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Objective: Current medical examinations and biomarkers struggle to assess the

efficacy of chemoimmunotherapy (nICT) for locally advanced esophageal

squamous cell carcinoma (ESCC). This study aimed to develop a machine

learning model integrating habitat imaging and deep learning (DL) to predict

the treatment response of ESCC patients to nICT.

Methods: The study retrospectively collected 309 ESCC patients from 6 medical

centers, divided into training and external validation cohorts. For habitat imaging

analysis, intratumoral subregions were clustered using the K-means clustering

method. DL features from intratumoral and peritumoral subregions were

extracted by Vision Transformer (ViT) respectively and then subjected to

feature selection. Subsequently, 11 machine learning models were constructed
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for predictive model. The model’s performance was evaluated using the area

under the curve (AUC), decision curve analysis (DCA), calibration curve,

and accuracy.

Results: A total of 18 DL features were selected. The model of ExtraTrees, which

was optimal, demonstrated superior performance with AUCs of 0.917 in training

cohort and 0.831 in external validation cohort. Similarly, ExtraTrees showed good

predictive capabilities in patients undergoing 2 cycles of nICT with AUC of 0.862

in validation cohort. This model also showed good calibration for prediction

probability and satisfied clinical value on DCAs. Finally, the SHapley Additive

exPlanations method elucidated the model’s precise predictions.

Conclusion: The ExtraTrees model leveraging habitat imaging and ViT offered a

non-invasive and accurate method to predict pathological response to nICT,

guiding personalized treatment strategies, and decreasing the risk of immune-

related adverse effects.
KEYWORDS

neoadjuvant chemoimmunotherapy, treatment response, habitat imaging, vision
transformer, machine learning, tumor subregions
1 Introduction

Esophageal cancer (EC) is a prevalent malignant tumor in

digestive system, ranking seventh in global incidence and sixth in

mortality (1). Most EC patients are initially diagnosed with locally

advanced esophageal squamous cell carcinoma (LA-ESCC).

Neoadjuvant therapy followed by surgical resection is the

standard treatment for these patients. In recent years, PD-1/PD-

L1 inhibitors have shown promising results in treating ESCC. A

meta-analysis suggested that neoadjuvant chemoimmunotherapy

(nICT) elicited superior pathological responses than conventional

neoadjuvant therapy (2). However, due to high degree of

intratumoral heterogeneity and drug resistance, only 20%-40% of

ESCC patients achieved pathological complete response (pCR)

following nICT, and approximately 50% experienced major

pathological response (MPR) (3–5). Besides, the use of nICT in

ESCC patients is still in its early stage, facing multiple challenges,

the most pressing of which is pinpointing those who are sensitive to

nICT, given that immunotherapy comes with substantial medical

expenses and poses a risk of severe immune-related adverse

effects (irAEs).
apy; LA-ESCC, locally

r; PR, poor-responder;

nse; pCR, pathological

Convolutional Neural

ng ; DL, deep learning;
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Computed tomography (CT) and endoscopic ultrasound (EUS)

are widely utilized to assess the efficacy of neoadjuvant therapy.

However, evaluating the efficacy of neoadjuvant therapy with CT

and EUS is challenging, mainly because of treatment-related factors

like inflammation, edema, and fibrosis, as well as the distinct

mechanisms of immunotherapy, which include delayed responses,

pseudoprogression, hyperprogression, and mixed responses (6–9).

Furthermore, these routine examinations, including PET-CT, fail to

predict which patients can benefit from nICT prior to commencing

neoadjuvant therapy. Additionally, the effects of immunotherapeutic

drugs may manifest before notable changes in tumor size are observed

(7). Hence, there is a pressing need for novel methods to predict and

assess the efficacy of nICT in ESCC patients before treatment.

