
frontiersin.org
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computer. Thereafter, highly similar antigenic epitopes in the

aforementioned five serotypes were screened out, and the

antigenic epitopes were ligated by the 50 s ribosomal protein L7/

L12 (rpIL) adjuvant to enhance the immunogenicity of the vaccine,

and then DNA synthesis was carried out based on the protein

sequences, and the expression plasmid was cloned and transformed

into Escherichia coli to produce the vaccine protein (53). However,

the results of animal experiments revealed that the antibodies

produced by this vaccine exhibited a more significant

neutralization ability against EV-A71 and CV-B3, and a non-

significant neutralization ability against CVA16, with no

neutralization ability observed against CVA6 and CVA10

(Supplementary Table 1). The suboptimal outcomes might be

caused by low level cross-reactivity of key epitopes among these

serotypes. It is noteworthy that no experiments were conducted to

verify the vaccine’s protective effect. Furthermore, disparities in the

spatial configuration of the proteins comprising each antigenic

epitope following expression in E. coli may contribute to the

suboptimal immunization response. The paucity of data on

subunit vaccines underscores the necessity for further studies to

elucidate the spatial configuration of expressed proteins and the role

of B-cell antigenic epitopes as well.

The subunit approach is associated with a reduction in immune

response, necessitating the incorporation of immunoadjuvants to

enhance immune stimulation. Beyond that, optimization of delivery

systems, tuning the size of particulate vaccines, targeting specific

cells (e.g., dendritic cells) of the immune system, and adding

components to aid vaccine efficacy in whole immunized

populations (e.g., promiscuous T-helper epitopes) require

harmonization (73). Nevertheless, subunit vaccines present the

immune system harmless fragments of the target pathogen, to

trigger humoral and cellular immune activation (74). It is of great

value in the development of monovalent as well as multivalent

vaccines of enteroviruses in the future.
4.5 DNA vaccines

A DNA vaccine is a genetically engineered vaccine that contains

genes encoding specific antigens and sequences to initiate and terminate

gene expression (75). Following injection into the body, the DNA

vaccine enters the cell and continuously synthesizes the corresponding

antigenic proteins within the cell, producing a long-lasting immune

effect (49). A further advantage of DNA vaccines is that they are free of

infectious particles and infectious RNAs, which do not cause viral

infections and provide a high level of safety (76). Bello et al. developed a

DNA vaccine comprising a DNA sequence that contains the entire VP1

protein of EV-A71 and six known neutralizing B-cell epitopes from EV-

A71, CVA16, CVA10 and CVA6 for the synthesis of VP1me, and

subsequently the VP1me gene was cloned into the mammalian

expression vector pVAX1 to produce a VP1me gene vaccine (49).

Subsequent immunofluorescence staining and immunoblotting

experiments demonstrated that the DNA vaccine could induce

HEK293A cells to express VP1me protein. BALB/c mice were
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immunized with the DNA vaccine, and the serum levels of IgG

