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Lipid metabolic reprogramming 
in colorectal cancer: 
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Shanghai, China 
Colorectal cancer (CRC) is the third most common cancer worldwide, and its 
high incidence, mortality, and treatment resistance highlight the urgency of 
exploring new therapeutic targets. As research into cancer metabolic 
reprogramming deepens, the central role of lipid metabolism abnormalities in 
CRC  progression  has  gradual ly  become  apparent .  In  the  tumor  
microenvironment (TME), conditions such as hypoxia, glucose deprivation, and 
lactic acid accumulation alter the energy demands of tumor cells, driving 
metabolic reprogramming in lipid uptake, synthesis, and oxidation. This 
reprogramming helps maintain high energy needs and supports the malignant 
growth of tumor cells. This lipid metabolic reprogramming provides tumor cells 
with the necessary energy and enhances their proliferation, invasion, immune 
evasion, and resistance characteristics. Moreover, the lipid metabolic 
reprogramming of tumor cells is closely related to various cells within the TME, 
and these interactions promote, to some extent, the remodeling of the tumor 
microenvironment, further driving tumor development. Emerging lipid detection 
technologies position specific lipid molecules as promising biomarkers for 
auxiliary diagnosis and prognostic evaluation. Concurrently, targeting key lipid 
metabolic pathways offers innovative strategies to optimize existing therapies 
and overcome drug resistance. This review summarizes the basic and abnormal 
mechanisms of lipid metabolism in CRC, lipid metabolic interactions in the tumor 
microenvironment, the regulatory network between the gut microbiota and lipid 
metabolism, and the progress in therapeutic strategies targeting lipid 
metabolism. By exploring the interaction between CRC and lipid metabolism in 
depth, this review aims to provide new ideas and theoretical support for the 
treatment, early intervention, and prognosis evaluation of CRC. 
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1 Introduction 

CRC is a leading cause of cancer-related mortality globally, with 
a 5-year survival rate of only 65% (1). In recent years, with changes 
in lifestyle and population aging, the incidence and mortality rates 
of CRC have shown an upward trend worldwide, especially in some 
developing countries where the growth rate is more significant 
(2, 3). By 2040, there will be 3.2 million new cases and 1.6 million 
deaths globally (4). Currently, clinical management of CRC relies 
on a multidisciplinary treatment approach, including surgical 
resection, adjuvant chemotherapy (such as the FOLFOX 
regimen), radiotherapy, and targeted therapy (anti-EGFR 
monoclonal antibodies, anti-VEGF drugs) (5–7). However, these 
therapeutic strategies still have numerous limitations. First, more 
than half of early-stage patients experience recurrence or metastasis 
after surgery (8); second, approximately 23% of CRC patients have 
metastasis at the time of diagnosis, for whom effective treatments 
are still lacking. The efficacy of targeted drugs is limited by 
molecular heterogeneity, such as only about 40% of metastatic 
CRC patients carrying the wild-type RAS gene benefiting from 
cetuximab treatment (9); additionally, about 90% of microsatellite 
stable (MSS) CRC patients do not meet the criteria for immune 
checkpoint inhibitors (such as PD-1 inhibitors), and more than half 
of patients with metastatic defective mismatch repair (dMMR) CRC 
do not respond to immune checkpoint inhibition (ICI) (10). 
Moreover, during treatment, tumor resistance is a significant 
concern. Therefore, there is an urgent need to develop new 
intervention strategies targeting the core biological mechanisms of 
CRC progression to address current therapeutic challenges. 

In recent years, with the continuous advancement of 
metabolomics and oncology research, metabolic reprogramming has 
gradually become an important focus in cancer research (11, 12). 
Tumor cells alter their energy acquisition methods due to their high 
metabolic demand, preferentially utilizing glycolysis for rapid energy 
supply through the “Warburg effect,” while also undergoing profound 
remodeling of lipid and amino acid metabolic pathways (13). This 
metabolic adaptation not only meets the biosynthetic demands (such 
as membrane phospholipids and signaling molecules) but also 
regulates epigenetic modifications, oxidative stress responses, and 
the immune microenvironment through metabolic products (14). In 
CRC, metabolic reprogramming exhibits significant stage-dependent 
dynamics: early-stage tumors primarily activate glycolysis (15), while 
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in advanced stages, tumors display various metabolic abnormalities, 
with lipid metabolism disorders (such as overexpression of fatty acid 
synthase, FASN) becoming increasingly prominent (16, 17). Especially 
when glucose is limited in the microenvironment, tumor cells tend to 
shift toward lipid metabolism (18). Lipid metabolic reprogramming 
plays a variety of key roles in the occurrence and development of CRC. 
On the one hand, excessive fatty acid synthesis provides membrane 
components and energy reserves for rapid proliferation (19, 20), 
contributing to tumor cell proliferation; on the other hand, abnormal 
lipid metabolism can enhance lipid-driven cell signaling (21), 
contributing to tumor cell proliferation; on the other hand, abnormal 
lipid metabolism can enhance lipid-driven cell signaling (22–24). 

Although intervention strategies targeting lipid metabolism 
(such as the fatty acid synthase inhibitor TVB-2640) have shown 
potential in clinical trials, their efficacy is limited by tumor 
heterogeneity, metabolic pathway redundancy, and the complexity 
of host-microbiome interactions (25, 26). Therefore, systematically 
analyzing the dynamic regulatory network of lipid metabolism 
reprogramming in CRC and elucidating its interactions with the 
tumor microenvironment (TME) and gut microbiota is an essential 
step in overcoming the treatment challenges of CRC. In this review, 
we summarize the key mechanisms of lipid metabolic abnormalities 
in CRC in recent years, their relationship with the tumor 
microenvironment and gut microbiota, and discuss therapeutic 
strategies targeting lipid metabolism, with the aim of providing 
theoretical support for CRC treatment. 
2 Lipid metabolism in CRC 

Lipid metabolism is a core biological process that maintains 
cellular homeostasis, encompassing lipid uptake, lipid synthesis, 
and lipid oxidation (Figure 1) (27).  At  the same mass,  lipid
metabolism can provide more energy than glycolysis and amino 
acid metabolism. In CRC cells, lipid metabolism provides energy, 
builds biological membranes, and serves as secondary messengers to 
participate in cell activity signaling pathways (28), supporting 
unique functions such as cell proliferation, growth, invasion, and 
angiogenesis. Table 1 summarizing the key factors involved in lipid 
metabolism in CRC. 
2.1 Abnormal lipid uptake in CRC 

Lipid uptake is an essential pathway for cells to acquire lipids, 
mainly involving the uptake of fatty acids (FAs) and cholesterol 
(29). Rapidly growing tumors require a large amount of lipids. 
Studies have shown that fatty acid uptake is mainly mediated by 
fatty acid transport proteins (FATs). Known transport proteins 
include fatty acid translocase (CD36), fatty acid transport proteins 
(FATPs), and fatty acid-binding proteins (FABPs) (30).CD36 is a 
cell surface scavenger receptor that participates in lipid uptake as a 
lipid transport protein. CD36 expression is upregulated in various 
tumors such as breast cancer, gastric cancer, and CRC (31–33). 
Targeted inhibition of CD36 can suppress the growth and 
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metastasis of multiple cancers (34–36), indicating its crucial role in 
cancer development. In CRC, CD36 expression is significantly 
higher in tumor tissues compared to adjacent tissues, and CD36 
expression is elevated in the liver and non-metastatic lesions (37). 
Inhibition of CD36 can, to some extent, suppress CRC metastasis 
(38). Bioinformatics analysis has shown that CD36 regulates cell 
proliferation and apoptosis in CRC via the PPAR signaling pathway 
(39). Mechanistic studies have demonstrated that CD36 plays an 
important role in CRC models. Overexpression of CD36 increases 
the proliferation, invasiveness, and colony-forming ability of CRC 
cell lines (HCT116, HT29), upregulates survivin expression, and 
decreases caspase-3 and PARP cleavage (38). In CD36 knockdown 
Frontiers in Immunology 03 
mouse models, the number and volume of lung metastases are 
significantly reduced after tail vein injection, suggesting that CD36 
plays a key role in cell survival and proliferation (37). The FATPs 
family is another class of key transport proteins, with six 
homologous proteins (FATP1-6) in the human body. Previous 
studies have reported that FATPs are upregulated in most 
cancers, such as breast cancer, melanoma, renal cell carcinoma, 
and CRC (40–42), and promote tumor growth and invasion by 
regulating fatty acid uptake (42). In CRC, FATP5 overexpression is 
particularly significant. Research has shown that it plays a key role 
in regulating the cell cycle, but its impact on cancer invasiveness 
remains unclear and requires further investigation (43).FABPs, 
FIGURE 1 

