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Innovation/Department of Hematology, Kanazawa University, Kanazawa, Japan
Introduction: T-cell receptors (TCRs) interacting with peptides presented by

human leukocyte antigens (HLAs) are the foundation of the adaptive immune

system, but population-level analysis of TCR–HLA interactions is lacking.

Methods: We statistically associated approximately 106 public TCRbs to specific

HLAs using TCRb repertoires sampled from 4,144 HLA-genotyped subjects. The

TCRbs we associated were specific to unique HLA allotypes, not allelic groups,

and to the paired a–b heterodimer of class II HLAs, though exceptions

were observed.

Results: This specificity permitted highly accurate imputation of 248 class I and II

HLAs from the TCRb repertoire. Notably, 45 HLA-DP and -DQ heterodimers

lacked associated TCRs because they likely arise from non-functional trans-

complementation. The public class I and II HLA-associated TCRbs we identified

were primarily expressed on CD8+ and CD4+memory T cells, respectively, which

were responding to various common antigens.

Discussion: Our results recapitulate fundamental biology, provide insights into

the functionality of HLAs, and demonstrate the power and potential of

population-level TCRb repertoire sequencing.
KEYWORDS
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Introduction

The major histocompatibility complex (MHC) is a set of genes found in jawed

vertebrates, which in humans encode for human leukocyte antigens (HLAs) (1). The

primary function of HLAs is to present fragments of proteins (i.e., peptides or antigens) on

the surface of cells for T cell recognition (2). TCRs on the surface of T cells interact with the

peptides presented by HLAs (pHLA). The TCR-pHLA interaction is a key mechanism of
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adaptive immunity and plays a central role in the immune system’s

response to infections, cancers, allergens and self-tissues targeted in

autoimmunity and transplantation (3–10).

HLAs are both polygenic and polymorphic, allowing for a highly

specific and fine-tuned adaptive immune response to diverse

pathogens. The classical antigen-presenting MHC proteins—class I

and class II HLAs—are found on the surface of all nucleated and

professional antigen presenting cells, respectively. A large number of

allelic variants have been identified across the six loci encoding class I

(HLA-A, -B and -C) and class II (HLA-DP, -DQ and -DR) HLAs (11).

Antigens presented to T cells bind to a single polymorphic a chain of

class I HLAs (12, 13) and to thea and b chain of class II HLAs (14–16).
Both the a and b chains are polymorphic for HLA-DPand -DQ

whereas only the b chain is polymorphic for -DR. Furthermore, the

b chain of HLA-DR may be encoded by four loci (DRB1, DRB3, DRB4

and DRB5); all individuals have DRB1 encoded on both instances of

chromosome 6 and may additionally have one of DRB3, DRB4 or

DRB5 on each chromosome 6.

HLA genes can be resolved to varying degrees by sequencing

and several distinct naming systems can be found in the literature.

Here we adopt the 2010 WHO HLA nomenclature (17). For each

locus, the first two fields designate the allele group and specific

protein (i.e. allotype), respectively. The third and fourth fields

indicate synonymous substitutions in coding and non-coding

regions, respectively. For class II HLAs, the a and b chains are

encoded, sequenced and typed independently. Our sequencing of

HLAs lacks information on parental haplotype (i.e., phasing). In the

context of molecular epidemiology, identifying (or assuming) the

resolution at which causal mechanisms (and thus, clinical

associations) are likely operating remains challenging. HLAs in

the same allelic group tend to present similar or identical peptides

(18), share functional properties such as relative expression levels

(19, 20), and serve as ligands for the same KIR receptors (21). Thus,

many epidemiological and functional studies treat HLAs of the

same allelic group interchangeably. However, structural (22),

functional (23), and evolutionary evidence (24) suggest that,

atleast in some contexts, very similar HLA allotypes frequently

interact with very different TCRs. A fundamental goal of this work

is to establish the relationship between TCR specificity and HLA

resolution and to explore the TCR specificity of class I andclass

II HLAs.