As a non-invasive technology, radiomics is extensively utilized

in clinical decision-making (10). Radiomics assumes uniformity

and homogeneity of the tumor within its volume of interest (VOI),

analyzing the VOI in its entirety (11). However, imaging changes

within the tumor region typically reflect distinct biological

processes among tumoral subregions. Failing to consider these

subregional variations may result in the oversight of subtle

differences within the tumor, limiting the predictive power of

imaging biomarkers. In contrast to radiomics, habitat imaging is a

methodology that emphasizes tumor subregional analysis, enabling

more effective quantification of tumor subregions associated with

tumor growth and invasiveness, thus offering a more precise

representation of tumor heterogeneity and drug sensitivity (12,

13). Recently, machine learning and deep learning have been

extensively utilized in the medical field. Traditional machine

learning predominantly relies on manually selected features (14).
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While, deep learning can automatically extract digital features from

imaging data, potentially revealing new insights that were not

previously recognized (15, 16). Therefore, this study aims to

develop a machine learning model integrating habitat imaging

and deep learning to predict the treatment response of ESCC

patients to nICT.
2 Methods

2.1 Patient selection

This retrospective study included patients who underwent

esophagectomy at 6 medical centers from August 1, 2019 to June

30, 2024. The inclusion criteria for this study were as follows (1):

Histopathological confirmation of ESCC via endoscopic biopsy

before treatment (2); Clinical stages of T1-2N+M0 or T3-4aNanyM0

(3); Receipt of at least one cycle of nICT without restrictions on

chemotherapy regimen or the type of immunodrug (3); Availability

of CT images and complete clinicopathological data. The exclusion

criteria for this study were: (1) Pathological diagnosis of non-

squamous cell carcinoma; (2) Insufficient clinical information or

pathological reports; (3) Poor-quality CT images or the presence of

artifacts; (4) Refuse surgical intervention due to compromised

cardiopulmonary function and other contributing factors. A total

of 309 cases were ultimately included in this study.

Additionally, ESCC patients from our center (Fujian Medical

University Union Hospital) were provided for a training cohort

consisting of 198 individuals, while 111 patients from five other

medical centers constituted an external validation cohort. The study

is deemed to carry no risks to participants, and all data has been

anonymized. The details of patient selection are summarized in

Supplementary Figure S1.
2.2 Relevant definition and study endpoints

Pathological complete response (pCR) is defined as no residual

tumor cells in both tumor tissue and lymph node. Major

pathological response (MPR) is a condition wherein 10% or fewer

viable tumor cells are within the resected primary esophageal tumor

specimen. In this study, tumor regression grade (TRG) was utilized

to assess the pathological response. In accordance with the

guidelines established by the College of American Pathologists

(CAP) and the National Comprehensive Cancer Network

(NCCN), MPR was equated to TRG 0-1, while it corresponds to

TRG 1–2 under the Mandard scoring system (17–19).

In this study, ESCC patients were classified into two groups:

good-responder (GR) and poor-responder (PR). Notably, the GR

group included MPR or higher, denoting complete or near-

complete tumor regression. While, the PR group indicated cases

with partial, minimal, or no tumor regression.
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2.3 Treatment protocols

Under normal medical circumstances, diagnostic and clinical

staging procedures included gastroscopy, contrast-enhanced

computed tomography of the neck, chest, and upper abdomen,

and neck ultrasound. PET-CT was performed when necessary.

In general, the specific medications utilized in nICT, including

their formulations, subtly varied across different hospitals. The

chemotherapy regimen primarily consisted of platinum in

combination with paclitaxel or docetaxel, administered every three

weeks. Common neoadjuvant chemotherapy regimens involved

cisplatin (60 mg/m2) on day 1, followed by nab-paclitaxel (125 mg/

m2) on days 1 and 8, or docetaxel (75 mg/m2) with cisplatin (60 mg/

m2) on day 1. Following neoadjuvant chemotherapy, PD-1/PD-L1

inhibitors were administered. Generally, these inhibitors were also

administered every three weeks, including sintilimab at a dosage of 200

mg, toripalimab at a dosage of 240 mg, pembrolizumab at a dosage of

200 mg, tislelizumab at a dosage of 200 mg and camrelizumab at a

dosage of 200 mg.

The selection and adjustment of specific medications and their

dosages were determined by expert oncologists and thoracic

surgeons, considering drug-related toxicities and patient tolerance.
2.4 CT image acquisition and tumor
segmentation

All ESCC patients in this study received comparable CT scans

across six hospitals despite minor variations in the CT equipment

and scanning protocols. The information on the scanning

equipment and contrast agent injection protocols are provided in

Supplementary Material Part 1. This study obtained venous phase

CT images from the picture archiving and communication systems

of six medical centers, utilizing the DICOM format for retrieval.