antibodies against VP1me protein and the frequency of CD8+ T cells

in splenocytes were examined. The results demonstrated that the DNA

vaccine exhibited superior immunogenicity compared to the control

group, as indicated by the elevated levels of both humoral and cellular

immunity. However, the study did not ascertain whether the antibodies

produced by the vaccine possessed a neutralizing effect on the target

virus. As the data DNA vaccine of CVA6 is limited, its immunogenicity,

efficiency, humoral and cellular immunity, safety needs more critical

and scientifically-designed in vivo evaluation in the future.
4.6 mRNA vaccines

The mRNA vaccines, akin to DNA vaccines, are vaccines in

which mRNA fragments encoding viral antigens are injected into

the body via a delivery system to enable human cells to synthesize

antigens autonomously, thereby activating the immune system to

generate an immune response against the pathogen (77). In

comparison with DNA vaccines, mRNA can directly enter the

cytoplasm for translation and can produce antigens to activate the

immune response more expeditiously (78). As a new generation

technology, mRNA vaccines demonstrate significant advantages

over traditional vaccines, including enhanced safety, efficiency in

production, and immunogenicity (79). These advantages have led to

the identification of broad application prospects for mRNA

vaccines. The first successful application of an mRNA vaccine in

the prevention of SARS-Cov-2 has garnered considerable attention

and recognition (80). In recent years, there has been a significant

increase in the number of mRNA vaccine studies, with current

research focusing on mRNA vaccines for significant viruses,

including the influenza virus, respiratory syncytial virus, and HIV

(81–84). With regard to delivery systems, the development of lipid

nanoparticle (LNP) technology has led to significant advancements

in the stability and targeting of mRNA (82).

A team from China recently conducted a study in which they

evaluated the D3a CVA6 mRNA vaccine at the mouse level for the

first time (46). The backbone sequence containing 5′UTR, SpeI
cleavage site, Kozak sequence, tPA signal peptide, humanized P1

region (or VP1 region), BamHI cleavage site, 3′UTR, and 120

adenylic acids (ployA) was constructed for in vitro transcription.

They compared the immunogenicity and protective effects of the

D3a CVA6 mRNA vaccine with the VLP vaccine produced in pichia

pastoris. The study investigated the protective effects of VLP and

core-shell structured lipopolyplex mRNA (LPP-mRNA) vaccines

against CVA6. Their results suggested that cellular immunity

appeared first and protected the animals from lethal doses. The

VLP vaccine was found to elicit neutralizing antibodies and enhance

cellular immunity, thereby protecting mice against a lethal CVA6

challenge. In contrast, the LPP-mRNA vaccine induced robust T-

cell immunity, providing cross-protection against CVA10. This

study represents the first trial of a CVA6 mRNA vaccine and the

first comparison of VLP and mRNA vaccine immunogenicity and

protective effects based on the D3a CVA6 sub-genotype. The
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findings of this study offer valuable insights for the development

and immunization strategies of EV vaccines.

Effective virus-specific cellular response is essential for viral

clearance, as the emerging variants have been demonstrated to

efficiently evade prior humoral immunity (85). Recently, Tai et al.

developed a mRNA-based T-cell-inducing antigen that encodes 3

SARS-CoV-2 peptides enriching human HLA-I epitopes, which

induced broad and potent cellular responses in both humanized

HLA-transgenic mice and nonhuman primates. This mRNA format

allows for in situ production of 3 epitope-enriched peptides in

tandem (HLA-EPs), which contributes to the rapid formation of the

immunopeptidome and efficient access to the HLA compartment of

antigen-presenting cells (86). The findings of this study suggest that

the development of vaccines using antigen designs that target the

cellular immune response, or the combinational activation of the

humoral and cellular immune responses, may represent a

promising strategy for the creation of next-generation vaccines.

Indeed, a significant benefit of mRNA-based vaccines is the

endogenous synthesis of encoded proteins. This process enables

the presentation of foreign antigens by the major histocompatibility

complex (MHC) (87).
4.7 Multivalent vaccines

The current multivalent vaccines that include serotypes such as

CVA6 principally comprise inactivated vaccines, VLP vaccines,

subunit vaccines, and DNA vaccines (Table 1). Among these,

inactivated and VLP vaccines have been the subject of substantial

research by various research teams, while the evidence for subunit

and DNA vaccines remains comparatively limited. All the

tetravalent vaccines listed in Table 1 encompass four serotypes,

namely CVA6, CVA10, CVA16, and EV-A71. However, due to the

varying immunogenicity of antigens across serotypes and the

differing concentrations of neutralizing antibodies (NtAb)

produced by these antigens, there is a possibility of one

immunogen predominating over others, resulting in an

imbalanced immune response and inadequate protection against

the target pathogen(s). Furthermore, due to antigenic interference

among different antigens, the concentration of NtAb produced by

multivalent inactivated vaccines may not match that of monovalent

vaccines. Consequently, to ensure the production of sufficient NtAb

and to induce a balanced immune response for each serotype, the

ratio of the different antigens in multivalent vaccines must be

optimized (55, 56).