Overview of lipid metabolic reprogramming in colorectal cancer cells. Exogenous fatty acids enter cells via lipid transport proteins (CD36, FABPs, 
FATPs). Intracellularly, fatty acids are activated to acyl-CoA by ACSL. Long-chain acyl-CoA is then converted to acylcarnitine by carnitine CPT1. After 
translocation across the inner mitochondrial membrane, carnitine CPT2 regenerates acyl-CoA. Within the mitochondrial matrix, acyl-CoA undergoes 
b-oxidation to yield acetyl-CoA, which enters the tricarboxylic acid (TCA) cycle for complete oxidation. Citrate from the TCA cycle effluxes to the 
cytosol, where ACLY catalyzes its conversion to cytosolic acetyl-CoA.ACC subsequently carboxylates acetyl-CoA to malonyl-CoA. Acetyl-CoA 
and malonyl-CoA are condensed by FASN to form palmitate, which is elongated to 18–24 carbon chains by the ELOVL enzyme family in the 
endoplasmic reticulum. Activated palmitate can also be desaturated by SCD to generate MUFA and PUFA. Proteins with increased expression in CRC 
are highlighted in peach. ACC, acetyl-CoA-carboxylase; ACLY, ATP-citrate lyase; ACSL, acyl-CoA synthetase long-chain family; CPT, carnitine 
palmitoyl transferase; ELOVL, elongation of very-long-chain fatty acids protein; FA, fatty acid; FABP, fatty acid binding protein; FASN, fatty acid 
synthase; FATP, fatty acid transport protein; SCD, stearoyl-CoA desaturase; SFA, saturated fatty acid; TAG, triacylglycerols; MUFA, monosaturated 
fatty acid; PUFA, polyunsaturated fatty acid. 
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members of the lipid-binding protein superfamily, are widely 
involved in intracellular lipid transport and storage. In the 
APCMin mouse model, knockout of the FABP1 allele reduces the 
number of adenomas, suggesting the role of this protein in CRC 
development (44). In in vitro models, FABP5 is associated with a 
more active cell cycle, and knocking down FABP5 leads to cell cycle 
arrest at the G1 phase and apoptosis (45). FABP4 can enhance 
cellular lipid metabolism through the AKT pathway and induce 
intracellular lipid droplet formation (46). Immunohistochemistry 
shows that FABP4 expression is associated with stronger tumor 
invasiveness and poorer prognosis (47). Overall, in colorectal 
cancer, cancer cells can increase fatty acid uptake by upregulating 
the expression of FATPs, CD36, and FABPs, thereby maintaining 
the rapid proliferation and growth of tumors (48). 
2.2 Abnormal lipid synthesis in colon 
cancer 

CRC cells activate abnormal lipid synthesis to meet their rapid 
proliferation needs. Lipid synthesis is a process centered around 
acetyl-CoA as a metabolic hub, generating products like fatty acids 
and cholesterol through various enzymatic reactions. Fatty acid 
synthesis begins with acetyl-CoA generated in the mitochondria, 
which is transported to the cytoplasm through the citric acid
Frontiers in Immunology 04
pyruvate cycle. In the presence of ATP-citrate lyase (ACLY), 
acetyl-CoA  is  converted  into  cytoplasmic  acetyl-CoA.  
Subsequently, acetyl-CoA carboxylase (ACC) carboxylates acetyl-
CoA into malonyl-CoA, which is the rate-limiting step. Fatty acid 
synthase (FASN) then catalyzes a cyclical process of condensation, 
reduction (NADPH providing electrons), dehydration, and 
reduction, ultimately producing palmitic acid (a 16-carbon fatty 
acid), which is extended to 18–24 carbon chains in the endoplasmic 
reticulum by the ELOVL enzyme family. Immunohistochemical 
analysis of CRC patients reveals ACLY overexpression correlating 
with metastasis. Mechanistic studies demonstrate ACLY stabilizes 
CTNNB1 (b-catenin) protein, enhancing its transcriptional activity 
to promote cancer cell migration and invasion (49). Additionally, 
elevated ACLY expression induces acetyl-CoA accumulation, 
facilitating P300-mediated H3K27 acetylation to transcriptionally 
activate Nanog, thereby inducing cellular dormancy in CRC (50). In 
humans, there are two isoenzymes of ACC, ACC1 and ACC2. 
ACC1 is significantly overexpressed in CRC tissues, and its activity 
is aberrantly activated through transcriptional and epigenetic 
mechanisms. For instance, circular RNA circCAPRIN1 directly 
binds to the signal transducer and activator of transcription 2 
(STAT2), enhancing the transcriptional expression of ACC1, 
thereby promoting lipid synthesis and driving CRC proliferation 
and metastasis (51). Mechanistically, the de novo fatty acid synthesis 
mediated by ACC1 is crucial for maintaining tumor cell membrane 
TABLE 1 Lipid metabolic pathways and key regulators in CRC. 

Pathway Key factors Function Role in CRC References 

Lipid Uptake CD36 Long-chain fatty 
acid transporter 

Increases proliferation, and invasion; promotes liver/lung metastasis (37–39) 

FATPs Fatty acid uptake Promotes tumor growth and invasion (41, 43) 

FABPs Intracellular fatty 
acid transport 

Drives malignant transformation, increases growth, mediates cetuximab resistance (44–47) 

Lipid 
Synthesis 

ACLY Converts mitochondrial 
citrate to cytosolic 
acetyl-CoA 

Enhances CTNNB1 activity, cell migration/invasion; induces dormancy via Nanog (49, 50) 

ACC Catalyzes acetyl-CoA 
carboxylation to 
malonyl-CoA 

Supports membrane phospholipid synthesis for rapid proliferation (51, 52) 

FASN Synthesizes palmitate 
from malonyl-CoA 

Provides membrane/signaling lipids; activates AMPK/mTOR pathway to increase 
proliferation; promotes metastasis 

(55–57) 

SCD Converts saturated to 
monounsaturated 
fatty acids 

Maintains membrane fluidity for metastasis; detoxifies lipids, inhibits ferroptosis (58–60) 

FAO CPT1A Transports fatty acids 
into mitochondria 

Provides ATP during starvation; reduces chemo-sensitivity; promotes lung metastasis (77, 78) 

Transcription SREBP Activates genes for fatty 
acid synthesis and 
cholesterol metabolism 

SREBP1: Promotes de novo lipogenesis, maintains stemness; SREBP2: Promotes 
cholesterol synthesis, drives serrated lesion transformation, liver metastasis 

(82–84, 86, 87) 

LXR Regulates cholesterol 
absorption/efflux 

Suppresses c-Myc expression; enhances immune response (92, 93) 

PPAR Regulates lipid 
metabolism/ 
energy homeostasis 

PPARa: Enhances FAO and lipid droplets in acid-adapted cells; PPARb/d: 
Upregulates FAO genes, promotes malignant transformation; PPARg: Suppresses 
HMGCS2, regulates differentiation, inhibits migration/colony formation 

