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Introduction: Personalized cancer treatment requires precise scheduling of

multiple therapeutic agents under biological constraints. Optimizing such

regimens is especially challenging due to the nonlinear dynamics of tumor-

immune interactions and strict feasibility boundaries. This study aims to develop

an intelligent optimization approach capable of handling these complexities

within a mathematical tumor treatment model.

Methods: We propose an Adaptive Dynamic e-Simulated Annealing (ADeSA)
algorithm that integrates a multi-population search framework, dynamic

e-constraint control, and boundary-aware mutation mechanisms. The

algorithm is applied to an improved tumor immunotherapy model (ITIT),

formulated using ordinary differential equations (ODEs) based on established

experimental and clinical studies. The model incorporates tumor cells, immune

effector cells, and three types of anti-tumor drugs: chemotherapy,

immunotherapy, and anti-angiogenic agents.

Results: Simulation experiments were conducted on twelve classical benchmark

functions to evaluate the convergence performance and robustness of the

algorithm. ADeSA demonstrated strong global search capability, fast

convergence, and solution stability. When applied to the ITIT model, the

algorithm successfully identified optimal drug dosing schedules that

significantly reduced simulated tumor burden—from ~1500 to below 500 cells

—while maintaining treatment within physiologically acceptable limits.

Discussion: Unlike traditional metaheuristics such as PSO or GA, which are less

suited for constraint-rich, dynamic ODE-based systems, ADeSA offers structural

advantages in trajectory feasibility and adaptive convergence. This study

highlights the potential of biologically informed optimization algorithms in

personalized oncology and provides a computational basis for future closed-

loop, patient-specific treatment strategies.
KEYWORDS

tumor immunotherapy (TIT), adaptive dynamic e-simulated annealing algorithm
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1 Introduction

Currently, common clinical tumor immunotherapies include

monoclonal antibody therapy, immune checkpoint blocker therapy,

pericyte therapy, lytic virus therapy, and tumor vaccine (1). Among

them, dual immunotherapy is a novel tumor immunotherapy

approach, and its 4-year follow-up results show a 3-year OS rate

of 25%, which is a onefold improvement compared with

chemotherapy (2). In addition, the mechanism and progress of

tumor immunotherapy combined with radiotherapy and targeted

therapy are also in progress. Chemotherapeutic agents act

synergistically in immunotherapy through multiple mechanisms,

such as immunogenic cell death (ICD) (3, 4).

Immunotherapy is a treatment method that uses the body’s own

immune system to recognize and attack tumor cells. It mainly uses

immunotherapeutic drugs to activate or enhance the function of

immune cells so that they can overcome the escape and resistance of

tumor cells (5). Chemotherapy is a treatment method that uses

chemical drugs to kill or inhibit tumor cells, and it is mainly

administered intravenously or orally to attack tumor cells

throughout the body without discrimination. The advantages and

disadvantages of immunotherapy and chemotherapy are also

different (6, 7). The advantages of immunotherapy are that it has

relatively few side effects and does not cause much damage to

normal cells, and once it works, it can last for a long time and may

even lead to long-term survival or cure. However, the disadvantage

is that it is slow to work, it requires waiting for the immune system

to respond and adjust, and not all patients benefit from it, requiring

biomarker testing to predict which patients are suitable (8). The

advantages of chemotherapy are that it works faster, controls tumor

growth, and spreads rapidly and is suitable for many types and

stages of tumors, especially for tumors with high sensitivity.

However, the disadvantage is that the side effects are relatively

large and can cause some toxicity and damage to normal cells,

leading to adverse reactions such as hair loss, vomiting, anemia, and

infection, and over time, tumor cells may develop drug resistance,

making chemotherapy less effective (9–11).

Intelligent optimization algorithm is a method that uses artificial

intelligence techniques to find the optimal solution (12). It can be

applied to several aspects in the field of oncology therapy, such as

drug discovery, drug combination, dose adjustment, and personalized

therapy. The development of intelligent optimization algorithms in

the field of oncology therapy is an emerging field that can help

physicians better understand the evolutionary dynamics of tumors

and thus better formulate treatment plans (13). Over the past decade,

specific mathematical frameworks to quantify the evolutionary

dynamics of cancer have been the basis for revolutionizing

precision oncology, promising to map the past and future of

individual cancers (14). The application of intelligent optimization

algorithms in the field of oncology therapy has been achieved

primarily by modeling the evolutionary dynamics of tumor

progression, treatment resistance, and metastasis. The field also

involves multiple aspects of high-throughput data analysis,

genomics, computer science, and mathematical modeling (15, 16).
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There have been several experimental and clinical studies of

intelligent optimization algorithms in oncology therapy, with some

progress and results (17)—for example, an intelligent optimization

algorithm based on reinforcement learning (GENTRL) can design a

new antitumor compound in 21 days compared to a traditional

timeline of approximately 1 year (18). A second-order algebraic

algorithm-based intelligent optimization platform (QPOP) can

significantly reduce the number of experiments and data required

to identify drugs and doses for optimal combination therapy design

and has discovered some unexpectedly effective drug combinations

(19). A neural-network-based intelligent optimization platform

(CURATE.AI) can adjust multidrug doses using only patient data,

dynamically linking dose to optimal tumor reduction and safety and

significantly improving treatment outcomes without the need for

large data and complex genetic information (20). A game-theoretic-

based intelligent optimization algorithm (AT-1) can iteratively

reduce the dosage of antitumor drugs, prevent drug-resistant cells

from outnumbering drug-sensitive cells after tumor shrinkage is

observed, and improve tumor control and survival (21).

