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Background: Elite controllers can spontaneously control HIV-1 infection without

antiretroviral treatment but remain at risk of developing non-AIDS-related

conditions. The adaptive immune system is key in mediating spontaneous viral

control; however, the innate immune response remains understudied. We

assessed the quality of the innate immune responses by evaluating the

phenotype and function of antigen-presenting cells (APCs) in South African

adults living with HIV (PWH).

Methodology: A total of 73 black South Africans were included in this study. Of

these, 55 were living with HIV and included 16 individuals with spontaneous viral

control (PWHEC), 20 HIV progressors (PWHPROG), and 19 individuals suppressed

on ART (PWHART). Eighteen individuals without HIV infection (PWOHHIV-) served

as the control group. Monocyte subsets, T cell and monocyte activation and the

production of tumour necrosis factor-alpha (TNF-a), interferon-alpha (IFN-a),
and interleukin-1 beta (IL-1b) by monocytes, myeloid (mDCs) and plasmacytoid

(pDCs) dendritic cells were analyzed using multicolour flow cytometry following

stimulation with toll-like receptor (TLR)4 (LPS), TLR7/8 (CL097), and TLR9 (CpG-

ODN2216) ligands. Plasma biomarkers, soluble CD14 (sCD14), and D-dimer were

assessed using enzyme-linked immunosorbent assay.

Results: Our findings show a reduced expression of CD86 on monocytes of

PWHEC (p=0.04) compared to PWOHHIV-. A reduced frequency of the classical

monocyte (CD14+CD16) subset in PWHEC (p=0.02) and PWHPROG (p=0.05)

compared to PWOHHIV-. TNF-a and IL-1b production was lower in monocytes

and mDCs of PWHEC compared to PWOHHIV- post-stimulation with TLR4, and

TLR7/8 (all p<0.05). Increased sCD14 levels in PWHEC compared to PWOHHIV-

(p=0.01) indicate persistent immune activation, whereas increased D-dimer

levels in PWHPROG compared to PWHART (p=0.01) and PWHEC (p=0.04) suggest

higher inflammation in PWHPROG.

Conclusion: PWHEC exhibits similar immune responses as other PWH including

PWHPROG, their innate immune profiles are characterized by lower levels of

monocyte activation, reduced levels of classical monocytes, reduced capacity to

produce pro-inflammatory cytokines, and elevated biomarkers associated with
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unfavourable disease outcomes. These findings highlight the need for

continuous monitoring and potential therapeutic interventions to mitigate

chronic inflammation in PWHEC. Furthermore, it expands our understanding of

complex innate immune cell responses in PWHEC.
KEYWORDS

HIV-1, HIV elite controllers, antigen-presenting cells, monocyte activation,
proinflammatory cytokines
Introduction

The HIV/AIDS epidemic remains a global health crisis with

approximately 39.9 million people living with HIV (PWH)

worldwide. South Africa remains the epicentre of HIV-1 infection

in sub-Saharan Africa with 7.8 million PWH in 2023 (1).

Antiretroviral therapy (ART) has dramatically changed the

prognosis of HIV infection and is widely available with 77% of

South African PWH being on ART and suppressed by the end of

2023. ART suppresses HIV-1 replication to undetectable levels,

significantly improving the lives of PWH by decreasing mortality

and morbidity (2). However, ART has limitations including

incomplete eradication of HIV-1 due to the persistence of viral

reservoirs, which are the source of viral rebound if ART is

discontinued (3). Despite ART, chronic inflammation, ongoing

HIV-1 replication, and cellular metabolic dysregulation persist,

contributing to non-infectious conditions like renal and

cardiovascular diseases, as well as neurocognitive impairment,

among others (4, 5).

Studies on natural HIV-1 control have identified a subgroup of

PWH termed HIV controllers who naturally achieve viral control in

the absence of ART for 2–10 years, maintain normal peripheral

blood CD4+ T cell levels and have a low risk of progression to AIDS

(6–8). HIV controllers are subdivided into viraemic controllers

(VCs), long-term non-progressors (LTNPs) and elite controllers

(ECs). Elite controllers can maintain viral control without disease

progression for up to 25 years (9, 10). HIV-1-specific CD8+ T cells,

especially those associated with HLA-I alleles B*27 and B*57, play a

crucial role in the spontaneous control observed in elite controllers

(10–12). Additionally, reduced expression of C-C chemokine

receptor type 5 (CCR5) in elite controllers is correlated with

slower disease progression due to reduced HIV viral entry.

Genetic variations in the CCR5 gene are associated with an

increased likelihood of spontaneous viral control (13).

Furthermore, HLA class I alleles are genetic determinants that

influence peptide presentation and cytotoxic T lymphocyte

responses. However, less than 25% of elite controllers display

these genetic phenotypes and variations, suggesting that other

immunologic mechanisms are involved (11, 14). Studies have

reported the role of T cell activation, cytotoxic T lymphocytes,

and natural killer cells in spontaneous viral control, though the
02
contribution of other innate immune cells remains less well

understood (15).

Recent studies suggest that innate immune responses play a

significant role in spontaneous HIV-1 control, and the concept of

trained innate immune response suggests the possibility that

spontaneous viral control will be achieved through the functions

of innate immune cells (16–19). Marras et al. reported that

increased interferon-gamma (IFN-g) production and natural killer

cells (NK cells) activation were linked to spontaneous viral control

(3, 20). Previously, a study in our laboratory reported high levels of

CD69-expressing NK cells in elite controllers which were associated

with spontaneous viral control (19). The two major dendritic cell

subsets, myeloid dendritic cells (mDCs) and plasmacytoid dendritic

cells (pDCs) play distinct roles in HIV-1 control (3). mDCs, in elite

controllers, display enhanced cGAS, IFN-a secretion, rapid

maturation, HIV-1 viral sensing, effective antigen processing and

subsequent CD4+ and CD8+ T cell activation (21). pDCs are the

main producers of interferon-alpha (IFN-a) during an

inflammatory response, however, this function is diminished in

PWH, with reduced levels noted in viraemic controllers compared

to elite controllers (11, 22–24).