(94–97) 
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structure, energy storage, and signal transduction. Knockdown of 
intestinal epithelial ACC1 significantly reduces the incidence of 
inflammation-related CRC (52). As one of the key enzymes in lipid 
synthesis, FASN has been widely studied in CRC (53, 54). 
Lipidomics research has shown that lipid markers such as mono-

unsaturated/poly-unsaturated triglycerides (TG), sphingomyelins, 
and ceramides are significantly elevated in CRC tissues. FASN gene 
expression is significantly upregulated and associated with poor 
prognosis (55). Mechanistic studies have found that FASN can 
enhance CRC cell proliferation and migration via the AMPK/ 
mTOR pathway (56). Some genes, such as HMGA1, can promote 
the expression of key lipid synthesizing enzymes like FASN by 
activating the SREBP1 signaling pathway, significantly increasing 
the levels of triglycerides and phosphatidylcholine in CRC cells, 
thus accelerating CRC proliferation and metastasis (57). The rate-
limiting enzyme stearoyl-CoA desaturase (SCD) plays an 
indispensable role in catalyzing the synthesis of monounsaturated 
fatty acids (mainly oleic acid and palmitoleic acid), both of which 
are major components of biological membranes. SCD1 is 
significantly  upregulated in cancer  and is associated with

metastasis and therapeutic resistance. Its core mechanism 
involves the regulation of fatty acid desaturation and balancing 
with ferroptosis resistance (58, 59). Inhibiting SCD1 can 
significantly reduce lipid metabolism and metastasis in CRC cells 
(60). Due to the demand for long-chain fatty acids in CRC cells, the 
expression of the fatty acid elongase family (ELOVLs) is usually 
increased in CRC to meet their demands (61). In conclusion, 
compared to normal cells, tumor cells exhibit a significantly 
higher ratio of de novo synthesized fatty acids, and this metabolic 
shift is positively correlated with tumor malignancy (62). 
2.3 Abnormal lipid storage and oxidation in 
CRC 

Lipid droplets are organelles that store triglycerides and 
cholesterol, playing a crucial role in maintaining cellular lipid and 
energy homeostasis (63). Tumor cells mainly store the lipids they 
intake and synthesize in lipid droplets (64). The increased 
abundance of lipid droplets is one of the symptoms of cancer 
aggressiveness (65). Some studies have found that in metastatic cell 
lines, the total triglyceride and cholesterol content in lipid droplets 
is elevated, while the content of saturated triglycerides is reduced, 
suggesting that the degree and ratio of fatty acid storage in lipid 
droplets are related to tumor invasiveness (66).CRC stem cells are 
key factors contributing to cancer initiation, drug resistance, and 
recurrence. The lipid droplet content in CRC stem cells is 
significantly increased and is directly related to the activity of 
CD133 and the Wnt signaling pathway, making it one of the 
markers of stem cells (67). Other studies have shown that 
Fusobacterium nucleatum can induce the acquisition of stemness 
characteristics in non-colorectal cancer stem cells through lipid 
droplet-mediated Numb degradation (68). Lipid droplets are also 
critical in maintaining intracellular stability. Even in the presence of 
sufficient  oxygen,  tumor  ce l l s  are  s t i l l  in  an  acidic  
Frontiers in Immunology 05 
microenvironment due to the excessive production of lactic acid 
(69). Chronic acidic microenvironments lead to mitochondrial 
remodeling in tumor cells to maintain energy production, and 
this remodeling depends on the buffering system of lipid droplets 
(70). Fatty acids generated by autophagy are directed into lipid 
droplets to prevent lipid toxicity to mitochondria. Inhibition of lipid 
droplet formation disrupts mitochondrial function and impairs the 
transport of fatty acids to mitochondria (71, 72). Furthermore, there 
is a close interaction between lipid droplet formation and fatty acid 
oxidation (FAO), which together maintain the metabolic balance of 
cancer cells (72). 

Fatty acids exhibit high energy density, yielding approximately 
9 kcal per gram upon oxidation—more than double the energy 
derived from glucose. Under nutrient-replete conditions, certain 
malignancies preferentially utilize fatty acid oxidation for energy 
production (73, 74).FAO generally involves four stages: activation, 
transfer, b-oxidation, and complete oxidation. In the cytoplasm, 
fatty acids are catalyzed by acyl-CoA synthetase to form activated 
acyl-CoA, consuming ATP in the process. Then, long-chain acyl-
CoA enters the mitochondria through the carnitine shuttle system: 
carnitine palmitoyltransferase I (CPT1) converts it into 
acylcarnitine, which is transported across the mitochondrial inner 
membrane, and carnitine palmitoyltransferase II (CPT2) 
regenerates it into acyl-CoA. This process is the rate-limiting step. 
In the mitochondrial matrix, acyl-CoA undergoes b-oxidation to 
produce acetyl-CoA, which then enters the citric acid cycle and is 
fully oxidized to generate large amounts of ATP (75). A study 
integrating CRC bulk and single-cell transcriptomic data and using 
GFAO_Score to represent FAO levels found that the high 
GFAO_Score group had higher staging and decreased sensitivity 
to chemotherapy drugs (76). The rate-limiting enzyme of FAO, 
CPT1, has three isoforms (CPT1A-C). Studies targeting CPT1A 
have shown that, compared to the primary site, the expression level 
of CPT1A in metastatic sites is significantly increased, and 
inhibiting CPT1A expression can reduce the lung metastatic rate 
of CRC. Another study targeting CPT1C found that inhibiting 
CPT1C can suppress CRC cell FAO, proliferation, and migration 
(77). Compared to normal tissues, CRC significantly increases the 
likelihood of peroxidation due to oxidative stress (78). Some lipid 
peroxidation products, such as epoxy-ketone eicosatrienoic acid 
(EKODE), accumulate in CRC cells and induce an inflammatory 
response in colonic epithelial cells by activating the JNK pathway, 
promoting tumor progression in the AOM/DSS-induced CRC 
mouse model (79). 
2.4 Transcriptional regulation of lipid 
metabolism in CRC 

The transcriptional regulation of lipid metabolism in CRC is a 
complex network of multi-factor collaboration, with several key 
transcription factors at its core. Sterol regulatory element-binding 
protein (SREBP) is a central transcription factor in regulating lipid 
metabolism. It promotes de novo lipid synthesis in CRC cells by 
activating the expression of genes involved in fatty acid synthesis and 
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cholesterol metabolism, playing a crucial role in the occurrence, 
development, and metastasis of CRC (80). The SREBP family 
comprises two homologous genes, SREBP1 and SREBP2. SREBP1 
primarily regulates fatty acid and triglyceride synthesis, whereas 
cholesterol biosynthesis is predominantly governed by SREBP2 
(81). Knockdown of SREBP in CRC cell lines significantly reduces 
intracellular fatty acids, cholesterol, and triglycerides, inhibiting 
tumor cell proliferation. Further bioenergetics analysis shows that 
SREBP knockdown inhibits mitochondrial respiration, glycolysis, and 
FAO, leading to an overall metabolic shift in the cells. This metabolic 
remodeling results in a significant reduction in cancer cell 
proliferation and weakens its ability to form tumor spheroids, 
suggesting that SREBP-dependent lipid synthesis is critical for 
maintaining the stemness characteristics of CRC cells (82). Analysis 
of GEO tissue microarrays revealed that the expression of long non-
coding RNA (lncRNA) ZFAS1 is upregulated in CRC. ZFAS1 
stabilizes SREBP1 mRNA by binding to poly(A)-binding protein 2, 
allowing its accumulation and reprogramming lipid metabolism (83). 
Studies on PIK3CA mutations and tumor lipid metabolism reveal 
that the PIK3CA-E545K mutation promotes nuclear accumulation of 
SREBP1, enhancing transcription of apolipoprotein A5 (APOA5) 
and thereby mediating platinum-based drug resistance in CRC (84). 
Precursors of SREBPs (pre-SREBPs) bind to their partner SREBP 
cleavage-activating protein (SCAP) and reside in the endoplasmic 
reticulum. Upon cellular cholesterol depletion, the SREBP/SCAP 
complex translocates to the Golgi apparatus, where SREBP 
undergoes proteolytic cleavage. The N-terminal SREBP fragment 
then enters the nucleus and binds sterol regulatory elements (SREs) 
in promoter regions of target genes, upregulating key enzymes for 
cholesterol synthesis (e.g., HMG-CoA reductase, squalene 
monooxygenase) (85). This transcriptional reprogramming drives 
excessive de novo cholesterol synthesis and uptake, providing 
essential membrane components, lipid raft structures, and signaling 
molecule precursors for rapid cancer cell proliferation. Research on 
CRC metastasis demonstrates significantly elevated SREBP2 
expression in liver metastases compared to primary tumors—a 
phenomenon not observed in brain or lymph node metastases— 
indicating pathway-specific activation of cholesterol synthesis in 
hepatic metastasis. SREBP2 knockdown markedly reduces both the 
number and volume of liver metastases in nude mice (86). In aPKC
deficient intestinal tumors, enhanced SREBP2 activation upregulates 
cholesterol biosynthesis, promoting cellular metaplasia and the 
formation of aggressive cellular subsets within serrated tumor 
lesions (87). 