In a study of a tetravalent VLP vaccine against EV-A71, CVA16,

CVA10, and CVA6, the tetravalent VLP vaccine exhibited NtAb

titers similar to those of the monovalent vaccine, and the binding

capacity of sera from mice in the tetravalent VLP vaccine was

comparable to that of the monovalent vaccine (54). These findings

suggest that the antigenic components of the four antigens are well

compatible in the tetravalent vaccine. The study also observed that

the NtAb titers of CVA10, CVA6 and CVA16 monovalent VLP

were significantly lower than those of EV-A71 VLP, suggesting that

CVA6, CVA10 and CVA16 antigens may possess reduced
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immunogenicity compared to those of EV-A71, and that

increasing the proportions of these antigens in a multivalent

vaccine could potentially bridge the immunogenicity gap with

EV-A71 (54). These results indicate in intra- and inter-vaccine

interference among components can lead to suboptimal responses

given the complexity of immune responses to multiple antigens (88,

89). This phenomenon has the potential to influence the overall

immune response, thereby reducing the effectiveness of the vaccine.

The mechanisms underlying this interference may include

competition for T-cell help and B-cell activation, which are

crucial for generating a strong and lasting immune response (90).

In vaccine responses, T cell-B cell interactions are orchestrated

through T follicular helper (Tfh) cells, which promote germinal

center formation and B cell maturation. Antigen-presenting

dendritic cells prime CD4+ T cells to differentiate into Tfh cells,

which secrete IL-21 and express CD40L to drive B cell proliferation,

somatic hypermutation, and antibody class-switching. This process

generates high-affinity, long-lived plasma cells and memory B cells,

critical for durable immunity (91). Adjuvants enhance these

interactions by boosting dendritic cell activation and antigen

presentation. Dysfunctional Tfh-B cell crosstalk can impair

vaccine efficacy (92). Targeting these pathways optimizes vaccine

design, particularly for pathogens requiring robust neutralizing

antibodies. Taken together, the immunological perspective on

antigenic interference in multivalent vaccines highlights the

intricacies involved in the formulation of effective vaccines.

Antigenic interference, in which co-administered antigens

compete for immune resources, can be studied via in vitro B/T-

cell co-cultures with multiplexed antigen exposure or in vivomodels

tracking germinal center dynamics (e.g., single-cell RNA-seq).

Mitigation strategies have been developed to address these

challenges, including the optimization of antigen dosing ratios to

prevent dominance, the use of adjuvants (e.g., TLR agonists) to

broaden APC activation, and the implementation of staggered

immunization schedules to reduce competition (93). Preclinical

studies demonstrate that the strategic pairing of adjuvants with

antigens, in conjunction with the temporal modulation of prime-

boost intervals, fosters epitope spreading without inducing immune

overload. This approach achieves a balanced immunogenicity

profile across multivalent vaccines (94).
5 Strain screening and
immunogenicity

Vaccine strain screening is a key step in preclinical research and

it is important to screen strains with high antigenicity and stability.

Among the KMB17 cell-adapted strains, only KYN-A1205 caused

sickness or partial death in suckling mice, and its virulence was

greater than that of the RD cell-adapted strain (95). The KYN-

A1205 strain caused severe sensitization of mouse muscle tissue and

pathological changes, including muscle necrosis and nuclear

fragmentation in the forelimb and hindlimb. It showed strong

pathogenicity, good immunogenicity and genetic stability, making

it suitable for use as an experimental CVA6 vaccine candidate (95).
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Antigenic analysis showed cross-antigenicity between strains of

CVA6 subgenotypes A, B2 and D1-D3, meaning that antibodies

raised against one subtype cross-neutralize other subtypes of

CVA6 (96).