Monocytes play a critical role in initiating the HIV-1 anti-viral

inflammatory response by secreting inflammatory cytokines such as

interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-a)
during the acute inflammatory phase of infection (25). Monocyte

subsets are phenotypically and functionally distinct and can be

classified into classical monocytes (CD14++/CD16-), intermediate

monocytes (CD14++/CD16+), and non-classical monocytes (CD14

+/CD16++) (26) according to the expression of CD14 (co-receptor

for toll-like receptor 4) and CD16 (Fc gamma receptor IIIa) (27).

During chronic HIV infection, intermediate monocytes expand and

secrete pro-inflammatory cytokines, including TNF-a and IL-1b
(27). Elite controllers exhibit reduced levels of intermediate

monocytes compared to viraemic controllers, who have a higher

viral load (28, 29). Non-classical monocytes express high levels of

co-stimulatory markers CD80 and CD86, highlighting their

possible role in antigen presentation during HIV-1 control in

PWH with chronic/acute progressive infection (30–32).

Furthermore, monocytes display reduced C-C chemokine

receptor type 2 (CCR2) expression and elevated CX3CR1

expression in elite controllers (PWHEC) and people living with
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HIV suppressed on ART (PWHART) compared to people without

HIV (PWOHHIV-), highlighting the impact of HIV-1 on monocyte

migration into tissues (3, 28). Together, these studies highlight the

importance of innate immune cells in HIV antiviral immunity

(26, 33).

Despite these insights, there is a substantial knowledge gap

regarding the role of the innate immune response in HIV elite

controllers. Furthermore, given their ability to maintain viral

suppression without ART, elite controllers offer a unique

opportunity to investigate natural mechanisms of HIV control.

Understanding their innate immune responses may reveal

therapeutic targets for achieving a functional cure. This study

characterised monocyte subsets, their activation profiles compared

to T cells, and the function of antigen-presenting cells (APCs)

(monocytes, mDCs and pDCs) in different groups of South African

PWH. Our findings show elevated T cell and reduced monocyte

activation in South African PWH including PWHEC. In addition, a

dysfunction in the ability of APCs to secrete pro-inflammatory

cytokines (TNF-a, IFN-a and IL-1b) was observed in PWH

compared to PWOHHIV-, together with increased plasma

biomarkers associated with non-AIDS conditions.
Materials and methods

Study participants

This is a case-control study with different groups (different

phenotypes) of people with HIV (PWH) and a negative control

group. Study participants were Black adults (18 years and older).

We recruited individuals who maintained spontaneous viral

control, another group who had low CD4 counts and high viral

loads at enrolment, and patients on long-term ART from

Johannesburg at two sites: Parktown, and Soweto, South Africa

(19). Finally, a group of controls without HIV infection

(PWOHHIV-) were volunteers from the National Health

Laboratory Services (NHLS), Sandringham Campus (19). The

study participants were as follows; people living with HIV who

maintained spontaneous viral control PWHEC (n=16) with CD4 T

cell count ≥500 cells/ml and viral load <50 copies/ml at enrolment,

people living with HIV on ART for a minimum of 7 years PWHART

(n=19) and virally suppressed at the time of enrolment with CD4 T

cell count ≥500 cells/ml, people living with progressive HIV

infection PWHPROG (n=20) evidenced by their CD4 T cell count

< 350 cells/mm3 (except n=4 HIV progressors where CD4 T cell

count was above 350 cells/mm3) and viral load above> 5000 RNA

copies/ml. A control group of people without HIV PWOHHIV-

(n=18) had a confirmed negative rapid HIV test and a negative

plasma HIV ELISA assay at enrolment. People with HIV classified

as progressors (PWHPROG) were not receiving antiretroviral

therapy (ART) at the time of enrolment, allowing for the

assessment of natural disease progression in the absence

of treatment.

Informed consent was obtained from all the study participants.

CD4 T cell count for all the participants was reported and formed
Frontiers in Immunology 03
part of the inclusion criteria. PWHEC had undergone prior

longitudinal clinical follow-ups of heterogeneous duration to

ensure they are actual elite controllers maintaining high CD4 T

cell levels and low viral load, not slow progressors. PWHART were

virally suppressed for a minimum of 7 years at the time of

enrolment, their CD4 T cell levels and viral load before ART

commencement were not available. Blood samples from the

respective participants were collected and cryopreserved at -150°C

for later use. Ethical clearance was obtained from the University of

the Witwatersrand Human Research Ethics Committee (Medical).
PBMC isolation and thawing

T cell and monocyte activation, along with monocyte subsets,

were assessed using cryopreserved peripheral blood mononuclear

cells (PBMCs). PBMCs were isolated using ficoll density gradient

centrifugation and immediately frozen. Cryopreserved PBMCs were

thawed using a previously established protocol (34, 35). Briefly,

PBMCs were resuspended in R10 medium (RPMI 1640

supplemented with 10% heat-inactivated foetal bovine serum

(FBS), 1% 1000 U/ml penicillin, 1.7mM sodium glutamate, and

5.5ml HEPES), washed and rested in R10 medium (1x106 cells/ml)

at 37 °C and 5% CO2 for approximately 2 hours before use in assays.
Phenotypic staining of T cells and myeloid
cell subsets

Peripheral blood mononuclear cells (1x106 cells/ml) were

stained with LIVE/DEAD Fixable Aqua Dead Cell Stain

(Invitrogen, Carlsbad, California, USA) followed by surface

staining with a monoclonal antibody cocktail including: CD56-

BV510 (1H11), CD19-BV510 (HIB19), CD3-BV650 (OKT3), CD4-

APC (OKT4), CD14-APC-CY7 (63D3), CD11c-PE-CY5 (3.9),

CD16-BV786 (3G8), CD123-BV421 (6H6), CD69-Percp cy5.5

(FN50), CD38-PE (HIT2), and CD86-PECY-7 (IT2.2) all from

(BioLegend, San Jose, USA), CD8-FITC (HIT8a), HLA-DR-

PECF594 (L243) Becton Dickson and company (BD Biosciences,

San Jose, USA). Cells were incubated for 20 minutes at room

temperature (RT) in the dark, washed, fixed and resuspended in

200µl of phosphate-buffered saline (PBS) for acquisition on the BD

LSRFortessa™ X-20 (BD Biosciences).
Stimulation of PBMCs using TLR ligands
and intracellular cytokine staining