The volume of interest (VOI) for the entire tumor is outlined by

experienced radiologists. In general, areas where the esophageal wall

thickness reaches or exceeds 5 millimeters are usually identified as

regions of esophageal tumor lesions. Any disagreements that arose

during segmentation were resolved through discussions. The 3D-

Slicer software (version 4.11.20210226) was utilized in this

process (20).

In order to minimize image heterogeneity, the pixel intensity

was standardized by setting the window width to 350 and the

window level to 40, and the images were resampled to achieve

uniformity (1 mm * 1 mm * 1 mm).
2.5 intratumoral and peritumoral subregion
generation

During intratumoral subregions generation by habitat imaging,

this study used 19 CT-derived features, including entropy, to cluster
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subregions. The details of these 19 CT-derived features can be

found in Supplementary Material Part 1 and Figure 1A. The K-

means clustering ranging from 2 to 10 was performed to generate

corresponding subregions, as is shown in Figure 1B. The optimal

number of subregional divisions was determined using the Calinski-

Harabasz index (CH index). Generally, a higher CH index indicates

a more favorable clustering outcome. The details of K-means

clustering and CH index were shown in Supplementary Material

Part 1.

In this study, the optimal number of clusters, which was K=2,

corresponds to the highest CH index, as is shown in Supplementary

Figure S2. Therefore, the intratumoral region was divided into two

heterogeneous subregions: subregion of Habitat 1 (H1) and

subregion of Habitat 2 (H2). Besides, for peritumoral subregion

generation, a 1-mm-wide band was generated with automated

dilation of the tumor boundaries (peritumoral subregion). To

focus on the VOI and reduce irrelevant background noise, these

three subregions are respectively cropped out according to the outer
Frontiers in Immunology 04
cube around the edge of each tumor subregion, and subsequently

utilized as input data for the following deep learning

model construction.
2.6 3D Deep learning and quantitative
feature extraction

During the training of the 3D deep learning model, the input

images were resized to a standardized dimension of 64*64*48. The

backbone network was constructed using Vision Transformer (ViT)

architecture, and its generalization capability was enhanced via data

augmentation techniques such as horizontal flipping, vertical

flipping and random cropping. The transformer encoder included

multi-head self-attention, multi-layer perceptron, residual

connections and layer normalization. During the training phase,

network parameters were updated through forward and backward

propagation. Optimization was performed using the Adam
FIGURE 1

The heatmap of 19 CT-derived features (A).The different tumor subregions based on different K-means values (B).
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optimizer with the cross-entropy loss function, and cosine

annealing was used to dynamically adjust the learning rate.

Additionally, the other hyperparameters of the model are as

follows: the number of training epochs was set to 100, the batch

size to 32, the initial learning rate to 0.001, and the dropout rate to

0.1. Finally, the weights of the trained Vision Transformer model

were frozen and utilized as a deep learning (DL) feature extractor

for subsequent tasks.

During the development of DL feature, sharing the same

backbone architecture, each subregion was an independent input

data and analyzed separately, thus forming an integrated model of

three subregions. That is: the external cubes from each subregion

were taken as input images, and deep learning was conducted

respectively to extract DL features.
2.7 DL feature fusion and selection for
subregional model

Initially, this study adopted feature-level fusion strategy, also

known as early fusion, which involves concatenating DL features

from three sub-regions into a single feature vector.

Then, the 1024 deep learning features from each of the three

subregions were standardized using Z-scores to facilitate convergence.

Two approaches were then employed to identify robust DL features.

Initially, the correlations among highly repeatable features were

evaluated using the Pearson correlation coefficient. When the

correlation coefficient between any two features exceeded 0.9, one of

the features was retained. Thereafter, the Least Absolute Shrinkage and

Selection Operator (LASSO) analysis was utilized to screen out DL

features and their corresponding coefficients that effectively predict

poor-responder and good-responder groups.
2.8 Construction and evaluation of
machine learning model of tumor
subregions

After applying the LASSO feature selection method, 11 machine

learning models were employed to integrate the selected features.