Simulated annealing algorithm is a flexible and efficient global

optimization algorithm with significant advantages in solving

complex optimization problems (22–24). Its core idea is derived

from the solid annealing process, which finds the optimal solution

of the problem through the dynamic balance between global search

and local search. In the field of oncology treatment, simulated

annealing algorithms are widely used in problems such as

personalized treatment optimization, drug dosage design, and

radiotherapy schedule optimization (25). Tumor treatment

usually relies on a combination of chemotherapeutic drugs and

immune drugs, but there are significant differences in drug

tolerance and efficacy among different patients (26, 27). Drug

dosage design is a complex optimization problem that requires

balancing the therapeutic effect with side effects. SA can

dynamically adjust the dosage ratio of immune drugs to

chemotherapeutic drugs to optimize the treatment plan. In the

early stage of treatment, a higher dosage is provided to rapidly

inhibit the growth of tumor cells, and in the middle and late stages,

the dosage is gradually reduced to minimize the toxic side effects.

Personalized drug dosage regimens are designed for individual

patient differentiation to enhance therapeutic efficacy (28, 29).

Model parameters were sourced from previously published

immunotherapy models (25–28), which are based on preclinical

data and human-scale estimations. These parameters reflect

biologically realistic rates for tumor growth, immune stimulation,

and drug clearance. Tumor types, stages of disease progression, and

immune system status vary widely among patients, and treatment

plans need to fully take into account individualized needs. SA can

also dynamically optimize treatment plans by combining the

patients’ genetic information and tumor characteristics,

synergistically optimizing the combination strategy of multiple

treatments (30). Considering the patients’ dynamic response to

treatment, the cycles of chemotherapy and immunotherapy can be

dynamically optimized through adaptive adjustment of the

optimized treatment process, balancing the intensity of treatment
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and patient tolerance (31). A multi-stage treatment strategy can also

be designed to flexibly adjust the treatment intervals according to

the treatment effect and tumor response (32).

In this paper, we design a metaheuristic algorithm with

constraints in continuous space, adaptive dynamic e-Simulated

annealing algorithm (ADeSA). It has a population intelligence

with multiple groups, and the algorithm’s strategy of finding the

best can be changed dynamically according to the dimensionality of

the problem and the variables of constraints. In solving the problem

of oncology treatment, the weight of immunotherapy and

chemotherapy drugs can be intelligently assigned. The improved

tumor immunotherapy (ITIT) model is also updated and modified

to add an endothelial cell model and an anti-angiogenic drug

concentration model. The tumor–immune treatment interaction

model used in this study is based on clinically informed differential

equations adapted from published human and murine studies. No

physical cell lines or animal subjects were used; all simulations are

in silico based on established biological dynamics.

The rest of the paper is outlined as follows: The improved TIT

model is proposed in Section II. The ADeSA algorithm is proposed

in Section III. Section IV validates the effectiveness and feasibility of

the algorithm by testing on popular benchmarking sets. Section V

applies ADeSA to ITIT for medical strategy formulation, which

makes the drug minimize the harm to the human body.

2 Improved tumor immunotherapy

This part adds the endothelial cell influence to the original TIT

model. The effect of anti-angiogenic drugs is also added to generate

the ITIT model, which can be a richer and more accurate

mathematical model to describe tumor growth. In the following

model, E(t) denotes the number of endothelial cells. T(t) represents

the number of tumor cells, I(t) represents the number of immune

cells, Conche(t) represents the blood concentration of chemotherapy

drugs, Conim(t) represents the blood concentration of

immunotherapy drugs, and Conant(t) represents the blood

concentration of anti-angiogenic drugs.

Chemotherapeutic agents can interfere with DNA replication or

division of tumor cells, which can lead to apoptosis or necrosis.

These methods can reduce the number and activity of tumor cells,

thus inhibiting tumor growth and metastasis. Immune checkpoint

inhibitors can release the tumor’s suppression of the immune

system and enhance the recognition and killing of tumor cells by

T cells, thus increasing the clearance of tumor cells by immune cells.

These methods can also reduce the number and activity of tumor

cells, thereby inhibiting tumor growth and metastasis. The growth

model of tumor cells is shown below:

T(t + 1) = T(t) + ϑ1 � T(t)� (1 − ϑ2 � T(t))

−g � T(t)� I(t) − e � T(t)� Conche(t)
(1)

where ϑ1 denotes the rate of self-growth of immune cells, ϑ2
denotes the rate of influence between immune cells and tumor cells,

g denotes the rate of growth of tumor cells when they are attacked,

and e denotes the stress coefficient of tumor cells to
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chemotherapeutic agents. Equation 1 includes additive tumor

reduction from both immune-mediated cytolysis and

chemotherapy-driven apoptosis.

The role of immune cells in tumor therapy may be dual,

inhibiting tumor growth and metastasis as well as promoting

tumor escape and progression. Chemotherapeutic agents can kill

rapidly dividing tumor cells, but they also damage normal

hematopoietic stem cells and immune cells, thereby reducing the

number and activity of immune cells. Immune checkpoint

inhibitors can release the tumor’s suppression of the immune

system and enhance the activity and persistence of T cells, thus

increasing the number and function of immune cells.

I(t + 1) = I(t) + ϑ3 − l � I(t)

+ a1�T2(t)�I(t)
b1+T2(t) + a2�T(t)�Conim(t)

b2+Conim(t)

−x1 � T(t)� I(t) − x2 � Conche(t)� I(t)

(2)

where ϑ3 is the rate of immune cell autopoiesis, l is the rate of

natural attenuation of immune cells, a1 indicates the maximum rate

of immune cell aggregation, a2 indicates the maximum rate of

impact of immunotherapy on tumor cells, b1 indicates the rate of

decline brought about by tumor cells, b2 indicates the rate of decline
induced by immunotherapy, x1 indicates the rate of immune cell

stress to chemotherapeutic agents, and x2 indicates the rate of

tumor cell stress to immune cells. Equation 2 models immune cell

growth driven by tumor-antigen presence and boosted by

immunotherapy, whereas chemotherapy induces moderate

immunosuppression via a linear decay term.