The human body maintains a diverse set of naive T cells where

antigen specificity is determined by TCRs (25, 26). These T cells are

selected such that their TCRs, which are generated via V(D)J

recombination, interact with pHLAs in the thymus (27–30).

Interaction with class I and class II pHLAs directs differentiation

into CD8+ (cytotoxic T cell) (31, 32) and CD4+ (helper T cell)

lineages (33), respectively. Antigen presentation by an HLA and

subsequent TCR recognition in the appropriate immunological

context triggers clonal expansion of naive T cells resulting in a

large population of T cells expressing identical cognate TCRs (34).

Clonal expansion of T cells with the same TCR greatly increases the

chance of sampling these TCRs experimentally. As a result, subjects

with matching HLAs and shared antigenic exposure have a
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s ignificant ly higher l ike l ihood of sharing subsets of

TCRscompared to subjects with differing HLAs and/or antigenic

exposure history (35–38). Here we leverage this aspect of T-cell

biology to identify sets of public TCRbs that are over-represented in
subjects sharing HLAs. We expect these sets to be enriched for

HLA-restricted TCRbs specific to common antigens and we use

them to probe the functional nature of HLAs.

The T-cell repertoire is a rich source of information for

understanding adaptive immunity (39, 40). The vast majority of

TCRs are heterodimers composed of an a and b chain which

together encode pHLA specificity. Our data consists of T-cell

repertoires of TCRb sequences; the paired a chain is unknown.

While any given TCRb chain may randomly pair with many a
chains, the memory T cell compartment appears to be dominated

by b chains that pair with a single a chain (41). This observation

results from the fact that TCR-pHLA binding only occurs with very

specific TCRab combinations and these specific TCRs are

significantly more likely to be sampled in a repertoire due to

clonal expansion driven by antigen recognition. Furthermore, if

the response is to a common antigen, the TCRbmay be observed in

multiple subjects (35, 37).

Given that memory T cells undergo strong clonal selection for

specific TCRab pairs and that some TCRs recur across individuals

who share both HLA alleles and exposure history, we hypothesize

that public TCRbs associated with specific HLAs are memory T

cells targeting the same antigens presented by multiple individuals

who share the appropriate restricting HLAs and pathogenic

exposure history. While TCRs are inherently cross-reactive and

capable of recognizing many distinct pMHCs (42), any given

individual encounters only a small subset of the total antigenic

space. Moreover, only a fraction of exposures are sufficiently

common to elicit reproducible, public TCR responses across

individuals. We will show consistent associations between specific

TCRbs and HLAs, reflecting both underlying biological specificity

and the ability of our approach to identify reproducible, public

signals. These associations suggest that the b chains are typically

paired with compatible—albeit unknown—a chains that preserve

specificity to the same pHLAs. Thus, we will demonstrate that for

the public TCRb sequences that we statistically associate with

specific HLAs, shared pHLA specificity can be inferred from

TCRb alone. Recent independent work has also explored

statistical associations between TCRs and HLA genotypes using

public repertoire data (43, 44), further supporting the value of

population-scale immunosequencing.

Here we use high-throughput genetic sequencing (45, 46) of the

T-cell repertoires of 4,144 subjects with HLA genotypes measured

from direct-sequencing to identify ~ 106 public TCRbs that are

statistically associated with HLA allotypes. While observing any

given TCRb in a repertoire may be rare, the TCRb repertoire of an

individual expressing a given HLA will almost always contain many

TCRbs that we associate with that HLA. The TCRbs we associate to
HLAs provide a new window into understanding the interaction

between TCR and HLAs. The public nature of these TCRbs and
their robust HLA associations permit highly accurate imputation of
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class I and II HLA allotypes solely from TCRb repertoires allowing