These models encompassed logistic regression (LR), support vector

machine (SVM), RandomForest (RF), GradientBoosting,

ExtraTrees, AdaBoost, LightGBM, NaiveBayes, XGBoost,

multilayer perceptron (MLP) and K Nearest Neighbors (KNN).

The most optimal machine learning model was selected based on its

performance in two cohorts, assessed by the area under the curve

(AUC) and accuracy. The details of machine learning models and

LASSO regression were shown in Supplementary Material Part 1.

The diagnostic performance of the machine learning modes was

assessed in two cohorts. Receiver Operating Characteristic (ROC)

curves were generated to evaluate the diagnostic accuracy.

Calibration performance was evaluated using calibration curves to

determine their predictive reliability. Furthermore, decision curve

analysis (DCA) was employed to assess the clinical utility of the
Frontiers in Immunology 05
optimal model. The SHapley Additive exPlanations (SHAP)

method was used to elucidate the model’s prediction for each

case. SHAP provides a reliable framework for accurately assessing

the impact and contribution of each feature on the machine

learning model. Moreover, each observation in the dataset can be

interpreted based on its unique SHAP value. In addition, in

subgroup analysis, the diagnostic performance of the optimal

machine learning model was evaluated in subgroups of patients

receiving different nICT cycles. The flowchart of habitat imaging

and deep learning analysis is shown in Figure 2.
2.9 Statistical analysis

Continuous variables were described using median and

interquartile range, and categorical variables were expressed by

frequency and percentage. A two-tailed p-value of less than 0.05 was

considered statistically significant. R software (version 4.0.2) and

Python (version 3.7.12) were used for data analysis.
3 Results

3.1 Patient characteristics

A total of 309 ESCC patients were included in two cohorts

(training cohort: 198 cases; external validation cohort: 111 cases).

There were significant differences in the age (P = 0.002), smoking

history (P < 0.001), treatment cycle (P = 0.004) and tumor location

(P < 0.001) between two cohorts. Clinicopathological data of ESCC

patients of two cohorts are detailed in Table 1.
3.2 Selection of DL features for machine
learning model construction

Of the extracted DL features, 18 DL features with values of

predicting PR and GR were obtained through LASSO regression

analysis, as shown in Supplementary Figure S3. The coefficient

values of the final selected features are shown in Supplementary

Figure S4.
3.3 Selection of optimal machine learning
model

A total of 11 machine learning models were constructed and

evaluated to identify the optimal-performing model. All of the

machine learning models used are shown in Table 2. The

ExtraTrees model exhibited superior performance over other 10

models, achieving the highest AUC value while maintaining a well-

balanced trade-off between sensitivity and specificity in two cohorts.

The ROC analysis of each machine learning model in two cohorts is

shown in Figure 3.
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3.4 Performance evaluation of the
ExtraTrees model

In this study, the DCAs for ExtraTrees were performed in

training and external validation cohorts, as is shown in Figure 4.

The decision curve analysis showed that the overall net benefit of

ExtraTrees in the most reasonable threshold probability ranges (0.2

- 0.8), indicating the important clinical value in predicting

treatment response. Calibration curves of ExtraTrees also showed
Frontiers in Immunology 06
good agreement between predicted and observed cases of PR and

GR in two cohorts, as shown in Supplementary Figure S5.
3.5 The application of the ExtraTrees
model in subgroup population

In two cohorts, the ExtraTrees model was utilized in patients

undergoing different cycles of nICT (patients receiving 2 cycles and
FIGURE 2

The flowchart of habitat imaging and deep learning analysis.
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patients receiving other than 2 cycles). Notably, the model

demonstrated good performance in the subgroup of patients

receiving 2 treatment cycle with AUCs of 0.862 in validation

cohort, thereby suggesting enhanced clinical versatility, as detailed

in Table 3.
3.6 Visualization of the ExtraTrees model

The SHAP method offers a framework that explains the outputs

of the machine learning model of ExtraTrees and provides clear

insights into the decision-making process for each case. The overall

distribution of SHAP values for all selected features is illustrated in

Figure 5A. In addition, the model’s performance was further

elucidated by analyzing PR and GR cases in two cohorts: the two

samples indicated that the model predicted achievement of GR,
Frontiers in Immunology 07
which transpired, as is shown in Figures 5B, D. While the other two