To assess the functional capacity of monocytes, mDCs, and

pDCs, PBMCs (1x106 cells/ml) were stimulated with a range of toll-

like receptor (TLR) ligands; lipopolysaccharides (LPS) for TLR4,

CL097 for TLR7/8 and oligodeoxynucleotides containing

unmethylated CG dinucleotides (CpG-ODN22) for TLR9 as

previously described (34). PBMCs were stimulated with TLR

ligands according to the following conditions: a control
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(unstimulated) i.e. PBMCs reconstituted in R10 (RPMI + 10% FBS+

1% pen strep) medium only and PBMCs incubated separately with

the following TLR ligands (TLR4-LPS, TLR7/8-CL097 and TLR9-

CpG-ODN22) reconstituted in R10. The cells were incubated for 18

hours at 37°C CO2 in the presence of brefeldin A (5µg/ml) (Sigma-

Aldrich, St. Louis). The cells were washed, and stained with a

cocktail of antibodies: CD56-BV510 (1H11), CD19-BV510

(HIB19), CD3-BV650 (OKT3), CD4-APC (OKT4), CD14-APC-

CY7 (63D3), CD11c-PE-CY5 (3.9), CD123-BV42 (6H6) all from

(BioLegend, San Jose, USA), HLA-DR-PECF594 (L243), CD8-FITC

(HIT8a) (BD Biosciences, San Jose, USA), washed then

intracellularly stained with a cocktail of antibodies: interferon-

alpha (IFN-a-PE) (7N4-1) (BD Biosciences, San Jose, USA),

tumour necrosis factor-alpha (TNF-a-BV605) (MAb11) and

interleukin 1-beta (IL-1b-APC) (REA1172) (BioLegend, San Jose,

USA) in the presence of permeabilising solution PERM B

(Invitrogen, Carlsbad, California, USA). Cells were incubated for

20 minutes at RT in the dark, washed, fixed and resuspended in

200µl of PBS for acquisition on the BD LSRFortessa™ X-20 (BD

Biosciences). Data was acquired using the FACSDiva software (BD,

Biosciences, San Jose, USA). Each flow cytometry run recorded a

total range of 500,000–1x106 events. The acquired data was further

analyzed using FlowJo software (TreeStar, Inc., Ashland,

Oregon, USA).
Assessment of plasma biomarkers

Monocyte activation and coagulation activity were assessed in

the plasma of the study participants by measuring the expression

levels of human soluble (sCD14) using DuoSet ELISA and D-dimer

using commercially available enzyme-linked immunosorbent assay

(ELISA) kits from (R&D Systems, Minnesota, USA).
Data acquisition

Statistical analyses were performed using GraphPad Prism

version 8.01 (GraphPad Software, La Jolla, California, USA). CD4

+ and CD8+ T cell (HLA-DR and CD38 expression) activation and

monocyte subset frequencies between the different groups were

analysed using One-way ANOVA and unpaired t-test for multiple

and single-group comparisons in normally distributed data.
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Cytokine (TNF-a, IFN-a and IL-1b) production in APCs after

TLR ligand stimulation, plasma biomarkers (sCD14 and D-dimer)

and CD69 and CD86 expression on APCs and T cells between the

different groups were analyzed using Kruskal-Wallis test for

multiple group comparisons and Mann-Whitney U test for single

group comparisons in non-parametric data. Spearman’s rank

correlation coefficient was used to analyse the relationship

between activation markers on T cells and monocytes. Differences

were considered statistically significant at P < 0.05.
Results

Clinical characteristics of study participants

The study included 73 participants divided into four groups:

people living with HIV maintaining spontaneous viral control

PWHEC (n=16), HIV progressors PWHPROG (n=20), people living

with HIV suppressed on ART PWHART (n=19) and a control group

without HIV PWOHHIV- (n=18) (Table 1). The CD4+ T cell counts

and the age range differed significantly across the groups (Table 1,

Supplementary Figures 1A, B). We found that PWOHHIV- were

significantly younger than PWHEC (p=0.01) and PWHART

(p<0.0001). Additionally, PWHART were significantly older than

PWHEC (p=0.004), PWHPROG (p<0.0001), and PWOHHIV-

(p<0.0001, Supplementary Figure 1A). CD4+ T cell count varied

across the different groups; treatment naïve PWHPROG had

significantly lower CD4+ T cell count compared to PWHEC

(p=0.005) and PWHART (p=0.003, Supplementary Figure 1B).

Furthermore, treatment naïve PWHPROG had a significantly lower

CD4+/CD8+ ratio compared to PWHEC (p<0.0002) and PWHART

(p=0.01, Supplementary Figure 1C). Overall, HIV-1 infection leads

to a reduction in CD4+ T cell counts in treatment naïve PWH,

including PWHEC. Additionally, the lower CD4+/CD8+ ratio

observed in treatment naïve PWHPROG suggests a higher risk of

disease progression in this group.
Elevated CD4+ and CD8+ T cell activation
in treatment naïve PWH including PWHEC

We evaluated CD4+ and CD8+ T cell activation by assessing the

co-expression of HLA-DR and CD38 positive cells expressed as %
TABLE 1 Clinical characteristics of study participants.