Due to differences in immunogenicity and reactivity of different

strains, the use of different strains in the NtAb CVA6 assay may

affect NtAb titers. Gao et al. selected S112 as a test strain to compare

the titer of different NtAb and their cross-neutralization ability with

other strains (97). S112 is easy to neutralize with the lowest MAX/

MIN ratio, making it an ideal choice for assessing the

immunogenicity of the CVA6 vaccine and broad potency

assessment (97). In addition, antibodies against strain S112 were

found to have good broad-spectrum cross-protection against

genotype A and subtypes D1 and D3, suggesting that S112 could

be a candidate strain for CVA6 vaccine.

To standardize immunogenicity assessment criteria for vaccines

and to ensure the quality and validity of antibody concentration for

immunogenicity assessment, the National Institutes for Food and

Drug Control (NIFDC) has established the first national standard

for neutralizing antibodies against CVA6, in which the candidate

has good long-term stability with 3-year follow-up of NtAb titers

(98). The establishment of harmonized antibody concentration

standards can effectively reduce inter-laboratory and strain testing

variation and improve the accuracy of vaccine evaluation.
6 Preclinical in vivo evaluation

6.1 Mouse model

Currently, the EV vaccine evaluations have been mainly

conducted in BALB/c or Institute of Cancer Research (ICR)

mouse models (Figure 1). In general, intraperitoneal (i.p.),

intramuscular (i.m.), and intracranial (i.c.) injections are the

traditional routes of infection (48). However, the natural routes of

infection for EVs are gastrointestinal and respiratory. Therefore, it

is important to construct animal models of the natural routes of

infection for vaccine evaluation. Li et al. constructed an orally

infected 10-day-old ICR mouse model to mimic the normal routes

of infection (50). The model was able to mimic the typical

symptoms and pathological changes of infection through physical

injury caused by gavage, showing CVA6 skin symptoms such as, as

well as skin hair loss, neurological complications such as poor

mental health, lethargy, panic, ataxia and limb paralysis (99). In

addition, CVA6 replication and CVA6 VP1 antigen were detected

in the brain and spinal cord tissue of CVA6-infected mice,

suggesting that the spinal cord may be the pathway for the virus

to cross the blood-brain barrier (50).

Sun et al. further confirmed the inflammatory damage caused

by CVA6 in the central nervous system (CNS) of neonatal mice,

with CVA6 preferentially infecting astrocytes and neurophilic

CVA6, and found that CVA6 viral antigen was co-localized with

the astrocyte marker (99). The co-localization of CVA6 viral

antigen and GFAP suggests that astrocytes may be the primary
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infected cells in the context of CVA6 infection. The results of this

study showed that CVA6 infection resulted in pathological changes,

including edema and swelling of neuronal cells in mouse brain

tissue. This suggests that neurons may also be damaged, leading to

neurological dysfunction, paralysis and other symptoms.
6.2 Non-human primate model

The immune system of neonatal mice has not yet developed,

which poses a significant challenge in inducing a complete and fully

functional immune response (100). In addition, mouse models of

HFMD are typically infected a few days after birth and the age of

infection differs significantly from that of human infants, making it

difficult to fully simulate the manifestations observed in certain age

groups. In addition, the physiology and immune functions of mice

differ significantly from those of humans (101), and mouse models

are only able to mimic one or more clinical symptoms of HFMD,

but cannot fully reproduce the pathogenic characteristics and

pathogenesis of HFMD infection. In order to obtain infection

data that more closely resembles the human infection situation,

Duan et al. successfully established the first NHP model of CVA6

infection. Rhesus monkeys have a high degree of genetic,

physiological and immune system similarity to humans and are

able to display symptoms of HFMD analogous to those seen in

humans (102). This allows the rhesus monkey model to better

mimic the course and progression of infection in humans. They

used CVA6 to infect 3–4 months old rhesus monkeys via the

respiratory or gastrointestinal tract. Infected rhesus monkeys

exhibited symptoms similar to patients, including fever, skin

rashes or herpes-like lesions, blood cell changes, viremia and

virus shedding (102). Pathological observations show an

inflammatory response in the intestinal tract and lymph node

tissue. During the recovery period, acute symptoms subsided, but

viral replication and shedding persisted, high levels of NtAb

continued to be produced, and there were no significant

differences in the outcome of infection whether the monkeys were

infected via the respiratory or gastrointestinal tract. This model

provides an important tool for studying the pathogenic mechanism

and immune response in primates, and facilitates the transition of

relevant vaccine and drug studies to clinical trials.