Tumor cells and endothelial cells suppress the immune system

in a number of ways, thereby reducing the number of immune cells.

Chemotherapy drugs kill cancer cells, but they also kill normal

rapidly dividing cells, including immune cells, thus reducing the

number of immune cells. Immunotherapy increases the number of

immune cells by activating or enhancing the body’s own immune

system to kill cancer cells. See Equation 3 for details.

A(t + 1) = A(t) + ϑ3 + h� T(t)

+x3 � A2(t)� I(t) − a3�A(t)�Conant (t)
b3+A2(t)

(3)

In general, chemotherapeutic drugs are cytotoxic; they kill

rapidly dividing tumor cells and also affect the growth and

division of normal cells. The concentration of chemotherapeutic

drugs in the blood varies with the time of administration and the

rate of metabolism, usually peaking sometime after administration

and then gradually declining. See Equation 4 for details.

Conche(t + 1) = cche(t) − e−q1Conche(t) (4)

where cche(t) represents the concentration of chemotherapeutic

drugs. q1 is the attenuation rates of chemotherapy drugs.

Immune drugs are a class of medications that activate or

suppress the immune system, and they help the body recognize

and destroy tumor cells. The concentration of immune drugs in the

blood also varies with the time of administration and the rate of

metabolism but is generally more persistent than chemotherapy

drugs, with some immune drugs remaining in the blood for weeks
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or even months. See Equation 5 for details.

Conim(t + 1) = cim(t) − e−q2Conim(t) (5)

where cim(t) represents the concentration of immune drugs. q2
is the attenuation rates of immune drugs.

Anti-angiogenic drugs are a class of drugs that can block the

formation of blood vessels in tumors. They can cut off the nutrient

supply to tumors, thus inhibiting tumor growth and metastasis. The

concentration of anti-angiogenic drugs in the blood also varies with

the time of administration and the rate of metabolism, but they are

generally more stable than chemotherapeutic drugs, and some anti-

angiogenic drugs can remain in the blood for days or even weeks.

See Equation 6 for details.

Conant(t + 1) = cant(t) − e−q3Conant(t) (6)

where cant(t) represents the concentration of anti-angiogenic

drugs. q3 is the attenuation rates of anti-angiogenic drugs.

Chemotherapeutic drugs refer to the application of chemically

synthesized drugs for the treatment of tumors, and their principle of

action is to inhibit the growth and metastasis of tumors by killing

fast-growing cells, including cancer cells and normal cells.

Immunological drugs refer to targeting some specific proteins or

signaling pathways on the surface of tumor cells to achieve the

purpose of tumor treatment by activating or inhibiting the immune

function of the body. Anti-angiogenic drugs refer to targeting the

process of tumor angiogenesis through inhibiting the proliferation,

migration, and differentiation of vascular endothelial cells, thus

cutting off the nutrient supply and oxygen delivery of the tumor to

achieve the purpose of tumor treatment. Combining the above

information, we can get the integrated objective function. From

formulas (1)–(6), we can get Equation 7:

Fmin = o
t

t=t0

d t w � T2(t) +
Z cche(t)

0
tan−1(�U−1

1 � s)� �U1 � R1 � ds

�

+
Z cim(t)

0
tan−1(�U−1

2 � s)� �U2 � R2 � ds

+
Z cant (t)

0
tan−1(�U−1

3 � s)� �U3 � R3 � ds

g

(7)

where �U1 and �U2 respectively represent the maximum allowable

dose of chemotherapy drugs and the dose of a single injection of

immunizing agent, d is the discount factor, and w is a

constant coefficient.
3 Adaptive dynamic e-simulated
annealing algorithm

For real-world constrained optimization problems, the

expression without loss of generality is shown below. See

Equation 8 for details.
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 Minimize,   f (x),  x = (x1,  x2,  ⋯,  xn)

Subject to :  gi(x) ≤ 0,  i = 1,  2,  ⋯,  p

                   hj(x) = 0,  j = p + 1,  p + 2,  ⋯,  m

(8)

where f(x) denotes the objective function, n denotes the

dimension of the variable, p denotes the number of inequality

constraints, m denotes the number of equality constraints, and g(x)

and h(x) denote equality and inequality constraint.

Average constraint violation is the extent to which constraints

are violated during the optimization process. The smaller the

average constraint violation is, the closer the solution of the

algorithm is to the feasible domain. In practice, we usually want

the solution of the algorithm to satisfy all of the constraints, so we

need to minimize the average constraint violation as much as

possible. The global overall average constraint violation is shown

below. See Equation 9 for details.

MCV =
o
p

i=1
max (gi(x), 0) + o

m

j=p+1
max ( hj(x)

�� �� − m, 0)

m
(9)

where m is a small tolerance that is equal to 1E-4.

The dynamic constraint factor e means that in the optimization

process, the value of the constraint factor e gradually decreases with

the increase of the number of iterations, which makes the constraints

gradually become stricter. This has the advantage of ensuring the

convergence and stability of the algorithm as well as improving the

solution efficiency of the algorithm. If the value of the constraint factor

e is set too small, it may cause the algorithm to converge too slowly; if

it is set too large, it may cause the algorithm to fail to converge. The

dynamic constraint factor e is used to dynamically adjust the weight of

the constraints according to the current optimization conditions in

order to better control the search direction and speed of the algorithm.

It can help the algorithm to converge to the optimal solution faster and

can avoid the algorithm from falling into the local optimal solution.

See Equation 10 for details.

e =
emax � exp −s� t

tmax

� �
, t ≤ 0:6tmax

0,                                t > 0:6tmax

8<
: (10)

where t represents the number of current evolutionary

iterations, and tmax represents the total number of evolutionary

iterations. emax represents the maximum term of constraint

violation in the primitive population.