Groups
Number of
participants

Age: median
(IQR)

M/F
Viral load, RNA copies/ml:
median (IQR)

CD4+ T cell count (cells/
mm3): median (IQR)

PWOHHIV- 18 33 (29 – 37) 10/8 N/A 940 (785 – 1136)

PWHEC 16 40 (34 – 44) 3/13 <20 789 (582 – 1017)

PWHART 19 47 (42 – 53) 7/12 <20 766 (605 – 814)

PWHPROG 20 35 (29 – 41) 6/14 38485 (8966 – 397088) 159 (74 – 556)
Keywords: people living with HIV who maintained spontaneous viral control (PWHEC), people living with HIV on ART and virally suppressed (PWHART), people living with progressive HIV
infection (PWHPROG), a control group of people without HIV (PWOHHIV-), N/A, not applicable; HIV, human immunodeficiency virus; ART, antiretroviral therapy.
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frequency, and early activation marker CD69 and co-stimulatory

marker CD86 expressed as median fluorescence intensity (MFI)

across the study groups. The gating strategy is shown in

Supplementary Figure 2. Significantly higher co-expression of

HLA-DR and CD38 on CD4+ and CD8+ T cells were observed in

PWHPROG and PWHEC than in PWOHHIV-. PWHART had lower

CD4+ and CD8+ T cell activation levels than treatment naïve

PWHPROG (all p<0.05, Figures 1A, B). CD69 is an activation

marker and CD86 is a co-stimulatory marker expressed in the

initial phases of T cell activation (31, 36). We assessed CD69 and

CD86 on T cells. There were no significant differences in CD69

expression on T cells (Figure 1C) or in CD86 expression on CD4+ T

cells between study groups, except for a lower expression of CD86 in

CD8+ T cells of PWHART (p=0.01) and PWHEC (p=0.04),

compared to PWHPROG (Figure 1D). Overall, this data shows

significantly elevated CD4+ and CD8+ T cell activation (co-

expression HLA-DR and CD38) in ART naïve PWH, including

PWHEC, compared to PWOHHIV-.
Altered monocyte subset frequencies
across all PWH groups, including PWHEC

Next, we characterised innate immune profiles by assessing the

frequency of monocyte subtypes i.e. classical (CD14++CD16-),

intermediate (CD14++CD16+), inflammatory (CD14+CD16+),

CD14lowCD16- and dendritic cell subsets mDCs (CD11c

+CD123-) and pDCs (CD11c-CD123+) in the study groups. The

gating strategy is shown in Supplementary Figure 3. Frequencies of

classical monocytes were significantly reduced in PWHPROG

(p=0.05), PWHEC (p=0.02), and PWHART (p=0.02) in

comparison to PWOHHIV- . In contrast , the levels of

CD14lowCD16- subset were significantly elevated in PWHPROG

(p=0.03) and PWHEC (p=0.05) compared to PWOHHIV-.

(Figure 2A). There was no significant difference in the frequencies

of inflammatory and intermediate monocytes between the study

groups (Figure 2A). Our results suggest that HIV-1 impacts the

frequencies of the classical monocytes, which was observed across

all groups irrespective of viremia and treatment status. However,

CD14lowCD16- monocytes were not significantly modified in the

PWHART group, suggesting partial restoration or preservation of

this subset with antiretroviral therapy.
Altered expression of activation markers
CD69 and CD86 on monocytes and pDCs
across all PWH groups, including PWHEC

CD69 is an activation marker expressed in the initial phases of T

cell activation and a critical marker of activation and functional

state of innate immune cells (31, 36). We assessed the activation of

innate immune cells (monocytes and dendritic cells) by measuring

the expression (MFI) of the early activation marker, CD69, and the
Frontiers in Immunology 05
co-stimulatory marker, CD86 across all study groups. No significant

differences were observed in CD69 expression on mDCs between

the respective groups. However, CD69 expression on pDCs was

significantly lower in PWHEC (p=0.008) and PWHPROG (p=0.02)

compared to PWOHHIV-. Similarly, CD69 expression on monocytes

was significantly lower in PWHPROG (p=0.02), PWHEC (p=0.01)

and PWHART (p=0.01) compared to PWOHHIV- (Figure 2B). No

significant differences in CD86 expression were observed in mDCs

and pDCs between the respective groups, however, CD86

expression on monocytes was significantly lower in PWHEC

(p=0.04) and PWHART (p=0.03) compared to PWOHHIV-

(Figure 2C). These findings demonstrate a consistent reduction in

activation markers CD69 and CD86 on monocytes and pDCs across

all PWH groups including elite controllers, indicating persistent

innate immune modulation despite viral control. We assessed the

relationship between the CD69 and CD86 expression on innate

immune cells (monocytes, mDCs and pDCs) and CD38 and HLA-

DR co-expression on CD4+ and CD8+ T-cells across the respective

groups. We found a significant positive correlation between CD69

expression on monocytes and activated CD4+ T cells of PWH

(r=0.37, p=0.007, Figure 2D). Additionally, there was a positive

correlation between CD86 expression on monocytes and activated

CD8+ T cells in PWH (r=0.44, p=0.002, Figure 2E). These results

suggest that in HIV-1 infection, increased monocyte activation is

associated with elevated T cell activation.
Reduced production of IL-1b and TNF-a by
monocytes from PWHEC and PWHPROG
compared to PWOHHIV- post-stimulation
with TLR4 and TLR7/8 ligands

We assessed the functional capacity of monocytes by measuring

their ability to secrete pro-inflammatory cytokines (TNF-a, IFN-a
and IL-1b) after stimulation with TLR4 (LPS)/TLR7/8 (CL097) and

TLR9 (CpG-ODN22) ligands in the respective groups. The

representative gating strategy is shown in Supplementary Figure 4.