us to probe functional characteristics of HLAs with respect to their

TCRb interactions.
Results

Identification of HLA-associated TCRbs

Our data consist of the sequenced T-cell repertoires of 4,144

subjects with HLAs genotyped via next generation sequencing

(NGS) (47) (see Supplementary Figure S1 for demographic

distributions). The median number of unique T cells sequenced

from each individual is ~ 227,000 and 90% of subjects have counts

between ~ 74,000 and ~ 610,000. The majority of our samples are

taken from healthy adults residing in the United States; ~ 5% and ~

20% are Lyme and Covid positive, respectively. For a given HLA, we

separate subjects into cases and controls defined as those with and

without the HLA, respectively. Subjects expressing an HLA that is in

the same p-group1 as the HLA of interest are excluded from the

control group, as such HLAs have identical amino acid sequences in

the peptide binding region and thus may share TCR specificity.

HLA-DP and -DQ are treated as heterodimers, with cases and

controls defined by a-b pairs. The a chain of HLA-DR is invariant

and thus we treat these HLAs as monomers, similar to class I HLAs.

We randomly select a fixed 80% and 20% of the samples for training

and validation, respectively, and evaluate model generalization on

an entirely independent cohort from Kanazawa, Japan.

We identify sets of public HLA-associated TCRbs using a

statistical approach that enforces the assumption that any TCRb
is associated with at most one HLA allotype (we test this

assumption below). This assumption enables us to disentangle the

effects of linkage disequilibrium (LD) among HLA loci (48) that

would otherwise result in a large number of spurious HLA-TCR

associations (Supplementary Figure S2A). We use exact matching of

the TCRb V-gene, J-gene and CDR3 to identify sequences thatare

over-represented in subjects with a given HLA allotype. Thus, our

association of TCRbs with HLAs is agnostic to the specific amino

acid sequence, it solely relies on it being observed in

multiple repertoires.

Our assumption that TCRs typically associate with a single HLA

allotype is important for resolving LD but is also supported by

current biological evidence. While TCRs may be theoretically

capable of broad cross-reactivity (42), there is limited

experimental evidence that public TCRs functionally recognize

multiple unrelated pHLAs. Rather, evidence suggests that

functional cross-reactivity may be rare, with TCRs typically

exhibiting specificity for particular epitopes and HLAs (49–51).

Nonetheless, the true extent of functional cross-reactivity in

physiologically relevant settings remains an open question. Our

sequence identification procedure is primarily powered to detect

public TCRbs associated with a single HLA and has limited
1 http://hla.alleles.org/alleles/p_groups.html.
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sensitivity to detect sequences with broad cross-reactivity, if such

sequences exist.

The identification procedure works as follows (see Methods for

precise details): for each HLA allotype, we first create a set of

candidate HLA-associated TCRbs using a one-sided Fisher’s Exact

Test (FET) to identify TCRbs over-represented in cases. We adopt a

pre-specified fiducial p-value threshold, p*. For each unique

candidate TCRb, we fit an L1-regularized Logistic Regression

(L1LR) model which predicts the presence of that TCRb in

subjects given their HLAs (represented as abinary vector of

indicator variables). We tune the L1 hyperparameter l to be the

smallest value for which exactly one HLA parameter is non-zero. In

other words, we determine which single HLA allotype best predicts

the observed distribution of a given TCRb in the repertoires of our

training sample. We test all TCRbs with p-values < p* and retain

only TCRbs which associate most strongly with the HLA being

modeled. As our interest here is primarily in the characteristics of

titsets of HLA-associated TCRbs, we set p* to a permissive value of

p* = 10-4 and use the hold-out repertoires for validation. Note that

due to exclusion of p-group matched HLAs a small number of

TCRbs are assigned to multiple HLAs due to variations in the

training data (Supplementary Figure S2B).