Boundary constraint processing technology refers to the

optimization process, the value range of the variables to limit, so

that the optimization process will not exceed the predetermined

range of variables. In practice, many problems need to limit the

range of variables, such as temperature and pressure, in the

production process. We propose the adaptive boundary constraint

processing technique, which is a processing method for constrained

optimization problems. It can adaptively adjust the boundary

constraints according to the changes in the optimization process
frontiersin.org
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so as to ensure the rationality and feasibility of the optimization

results. The flow chart of the specific algorithm is shown below. See

Algorithm 1 for details.
Fron
1 for i = 1 to N do

2 for j = 1 to N do

3 xi,l = x( < lowerbound);

4 xi,u = x( > upperbound);

5 xj,l = x( == − inf );

6 xj,u = x( == inf );

7 r = randn(1, 1);

8
rl = rand� abs(lowerbound)=

((lowerbound − xi,l) + abs(lowerbound))
;

9
ru = rand� abs(upperbound)=

((xi,u − upperbound) + abs(upperbound))
;

10 xi,l = (1 − rl)� lowerbound + rl � xi,l;

11 xi,u = (1 − ru)� upperbound + ru � xi,u;

12 xj,l = r� lowerbound;

13 xj,u = r� upperbound;

14 end for

15 end for
Algorithm 1. ADBCHT scheme.

The final improved simulated annealing algorithm combines

the novel constraint handling above to form the adaptive dynamic

e-simulated annealing algorithm. The specific pseudo-code is as

follows. See Algorithm 2 for details.
1 Initialization parameters

2 Set initial solution xcurrent

3 Initial temperature T = T0

4 Minimum temperature Tmin
tiers in Immunology 05
5 Cooling factor alpha ∈ (0, 1)

6 Maximum number of iterations maxiter

7 Define the objective function f(x) and the

constraint g(x).

8 Define the penalty function P(x) which is used to

constrain the penalty term for violation.

9 Set current best solution xbest = xcurrent

10 Enter the outer loop (temperature loop)

11 while T > Tmin

12 for i = 1 to maxiter

13 Generate new solution xnew

14 Generate a random candidate solution xnew

near the current solution xcurrent.

15 Check if xnew satisfies constraint g(xnew)

16 If not, calculate penalty term

17 fnew = f(xnew) + P(xnew)

18 Calculate the target difference DE

19 DE = fnew - f(xcurrent)

20 Accept the criterion

21 if DE< 0

22 xcurrent = xnew

23 if fnew< f(xbest)

24 xbest = xnew

25 else

26 prob = exp (-DE/T)

27 if random (0, 1)< prob

28 xcurrent = xnew

29 Cooling

30 T = alpha * T
frontiersin.org
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Fron
31 Output the optimal solution

32 return xbest, f(xbest)
Algorithm 2. Adaptive dynamic e-simulated annealing algorithm.
4 Simulation and analysis for ADeSA

To validate the performance of our algorithm in complex

optimization problems, we design a series of benchmark tests

based on 12 popular test functions for experimental simulation.

We employ ADeSA and conduct multiple independent tests for

each benchmark function to ensure the robustness of the results.

The search range of each function is determined based on its

definition domain to ensure coverage of the global optimal point

and its surrounding region. The maximum number of iterations is

100. The initial temperature is set to 1000°C to simulate annealing

with gradual cooling. The temperature decay coefficient is set to

0.95, and the temperature decreases nonlinearly with iterations. The

acceptance criterion is based on the change of the objective function

value, and the probabilistic acceptance mechanism is adopted to

balance the global and local search. Through the optimization
tiers in Immunology 06
process of the 12 test functions above, we aim to verify the global

search capability of the algorithm and whether it can effectively

jump out of the local optimum and locate the global optimum

point. The algorithm demonstrates high convergence efficiency and

achieves rapid optimization within a limited number of iterations. It

also exhibits strong adaptability to a wide range of function types.

Although widely used in general-purpose optimization,

algorithms such as PSO and GA are not inherently suited to

constraint-driven, dynamic ODE-based problems such as the one

addressed here. ADeSA, with its built-in e-constraint scheduling,
simulated annealing convergence control, and boundary-aware

design is structurally more appropriate for solving tumor

immunotherapy planning problems embedded in nonlinear

dynamical systems. Future work may explore modified PSO/GA

versions with constraint-handling layers, but such additions would

fundamentally alter their core simplicity.

Note that the scaling of axes in Figures 1–12 is adapted to each

function’s numerical characteristics and standard domain

definitions. These differences reflect the inherent heterogeneity in

function value ranges and convergence behavior, which are essential

to preserve when analyzing algorithmic adaptability and

performance across multimodal vs. unimodal, low-range vs. high-

range objective spaces. Axis scaling is function-specific to preserve
FIGURE 1

Ackley. (a) is the initial state diagram, (b) is the final state diagram, and (c) is the convergence curve diagram.
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the numerical resolution and convergence trajectory appropriate to

each benchmark function’s characteristic output range.

The overall performance of the algorithm on different test

functions is shown. These test functions cover a variety of

challenging optimization scenarios such as single-peak, complex

multi-peak, periodic, and concave–convex mixing. The algorithm

performs well in global search on single-peak and partially multi-

peak functions, which can quickly converge to the global optimal

solution with smooth convergence curves, such as Sphere,

Zakharov, Griewank, etc. The algorithm also performs well on

functions with complex multi-peak structures, such as Sphere,

Zakharov, and Griewank. On the functions with complex multi-

peak structure, the algorithm shows strong local search ability and

can find lower fitness regions, such as the Eggholder and Shubert

functions, but there is still the phenomenon of falling into the local

optimum in some cases. The fitness curves show that the algorithm

shows fast convergence on most of the tested functions, usually

reaching the optimal or near-optimal solution within the first 20

iterations, with good stability in the later stages. For simple

structures and low-complexity functions, the algorithm results are

highly stable, and the solutions are concentrated in the global

optimum; in high-complexity functions, there is a scattering of

individual solutions.
Frontiers in Immunology 07
Figure 1a presents the initial state, and the 3D surface plot

shows the initial population distribution. From the figure, it can be

seen that the population is scattered throughout the search space of

the Ackley function. The red points represent the initial individuals,

which are distributed at different locations on the function surface.