Liver X receptors (LXR) are another type of transcription factor 
that regulates lipid metabolism. There are two subtypes in humans, 
LXRa and LXRb. These are encoded by different genes but have 
similar functions (88). In the intestinal epithelium, LXR acts as a 
cholesterol sensor, regulating cholesterol absorption and excretion. 
It negatively regulates the expression of cholesterol uptake protein 
Niemann-Pick C1-like 1 (NPC1L1), thereby reducing intestinal 
cholesterol absorption (89). At the same time, LXR induces the 
expression of ATP-binding cassette transporters ABCG5 and 
ABCG8 to promote fecal cholesterol excretion (90). This action 
helps maintain systemic cholesterol homeostasis and is associated 
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with a reduced risk of CRC development. Clinical CRC cohorts 
further verified this role: LXR expression is decreased in CRC 
patients, and the tissue cholesterol content is elevated (91). LXR 
activation can inhibit the activity of b-catenin, a key transcription 
factor in the Wnt/b-catenin signaling pathway, which is frequently 
dysregulated in CRC. By inhibiting b-catenin, LXR reduces the 
expression of oncogenes such as c-Myc, thereby suppressing CRC 
proliferation (92). Additionally, studies have shown that in mice fed 
with the LXR receptor agonist GW3965, the number of tertiary 
lymphoid structures in tumors increases, adaptive immune 
responses are enhanced, and tumor formation is reduced (93). 

Peroxisome proliferator-activated receptors (PPARs) play pivotal 
regulatory roles in the lipid metabolism of CRC. Their three subtypes 
(PPARa, PPARb/d, PPARg) influence tumorigenesis, progression, 
and metabolic reprogramming through distinct mechanisms. 
PPARa modulates fatty acid mobilization and enhances FAO. 
Elevated PPARa expression in CRC exhibits dual tumor-

suppressive and oncogenic roles. In PPARa-deficient murine colon 
cancer models, increased levels of DNMT1 and PRMT6 promote 
colon carcinogenesis by mediating methylation of p21 and p27, 
respectively; the PPAR agonist fenofibrate suppresses AOM/DSS

induced colorectal carcinogenesis (94). Conversely, within acidic 
tumor microenvironments, upregulated PPARa fuels cancer cell 
proliferation and invasion by enhancing FAO and lipid droplet 
(LD) accumulation, thereby supporting the energy demands of acid-
adapted CRC cells (95). Under high-fat diet conditions, activated 
PPARb/d induces downstream FAO gene expression, potentiates 
intestinal stem cell function, and elevates tumorigenic risk (96). As a 
regulator of adipogenesis, PPARg activation negatively modulates 
mitochondrial HMGCS2 to govern intestinal cell differentiation 
(97). PPARg also serves as a receptor for linoleic acid, suppressing 
CRC cell migration and colony formation upon linoleic acid 
treatment (98). 
3 Lipid metabolism interactions in the 
tumor microenvironment 

The TME is a complex system composed of tumor cells, 
immune cells, stromal cells, and non-cellular components 
(Figure 2). Its interaction with metabolism can significantly 
impact tumor progression and therapeutic resistance (99, 100). 
Recent studies have found that lipid metabolism in the TME not 
only provides energy and biosynthetic precursors for tumor cells 
but also forms a multi-layered pro-cancer network by regulating 
immune cell phenotype and function, promoting angiogenesis, and 
maintaining cancer stem cell characteristics (68, 101, 102). 
3.1 Immune cells and lipids 

Hypoxia, acidic environments, and lipid accumulation in the 
tumor microenvironment can suppress the function of immune 
cells within it (102). Immune cells in the TME also undergo 
metabolic changes to maintain certain functions (103). Immune 
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cells in the TME can be categorized into adaptive immune cells and 
innate immune cells. T cells are the primary adaptive immune cells 
in the tumor microenvironment. Within the TME, T cells are 
mainly divided into two categories: one consists of effector T cells 
and helper T cells, which inhibit tumor growth; the other consists of 
regulatory T cells (Tregs), which suppress immune responses (104). 
Studies have shown that tumor-infiltrating T cells often exhibit 
metabolic disorders, characterized by enhanced metabolic switching 
from glycolysis to lipid oxidation (105, 106). However, excessive 
lipid metabolism can affect T cell function and lead to T cell 
exhaustion (107); linoleic acid increases CPT1A in CD4+ T cells, 
leading to oxidative stress and inducing apoptosis (108); linoleic 
acid increases CPT1A in CD4+ T cells, leading to oxidative stress 
and inducing apoptosis (109); excessive lipids in TAM can also 
induce an increase in CD36 expression in CD8+T cells, leading to 
lipid peroxidation and functional impairment of the cells (110); at 
the same time, persistent antigen stimulation in the TME can 
induce the gradual loss of PGC1a in CD8+ T cells via the Akt 
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signaling pathway, affecting mitochondrial replication, gradually 
reducing the cells’ ability to utilize lipids, and triggering CD8+ T cell 
exhaustion (111). Treg cells mainly rely on FAO for energy (112).In 
hypoxic conditions with lactate accumulation in the TME, Treg 
cells can upregulate CD36 expression and adjust mitochondria 
through the PPAR-b signaling pathway to maintain their 
function. Knocking out Treg cell CD3 can reduce the expression 
of various immune regulatory receptors (113). Using sulfonated N-
succinimide oleic acid (SSO) and etomoxir to inhibit fatty acid 
transport and oxidation can decrease the number of Treg cells and 
the expression of cell markers (114). 

In the tumor microenvironment, innate immune cells mainly 
include macrophages, NK cells, and dendritic cells. Macrophages 
are considered one of the main cell types leading to lipid metabolic 
disorders in the TME. Compared with normal samples, the 
expression of ALOX5 is increased and the pro-inflammatory lipid 
product 5-HETE is significantly up-regulated in CRC. Analysis of 
large Affymetrix microarray datasets shows that genes related to 
FIGURE 2 

Lipid metabolism landscape in TME. Lipid metabolism within the TME establishes a multi-layered pro-tumorigenic network by regulating immune 
cell phenotypes/functions and promoting angiogenesis. Tumor-infiltrating cytotoxic T cells commonly exhibit metabolic dysfunction, where 
excessive lipid accumulation impairs T cell function and promotes exhaustion. Fatty acids facilitate Treg differentiation by suppressing lineage-
defining transcription factors while upregulating FoxP3 expression. The majority of TAM adopt an immunosuppressive M2 phenotype, which 
internalizes free fatty acids (FFAs) released by tumor cells via extracellular vesicles and CD36, reinforcing their immunosuppressive activity. 
Intracellular lipid accumulation compromises NK cell cytotoxicity against tumors and diminishes antigen-presenting capacity in DCs. Among stromal 
cells, enhanced lipid metabolism supplies lipids to tumors, remodels the extracellular matrix, and induces angiogenesis, collectively driving tumor 
proliferation and metastasis. Microbial metabolites SCFAs and BAs—play pivotal roles in the TME: SCFAs accumulate in CRC cells, acting as HDAC 
inhibitors to suppress proliferation, while BAs promote CRC development by inducing inflammation and DNA damage. TAM, tumor-associated 
macrophage; DC, dendritic cell; CAF, cancer-associated fibroblast; CAA, cancer-associated adipocyte; EC, endothelial cell; SCFA, short-chain fatty 
acid; BA, Bile acid. 
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arachidonic acid lipid metabolism and pro-inflammatory mediators 
are co-expressed with relevant macrophage markers, indicating the 
important role of macrophages in driving pro-inflammatory 
responses and lipid disorders in the TME (115). Tumor-