NHP models are critical in vaccine development due to their

genetic, immunological, and physiological proximity to humans.

They enable rigorous evaluation of vaccine safety, immunogenicity,

and protective efficacy in complex immune systems, bridging

preclinical and clinical trials. NHPs recapitulate human-like

immune responses to adjuvants, dosing regimens, and mucosal or

systemic delivery routes, informing optimal vaccine design (103).

For example, NHP studies validated COVID-19 vaccine correlates

of protection (104). However, ethical constraints, interspecies

variability, and high costs necessitate careful experimental design.

Advanced imaging, multi-omics profiling, and controlled challenge

studies in NHPs remain indispensable for de-risking

clinical translation.
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6.3 Preclinical animal model selection

The development of enterovirus vaccines relies on animal

models to evaluate immunogenicity, protective efficacy, and

safety. The following criteria are considered essential in the

selection of ideal models:
Fron
1. Susceptibility: The organism exhibits the capacity to replicate

natural human infection pathways, including the oral and

enteric routes, while concurrently manifesting clinical

indications characteristic of various pathological conditions,

such as neurological or cardiac diseases. Transgenic mice that

express human receptors (e.g., hSCARB2 for EV-A71)

facilitate the study of pathogenicity (105).

2. Immune response alignment: It is imperative that models

generate human-like humoral and cellular immunity (106).

Neonatal mice, despite their immunological immaturity,

are utilized in conjunction with adjuvants to amplify

response (107).

3. Scalability: Mice offer cost-effective, high-throughput

screening due to two factors: their rapid breeding rate

and their moderate susceptibility (108).

4. Translational relevance: NHP have been employed as a

model system to validate cross-species protection, yet they

are subject to ethical and cost constraints. In order to

optimize the clinical translation of NHP studies, it is

essential that these studies employ controlled challenge

protocols, longitudinal immune monitoring (neutralizing

antibodies, cellular responses), and dose-ranging designs
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that mirror those employed in human trials. Co-

administration studies and mucosal sampling have been

shown to refine delivery strategies (109). NHP-derived

correlates of protection (e.g., antibody titers) directly

inform clinical endpoints, while safety and toxicity data

guide risk mitigation in phase I trials. The implementation

of rigorous statistical powering and heterologous prime-

boost testing in NHPs has been demonstrated to reduce the

incidence of late-stage clinical failure risks (110, 111).
7 Comparison of vaccine platforms:
efficacy, safety, stability, cost, and
production

Inactivated vaccines, such as those targeting polio and enterovirus

EV-A71, demonstrate moderate efficacy, often necessitating adjuvants

or booster doses to enhance immunogenicity (42). Their non-

replicative nature ensures high safety, while stability at 2–8°C

facilitates distribution in resource-limited settings (Figure 5).

However, production costs remain moderate due to requirements for

pathogen culture and inactivation. In contrast, live-attenuated vaccines

elicit robust and durable immunity by mimicking natural infection but

can also elicit unintended off-target effects (112). Despite cold chain

dependency, their low production cost supports widespread use

(Figure 5). VLP vaccines achieve high efficacy through structural

mimicry of native virions while maintaining excellent safety profiles

due to the absence of genetic material (Figure 5) (69). However, their
FIGURE 5

Comparative analysis of CVA6 vaccines of different technology. The application potential and safety for each vaccine were comprehensive assessed
by the accumulating evidence. These discourses, however, do not necessarily represent the final path to clinical translation of CVA6 vaccine.
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reliance on recombinant protein assembly elevates production costs,

and refrigeration is required to prevent aggregation.