The Ackley function has multiple local minima, but the global

minimum is at the center (dark blue region at the bottom of the

function). Figure 1b presents the final position, and the 3D surface

plot shows where the individuals of the population have finally

converged after the optimization process. It can be seen that the

individuals have mostly converged to the global optimal point of

the Ackley function. The optimization algorithm successfully finds

the global minimum of the solution space. Figure 1 presents the

convergence process of (c), with the convergence graph showing the

convergence speed of the optimization algorithm. The horizontal

axis is the number of iterations, and the vertical axis is the objective

function value. The curve shows that the function value decreases

rapidly at the initial iterations, indicating that the algorithm finds a

better solution quickly in the early stages. As the number of

iterations increases, the curve flattens out, indicating that the

algorithm converges to the global optimum point. Figure 2 shows

the surface of the cross-in-tray function, characterized by multiple

cross-wave peaks and local minima. The global minimum is about
FIGURE 2

Cross-in-tray. (a) is the initial state diagram, (b) is the final state diagram, and (c) is the convergence curve diagram.
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-2.062 and is distributed in several symmetric locations. The fitness

curve shows that the algorithm quickly finds the optimum after the

first few iterations. The curve is smooth with no significant

fluctuations, indicating that the algorithm is stable and effective.

Multi-peak functions with multiple local optima are used to test

the ability of an algorithm to jump out of a local optimum. Figure 3

shows the drop-wave function surface, characterized by a ripple-like

multi-peak structure with a distinct global minimum in the center.

The line graph shows that the fitness value decreases rapidly and

stabilizes within 10 iterations, approaching the optimal value of -1.

The function surface has periodic ripples with multiple local

minima, increasing the search difficulty. The smoothness of the

fitness curve indicates that the solution converges stably and

without oscillations. Figure 4 shows the Eggholder function

surface, characterized by high complexity, multiple peaks and

undulations, difficult search space, and multiple local minima.

The solution distribution in the right panel converges to a low

fitness region but is not fully concentrated, indicating that the

algorithm finds a near-optimal solution but may not reach the

global optimum point. The lower line graph shows a gradual

decrease in the fitness values, with a fast initial convergence

followed by a stabilization and limited local search. It is

completely focused to the global optimum point and may be

plagued by local minima. The algorithm performs better initially

but gets stuck in a local search bottleneck later and fails to fully
Frontiers in Immunology 08
optimize the complex surface. Effectiveness can be improved by

introducing stronger global search strategies.

Figure 5 shows the Griewank function surface, with an overall

bowl-like structure but with many small fluctuating local minima.

The fitness curve shows that the algorithm converges to the

optimum in very few iterations. After convergence, the curve is

smooth with no significant fluctuations. Figure 6 shows the Holder

Table function surface, showing a complex multi-peak structure in

the form of a grid with deep local minima at the bottom. Figure 6b

shows that the solution is successfully concentrated at the bottom of

some global optimum point, indicating that the algorithm searches

the optimal region efficiently. The fitness curve shows that the

algorithm stagnates in the early stage, quickly jumps out of the local

trap after about 50 iterations, and finally converges to the global

optimum value -19.2085 The initial search stays in the local region,

then breaks through the local optimum point in the late stage, and

reaches the global optimum quickly. The fast convergence at the

later stage indicates that the algorithm has a mechanism to jump

out of the local trap.

Extremely complex structured functions with sharp fluctuations

and irregular structure are used to test the performance of

algorithms on complex functions. Figure 7 shows the multi-peak

Levy function surface. The function overall shows multiple

fluctuating valley structures. The fitness curve shows that the

algorithm converges quickly in the first 20 iterations and then
FIGURE 3

Drop-wave. (a) is the initial state diagram, (b) is the final state diagram, and (c) is the convergence curve diagram.
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remains stable, indicating that the algorithm finds the optimal

solution efficiently. Figure 8 shows that on the surface of the

Rastrigin function, the function has a periodic multi-peak

structure, with obvious fluctuations, and the global minimum is

at (0,0). The solution is highly concentrated in the global optimum

as shown in Figure 8b, which indicates that the algorithm effectively

jumps out of the local minima and finds the global optimal solution

successfully. Figure 9 shows the Schwefel function surface. The

function has a complex multi-peak structure with significant

fluctuations, and the global minimum is hidden in a deeper

location, which poses a challenge to the optimization process.

Figure 9b shows that the optimization algorithm converges to a

low fitness region, but the solution is not completely concentrated

near the global minimum, which suggests that the algorithm has a

local convergence phenomenon on the surface of the complex

function. The fitness curve shows that the algorithm rapidly

reduces the fitness value in the first 20 iterations, and then it

tends to stabilize, but finally it does not reach the theoretical

optimal value of f(x) = 0.

Highly fluctuating and multi-peaked function surfaces contain

high-frequency fluctuations and multiple local minima to test the

algorithm’s ability to adapt to small-scale variations. Figure 10

shows the Shubert function surface. The function is characterized
Frontiers in Immunology 09
by a high-density multi-peak structure, and there are a lot of local

extreme points, which make optimization more difficult. The fitness

curve shows that the algorithm rapidly reduces the fitness value and

then converges stably in the lower fitness region, without

continuing to decline significantly. Figure 11 shows the sphere

function surface of the function. The function has a standard bowl-

like structure with the minimum value at the center (0,0). The

fitness curve shows that the algorithm converges to the optimal

value quickly in the first few iterations and then stays smooth,

showing efficient convergence performance. Figure 12 shows the

surface of the Zakharov function, the overall bowl structure. The

distribution of the solutions is scattered. The center of the function

is the global minimum. The fitness curve shows that the algorithm

quickly converges to the optimal value in the first 20 iterations, and

there is almost no change in the subsequent iterations, which shows

the fast and stable convergence ability.