associated macrophages (TAMs) are primarily divided into the 
pro-inflammatory M1 type and the immunosuppressive M2 type 
(116). M1 macrophages rely on glycolysis, while M2 macrophages 
obtain energy through FAO. M1 macrophages kill tumor cells 
through antibody-mediated cytotoxicity, but during this process, 
the glucose uptake demand of the cells significantly increases. The 
lack of glucose and the accumulation of lactate in the TME induce the 
transformation of M1 macrophages into M2 type (117). Therefore, 
most of the macrophages in the tumor microenvironment are 
immunosuppressive M2 type (118). M2 macrophages have 
enhanced fatty acid uptake and synthesis abilities and rely on FAO 
for energy supply in the TME (119). Free fatty acids released by 
tumor cells are extensively taken up by M2 macrophages through 
extracellular vesicles and CD36, promoting their immunosuppressive 
phenotype (120). This suppressive ability is mainly reflected in the 
inhibition of CD8+ T cell function, and inhibition of CD36 can 
reduce M2 polarization and enhance CD8+ T cell function (120). 
Additionally, oleic acid in the environment can lead to lipid droplet 
accumulation in infiltrating macrophages in colon cancer and 
promote M2 polarization via activation of the mTOR signaling 
pathway. Injection of lipid droplet synthesis inhibitors can suppress 
tumor growth in vivo models (121). Single-cell transcriptomics 
reveals a terminally differentiated C5 macrophage subset 
characterized by robust lipid metabolic reprogramming and potent 
immunosuppressive function (122). A study on obesity found that 
the number and function of NK cells in obese patients are impaired, 
and adiponectin combined treatment can restore part of the NK cell 
function, suggesting that lipid metabolism can affect NK cells (123). 
Research has shown that in a high cholesterol microenvironment, 
CRC cells upregulate TGF-b1 secretion through ATP6V0A1
dependent cholesterol uptake, indirectly inhibiting the immune 
surveillance function of NK cells (124). Another study found that 
lipid accumulation after colorectal cancer surgery leads to increased 
CD36 and lipid content in NK cells, impairing their cytotoxic 
function against tumors (125).In the colorectal cancer tumor 
microenvironment, lipid metabolism reprogramming of dendritic 
cells (DCs) significantly affects their immune function and anti-
tumor response. Single-cell transcriptomic analyses reveal significant 
enrichment of lipid metabolism, fatty acid metabolism, and PPARA 
signaling pathways in DCs. Concurrently, the transcription factor 
RUNX2 is markedly upregulated in tumor-infiltrating DCs, where it 
orchestrates downstream PPAR signaling via activation of the Wnt/ 
b-catenin axis, thereby remodeling cellular lipid metabolism (126). 
The research found that lipid droplets containing electrophilic 
oxidized truncated (ox-tr) lipids in tumor DCs were much larger 
than in the control group. These lipid droplets covalently bind to heat 
shock protein 70, hindering MHC translocation, and resulting in a 
decrease in the antigen presentation ability of DCs (127). Using ACC 
inhibitors to reduce intracellular lipids in DCs can partially restore 
their function, indicating that lipid metabolism reprogramming in 
the TME is an important mechanism affecting DC function (128). 
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3.2 Adipocytes 

The intestine is an organ rich in fat, and CRC establishes 
intimate connections with adipocytes when it invades adipose 
tissue  (129).  CRC  cells  induce  adjacent  adipocytes  to  
dedifferentiate into cancer-associated adipocytes (CAAs) through 
direct contact or paracrine signaling. These CAAs are characterized 
by a reduction in lipid droplets, enhanced lipolysis, and increased 
secretion of pro-inflammatory factors (130, 131). Co-culture 
experiments show that CRC cells inhibit the expression of genes 
related to adipogenesis (such as FADS1, and SC4MOL) and activate 
lipolytic pathways, leading to the release of free fatty acids and 
cholesterol from adipocytes (130). These lipids are taken up by 
tumor cells via transport proteins such as CD36, providing energy 
and membrane synthesis materials for tumor cells (132). These fatty 
acids can also activate the AMPK signaling pathway, inducing 
autophagy and promoting the transformation of colon cancer 
into a mode of energy acquisition primarily based on FAO (133). 
Adipocytes also enhance the expression of FABP4 in surrounding 
tissues and mediate resistance to cetuximab (134). CAAs promote 
CRC cell proliferation and metastasis by secreting pro-
inflammatory factors such as TNF-a and LCN2, activating the 
YAP/TAZ signaling pathway (131). Additionally, exosomes 
secreted by colon cancer cells, containing miR-146b-5p, induce 
the browning and lipid mobilization of white adipocytes, which is 
one of the causes of cachexia (135). Similarly, in colorectal cancer 
chemotherapy models, first-line chemotherapy drugs reduce the 
expression of proteins involved in ATP generation, b-oxidation, 
and lipid synthesis in adipocytes, leading to adipose depletion (136). 
This depletion of fat is associated with shortened survival and 
quality of life, warranting more research and attention (137). 
3.3 Cancer-associated fibroblasts 

Cancer-associated Fibroblasts (CAFs) are key components of the 
TME and interact with colorectal cancer through the secretion of 
cytokines, remodeling the extracellular matrix (ECM), and regulating 
metabolic pathways, including lipid metabolism (138, 139). CAFs 
upregulate the expression of genes related to fatty acid synthesis and 
secrete large amounts of fatty acids and phospholipids. After being 
taken up by CRC cells, these lipids enhance tumor cell migration 
ability (140). CRC cells also transfer the HSPC111 protein via 
exosomes to hepatic stellate cells, converting them into CAFs and 
preparing for liver metastasis. Furthermore, HSPC111 can 
phosphorylate ACLY, increasing the acetyl-CoA level in CAFs and 
promoting the expression and secretion of the chemokine CXCL5 
through H3K27 acetylation in an epigenetic manner. The secreted 
CXCL5 activates the epithelial-mesenchymal transition (EMT) of 
CRC cells through the CXCR2 receptor, forming a positive feedback 
loop that further stimulates the release of HSPC111 in tumor 
exosomes (141). Spatial transcriptomics analysis has found that lipid 
metabolism-related pathways are significantly upregulated in areas 
enriched with inflammatory cancer-associated fibroblasts (iCAFs). In 
iCAF-enriched regions of patients receiving neoadjuvant 
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chemotherapy, despite an overall decrease in metabolic activity, fatty 
acid metabolic activity remains high, suggesting that iCAFs may 
promote chemotherapy resistance by maintaining lipid metabolic 
activity (142). 
3.4 Endothelial cells 

In CRC, endothelial cells (ECs) are the central executors of 
tumor angiogenesis. In the tumor microenvironment, due to a lack 
of glucose, proliferating endothelial cells undergo metabolic 
reprogramming and switch to fatty acid oxidation for energy 
production (143). In this state, endothelial cells exhibit increased 
lipid uptake and enhanced expression of FABP4, and inhibition of 
FABP4 can reduce tumor angiogenesis (144). Studies have shown 
that vascular endothelial growth factor B regulates endothelial cell 
fatty acid uptake through the vascular fatty acid transporters, 
although the exact mechanism remains unclear (145). Co-culture 
experiments have revealed that FASN affects endothelial cell activity 
by regulating the secretion profile of angiogenic factors. Knocking 
down FASN significantly reduces microvessel density in colon 
cancer cell lines and induces the “normalization” of vascular 
structures. Overexpression of FASN enhances MMP-9 activity 
and VEGF secretion, promoting endothelial cell activation (146). 
Other studies have shown that inhibiting CRC lipid metabolism 
through PI3K inhibitors reduces angiogenesis, suggesting the 
important role of lipid metabolism in tumor vascular formation 
(147). Single-cell transcriptomics of obese CRC samples reveal 
enrichment of an ESM1+ EC subpopulation in tumors, correlating 
with poorer prognosis. This subpopulation exhibits upregulated 
pathways regulating epithelial cell migration and adhesion, 
indicating a pro-tumorigenic role (148). 
3.5 Gut microbiota and the regulatory 
network of lipid metabolism 