cases demonstrated that the model predicted a failure to achieve

GR, which indeed did not occur in each cohort, as is shown in

Figures 5C, E.
4 Discussion

Despite advancements in screening and treatment regimens, the

5-year survival rate for LA-ESCC patients remains unsatisfied,

primarily due to tumor heterogeneity and drug resistance (21,

22). Hence, predicting treatment responses and identifying

potential beneficiary groups to nICT prior to the implementation

of the treatment are vital for avoiding unnecessary adverse events

and facilitating timely modifications to treatment protocols, thus

improving the prognosis of ESCC.

MPR and pCR are the preferred indicators for assessing the

treatment response to nICT (23). For ESCC patients attaining pCR,

surgery or additional neoadjuvant treatment might not be requisite.

However, aside from identifying which ESCC patients are capable of

achieving pCR, another clinical challenge involves discerning those

who can attain MPR, which also holds great guiding value and

significance for clinical practice: Patients who do not achieve pCR

after nICT do not necessarily demonstrate a poor treatment response,

because some of these patients still achieve MPR, indicating good

sensitivity to nICT. For patients unresponsive to nICT, surgery should

be performed promptly or alternative curative treatments should be

provided without delay in order to improve their therapeutic and

survival outcomes (18). Furthermore, the additional rationale for

selecting GR as the primary outcome of this study is as follows:

Firstly, a previous study showed that the overall survival and

recurrence-free survival of ESCC patients achieving MPR after nICT

is significantly prolonged (24). In addition, while EC patients with

microscopic residual disease are at a higher risk of recurrence, their

survival rates are similar to those of patients with pCR (25). Similarly,

previous study has also indicated that EC patients with a tumor

regression response of ≥ 90% and no residual tumor cells in lymph

nodes have survival outcomes similar to those with pCR (26).

Therefore, this study categorized ESCC patients into good-responder

and poor-responder groups.

In addition to common diagnostic examinations like CT or EUS,

various biomarkers are used to assess the suitability of

immunotherapy for EC patients, including PD-L1 expression level

and tumor mutation burden (TMB). However, there is controversy

over PD-L1’s ability to predict the treatment response of nICT in

ESCC patients, given that various trials have shown that EC patients

can benefit from the combination of immunotherapy and

chemotherapy, irrespective of PD-L1 expression levels (27, 28).

Moreover, certain studies have reported no significant difference in

PD-L1 expression level between patients who exhibited good

pathological responses and those who did not (3, 29). Likewise,

TMB is a contentious predictor in the immunotherapy context (30).

Moreover, these biomarkers are often extracted from a small portion

of entire tumor samples through invasive, expensive, and time-

consuming procedures. Given the high intratumoral heterogeneity,
TABLE 1 Clinicopathological characteristics of ESCC patients in training
and external validation cohorts.

Variables
Training
cohort

External
validation
cohort

P
value

Sex 0.097

male 159 (80.30%) 80 (72.07%)

female 39 (19.70%) 31 (27.93%)

Age 0.002

≤65 148 (74.75%) 64 (57.66%)

>65 50 (25.25%) 47 (42.34%)

BMI 0.146

<18.5 25 (12.63%) 17 (15.32%)

18.5-24 142 (71.72%) 68 (61.26%)

≥24 31 (15.66%) 26 (23.42%)

Smoking history <0.001

negative 47 (23.74%) 77 (69.37%)

positive 151 (76.26%) 34 (30.63%)

Tumor location <0.001

upper 15 (7.58%) 9 (8.11%)

middle 92 (46.46%) 77 (69.37%)

lower 91 (45.96%) 25 (22.52%)

Treatment cycle 0.004

=2 114 (57.58%) 82 (73.87%)

≠2 84 (42.42%) 29 (26.13%)

Treatment
response 0.297

PR 111 (56.06%) 69 (62.16%)

GR 87 (43.94%) 42 (37.84%)
PR, poor-responder; GR, good-responder.
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FIGURE 3

The ROC curves of each machine learning model in training cohort (A) and external validation cohort (B).
TABLE 2 The AUC, accuracy, sensitivity, and specificity of each machine learning model in terms of predicting treatment response.