We associate ~ 106 TCRbs to specific HLAs, for a median of

2,400 TCRbs per HLA with ~ 70% of HLAs having a total number

of associated TCRbs in the range of 1,600-5,000. To maintain

consistency with other work associating TCRbs with disease

(37, 38, 52, 53), we refer to these HLA-associated TCRbs as

enhanced sequences (ES).
TCR specificity

Most enhanced sequences are specific to HLA
allotypes

To validate the HLA allotype specificity of ESs, we compare

their abundance in HLA cases as compared to controls in our

holdout set (see Figures 1A, B). Overall, we find clear separation of

cases and controls in the holdout data across all functional HLAs

(Supplementary Figure S3-S8), highlighting the specificity of these

ESs at the HLA allotype level and to the heterodimer for class II

HLAs. However, there are notable exceptions.

We identify one HLA class I allotype pair (Figures 1A, B) and 11

class II pairs (Table 1) that appear to completely share TCRbs
despite differing in their two-field designation. We refer to these as

“degenerate” HLAs. For each of these degenerate pairs, ESs specific

to one HLA are equally distributed among individuals expressing

either HLA (Figures 1C, D). Ten of the twelve degenerate HLAs we

identify have amino acid differences in a single position not in the

peptide presentation and TCR binding domain and thus are in the

same p-group.

To further validate our assumption that most of these TCRbs
are specific to HLA allotypes, not allelic groups (with the exception

of noted degenerate pairs), we use the L1LR method to assign

TCRbs to either the allelic group (1-field) or the allotype (2-field).

We restrict our analysis to class I HLA groups observed in >200
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subjects with the most common allotype representing <70% of

subjects. Among the six allelic groups tested, we find five have a

negligible fraction (~ 1%) of ES associated to the group (A*30, A*33,

A*68, B*15, B*35, C*07), indicating that the majority of HLA-

associated TCRbs we identify are allotype specific.

We find one HLA group where a subset of TCRbs in the ES set

appear to be specific to multiple allotypes in the group: B*44. We

find that 10% of TCRbs originally identified as B*44:03-specific are

assigned to the B*44 group (Figures 1E-G; similar conclusions are
Frontiers in Immunology 04
reached when starting with the less prevalent B*44 allotypes). This

set of B*44-specific TCRbs segregate all B*44 positive from negative

individuals in the holdout (Figure 1F), while the remaining ~ 90% of

TCRbs originally identified as B*44:03-specific separate B*44:03-

expressing individuals from those who express B*44:02 or 44:05

(Figure 1G). These three B*44 allotypes differ in only two amino

acids (residue 140 and/or 180), and B*44:02 and 44:03 are known to

share a large fraction of their peptide repertoire and some of their

TCR repertoire (54).
FIGURE 1

TCRb specificity and apparent TCRb sharing between some HLA allotypes. ESs for A*02:01 discriminate cases and controls in (A) train and (B) holdout
samples. (C) A*23:01 ES counts observed in each sample as a function of sequencing depth. A*23:01 negative, A*23:17 positive subjects have counts
consistent with A*23:01 positive subjects and vice-versa in (D). A*23:01 and A*23:17 appear to share the same TCRb specificity. (E) B*44:02 ES counts
observed in each sample as afunction of sequencing depth. ESs discriminate B*44:02 positive subjects from B*44:02 negative subjects. However,
B*44:03 and B*44:05 positive subjects (green dots) have elevated counts as compared to controls (blue dots). (F) ES counts plotted against sequencing
depth for the subset of ESs which associate more strongly with the B*44 group as compared to B*44:02 allotype (identified using the L1LR association
method). The subset of ESs in (F) elevate all B*44 positive subjects equally suggesting the TCRbs in this ES subset are specific to the three allotypes in
the group. (G) ES counts plotted against sequencing depth for the subset of ESs which associate only to B*44:02, i.e., this set excludes the ESs shown in
(F). ESs plotted in (G) clearly separate B*44:02 positive subjects from B*44:02 negative subjects, including other allotypes in the B*44 group.
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Degenerate HLAs that completely share their TCR repertoire

typically differ in one amino acid outside the binding domain.