DNA vaccines induce strong cellular immunity (113). Their

room-temperature stability and scalable plasmid-based production

offer logistical advantages (Figure 5), yet limited clinical adoption

underscores unresolved delivery challenge (114). mRNA vaccines,

notably employed during the COVID-19 pandemic, combine high

efficacy with rapid design flexibility (80, 115). Transient

reactogenicity linked to lipid nanoparticle (LNP) components and

stringent ultracold storage requirements (-20°C to -70°C) pose

challenges, though costs are moderated by cell-free in vitro

transcription platforms(Figure 5) (79). Subunit vaccines, such as

hepatitis B vaccines, exhibit variable efficacy dependent on

adjuvants but are highly safe due to purified antigen formulations

(116). Their stability at 2–8°C and low-cost production via yeast or

bacterial expression systems make them logistically favorable.

Taken together, mRNA and VLP technologies prioritize rapid

development and high efficacy but face stability and cost barriers,

whereas inactivated and subunit vaccines provide pragmatic

solutions for global deployment, particularly in resource-

constrained regions.
8 Potential adverse effects and safety
concern

The potential adverse effects, toxicity concerns, and human

risks associated with vaccines have garnered increasing attention in

recent years, particularly in the context of the COVID-19 pandemic,

when the mRNA vaccines were first applied. While mRNA vaccines

have been heralded for their rapid development and efficacy,

understanding their safety profile is crucial for public health. Two
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major concerns of mRNA vaccines include the potential for

antibody-dependent enhancement (ADE) (117) and systemic

leakage of vaccine components that might lead to unintended

immune responses (115). Moreover, the reactogenicity of mRNA

vaccines has been a focal point in clinical assessments as varying

levels of reactogenicity that could influence public perception and

vaccine uptake (118). VLP-based vaccines are generally safe, while

novel adjuvants may enhance reactogenicity, necessitating long-

term monitoring (119).

Inactivated vaccines, such as the EV-A71 vaccine targeting

severe HFMD, demonstrate robust safety profiles with primarily

mild local (pain, erythema) reactions or low-grade fever, as

evidenced by phase III trials (42). Live-attenuated vaccines can

stimulate both humoral and cellular responses, while adverse events

such as headache, muscle pain, fever diarrhea, bloody stool, and

vomiting need critical evaluation in clinical trial, particularly among

children (120, 121). DNA vaccines pose theoretical concerns about

genomic integration, with transient injection-site reactions as the

main side effect (122). Subunit vaccines are highly safe, though

adjuvants like aluminum salts may trigger local inflammation or

rare hypersensitivity (123, 124). Collectively, manufacturing rigor

and post-marketing surveillance are critical for all platforms to

mitigate residual risks. Beyond that, challenges are also faced for

vaccine stability associated with storage conditions (125). Vaccine

stability is influenced by thermal degradation, pH fluctuations,

hydrolytic damage, and UV degradation. Excipient formulation

(e.g., stabilizers, buffers) and storage conditions (humidity,

temperature) critically impact macromolecular integrity.

Manufacturing stresses (shear forces, freeze-thaw cycles) may

destabilize antigen conformation or LNPs in mRNA vaccines.

However, Muramatsu, et al. demonstrate that mRNA-LNPs can

be lyophilized (freeze-dried) and stored at ambient temperature for

12 weeks and at 4°C for 24 weeks without substantial changes to
FIGURE 6

Roadmap for actionable priorities for future CVA6 vaccine development. International collaborative efforts should be focused on global genome data
sharing, comprehensive vaccine platform comparison, efficient animal models and scientific clinical trials.
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their physical properties or mRNA delivery efficiency (126). Their

findings on the long-term storage and stability of lyophilized

mRNA-LNPs are critical to the widespread development and

implementation of LNPs for COVID-19 and other diseases.
9 Future prospects for CVA6 vaccine
development and clinical translation