The occurrence of CRC is closely related to various factors, 
among which the interaction between gut microbiota and lipid 
metabolism is considered to play a significant role in the 
development of CRC (149, 150). The gut microbiota interacts 
with host lipid metabolism through metabolic products such as 
short-chain fatty acids (SCFAs) and secondary bile acids, forming a 
complex regulatory axis. SCFAs, such as acetate, propionate, and 
butyrate, are the primary metabolites produced by gut microbes 
through the fermentation of dietary fibers (151). The benefits of 
butyrate are well known, as it can regulate gut immune responses by 
activating G-protein-coupled receptors (such as GPR43 and 
GPR109A), reduce chronic inflammation, and thus decrease the 
risk of carcinogenesis (152). In the TME, butyrate can also enhance 
CD8+ T cell responses through IL-2-related signaling pathways, 
promoting the antitumor effects of PD-1 inhibitors (153). Butyrate 
also induces metabolic adaptations in activated CD8+ T cells, 
redirecting TCA cycle substrates toward fatty acid uptake and 
FAO (154). Butyrate metabolism diverges between normal 
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intestinal epithelium and cancer cells: Normal epithelia utilize 
butyrate via b-oxidation, whereas CRC cells exhibit diminished 
catabolic capacity due to the Warburg effect, leading to intracellular 
accumulation (155). Once accumulated, butyrate acts as a histone 
deacetylase (HDAC) inhibitor, leading to CRC cell apoptosis. 
Metabolically, butyrate binds to pyruvate kinase M2 (PKM2), 
promoting its dephosphorylation and tetramerization. This 
activates PKM2, suppresses the Warburg effect, reduces glycolytic 
energy production, and inhibits CRC growth (156). Chronic 
butyrate exposure diminishes glycolytic capacity in CRC cells 
regardless of glucose availability. Butyrate increases mitochondrial 
pyruvate oxidation flux, thereby enhancing de novo lipid synthesis 
and lipid accumulation (157). Additionally, studies report 
upregulated SLC27A1 (FATP) expression in butyrate-treated CRC 
cells, augmenting fatty acid transport (158). Short-chain fatty acids 
(SCFAs) and their derived acyl-CoAs can also be oxidized. Under 
hypoxia, tumor cells convert acetate to acetyl-CoA via ACSS2, 
activating lipogenic genes (e.g., FASN) to fuel de novo lipogenesis 
and support growth (159). Conversely, CD8+ T cells utilize acetate 
in an ACSS2-dependent manner to rescue effector functions 
impaired by glucose deprivation (160), highlighting acetate’s 
paradoxical roles in tumor progression. Acetate is converted to 
butyrate in the gut by bacteria such as Roseburia spp. Via butyryl-
CoA:acetyl-CoA transferase (161). Propionate, as an HDAC 
inhibitor, can synergize with butyrate to inhibit tumor cell 
proliferation, although its potency is relatively weaker (162). 
Furthermore, recent studies have shown that SCFAs, in addition 
to their HDAC inhibition effects, can induce propionylation 
modifications at histone H3K18 and H4K12 sites, inhibit the 
Wnt/b-catenin signaling pathway, upregulate key CRC oncogenes 
(such as MYC, FOS, and JUN), and downregulate genes related to 
cell proliferation (ANP32B) and the cell cycle (MKI67), leading to 
CRC cell death (163). 

Bile acids (BA) and their derivatives are another type of 
metabolite produced by the gut microbiota, which plays a dual 
role in the development of CRC (164). Primary BAs, such as cholic 
acid (CA) and chenodeoxycholic acid (CDCA), are produced in the 
liver and can be converted into secondary BAs by the gut 
microbiota. Some secondary BAs, such as deoxycholic acid 
(DCA) and lithocholic acid (LCA), have been shown to promote 
CRC by inducing inflammation, DNA damage, and cell 
proliferation (165). However, other BAs, such as ursodeoxycholic 
acid (UDCA), may have protective effects by reducing inflammation 
and inhibiting tumor growth via the TGR5-YAP axis (166). 

The gut microbiota not only exerts significant effects on the 
intestinal microenvironment through its metabolites but also 
influences the progression of CRC by regulating lipid metabolism 
pathways. In the Apcmin/+ mouse model, a high-fat diet affects 
phospholipid metabolism via the gut microbiota, leading to 
intestinal mucosal damage and CRC development (167).In obese 
CRC patients, the dysregulation of fatty acid and phospholipid 
metabolism is closely associated with the enrichment of pathogenic 
bacteria and the reduction of beneficial bacteria (168). Additionally, 
the intrinsic lipid metabolism reprogramming in colorectal cancer also 
affects the gut microbiota. The rate-limiting enzyme in cholesterol 
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biosynthesis, squalene epoxidase (SQLE), is significantly upregulated 
in CRC (169). Overexpression of SQLE indirectly accelerates tumor 
progression through gut microbiota dysbiosis: the gut microbiota of 
SQLE transgenic mice shows enrichment of pathogenic bacteria (such 
as C. muridarum), reduced abundance of anti-inflammatory and 
protective bacteria (such as S. violaceusniger), elevated levels of 
secondary bile acids (such as DCA), reduced tight junction proteins, 
and impaired intestinal barrier function, which aggravates CRC 
progression (170). 
4 Lipid metabolism-related 
biomarkers and analytical techniques 
in CRC 

Lipids serve as fundamental components of cellular membranes 
and participate in diverse metabolic processes, playing critical 
physiological roles (171). During the occurrence of CRC, lipid 
metabolism shows significant disorders, manifested as abnormal 
expression and dysfunction of multiple lipid molecules and related 
proteins. These changes directly drive the malignant biological 
behavior of tumors and become potential diagnostic and 
prognostic biomarkers. With the rapid development of lipidomics 
technologies, especially the application of mass spectrometry-based 
high-throughput analysis platforms combined with multivariate 
statistical methods, complex lipid quantitative analysis in cancer 
has become possible, and more and more new lipid biomarkers have 
been discovered thereby. 
 

4.1 Lipid metabolism-related biomarkers in 
CRC 

Characteristic lipidomic remodeling occurs during CRC 
development. Profiling these distinct alterations provides valuable 
insights for CRC diagnosis and prognosis. CRC patients exhibit 
significant imbalances in fatty acid composition within serum and 
tumor tissues, including elevated long-chain PUFAs (e.g., 
arachidonic  acid  [AA],  eicosapentaenoic  acid  [EPA],  
docosahexaenoic acid [DHA]) and reduced levels of PUFAs such 
as linoleic acid (LA) and a-linolenic acid (ALA) (172). Comparative 
analyses reveal upregulated w-6  PUFAs in  carcinomas versus

adenomas, while w-3 PUFAs are downregulated in CRC (173). 
Additionally, decreased monounsaturated fatty acid (MUFA) 
content alongside elevated saturated fatty acids (SFAs) and n-3/n
6 PUFAs has been observed in CRC tissues (174). Assessing these 
FA profiles may aid in early CRC detection. b-Hydroxybutyrate 
(BHB), a ketone body derived from FAO, demonstrates 
progressively increased serum levels across CRC stages, 
potentially serving as a biomarker for tumor metabolic 
reprogramming (175). Notably, when administered as part of a 
ketogenic diet, BHB suppresses CRC growth (176), warranting 
further investigation into its context-dependent functions. 
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Associations between triglycerides (TAGs) and CRC risk remain 
inconsistent: A Chinese cohort study identified elevated TAG levels 
as positively correlated with colon cancer progression (177), 
whereas analysis of the UK Biobank found no statistically 
significant TAG-CRC association after adjusting for BMI and 
other factors (178). The dietary variations influence TAG 
measurements (55). Phosphatidylethanolamine (PE) enrichment 
in plasma exosomes distinguishes non-metastatic CRC patients 
from healthy controls, with lower PE levels observed in metastatic 
versus non-metastatic cases (179). Such lipidomic shifts reflect 
functional membrane alterations across CRC stages. 