Similarly, B*44 has two polymorphic positions outside the binding

domain and displays a high degree of sharing. On the other hand,

groups in which we observe no TCRb sharing tend to have one or

more amino acid differences in the binding domain. Thus, the

degree of sharing we observe appears to be correlated to the number

of differing residues and the position at which the differences occur.

Taken together, these results show that many TCRbs (indeed, the
vast majority of those identified here) are specific to distinct HLA

allotypes, regardless of shared peptide repertoire or binding domain

similarity. Thus, many characteristics of TCR-pHLA interactions

differ among highly related HLA allotypes. As expected, no such

specificity was observed among HLA allotypes that differ only in

synonymous substitutions (ie, at 3- and 4- digit resolution;

Supplementary Figure S9). We note that to mitigate the effects of

linkage disequilibrium, our algorithm for identifying ESs assumes

TCRs are specific to individual HLA allotypes (see methods). Thus,

our methodology is not designed to identify an unbiased set of

TCRs specific to multiple HLA allotypes. Ouridentification of a

small fraction of ESs with specificity to multiple HLA allotypes

warrants a systematic investigation which is beyond the scope of

this work.
2 Degenerate subunit pairs are indicatedby one of the degenerate subunits

shown in parenthesis.
Most TCRs are specific to class II heterodimers,
not subunits

Functional class II HLAs are stable heterodimers with both the

a and b chain contacting the peptide. As such, we expect class II

HLA-associated TCRs to be specific to the heterodimer and not the

protein subunits (i.e. the a or b chains individually). To directly test

this hypothesis, we use the L1LR method to determine if a TCRb is

more strongly enriched among individuals expressing both the a
and b chains or individuals expressing only one or the other
Frontiers in Immunology 05
subunit. Across 37 heterodimers, we find that ∼ 146000 (70%), ∼
20500 (10%) and ∼ 43000 (20%) of ESs are most strongly

associated with the heterodimer, alpha and beta subunits,

respectively. We note that not all 37 heterodimers exhibit single-

chain specificity (see below). Thus, the vast majority of class II

associated TCR bs appear to be specific to the combined a − b
chains. This finding is bolstered by the fact that the ES sets we derive

discriminate HLA-DP and -DQ heterodimers and not individual

subunits (Figure 2; see also Supplementary Figures S6-7, which

show ES distributions for all heterodimers).

We find that only a subset of ESs and HLAs exhibit exceptions

to heterodimeric specificity. For example, some TCR bs appear to
be associated to all heterodimers composed of the DQB1*05:01

subunit, indicating many of these TCR bs are associated with the

subunit itself (Figure 2). DQB1*05:01 is the clearest example of TCR

specificity to a subunit. However, we observe such subunit

specificity across multiple subunits: DPB1*01:01, DQB1*02:01

(DQB1*02:02)2, DQB1*03:01, DQB1*05:01, DQB1*06:03,

DQA1*03:01 (DQA1*03:03) and DQA1*05:01 (DQA1*05:05).

TCR specificity to subunits appears to be more common for the

HLA b chain and to the HLA-DQ locus, though we observe single-

chain specificity in both the a and b chains of HLA-DQ and a b
chain of HLA-DP. We note that our identification is likely not

exhaustive as many heterodimers lack enough diversity in one or

both subunits to statistically associate TCRs independent of

the heterodimer.