Although no explicit sensitivity sweeps of emax or a are

included, their effects can be observed from convergence

behaviors across multiple benchmark functions. The consistent

success of the algorithm on both simple (e.g., sphere) and

complex (e.g., Rastrigin, Eggholder) functions suggests that the

chosen parameter configuration (emax = 100, a = 0.95) strikes an

effective balance between early exploration and late-stage
FIGURE 4

Eggholder. (a) is the initial state diagram, (b) is the final state diagram, and (c) is the convergence curve diagram.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1603551
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun and Jiang 10.3389/fimmu.2025.1603551
convergence. This is evident from the delayed but ultimately

accurate descent seen in rugged functions and rapid convergence

in smooth, convex problems.

In summary, ADeSA converges quickly, with most functions

converging within the first 10–20 iterations. The performance is

stable, and the algorithm performs accurately and centrally for

single-peaked functions and some multi-peaked functions. It

demonstrates strong global search ability on some complex

functions (e.g., Rastrigin and Holder Table). However, on

complex multi-peak functions (e.g., Eggholder and Shubert), the

algorithm tends to fall into local optimality and fails to find the

global optimal solution completely. For highly complex search

spaces, some of the solutions are not sufficiently centralized, and

the search accuracy and global search strategy need to be improved.
5 Develop therapeutic strategies for
tumor immunotherapy using ADeSA

In this section, we apply the ADeSA algorithm proposed in

Section III to the TIT model proposed in Section II as an

experimental verification. According to clinical treatment ITIT,

chemotherapeutic drugs and immune drugs are used as input,

and the cost of treatment loss is used as the objective function.
Frontiers in Immunology 10
Through the iteration of the ADeSA algorithm, the optimal

therapeutic strategies for patients with a certain basic condition

are worked out. According to clinical medical statistics borrowed,

the specific parameters of the dynamic models are presented

in Table 1.

Based on the details above, we have completed the

establishment of the TIT model and determined the specific value

of the cost function according to clinical ITIT. At the same time, the

feasibility and effectiveness of the ADeSA algorithm are also verified

on benchmarks. ADeSA was applied to the model of TIT to develop

therapeutic strategies. The best processing strategy is obtained

through experiments, which proves the effectiveness and

feasibility of the algorithm. The cost function is designed to

minimize the number of tumor cells and also to use the smallest

dose of chemotherapeutic drugs and immune drugs to achieve the

least harm to the human body.

Figure 13 shows the simulation results of the tumor cell number

over time, comparing the effect in two cases, using the ADeSA
method and not using the method. The following scientific analysis

in terms of tumor cell dynamics, optimization capability, and

algorithm performance fully demonstrates the superiority of the

ADeSA method. The yellow solid line represents the cell decline

curve without using the ADeSA method. In the initial stage, the

number of tumor cells decreases slowly, indicating that the
FIGURE 5

Griewank. (a) is the initial state diagram, (b) is the final state diagram, and (c) is the convergence curve diagram.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1603551
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun and Jiang 10.3389/fimmu.2025.1603551
FIGURE 6

Holder Table. (a) is the initial state diagram, (b) is the final state diagram, and (c) is the convergence curve diagram.
FIGURE 7

Levy. (a) is the initial state diagram, (b) is the final state diagram, and (c) is the convergence curve diagram.
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FIGURE 8

Rastrigin. (a) is the initial state diagram, (b) is the final state diagram, and (c) is the convergence curve diagram.
FIGURE 9

Schwefel. (a) is the initial state diagram, (b) is the final state diagram, and (c) is the convergence curve diagram.
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FIGURE 10

Shubert. (a) is the initial state diagram, (b) is the final state diagram, and (c) is the convergence curve diagram.
FIGURE 11

Sphere. (a) is the initial state diagram, (b) is the final state diagram, and (c) is the convergence curve diagram.
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optimization speed is low. It eventually stabilizes at a higher level

(~1,500), indicating that the treatment without the optimized

method only inhibits tumor growth to a limited extent. Higher

fluctuations in cell counts may indicate that the model is not robust
Frontiers in Immunology 14
enough and sensitive to parameter perturbations. The orange

dashed line represents the cell decline curve after using the

ADeSA method. The initial decline is significantly accelerated,

and the number of tumor cells decreases rapidly, indicating that

the ADeSA method can find the optimal treatment strategy more

efficiently. Eventually, it stabilizes at around 500, which is

significantly lower than the convergence value of the unused

method, reflecting the stronger global search capability of the

ADeSA method. The fluctuation amplitude is significantly

reduced, indicating that ADeSA improves the robustness and

stability of the system. The curve with ADeSA significantly

accelerates the decline in the early stage and quickly finds a better

solution. This fast convergence property is attributed to the effective

balance between global search and local exploitation by ADeSA,
which avoids the search stagnation of traditional methods in

complex optimization problems.

Figure 14 shows that no ADeSA dosage was used, which showed

a simple linear decrease over time. It was not dynamically adjusted

according to the therapeutic effect and was under-optimized, which

may result in less-than-optimal drug effects. With ADeSA, the dosage
was optimized to show a nonlinear change, with a medium dosage at

the beginning to activate the immune system and a gradual increase

in the middle and late stages to address excessive immune

stimulation. The fluctuation of the curve reflects the dynamic

response to the individual state and the flexibility of ADeSA under

multi-stage control. ADeSA can control the dosage more rationally in

the optimal allocation of immune drugs, which improves the initial

therapeutic effect and reduces the side effects in the later stage.
FIGURE 12

Zakharov. (a) is the initial state diagram, (b) is the final state diagram, and (c) is the convergence curve diagram.
TABLE 1 Experimental parameter.