With the ongoing global epidemic of CVA6 and the public

health challenges it poses, vaccine research has become a key link in

building the HFMD prevention and control system. Based on

current research progress and technological breakthroughs, the

future development of CVA6 vaccines must focus on 1)

multivalent vaccine development and potential antigenic

interference among components; 2) the use of next-generation

vaccine technologies such as mRNA technology; 3) innovative

vaccine production technology; 4) scientific preclinical

experiments and clinical trials; 5) conflict of antigenic variation

and broad-spectrum immune protection (Figure 6).

In 2016, the Chinese FDA-approved EV-A71 vaccine was first

introduced in China and then programmed as a category 2 vaccine

(44). Li et al. evaluated the immunogenicity and safety of three

inactivated enterovirus A71 vaccines in children aged 6–35 months

in China and found high seroconversion rates, but no serious adverse

events in any group (42). Over the past decade, several regional studies

have also shown that EV-A71 vaccination significantly reduced the

incidence of EV-A71-associated HFMD in China. The latest real-world

research data showed that EV-A71 vaccine effectively controlled the

occurrence of EV-A71 HFMD in China, but it varied due to differences

in vaccination coverage and population density, and >20% vaccination

coverage was recommended for children under 5 years of age (43).

Therefore, the control of enteroviruses depends not only on the success

of vaccine development, but more importantly on whether the

vaccination coverage of the age-appropriate population can meet the

standard. For example, He et al. found that EV-A71 vaccination in

Nanchang, China, consistently maintained >20% coverage, andHFMD

pathogen surveillance showed that no EV-A71 HFMD cases were

monitored in the area after 2018. The results of this study are consistent

with the findings of the real-world studies mentioned above, suggesting

that effective vaccination rates are essential to prevent rebound of viral

infections. At present, CVA6 vaccines of all types are still in preclinical

development, and the majority of studies have centered on inactivated

and VLP vaccines, both of which have exhibited superior

immunogenicity and protection efficiency (Figure 5). Furthermore,

the successful experience with inactivated EV-A71 vaccines in China

serves as a valuable template for the development of inactivated

CVA6 vaccine.

Although CVA6 started to circulate dominantly in China and

many other countries, pathogen spectrum shift occurs periodically,

which is a challenge for vaccine development (6, 7, 32, 127). It is

recommended that the future focus of research and development

should be on multivalent vaccine or mRNA vaccine. A concerted

effort is required to achieve a harmonization between antigenic

variation and the overarching objective of attaining comprehensive
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immune protection. The concepts underpinning the design of the

SARS-Cov-2 mRNA vaccine constitute a significant reference point

for the ongoing development of future enterovirus mRNA vaccines.

Furthermore, the combination of mRNA vaccines with other

antigenic vaccines has been demonstrated to be effective in the

induction of both cellular and humoral immunity (86). However,

due to the short market and application time of mRNA vaccines in

humans, the safety evaluation of mRNA vaccines requires longer

and continuous monitoring.

Finally, a multitude of challenges must be surmounted to achieve

clinical translation, largely due to the rigorous regulatory frameworks

encompassing preclinical safety (toxicology, immunogenicity),

chemistry, manufacturing, and controls (CMC), and phased clinical

trials (Phase I-III). It is imperative to note that critical steps include

Investigational New Drug (IND) submissions, Good Manufacturing

Practice (GMP) compliance, and protocol alignment with International

Conference on Harmonization (ICH) guidelines. Risk management

plans address safety uncertainties, while real-time stability data ensure

product integrity. Subsequent to approval, Phase IV surveillance

monitors long-term efficacy and adverse events. The implementation

of global harmonization measures, such as those facilitated by the

World Health Organization (WHO) prequalification program, has

been demonstrated to expedite the deployment of countermeasures, a

phenomenon that is particularly salient in the context of

pandemic response.
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