Model name AUC (95% CI) Accuracy Sensitivity Specificity Cohort

LR 0.915 (0.877 - 0.953) 0.848 0.724 0.946 training cohort

LR 0.817 (0.740 - 0.895) 0.730 0.857 0.652 validation cohort

NaiveBayes 0.899 (0.857 - 0.941) 0.838 0.736 0.919 training cohort

NaiveBayes 0.814 (0.735 - 0.893) 0.784 0.548 0.928 validation cohort

SVM 0.939 (0.904 - 0.974) 0.884 0.897 0.874 training cohort

SVM 0.781 (0.693 - 0.870) 0.721 0.762 0.696 validation cohort

KNN 0.927 (0.894 - 0.960) 0.864 0.816 0.901 training cohort

KNN 0.691 (0.588 - 0.793) 0.685 0.476 0.812 validation cohort

RandomForest 0.953 (0.926 - 0.980) 0.894 0.908 0.883 training cohort

RandomForest 0.818 (0.739 - 0.897) 0.775 0.714 0.812 validation cohort

ExtraTrees 0.917 (0.881 - 0.954) 0.823 0.862 0.793 training cohort

ExtraTrees 0.831 (0.753 - 0.908) 0.766 0.833 0.725 validation cohort

XGBoost 0.989 (0.981 - 0.998) 0.944 0.954 0.937 training cohort

XGBoost 0.765 (0.674 - 0.855) 0.73 0.619 0.797 validation cohort

LightGBM 0.957 (0.932 - 0.982) 0.894 0.920 0.874 training cohort

LightGBM 0.746 (0.655 - 0.837) 0.622 0.976 0.406 validation cohort

GradientBoosting 0.970 (0.946 - 0.994) 0.919 0.931 0.910 training cohort

GradientBoosting 0.796 (0.710 - 0.883) 0.757 0.643 0.826 validation cohort

AdaBoost 0.957 (0.934 - 0.981) 0.894 0.908 0.883 training cohort

AdaBoost 0.733 (0.635 - 0.832) 0.739 0.571 0.841 validation cohort

MLP 0.911 (0.873 - 0.950) 0.843 0.713 0.946 training cohort

MLP 0.824 (0.747 - 0.901) 0.730 0.810 0.681 validation cohort
F
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AUC, area under curve; LR, Logistic Regression; SVM, Support Vector Machine; RF, RandomForest; KNN, K Nearest Neighbors; MLP, Multilayer Perceptron.
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these biomarkers may not adequately reflect the entire spectrum of

the tumor lesion’s characteristics. Therefore, in this study, the

predictive model of ExtraTrees leveraging habitat imaging and ViT

was constructed as non-invasive approach that can comprehensively

capture the tumor characteristics. The ExtraTrees model

achieved AUCs of 0.917 in the training cohort and 0.831 in the

validation cohort, showing great potential of clinical application
Frontiers in Immunology 09
(preventing both premature discontinuation and unnecessary

treatment extensions).

There is no consensus regarding the optimal number of cycles for

nICT and the number of cycles for nICT in LA-ESCC varied across

different medical centers (31, 32). Consequently, the ExtraTrees model

was applied to subgroups of LA-ESCC patients receiving different

numbers of nICT cycles, exhibiting satisfied predictive performance,
FIGURE 4

The decision curve analysis of ExtraTrees in training cohort (A) and external validation cohort (B).
TABLE 3 The AUC, accuracy,sensitivity and specificity of ExtraTrees model in patients undergoing =2 cycles and ≠2 cycles of neoadjuvant therapy .

Treatment Cycle AUC (95%CI) Accuracy Sensitivity Specificity Cohort

=2 0.933 (0.889 - 0.977) 0.842 0.860 0.828 training cohort

=2 0.862 (0.774 - 0.950) 0.780 0.857 0.741 validation cohort

≠2 0.896 (0.833 - 0.960) 0.798 0.865 0.745 training cohort

≠2 0.714(0.517 - 0.911) 0.724 0.786 0.667 validation cohort
AUC, area under curve.
FIGURE 5

SHAP analysis of ExtraTrees model: The scatter plot of feature distributions using the SHAP analysis (A). Force plot for patients with good treatment
response in the training cohort (B) and external validation cohort (D). Force plot for patients with poor treatment response in the training cohort (C)
and external validation cohort (E).
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thus highlighting its potential as a valuable tool for clinical decision-

making. In this study, large proportion of ESCC patients received two

cycles of nICT. With a larger sample size, the ExtraTrees model

performed well in the subgroup of patients receiving 2 cycle of nICT.