There was a significant reduction in TNF-a production by monocytes

from PWHPROG and PWHEC compared to PWOHHIV- after

stimulation with TLR4 and TLR7/8 ligands (all p<0.05) (Figures 3A,

B), but not after stimulation with TLR9 ligand (Figure 3C). IFN-a
production did not differ between the study groups for any of the

stimuli evaluated (Figures 3D–F). IL-1b production was lower in

monocytes from PWHEC (p=0.03) and PWHPROG (p=0.01) compared

to PWOHHIV- following TLR4 ligand stimulation (Figure 3G). After

TLR7/8 ligand stimulation, monocytes from PWHEC (p=0.003),

PWHPROG (p=0.004) and PWHART (p=0.003) produced

significantly lower levels of IL-1b compared to PWOHHIV-

(Figure 3H). In addition, following TLR9 stimulation, monocytes

from PWHART (p=0.04) produced significantly lower levels of IL-1b
compared to PWOHHIV- (Figure 3I). Overall, these results suggest that

monocytes from PWH exhibit a reduced capacity to secrete TNF-a
and IL-1b upon TLR stimulation, irrespective of treatment status.
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FIGURE 1

T cell activation. (A) CD4+ T cell and (B) CD8+ T cell activation were measured by co-expression of HLA-DR+ and CD38+ markers. (C) CD69
expression on CD4+ and CD8+ T cells. (D) CD86 expression on CD4+ and CD8+ T cells was assessed in people living with HIV who maintained
spontaneous viral control PWHEC (n=15), people living with HIV on ART for a minimum of 7 years and virally suppressed PWHART (n=18), people living
with progressive HIV infection PWHPROG (n=19), a group of control people without HIV PWOHHIV- (n=17). Each dot represents an individual, and
horizontal lines represent the medians with interquartile ranges. One-way ANOVA was used for normally distributed data and the Kruskal-Wallis test
was for non-parametric data. The Mann-Whitney U test was used to assess differences between the respective groups. Data is expressed as the %
frequency of the total parent cells for T cell activation and mean fluorescence intensity (MFI) for CD69 and CD86 expression. Significant P values are
shown (P<0.05). Four study participants (one from each group) were excluded due to insufficient PBMC yields and fewer cells acquired during
sample acquisition. The x-axis displays patient groups.
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FIGURE 2

Frequencies of monocyte subsets. (A) classical, intermediate, inflammatory, and CD14lowCD16- monocytes. (B) CD69 expression and (C) CD86
expression on mDCs, pDCs, and monocytes. (D) Correlation between CD69 expression on monocytes and T cell activation. (E) Correlation between
CD86 expression on monocytes and T cells of PWHEC (n=15), PWHART (n=17), PWHPROG (n=18), (all grouped as PWH) and PWOHHIV- (n=17). Each dot
represents an individual, and horizontal lines represent the median with the interquartile range. One-way ANOVA was used to assess the differences
between normally distributed data. The Kruskal-Wallis test was used to assess the differences in non-parametric data. An unpaired t-test (Mann-
Whitney U test) was used to assess the differences between the respective groups. Monocyte subset frequencies are expressed as the % frequency
of the total parent cells. Fluorescence minus one (FMO) control for CD69 and CD86 are shown. CD69 and CD86 data are expressed as median
intensity frequency (MFI). p-values and Spearman rho (r) values are shown for correlation. P<0.05 was considered statistically significant. Six study
participants were excluded due to low PBMCs numbers and fewer cells acquired during sample acquisition. The x-axis displays patient groups.
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Reduced production of IL-1b and TNF-a in
dendritic cells of PWHEC and PWHPROG
compared to PWOHHIV- after stimulation
with TLR7/8 ligand

Next, we assessed the functional capacity of plasmacytoid

dendritic cells (pDCs) and myeloid dendritic cells (mDCs) by

evaluating their ability to secrete TNF-a, IFN-a and IL-1b after

TLR4 (LPS), TLR7/8 (CL097) and TLR9 (CpG-ODN22) stimulation.

Plasmacytoid dendritic cells
pDCs stimulated with TLR4 and TLR9 ligand demonstrated no

significant difference in the production of TNF-a across the groups

(Figures 4A, C). After stimulation with TLR7/8 ligand, pDCs from

PWHEC (p=0.0005), PWHPROG (p<0.0001) and PWHART (p=0.02)
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produced significantly lower levels of TNF-a compared to

PWOHHIV- (Figure 4B). Similarly, no significant differences were

found in the production of IFN-a across the different groups after

stimulation of pDCs with TLR4 and TLR9 ligand (Figures 4D, F).

Following stimulation with TLR7/8 ligand, pDCs from PWHEC

(p=0.0003), PWHPROG (p<0.0001) and PWHART (p<0.0001)

produced significantly lower levels of IFN-a compared to

PWOHHIV- (Figure 4E). Finally, after stimulation with TLR4

ligand, pDCs from PWHPROG (p=0.02) produced significantly

lower levels of IL-1b compared to PWOHHIV- (Figure 4G). No

significant differences in IL-1b production by pDCs were observed

across the different groups after stimulation with TLR7/8 and TLR9

ligands (Figures 4H–I). Taken together, these results show that

pDCs from PWH display a reduced capacity to produce TNF-a and

IFN-a following TLR7/8 stimulation.
FIGURE 3

Monocyte production of cytokine in response to TLR ligand stimulation. Monocyte production of TNF-a, IFN-a and IL-1b was measured following
stimulation with TLR4-LPS, TLR7/8-CL097 and TLR9-CpG-ODN22 in PWHEC (n=16), PWHART (n=19), PWHPROG (n=18), and PWOHHIV- (n=18). Panels
(A–C) show TNF-a production after stimulation with ligand TLR4-LPS (A), TLR7/8-CL097 (B), and TLR9-CpG-ODN22 (C). Panels (D–F) show IFN-a
production after stimulation with ligand TLR4-LPS (D), TLR7/8-CL097 (E), and TLR9-CpG-ODN22 (F). Panels (G–I) show IL-1b production after
stimulation with ligand TLR4-LPS (G), TLR7/8-CL097 (H), and TLR9-CpG-ODN22 (I). Each dot represents an individual, and horizontal lines represent
the median with the interquartile range. The Kruskal-Wallis test was used to assess the differences in non-parametric data. An unpaired t-test (Mann-
Whitney U test) was used to assess the differences between the respective groups. P<0.05 was considered statistically significant. Two study
participants from PWHPROG were excluded due to low PBMCs numbers and fewer cells acquired during sample acquisition. The x-axis displays
patient groups.
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Myeloid dendritic cells
Following stimulation with TLR4 ligand, mDCs from PWHPROG