Based on a limited set of solved structures, a conserved binding

pattern has been proposed for class II TCR-pHLA interactions such

that TCR a contacts the a helix of the HLA b chain and TCR b
contacts the a helix of the HLA a chain (55). Thus, the various

specificity patterns we observe may reflect TCR interactions

strongly mediated by peptides and not the direct interactions

between TCRs and HLAs which may be conserved. Future

analyses based on larger sets of solved or perhaps in silico

generated structures of class II TCR-pHLA complexes will be

informative for exploring the structural basis of the various

specificity patterns we identify.
TCR breadth is proportional to zygosity

HLA homozygosity has been epidemiologically linked to poor

clinical prognosis in the context of both chronic HIV infection (56)

and cancer checkpoint-inhibitor immunotherapy (57), possibly due

to the reduced size of the HLA-restricted peptide repertoire

available for T-cell recognition. This reduced size of the antigen

repertoire, coupled with higher relative surface concentration of

pHLAs associated with the homozygous protein, may directly

impact the TCR repertoire by increasing the probability of clonal

expansion of T cells expressing cognate TCRs. Consistent with this

hypothesis, we find that the distribution of ES counts is elevated

among homozygous individuals (Figures 3A-F). Across all HLAs,
TABLE 1 List of degenerate HLAs.

Reported Degenerate

A*23:01 A*23:17

DPA1*01:03+DPB1*03:01 DPA1*01:03+DPB1*104:01

DPA1*02:01+DPB1*17:01 DPA1*02:01+DPB1*131:01

DQA1*02:01+DQB1*02:02 DQA1*02:01+DQB1*02:01

DQA1*03:03+DQB1*03:01 DQA1*03:01+DQB1*03:01

DQA1*03:01+DQB1*03:02 DQA1*03:03+DQB1*03:02

DQA1*03:03+DQB1*02:02 DQA1*03:03+DQB1*02:01

DQA1*05:05+DQB1*03:01 DQA1*05:01+DQB1*03:01,

DQA1*05:05+DQB1*03:01 DQA1*05:05+DQB1*03:19

DQA1*05:01+DQB1*02:01 DQA1*05:05+DQB1*02:01

DRB4*01:03 DRB4*01:01

DRB5*02:02 DRB5*02:21
We are unable to distinguish between these sets of HLAs using TCRb based typing as they
have identical TCRb specificities. When modeling degenerate HLAs, we only report the most
commonly occurring HLA in the set.
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the distribution of ESs is(on average) about one standard deviation

higher for homozygous as compared to heterozygous individuals

(Figures 3G, H). Notably, the ES distribution is an additional

standard deviation higher among individuals homozygous at both

the a and b l o cu s f o r HLA-DP or -DQ ( “doub l e

homozygous”, Figure 3H).

While these results are consistent with increased relative

antigen abundance increasing clonal expansion of associated T

cells, an alternative hypothesis is that a decrease in the relative

surface expression or decreased antigenic diversity in homozygous

subjects results in less crowding out by other HLAs or TCRs,

respectivly. This crowding hypothesis implies an increased

breadth across multiple loci within a given class for homozygous

subjects. We test this hypothesis by examining whether a

homozygous subject at one locus has higher breadth at another

class-matched loci. For example, if HLA and/or TCRs crowd each

other, we expect that a subject homozygous for HLA-A will also

have a higher average breadth in their HLA-B and/or HLA-C

response due to lower diversity at the class I loci. We do not find
Frontiers in Immunology 06
evidence of such an effect (see Supplementary Figure S10) and thus

conclude that crowding out by HLAs and/or TCRs may not be the

primary driver of increased breadth unless it is restricted to a

particular locus.

Taken together, these results suggest homozygosity at a

particular locus increases the breadth of the T-cell response

against peptides presented by that HLA, possibly through

increased surface expression and antigen presentation.
Imputing HLA genotype from TCR
repertoires