Parameters Estimated value Units

ϑ1 0.00431 day-1

ϑ2 1.02×10-9 cell-1

g 6.41×10-11 cell-1

e 0.08 day-1

l 0.204 day-1

x1 3.42×10-6 cell-1

x2 2×10-11 day-1

a1 0.0125 day-1

a2 0.125 day-1

b1 2.02×107 cell2

b2 2×107 cell

q1 0.1 day-1

q2 1 day-1

d 0.95 N/A

w 0.1392×10-4 N/A
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Figure 15 shows that without ADeSA, chemotherapeutic drug

dosages simply decrease linearly, without taking into account

individual tolerance to chemotherapy or changes in tumor cell

response. This may lead to under- or over-dosage, reducing the

therapeutic efficacy or increasing the toxic side effects. The

optimized curves show that chemotherapeutic agents are used in
Frontiers in Immunology 15
higher dosages at the initial stage to rapidly inhibit tumor cell

growth, gradually decrease in the middle stage to reduce the toxic

burden, and remain stable in the later stage. The fluctuating portion

reflects the adaptive adjustment of ADeSA to drug tolerance and

tumor response. The optimized chemotherapy dosage of ADeSA is

more in line with personalized treatment needs and is able to
FIGURE 14

Dosage of chemo drugs’ dose under therapeutic strategies.
FIGURE 13

Curve of the number of tumor cells.
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balance the intensity of treatment with toxicity and side effects. The

output dosage profiles align with adaptive oncology principles: high

initial chemotherapy dose reduces tumor burden, followed by a

taper to mitigate toxicity. Immunotherapy dosing exhibits a

controlled decline, supporting prolonged immune engagement.

Such patterns may support clinical decision-making in

dose scheduling.

In summary, the advantage of ADeSA is the rational allocation

of drug dosage, and the dosage of immune drugs and

chemotherapeutic drugs is dynamically adjusted over time, which

not only improves the therapeutic effect but also avoids unnecessary

wastage or toxic side effects. At the same time, with multi-stage

optimization, the period is gradually reduced to achieve a balance

between treatment and toxicity, and with adaptive adjustment, the

fluctuation in the dosage curve reflects the real-time adjustment of

individual therapeutic response, indicating that ADeSA can

dynamically adapt to the changes in a patient’s condition. It can

be combined with global and local; the optimization process can not

only jump out of the local optimal solution but also refine the

dosage adjustment in each treatment stage, which can

comprehensively improve the efficiency of drug use.
6 Conclusions

Through the optimization of ADeSA, the dosage of immune

drugs and chemotherapeutic drugs can be allocated more
Frontiers in Immunology 16
scientifically and rationally. Compared with traditional methods,

ADeSA has faster convergence speed, stronger global search

capability, and better optimization effect, which significantly

improve the therapeutic effect and reduce the toxic side effects.

This treatment strategy based on intelligent optimization algorithm

is not only important in anti-tumor treatment but also can be

extended to other personalized treatment scenarios, providing new

technical support for precision medicine. In the future, in

immunotherapy, intelligent optimization algorithms can be used

to design and optimize drug combination therapies, match patients

and clinical therapies using biomarkers and electronic health

records, and personalize cancer treatment. In chemotherapy,

intelligent optimization algorithms can be used to accelerate drug

discovery and design, use game theory and neural networks to

regulate experimental treatment dosage, reduce drug resistance and

toxicity, and improve treatment efficacy. For the algorithmic level,

the global search mechanism can be enhanced, such as introducing

hybrid optimization algorithms (e.g., genetic algorithms combined

with local search) or adaptive search strategies. For complex

functions, the accuracy control and search capability at the later

stage of the algorithm can be improved. On high-density multi-peak

functions, perturbation mechanisms or dynamic search range

strategies can be used to enhance the comprehensiveness of the

results. Future work will explore the integration of ADeSA into real-

time adaptive control frameworks using rolling-horizon

optimization and live clinical feedback to dynamically adjust

treatment regimens in response to patient response data.
FIGURE 15

Dosage of immune drugs’ dose under therapeutic strategies.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1603551
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun and Jiang 10.3389/fimmu.2025.1603551
Data availability of statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.
Ethics statement

The manuscript presents research on animals that do not

require ethical approval for their study.
Author contributions

XS: Conceptualization, Data curation, Formal Analysis,

Methodology, Resources, Software, Validation, Visualization,

Writing – original draft. YJ: Funding acquisition, Investigation,

Project administration, Supervision, Writing – review & editing.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This work was supported

by the Natural Science Foundation of Liaoning Province, China

(Grant No. 20170540570).
Frontiers in Immunology 17
Acknowledgments

Thanks to The People’s Hospital of Liaoning Province and

Liaoning Cancer Hospital and Institute for providing the

experimental environment and equipment.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Liu C, He G, Chen Z. (2023). Impact of FOSB on tumor microenvironment and
immunotherapy in pan-cancer, in: 2023 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM). Istanbul, Turkiye: IEEE. pp. 4923–5.
doi: 10.1109/BIBM58861.2023.10385894

2. Wang Y, Yu J, Ju T, Chen Y, Wang Z. (2023). Research progress of immune cells
against tumor, in: 2023 IEEE International Conference on Manipulation,
Manufacturing and Measurement on the Nanoscale (3M-NANO). Chengdu, China:
IEEE. pp. 358–61. doi: 10.1109/3M-NANO58613.2023.10305348

3. Mizuno K, Shirakawa Y, Sakamoto T, Ishizaki H, Nishijima Y, Ono R. Plasma-
induced suppression of recurrent and reinoculated melanoma tumors in mice. IEEE
Trans Radiat Plasma Med Sci. (2018). 2:353–9. doi: 10.1109/TRPMS.2018.2809673