(p=0.005) and PWHEC (p=0.01) produced significantly lower levels of

TNF-a compared to PWOHHIV-, and lesser levels in treatment naïve

PWHEC (p=0.05) compared to PWHART after stimulation with TLR4

ligand (Figure 5A). Additionally, reduced levels of TNF-a were

observed in PWHEC (p=0.0003) and PWHPROG (p=0.01) compared

to PWOHHIV- after stimulation with TLR7/8 ligand. In contrast,

PWHART had a significantly higher functional capacity than PWHEC

(p=0.04, Figure 5B). Interestingly, increased levels of TNF-a were

noted in PWHPROG compared to PWHEC (p=0.03) after stimulation

with TLR9 ligand. Furthermore, reduced levels of TNF-a were

observed in PWHEC (p=0.03) compared to PWOHHIV- after

stimulation with TLR9 ligand (Figure 5C). No significant
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differences were observed in the production of IFN-a in mDCs

between the different groups (Figures 5D–F). IL-1b production was

lower in treatment naïve PWHPROG compared to PWHART (p=0.03),

this reduction was also observed in PWHEC (p=0.05) and PWHPROG

(p=0.006) compared to PWOHHIV- after stimulation with TLR4

ligand (Figure 5G). Lower production of IL-1b was observed in

mDCs of PWHEC (p=0.02) and PWHPROG (p=0.04) compared to

PWOHHIV- after stimulation with TLR7/8 ligand (Figure 5H). No

significant differences were observed in the production of IL-1b-a in

mDCs between the different groups after stimulation with TLR9

ligand (Figure 5I). In conclusion, IL-1b production decreased in all

the PWH groups, likely due to HIV-1 infection. However, the ART

group showed elevated IL-1b levels, suggesting that treatment could

restore the functional capacity of mDCs.
FIGURE 4

pDC production of cytokine in response to TLR ligand stimulation. pDC production of TNF-a, IFN-a and IL-1b was measured following stimulation
with TLR4-LPS, TLR7/8-CL097 and TLR9-CpG-ODN22 in PWHEC (n=16), PWHART (n=19), PWHPROG (n=18), and PWOHHIV- (n=18). (A–C) show TNF-a
production after stimulation with ligand TLR4-LPS (A), TLR7/8-CL097 (B), and TLR9-CpG-ODN22 (C). (D–F) show IFN-a production after stimulation
with ligand TLR4-LPS (D), TLR7/8-CL097 (E), and TLR9-CpG-ODN22 (F). Panels (G–I) show IL-1b production after stimulation with ligand TLR4-LPS
(G), TLR7/8-CL097 (H), and TLR9-CpG-ODN22 (I). Each dot represents an individual, and horizontal lines represent the median with the interquartile
range. One-way ANOVA was used to assess the differences between normally distributed data. The Kruskal-Wallis test was used to assess the
differences in non-parametric data. An unpaired t-test (Mann-Whitney U test) was used to assess differences between the respective groups. P<0.05
was considered statistically significant. Two study participants from PWHPROG group were excluded from the analysis due to low PBMCs numbers
and fewer cells acquired during sample acquisition. The x-axis displays patient groups.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1603436
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mohamed et al. 10.3389/fimmu.2025.1603436
Elevated levels of D-dimer and sCD14 in
treatment naïve PWH compared to
PWOHHIV-

Elevated levels of sCD14 and D-dimer have been reported in

PWH and are indicators of chronic inflammation and immune

activation – factors which contribute to non-AIDS-related

comorbidities (37). Thus, we analysed plasma levels of sCD14, a

marker of monocyte activation, and D-dimer, a marker of non-

AIDS-related cardiovascular events (37). sCD14 levels were

significantly increased in PWHEC (p=0.01), PWHART (p=0.007)

and PWHPROG (p=0.0004) compared to PWOHHIV- (Figure 6A).

Furthermore, as expected, PWHPROG had significantly elevated D-

dimer levels compared to PWHART (p=0.01) and PWHEC (p=0.04)

(Figure 6B). Overall, these results demonstrate increased monocyte

activation (sCD14) in PWH, including PWHEC, compared to
Frontiers in Immunology 10
PWOHHIV-. This indicates elevated monocyte activation despite

ART treatment and low viremia. Treatment naïve PWHPROG

individuals exhibited higher D-dimer levels, suggesting a greater

risk of developing cardiovascular events compared to PWHART

and PWHEC.
Discussion

Elite controllers are an ideal model for an HIV-1 functional cure

due to their ability to suppress viral replication and maintain a relatively

functional immune system without any drug therapy (12, 38). Studies

have highlighted both viral and host cell factors as the basis for

spontaneous viral control. Specifically, HIV-1 specific CD8+ T cell

responses have been thoroughly investigated. However, approximately

70% of HIV controllers do not present with this adaptive immunity
FIGURE 5

mDC cytokine production in response to different TLR ligand stimulation. mDC production of TNF-a, IFN-a and IL-1b was measured following
stimulation with TLR4-LPS, TLR7/8-CL097 and TLR9-CpG-ODN22 in PWHEC (n=16), PWHART (n=19), PWHPROG (n=18), and PWOHHIV- (n=18).
(A–C) show TNF-a production after stimulation with ligand TLR4-LPS (A), TLR7/8-CL097 (B), and TLR9-CpG-ODN22 (C). (D–F) show IFN-a production
after stimulation with ligand TLR4-LPS (D), TLR7/8-CL097 (E), and TLR9-CpG-ODN22 (F). (G–I) show IL-1b production after stimulation with ligand
TLR4-LPS (G), TLR7/8-CL097 (H), and TLR9-CpG-ODN22 (I). Each dot represents an individual, and horizontal lines represent the median with the
interquartile range. The Kruskal-Wallis test was used to assess the differences in non-parametric data. Unpaired t-tests (Mann-Whitney U test) were used
to assess differences between the respective groups. P<0.05 was considered statistically significant. Two study participants from PWHPROG were
excluded from the analysis due to low PBMCs numbers and fewer cells acquired during sample acquisition. The x-axis displays patient groups.
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phenotype (11, 14, 39), emphasizing the need to explore the role and