Given CRC lipid complexity, multi-lipid biomarker panels 
outperform single molecules for staging. A diagnostic panel 
comprising O-(4,8-dimethylnonanoyl)carnitine, LPC 19:0, TAG 
58:1, and PC 38:7 achieves an AUC of 0.805 (95% CI: 0.684– 
0.922) for discriminating adenomas from CRC (180). Krishnan 
et al. constructed machine learning models utilizing ceramide (CE) 
(22:6), CE(18:3), TG(56:9), and FA combinations to identify liver 
metastasis in CRC (17). Liu et al. developed an integrated model 
(ApoA1, ApoA2, lithocholic acid [LCA], CEA) with an AUC of 
0.995 (95% CI: 0.969–0.999) for CRC diagnosis (181). 
4.2 Lipid analysis techniques in CRC 

With the development of high-throughput technologies, 
lipidomics has gradually matured in CRC research and biomarker 
discovery. The main analytical tools currently include mass 
spectrometry (MS) and nuclear magnetic resonance (NMR). MS 
plays a core role in the analysis of lipid metabolic changes in CRC 
(182). MS-based lipid analysis encompasses non-imaging and imaging 
strategies. In non-imaging methods, gas chromatography-mass 
spectrometry (GC-MS) is suitable for analyzing volatile small-

molecule lipids (molecular weight < 1000 Da). It has high sensitivity 
but limited coverage (183). Liquid chromatography-mass 
spectrometry/capillary electrophoresis-mass spectrometry (LC-MS/ 
CE-MS) is widely used for complex lipids (such as phospholipids 
and glycerolipids), serving as the core tool of lipidomics. It can 
qualitatively and quantitatively analyze hundreds of lipids, especially 
suitable for global analysis of biological fluids (serum, urine) and tissue 
extracts (115, 184). 

Imaging methods focus on spatial resolution analysis, providing 
direct information on the spatial distribution of target molecules, 
but compared with high-performance liquid chromatography-mass 
spectrometry (HPLC-MS), the analytical depth is reduced (185). 
Matrix-assisted laser desorption/ionization mass spectrometry 
imaging (MALDI-MSI) achieves lipid ionization through matrix 
co-crystallization, with a spatial resolution of 5–200 mm. It can be 
coupled with high-resolution mass spectrometry such as Fourier 
transform ion cyclotron resonance (FTICR) to distinguish lipid 
isomers, but requires optimization of matrices (such as 2,5
dihydroxybenzoic acid, a-cyano-4-hydroxycinnamic acid) and 
deposition techniques to suppress ion interference (186, 187); 
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Desorption electrospray ionization mass spectrometry imaging 
(DESI-MSI) directly analyzes tissue sections in an open 
environment, suitable for rapid clinical detection (such as 
intraoperative diagnosis), with a resolution of approximately 50– 
200 mm (nano-DESI can reach < 10 mm) (188, 189); Secondary ion 
mass spectrometry (SIMS) must be performed under vacuum, with 
a resolution up to the nanometer scale (0.05–100 mm), suitable for 
single-cell lipid distribution research, but it is destructive to samples 
and can cause lipid fragmentation (190). Multimodal integrations 
(e.g., LIMS with infrared spectroscopy/spatial transcriptomics) and 
emerging single-cell LIMS (e.g., SpaceM) provide multidimensional 
insights into lipid metabolism across molecular, cellular, and tissue 
levels, advancing mechanistic and clinical applications (188). NMR 
spectroscopy features non-destructive analysis and simple sample 
preparation. Compared to MS, NMR has a weaker resolution for 
similar lipids and is currently mainly used for non-targeted analysis 
(191). For example, Mika et al. employed ¹H-NMR for global lipid 
profiling followed by GC-MS for major component analysis in 
CRC (174). 
5 Targeting lipid metabolism in CRC 
treatment strategies 

As summarized above, lipid metabolism plays a crucial role in the 
occurrence and development of CRC. These findings have led us to 
consider lipid metabolism as a potential target for intervention in 
order to impede the progression and drug resistance of CRC. 
Currently, therapeutic strategies targeting metabolic vulnerabilities 
have shown promising translational potential. 
5.1 Targeting lipid metabolism in treatment 

Inhibiting the de novo lipogenesis (DNL) pathway has become 
an important strategy for cancer treatment (192).FASN, the rate-
limiting enzyme in DNL, is closely associated with tumor cell 
proliferation, metastasis, and chemotherapy resistance, making it 
a key target for inhibiting lipid synthesis (54, 56). Cerulenin, the 
first-generation FASN inhibitor, can inhibit tumor cell energy 
metabolism and the mTOR signaling pathway, thereby inhibiting 
CRC cell proliferation (193). In mice, Cerulenin inhibits CRC liver 
metastasis and reduces the size of liver metastatic lesions (194). 
Epigallocatechin gallate(EGCG), a green tea extract, exerts strong 
FASN inhibition, which reduces the levels of free fatty acids in 
tumors and decreases tumor volume in xenografted mice, without 
affecting the mice’s weight (195). Randomized clinical trials have 
found that this extract can significantly reduce the incidence of 
colon adenomas (RR, 0.56; 95% CI, 0.34-0.92) (196). Luteolin, a 
flavonoid compound, exerts anticancer effects by regulating the 
Wnt/b-catenin pathway and the miR-384/PTN axis (197, 198). 
TVB inhibitors, a new generation of potent FASN inhibitors, 
including TVB-2640 and TVB-3664, have shown good results in 
Phase I clinical trials (25, 199). In xenograft models derived from 
CRC patients, TVB-3664 reduced tumor lipid storage and inhibited 
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tumor growth in 30% of the samples. Additionally, Orlistat, as a 
sulfatase domain inhibitor, has shown antitumor activity in breast 
cancer and CRC models, but its use in clinical settings is limited by 
its gastrointestinal carcinogenic effects (200). It is worth noting that 
CRC cells can counteract the effects of FASN inhibitors by 
upregulating CD36. In this case, the combination of CD36 
inhibitors can enhance the efficacy of FASN inhibitors (38). 

Apart from FASN, other lipid synthesis proteins can also be 
targeted. ACLY can generate cytosolic acetyl-CoA and bridge the 
mitochondria and non-mitochondrial processes. The ACLY 
inhibitor SB204990 inhibits acetyl-CoA generation, suppressing 
tumor cell proliferation and inducing differentiation (201). ACC 
allosteric inhibitors, such as TOFA, can inhibit fatty acid synthesis 
and induce CRC cell apoptosis in a dose-dependent manner (202). 
SCD1, the rate-limiting enzyme in unsaturated fatty acid synthesis, 
is highly expressed in CRC (58). Its inhibitor, Betulinic Acid, can 
impair CRC stem cell clonogenic ability and induce cell death (203). 
Notably, targeting the DNL pathway requires balancing therapeutic 
efficacy and metabolic toxicity. For example, systemic inhibition of 
ACC may induce thrombocytopenia, while local delivery 
technologies (such as nanoparticle encapsulation) are being 
explored to enhance selectivity (192). 

Targeting lipid oxidation is also an important strategy for CRC 
therapy. CPT1 is the rate-limiting enzyme in mitochondrial fatty 
acid transport (75). Its inhibitor Etomoxir can significantly inhibit 
fatty acid oxidation, inducing an energy crisis in CRC cells (204). 
Another inhibitor, DHP-B, extracted from Piperaceae plants, can 
disrupt the interaction between mitochondrial CPT1A and VDAC1, 
leading to increased mitochondrial permeability and reduced 
energy synthesis, thereby inhibiting CRC cell growth and 
inducing apoptosis (77). 

Table 2 summarizes ongoing or completed clinical studies 
related to lipid metabolism. 