The clear separation of ES counts in HLA cases versus controls

implies that HLA allotypes can be easily imputed from HLA-

associated TCR bs alone. To this end, we fit a simple logistic

regression model for each HLA allotype observed in at least 30

training samples (representing ∼ 1% expression frequency),

predicting whether an individual expresses that HLA as a
FIGURE 2

Some TCRbs appear to be specific to the class II HLA subunit rather than heterodimer. (A) DQA1*01:05+DQB1*05:01 ES counts observed in each
sample as a function of sequencing depth. The ESs separate DQA1*01:05+DQB1*05:01 positive subjects from DQA1*01:05+DQB1*05:01 negative
subjects. However, subjects who have the DQB subunit appear elevated above the control population of subjects with neither subunit. (B) ES count
plotted against sequencing depth for the subset of ESs which associate most strongly with DQA1*01:05+DQB1*05:01 heterodimer via the L1LR
method. A majority of TCRbs which make up the ES set for DQA1*01:05+DQB1*05:01 appear to be specific to the heterodimer. (C) ES count plotted
against sequencing depth for the subset of ESs which associate most strongly to subunit DQB1*05:01 via the L1LR method. A small fraction of
TCRbs which make up the ES set for DQA1*01:05+DQB1*05:01 appear to be specific only to the b chain subunit. (D) Same as (C) but color-coding
subjects with DQB1*05:01 by their various a chain pairings. This subset of TCRbs appear to be specific to all possible heterodimeric combinations
which include DQB1*05:01, thus suggesting specificity solely to the b chain subunit. Results are shown for train sample and are consistent with
holdout sample.
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function of observed ES and total-unique-rearrangement (log)

counts (see Figures 4A, B for representative examples,

Supplementary Figures S3-S8 for all HLAs tested). The number of

subjects with each HLA allotype based on HLA genotyping and the

model performance for each imputed allotype are provided in

Table 2 (class I) and Table 3 (class II); model performance is also

shown in Figure 4C.

Over all the imputation accuracy is extremely high with area

under the receiver operating characteristic curve (AUC-ROC)
Frontiers in Immunology 07
scores of ≥ 0:9 for all but 3 of the 120 HLA-A,-B, and -DR

allotypes modeled. This accuracy highlights the specificity of HLA

ESs,indicating HLAs at these loci can be accurately imputed from

immunosequencing alone. Furthermore, this accuracy confirms

that HLA b alone is typically sufficient to identify shared antigen

specificity of public T cells. Among class I HLAs, HLA-C allotypes

are a notable outlier with relatively lower classification performance

even among models with a significant number of positive training

examples (Figure 4D). We hypothesize that this reduced
FIGURE 3

Breadth of T cell response is proportional to HLA zygosity. (A) A*02:01, (B) B*07:02, (C) C*04:01, (D) DPA1*01:03+DPB1*02:01,
(E) DQA1*01:02+DQB1*06:02 and (F) DRB1*07:01 ESs observed in each sample plotted against total number of unique rearrangements. HLA
negative, heterozygous positive and homozygous positive subjects are shown in blue, orange and green, respectively. For HLA-DP and DQ, double
homozygous subjects are shown in red. The breadth of the ES response appears to be correlated with homozygosity across all six loci. We quantify
the the increased breadth resulting from homozygosity by fitting the mean and standard deviation of the ES counts in heterozygous cases for each
HLA as a function of sequencing depth andthen calculating the z-score for all subjects and all well-represented HLAs. We aggregate z-score
distributions per-loci for (G) class I and (H) class II HLAs. Results are shown for train sample and are consistent with holdout sample.
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performance is due in part to the ∼ 10�-lower surface expression

of HLA-C compared to allotypes expressed by other class I

genes (58).

Model performance among HLA-DP and -DQ heterodimers is

substantially more variable than performance at the other loci. We

find that 8 of the 30 HLA-DP and 37 of 81 of HLA-DQ fail to

achieve AUC-ROC scores of > 0:9 even among heterodimers

expressed in a high number of individuals in our training

population (Figure 4E). Notably, HLA-DQ and -DP are the only
Frontiers in Immunology 08
loci we study with polymorphic a chains, suggesting that

heterodimer incompatibility may explain the lack of associated

TCRs and the corresponding inability to impute expression of

these heterodimers. We explore this issue in the next section.