mechanisms of innate immune cells (monocytes, mDCs and pDCs) on

spontaneous viral control. In this study, we examined the frequency,

function and activation of monocytes, mDCs and pDCs across the

different groups of PWH.Our findings show elevated T cell activation in

treatment naïve PWH groups; specifically, PWHEC and PWHPROG had

increased CD8+ T cell activation compared to PWHART and

PWOHHIV-. Secondly, PWHEC exhibited reduced expression of CD69

and CD86 inmonocytes compared to PWOHHIV-. Meanwhile, PWHEC

and PWOHART displayed reduced expression of CD86 in CD8+T cells

compared to PWHPROG. We also observed a significant decrease in the

classical monocyte subset (CD14++CD16-) and an increase in

CD14lowCD16- frequencies in all treatment naïve PWH compared to

PWOHHIV-. Impaired inflammatory cytokines production (TNF-a,
IFN-a and IL-1b) by monocytes and dendritic cells was noted in

PWHEC, while treatment with ART in PWHART improved the ability of

APCs to produce TNF-a and IL-1b. Finally, elevated plasma levels of

sCD14 (monocyte activation) andD-dimer (cardiovascular health) were

observed in PWH groups compared to PWOHHIV-.

Upon HIV-1 infection, immune cell activation increases to

control viral replication and seek to eradicate the virus (40). In

agreement with previous studies of elevated T cell activation in

PWH (41–43), we found significantly higher levels of CD8+ T cell

activation in treatment naïve PWHPROG and PWHEC compared to

PWHART and PWOHHIV-. PWHEC are reported to exhibit a distinct

CD8+ T cell phenotype, including enhanced polyfunctionality,

cytolytic activity, proliferative capacity and more differentiated

memory CD8+ T cells, contributing to spontaneous viral control

(44–47). Although CD8+ T cell function was not assessed in our

study, we speculate that the observed high CD8+ T cell activation in

PWHEC may contribute to spontaneous viral control. Furthermore,

a lower CD4/CD8 ratio was observed in the treatment naïve

PWHPROG compared to PWHEC and PWHART, suggesting
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immune activation and an increased likelihood of developing

non-AIDs-related comorbidities. A higher CD4/CD8 ratio is

associated with improved health outcomes (48). Therefore, the

preserved CD4 T cell levels in PWHEC and PWHART in our study

may account for the high CD4/CD8 ratio and more favourable

disease outcomes.

We found a pattern of downmodulation of CD69 and CD86 on

monocytes and CD8+ T cells from PWHEC and PWHPROG compared

to PWOHHIV-. Interestingly, although ART improved CD86

expression, it had minimal effect on CD69 levels. Similar

observations were made by Naidoo et al. showing reduced CD86

expression levels on dendritic cells and monocytes in a South African

cohort of PWH in both the hyperacute and chronic phases of ART

treatment (34). Several other studies did not observe an increase in

CD86 levels on monocytes, including monocytes from patients with

systemic lupus erythematosus (49–51). CD86 on APCs interacts with

the CD28 receptor complex and cytotoxic T-lymphocyte associated

protein 4 (CTLA-4) on T cells, providing co-stimulation for T cell

activation and proliferation to enhance responses against pathogens

(36). Chaudhry et al. demonstrated that HIV-1 Nef protein reduces

the surface expression of CD86 in APCs, affecting naïve T-cell

activation (52). Therefore, we postulate that the observed decrease

in CD86 expression on monocytes from PWHEC may indicate an

HIV-1 induced impairment in monocyte antigen presentation

capacity, like that observed in PWHPROG, and ART does not seem

to completely restore CD86 levels.

Monocytes play a crucial role in the immune response against

HIV-1 by producing inflammatory cytokines (TNF-a and IL-1b),
expressing co-stimulatory molecules, and presenting antigens to T

cells (53). Our results demonstrate reduced classical monocyte

(CD14++CD16-) frequencies in all PWH groups, including

PWHART and PWHEC compared to PWOHHIV-, consistent with

previous reports from Asian cohorts of PWH and individuals with
FIGURE 6

Measurement of plasma biomarkers levels in study participants. (A) D-dimer and (B) sCD14 in PWHEC (n=14), PWHART (n=19), PWHPROG (n=17), and
PWOHHIV- (n=19). Each dot represents an individual, and horizontal lines represent the median with the interquartile range. One-way ANOVA was
used to assess the differences between normally distributed data. The Kruskal-Wallis test was used to assess the differences in non-parametric data.
An unpaired t-test (Mann-Whitney U test) was used to assess differences between the respective groups. P<0.05 was considered statistically
significant. For sCD14, five participants and for D-dimer, 18 participants were excluded from the analysis because their concentration levels were
outside the range of the standard curve. The x-axis displays patient groups.
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acute coronary syndrome (54–57). ART did not restore classical

monocyte frequencies in PWH compared to those observed in

PWOHHIV-. Naidoo et al. (34) found that very early ART (in the

hyperacute phase) restored classical monocyte frequencies more

effectively than later treatment initiation. Surprisingly, we found no

significant differences in the frequencies of inflammatory or

intermediate monocyte subsets between PWH and PWOHHIV-.

This result is different to a previous study which reported

elevated frequencies of inflammatory monocyte subset in PWH

(58). These discrepancies may be due to several factors including

small sample size, ethnicity and sex differences. A previous study

has shown differences in immune responses between men and

women (59). Our small sample size prevented sex matching.