Table 3 summarizes preclinical therapeutic compounds 
targeting lipid metabolism in CRC. 
5.2 Potential of combination therapy 

The combination of lipid metabolism inhibitors and chemotherapy 
is a promising therapeutic approach. Oxaliplatin and 5-fluorouracil 
are mainstream chemotherapy drugs for the treatment of CRC, and 
reducing resistance to them is crucial for CRC treatment (8). In 
xenograft mouse models, the combination of Cerulenin and 
oxaliplatin significantly inhibits CRC progression and reduces the 
dosages of both drugs, thereby extending chemotherapy duration 
(205); EGCG can target CRC tumor stem cells and enhance their 
sensitivity to 5-fluorouracil chemotherapy (206).ACLy can induce 
resistance in CRC cells to the active metabolite of irinotecan, SN38, 
but the combination of ACLy and AKT inhibitors can restore 
chemotherapy sensitivity in tumor cells (207). In organoids derived 
from CRC patients resistant to cetuximab, the FABP4 inhibitor 
BMS309403 can restore tumor cells’ sensitivity to cetuximab (134). 
In preclinical studies, the SCD1 inhibitor MF-438, when combined 
with 5-fluorouracil, can reduce the 5-FU dose by half while 
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maintaining the same efficacy (16). Moreover, targeting lipid 
metabolism can synergize with immunotherapy: for example, SIRT 
is a gene involved in the conversion of glucose-lipid metabolism in 
cells. In CRC, SIRT1 promotes the secretion of CX3CL1, which 
enhances Treg cell infiltration. CX3CR1 inhibitors can suppress CRC 
proliferation while enhancing the inhibitory effect of PD-1 antibodies 
on the tumor (208). Table 4 outlines the effects of combining lipid 
metabolism inhibitors with chemotherapy, immunotherapy, or 
targeted drugs 
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6 Conclusions 

Lipid metabolism reprogramming plays a crucial role in the 
progression of CRC. During the development of CRC, the 
expression of key enzymes involved in processes such as fatty 
acid synthesis, uptake, and oxidation is often increased. This 
process not only provides an abundant energy supply for tumor 
cells but also promotes malignant progression by regulating cell 
signaling, enhancing anti-apoptotic mechanisms, and increasing 
TABLE 2 The clinical research on targeting lipid metabolism in CRC. 

NCT number Main target Compound Stage of clinical trial Comments 

NCT01606124 FASN EGCG phase II No significant reduction in rectal abnormal crypt lesions compared to 
the placebo group (p=0.5631) 

NCT01239095 FASN EGCG Phase I Terminated; 
No Study Results Posted 

NCT02891538 FASN EGCG Early Phase I Active, not recruiting; 
No Study Results Posted 

NCT01360320 FASN EGCG Phase II Non-significant reduction in adenoma incidence (RR=0.883, p=0.1169) 

NCT02321969 FASN ECCG Not Applicable Significant reduction in metachronous adenomas (RR=0.56, 95%CI 
0.34-0.92) 

NCT02980029 FASN TVB-2640 Phase I Terminated; 
No Study Results Posted 
TABLE 4 The combination therapy in CRC. 

Main target Treatment Combination Key Effect References 

FASN Cerulenin Oxaliplati Synergistically inhibits CRC progression in xenografts, enables 
dose reduction 

(205) 

FASN EGCG 5-FU Sensitizes CRC stem cells to 5-FU (206) 

ACLy ACLY inhibitor Irinotecan (SN38) Overcomes SN38 resistance via AKT inhibition (207) 

FABP4 BMS309403 Cetuximab Restores cetuximab sensitivity in resistant CRC organoids (134) 

SCD1 MF-438 5-FU Enables 50% 5-FU dose reduction without efficacy loss (16) 

PPAR Bezafibrate Anti-PD-1 Boosts T-cell FAO, reduces apoptosis, enhances anti-PD-1 response (208) 
TABLE 3 The preclinical research on targeting lipid metabolism in CRC. 

Main target Compound Mechanism References 

FASN Cerulein Inhibits Akt phosphorylation; combined with oxaliplatin induces p53-p21 pathway and caspase-3 apoptosis (193, 194) 

EGCG Reduce the expression of p‐Akt and p‐ERK1/2; decreases the ATP level (195) 

Luteolin Upregulates miR-384 to suppress PTN; induces G1/G2 arrest and DR5-mediated apoptosis (198). 

TVB-3664 Inhibits lipid synthesis; enhances anti-proliferation with CD36 inhibitors; modulates Akt/Erk signaling (25) 

ACLy SB204990 Prodrug hydrolyzed to active inhibitor SB201076; reduces acetyl-CoA production and plasma 
cholesterol/triglycerides 

(201) 

ACCA TOFA Allosterically inhibits ACCA to block malonyl-CoA; induces G0/G1 arrest and caspase-3 apoptosis (202) 

SREBP Betulinic Acid Inhibits SREBP transcription factors; downregulates lipogenesis genes (203) 

CPT1 Etomoxir Blocks fatty acid beta-oxidation (204) 

DHP-B Binds to Cys96 of CPT1A, blocks FAO, and disrupts the mitochondrial CPT1A-VDAC1 interaction (77) 
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cell migration and invasion capabilities. Factors in the TME, such as 
nutritional status, hypoxic conditions, and immune responses, 
directly affect the lipid metabolism pathways of tumor cells, 
thereby promoting tumor invasiveness and resistance (124). 
Various cell types within the TME, including Tregs, CAAs, and 
CAFs, undergo lipid metabolism reprogramming through 
interactions with the tumor, fostering an immune-suppressive 
microenvironment that promotes metastasis (99). At the same 
time, the gut microbiota, an important component of the TME, 
can influence tumor cell metabolic reprogramming by modulating 
metabolic products and immune responses in the intestine. The 
lipid metabolism reprogramming of CRC cells also leads to further 
dysregulation of the gut microbiota, accelerating tumor progression. 

The reprogramming of lipid metabolism in CRC leads to 
changes in specific lipid molecular profiles, making these 
molecules  highly  promising  diagnostic  and  prognostic  
biomarkers. With the rapid development of lipidomics 
technologies, especially the application of MS-based high-
throughput analysis platforms and multivariate statistical 
methods, the identification and quantification of these lipid 
markers have become feasible. However, although existing studies 
have revealed a large number of lipid metabolism-related molecules 
with clinical potential, their translational application in clinical 
practice still faces challenges such as insufficient standardization 
and lack of cross-cohort validation. Therefore, future research 
should further focus on the mechanistic analysis of lipid markers, 
the standardization of analysis processes, and clinical validation 
with multi-center large samples, so as to promote the effective 
application of lipidomics in the precision diagnosis and treatment 
of CRC. 

Currently, effective treatments for advanced-stage CRC patients 
are still lacking. Given the central role of lipid metabolism in CRC 
initiation and progression, many drugs or inhibitors tested in 
preclinical models target lipid metabolism. Studies have shown 
that targeting lipid metabolism can inhibit CRC proliferation and 
migration, as well as reduce chemotherapy resistance (209). Some 
drugs, such as EGCG and TVB-2640, have entered clinical trials (25, 
196). However, challenges remain: First, lipid metabolic pathways 
are redundant, and CRC cells compensate by activating fatty acid 
uptake pathways to reduce the effect of FASN inhibitors. Therefore, 
single-target treatments are often difficult to achieve long-term 
effects. Second, the spatial heterogeneity of the tumor 
microenvironment means that tumor cells in different regions 
may have distinct metabolic characteristics. Lipid metabolic 
capacity is enhanced in hypoxic regions (99). Furthermore, 
individual differences in metabolic regulation may also affect the 
effectiveness of targeted therapies, such as in obese patients, where 
enhanced lipid metabolism makes them more prone to resistance 
(210). Therefore, future research should integrate multi-omics 
technologies, such as spatial metabolomics and single-cell 
transcriptomics, to analyze the dynamic architecture of metabolic 
Frontiers in Immunology 13 
networks, and use artificial intelligence models to predict 
combination targets, ultimately achieving a leap from mechanistic 
exploration to precision therapy. 
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