However, a smaller sample size of subgroup (patients receiving other

than 2 cycle of nICT) may lead to insufficient statistical power and

lower performance. Therefore, future study is needed to expand its

sample size from more medical centers to enhance the reliability and

representativeness of the analysis results.

In the field of medical oncology, predicting treatment response is a

critical research focus. Compared to previous studies about treatment

response predictions, our research offers several advantages: Firstly, this

study established and externally validated the predictive model in a

large sample size from 6 medical centers, confirming its reliability and

stability. Secondly, the peritumoral features analyzed in this study serve

as strong prognostic indicators, aligning with findings from other study

(33). Evidences indicated that predictive models should consider the

potential predictive capacity of the surrounding regions, capable of

providing additional insights into tumor heterogeneity (34–39). Third,

LA-ESCC exhibited high intratumoral heterogeneity across

phenotypes, including proliferation, vascular distribution and

oxygenation, which directly correlated with treatment resistance.

Consequently, habitat imaging and clustering algorithms were

utilized in this study to generate intratumoral subregions and then

assess the tumor heterogeneity. In contrast to previous studies that

analyzed the entire tumor region to predict the sensitivity to

immunotherapy in ESCC patients (40, 41), our research focused on

three tumor subregions for predicting treatment response of nICT.

This novel approach not only provides a more accurate reflection of

gene and transcriptome expression at the microscopic level but also

facilitates a more effective analysis of the tumor micro-environment

(the cell subpopulations within specific tumor regions) and tissue types

(such as fibrosis and necrosis) at the macroscopic level. In addition,

while Xie’s study on habitat analysis relied on clusters of Hounsfield

Unit values and local entropy (42), our study employed 19 CT-derived

features to generate tumor subregions, including Strength,

RunVariance, DifferenceAverage, SmallAreaHighGrayLevelEmphasis

and InverseVariance. These features have been proven to be strongly

correlated with tumor aggressiveness and drug resistance (43–49),

thereby allowing tumor region to be delineated into subregions from

more imaging perspectives, providing a more nuanced reflection of

intratumoral heterogeneity. Finally, the deep learning model of ViT

utilized a self-attention mechanism to capture comprehensive image

features without relying on adjacent element dependencies. Previous

studies have shown that ViT outperformed Convolutional Neural

Networks (CNNs) (50). Therefore, the ViT model was used as the

feature extractor instead of CNNs, enhancing the efficiency of data

processing and the capacity for generalization.

There were certain limitations in this study. First, the retrospective

design inherently presents limitations despite strict patient selection to

mitigate selection bias. Secondly, considerable efforts have been made

to minimize variability in imaging data. However, discrepancies in CT

equipment and protocols across different periods and institutions

introduced bias and performance drop. Nonetheless, this variability

is unavoidable and necessary, which could enhance the reproducibility
Frontiers in Immunology 10
and robustness of results from multi-institutional studies. Third, our

study’s exclusive focus on ESCC patients may limit the model’s

generalizability to esophageal adenocarcinoma. In addition, relevant

data for investigating the biological mechanisms underlying treatment

response predictions were limited due to the retrospective nature of this

study. Future work will focus on systematically collecting such data and

using multi-omics approaches to explore the relationship between

biological processes and deep learning features. However, the

substantial sample size in this study enhances the credibility of

our findings.
5 Conclusion

In summary, by leveraging habitat imaging and vision

transformer, the machine learning of ExtraTrees was constructed

to enhance precision in predicting treatment response before

initiating nICT, thereby avoiding unnecessary adverse events and

facilitating timely modifications to treatment protocols. This

machine learning model prevented premature discontinuation

and unnecessary treatment extensions while relying on a

comprehensive, non-invasive methodology. Future prospective

studies will further validate the predictive performance of our

findings in clinical practice.
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