4. Curtis LT, Frieboes HB. (2019). Modeling of combination chemotherapy and
immunotherapy for lung cancer, in: 2019 41st Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC). Berlin, Germany: IEEE. pp.
273–6. doi: 10.1109/EMBC.2019.8857566

5. Jiao H, Shen Q, Shi Y, Shi P. Adaptive tracking control for uncertain cancer-
tumor-immune systems. IEEE/ACM Trans Comput Biol Bioinf. (2021) 18:2753–8.
doi: 10.1109/TCBB.2020.3036069

6. Sharifi M, Jamshidi AA, Sarvestani NN. An adaptive robust control strategy in a
cancer tumor-immune system under uncertainties. IEEE/ACM Trans Comput Biol
Bioinf. (2019) 16:865–73. doi: 10.1109/TCBB.2018.2803175

7. Wang Y, Zhao J, Wang Q, Liu J, Wang J, Song X. (2023). A statistical explainable
learning model optimizing co-localization of multidimensional positivity thresholds in
immunotherapy decision-supporting, in: 2023 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM). Istanbul, Turkiye: IEEE. pp. 4439–43.
doi: 10.1109/BIBM58861.2023.10385439

8. SharifiN, Zhou Y, Holmes G, Chen Y. Overcoming channel uncertainties in touchable
molecular communication for direct-drug-targeting-assisted immuno-chemotherapy. IEEE
Trans NanoBiosci. (2020) 19:249–58. doi: 10.1109/TNB.2019.2960068

9. Wei D, Zeng X, Yang Z, Zhou Q, Weng X, He H, et al. Visualizing interactions of
circulating tumor cell and dendritic cell in the blood circulation using in vivo imaging
flow cytometry. IEEE Trans Biomed Eng. (2019) 66:2521–6. doi: 10.1109/
TBME.2019.2891068

10. Jiang et al C. (2020). A multi-task learning method for analyzing microbiota as
cancer immunotherapy signal, in: 2020 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM). Seoul, Korea (South: IEEE. pp. 437–41.
doi: 10.1109/BIBM49941.2020.9313509

11. Paterson K, Paterson S, Mulholland T, Coffelt SB, Zagnoni M. Assessment of
CAR-T cell-mediated cytotoxicity in 3D microfluidic cancer co-culture models for
combination therapy. IEEE Open J Eng Med Biol. (2022) 3:86–95. doi: 10.1109/
OJEMB.2022.3178302

12. Shi S, Yan Y, Xiong J, Cheang UK, Yao X, Chen Y. Nanorobots-assisted natural
computation for multifocal tumor sensitization and targeting. IEEE Trans NanoBiosci.
(2021) 20:154–65. doi: 10.1109/TNB.2020.3042266

13. Zhang X, Wang D, Chen H. Improved biogeography-based optimization
algorithm and its application to clustering optimization and medical image
segmentation. IEEE Access. (2019) 7:28810–25. doi: 10.1109/ACCESS.2019.2901849

14. Zhang H, Qian F, Shang F, DuW, Qian J, Yang J. Global convergence guarantees
of (A)GIST for a family of nonconvex sparse learning problems. IEEE Trans Cybernet.
(2022) 52:3276–88. doi: 10.1109/TCYB.2020.3010960

15. Zhang X, Fu Z, Chen H, Mao W, Liu S, Liu G. Lévy flight shuffle frog leaping
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J. A biomathematical model of tumor response to radioimmunotherapy with aPDL1
frontiersin.org

https://doi.org/10.1109/BIBM58861.2023.10385894
https://doi.org/10.1109/3M-NANO58613.2023.10305348
https://doi.org/10.1109/TRPMS.2018.2809673
https://doi.org/10.1109/EMBC.2019.8857566
https://doi.org/10.1109/TCBB.2020.3036069
https://doi.org/10.1109/TCBB.2018.2803175
https://doi.org/10.1109/BIBM58861.2023.10385439
https://doi.org/10.1109/TNB.2019.2960068
https://doi.org/10.1109/TBME.2019.2891068
https://doi.org/10.1109/TBME.2019.2891068
https://doi.org/10.1109/BIBM49941.2020.9313509
https://doi.org/10.1109/OJEMB.2022.3178302
https://doi.org/10.1109/OJEMB.2022.3178302
https://doi.org/10.1109/TNB.2020.3042266
https://doi.org/10.1109/ACCESS.2019.2901849
https://doi.org/10.1109/TCYB.2020.3010960
https://doi.org/10.1109/ACCESS.2019.2936254
https://doi.org/10.1109/TEVC.2022.3144675
https://doi.org/10.1109/JSTQE.2021.3061462
https://doi.org/10.1109/JSTQE.2021.3061462
https://doi.org/10.3389/fimmu.2025.1603551
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun and Jiang 10.3389/fimmu.2025.1603551
and aCTLA4. IEEE/ACM Trans Comput Biol Bioinf. (2022) 20:808–21. doi: 10.1109/
TCBB.2022.3174454

19. Li X, Min M, Gu Y, Du N, Hode T, Nordquist RE, et al. Laser immunotherapy:
concept, possible mechanism, clinical applications, and recent experimental results.
IEEE J Select Topics Quantum Electron. (2012) 18:1434–8. doi: 10.1109/
JSTQE.2011.2182183

20. Ong L-LS, Zhu H, Banik D, Guan Z, Feng Y, Reinherz EL, et al. A robotic
microscope system to examine T cell receptor acuity against tumor neoantigens: A new
tool for cancer immunotherapy research. IEEE Robot Automat Lett. (2019) 4:1760–7.
doi: 10.1109/LRA.2019.2894466

21. Beckwith AL, Borenstein JT, Velásquez-Garcıá LF. Monolithic, 3D-printed
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