Furthermore, we observed an expansion in CD14lowCD16-

monocyte subsets in PWHEC and PWHPROG compared to

PWOHHIV-, consistent with findings from Naidoo et al. (34) in a

South African PWH cohort. Although the specific role of this subset

is less characterised compared to other monocyte subsets, increased

frequencies of this subset are believed to play a role in immune

activation, an impairment in T cell activation through the

downregulation of CD86, lower CD4 T cell counts and higher

viral loads (60). Taken together, our data suggest that South African

PWHEC have a similar monocyte subset phenotype as other groups

of PWH, predisposing these individuals to ongoing immune

activation, chronic inflammation and risk of the development of

non-AIDS conditions.

Functional assessment of APCs demonstrated a reduced ability

to secrete TNF-a, IFN-a and IL-1b after stimulation with TLR

ligands in PWH. Specifically, PWHEC and PWHPROG displayed a

pattern of significantly lower capacity to produce IL-1b and TNF-a
in monocytes after stimulation with both TLR4 and TLR7/8 ligands

compared to PWOHHIV-. Similar findings were reported in a cohort

of South African PWH with HIV/TB co-infection (35).

Furthermore, a recent study in an ART-treated South African

cohort found a similar dysfunction in APC cytokine production

(TNF-a and IFN-a), which was restored after 24 months of ART

(34). Monocytes are the primary producers of TNF-a after

stimulation with TLR4 ligand (lipopolysaccharide) (61).

Therefore, the decline in TNF-a and IL-1b secretion observed in

PWHEC could indicate monocyte dysfunction associated with

innate monocyte exhaustion in the chronic stage of inflammation

(62, 63). We postulate that the dysfunction in monocytes and

dendritic cells’ ability to secrete TNF-a and IL-1b may be due to

underlying chronic inflammation. It is important to note that this

study focused on measuring IL-1b production following TLR

stimulation, rather than directly assessing inflammasome

activation. While IL-1b secretion is often linked to inflammasome

activity, monocytes have been shown to release IL-1b in response to

TLR ligands alone, independent of a secondary activation signal

(64–66).

sCD14 plasma levels were elevated in all PWH groups,

including PWHART and PWHEC, compared to PWOHHIV-

suggesting increased monocyte activation, microbial translocation

and an elevated risk of cardiovascular events (37, 67–69).

Additionally, elevated D-dimer levels in treatment naïve
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PWHPROG compared to PWHEC suggest an increased risk of

developing cardiovascular-related conditions in PWHPROG (70).

Crowell et al. (71) reported higher hospitalisation rates for

cardiovascular-related conditions in PWHEC compared to

PWHART. Although we did not monitor hospitalizations, our data

suggest that PWHEC may be susceptible to non-AIDS-related

conditions due to elevated sCD14 and D-dimer plasma levels,

highlighting the importance of monitoring cardiovascular health

in these individuals.

This study has several limitations. PWHEC and PWHPROG are

rare populations, resulting in a limited sample size; in many settings

all newly diagnosed individuals are started on ART immediately,

reducing the number of potential treatment naïve participants.

Recruitment of PWHEC is challenging because viral load assays

are not routinely done at HIV diagnosis, and our definition requires

prolonged follow-up to demonstrate durable HIV control.

Additionally, we could not match participants by sex or age due

to the small pool of eligible individuals, potentially skewing our

results. Furthermore, the younger age of the HIV-negative group

represents a limitation of the recruitment process, which was

constrained by the demographic profile of volunteers at the

NHLS Sandringham campus. As a result of the age and gender

mismatch across the groups, immunological comparisons should be

interpreted with caution. The use of cryopreserved PBMCs

presented challenges regarding cell viability and yield, which may

have impacted certain analyses. Additionally, it is possible that a

recruited PWHPROG might have been a PWHEC in earlier years with

subsequent loss of viral control, while the PWHART group were

PWHPROG before starting ART. It can be similarly argued that the

latter might have a PWHEC that lost viral control and initiated on

ART. However, given how rare the elite control phenotype is, which

includes those with a limited duration of viral control to those with

exceptional elite control, this is unlikely to impact our present

findings comparing these distinct groups of PWH. Additionally, we

acknowledge that different TLR ligands vary in their capacity to

induce specific cytokines depending on receptor expression across

innate immune cell types. Due to the limited sample size,

particularly in the elite controller group, we employed a

streamlined stimulation protocol to ensure consistency across

phenotypes. Notably, stimulation with CL097 (TLR7/8) yielded

cytokine trends consistent with those observed using LPS and

CpG-2216, reinforcing the robustness of our findings.

Our study revealed reduced innate immune activation,

significant alterations in monocyte subset frequencies, and a

reduced capacity of monocytes and dendritic cells to secrete TNF-

a and IL-1b in both PWHEC and PWHPROG compared to

PWOHHIV-, indicating innate immune dysfunction. While lower

innate immune activation in PWHEC may help maintain a balanced

and effective immune response, preventing excessive inflammation

and reducing inflammation, chronic immune activation in

PWHPROG leads to immune exhaustion and functional

impairment (3, 12, 72, 73). Moreover, PWHEC’s soluble marker

profiles show persistent immune activation, evidenced by elevated

sCD14 levels. This persistent activation underscores the importance

of continued monitoring and potential therapeutic interventions to
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reduce chronic inflammation. Overall, our findings deepen the

understanding of complex immune dynamics in PWH, with

particular emphasis on the unique immune profiles of people who

are elite controllers (PWHEC). This population offers a valuable

model for studying spontaneous viral control, and our data provide

important insights into the innate immune mechanisms that may

underlie this phenotype. Specifically, the observed cytokine

production patterns and monocyte activation profiles in PWHEC

suggest that regulated innate immune responses, rather than

hyperactivation, may play a protective role. These findings

highlight the critical interplay between innate and adaptive

immunity and underscore the relevance of PWHEC in informing

the design of more effective HIV treatments. By characterizing

immune regulation in this distinct group, our study contributes to

the broader understanding of HIV pathogenesis and supports the

development of immunotherapeutic strategies aimed at mimicking

elite control in the general HIV positive population.
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Romero J, Alcamı ́ J, et al. Elite controllers long-term non progressors present improved
survival and slower disease progression. Sci Rep. (2022) 12:16356. doi: 10.1038/s41598-
022-19970-3
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