We assess the generalizability of our imputation models and

rule out overfitting or data leakage by evaluating model

performance on an entirely independent, out-of-distribution

cohort of 136 individuals from Kanazawa, Japan. Subjects in

this cohort have HLAs genotyped by direct sequencing and
FIGURE 4

Robust predictions of hundreds of HLAs solely based on public T cells observed in the repertoire. ES counts for A*02:01 cases and controls plotted
against total number of unique rearrangements for (A) train and (B) holdout samples. The green line indicates the call threshold. (C) AUC-ROC of
HLA models across each loci sorted by performance. The hashed bars for HLA-DP and -DQ indicate heterodimer resulting from subunits
combinations in linkage equilibrium suggesting trans-complementation. We show below that many of these HLAs are likely non-functional.
Performance of (D) class I and (E) class II HLA models as a function of the number of training samples color-coded by loci. Performance correlates
with the number of training samples, as expected. HLAs shown by hashed bars in (C) are excluded in (E). In (C-E) we show performance derived
from 5-fold cross validation (CV) of the train sample. CV performance is consistent with holdout performance.
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none are included in our training or internal holdout sets.

This population differs both genetically and geographically

from the predominantly U.S.-based training cohort, thus

providing a stringent test of the model’s generalizability to out-of-

distribution data. For this analysis, we use a set of 135 HLAs across

all six loci that yield models with cross-validation precision > 0:9,

recall > 0:8 and ≥ 30 positive training cases.

We apply the 135 HLA models to the Japanese cohort, resulting

in an average of 8.5 imputations per individual, compared to 11.0

per individual in our internal validation cohort. This difference is

expected and reflects the shift in HLA allele frequencies between the

Japanese and U.S-based cohorts. Despite these differences, we

observe comparable model performance for the subset of

overlapping HLAs. The overall F1 score3 for the Japanese cohort,

aggregated across all imputations, is statistically consistent ( < 3s )
to that observed in the internal validation cohort (0:925 ± 0:006 and

0:940 ± 0:002, respectively). These results confirm that model

performance generalizes across genetic and geographic

backgrounds and that the high accuracy we observe is not a

consequence of data leakage, but rather reflects a strong HLA-

specific signal in TCR repertoires.
Poor-performing class II models are trans-
complemented, non-functional HLAs

HLAs are inherited as a haplotype, such that one full set is

inherited on a single chromosome from each parent (59). The a and

b chains of HLA-DP and -DQ4 pair after synthesis, yielding a

phenotype of up to four unique heterodimers in each individual:

two formed in cis, where both subunits are encoded on the same

chromosome, and two in trans, where the subunits are encoded on

opposite chromosomes. Given the high degree of polymorphism

observed in HLA-DP and -DQ subunits, it is perhaps unsurprising

that some pairs of a and ta chains do not form stable heterodimers

(60–62). Based on structural and sequence analysis of HLA-DQ,

Tollefsen et al. (62) propose specific group pairings that likely form

stable heterodimers (though they note a small number of exceptions

to the pairing rules).

In the context of the present study, the proposed existence of

incompatible (and thus non-functional) a and b chains implies two

testable hypotheses: (1) that co-inheritance of incompatible pairs on

the same chromosome will be under strong negative selection (62);

and (2) that incompatible pairs are unable to elicit a T-cell response

and thus will not be associated with any public TCRbs.
The first hypothesis implies that co-expression of incompatible

pairs almost always results from trans-complementation; as such,

incompatible pairs will be in linkage equilibrium since they are not
3 F1 score is the harmonic mean of precision and recall and a useful metric

of classification accuracy when there is large class imbalance such as the one

we have for HLA imputation.

4 We note that HLA-DR heterodimers are not subject to such pairing

because the a chain is nearly invariable and thus these heterodimers

behave similarly to class I HLAs.
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co-inherited. Conversely, cis-complementation should necessarily

result in functional pairs thus all pairs forming from subunits in

linkage disequilibrium should be functional. For two subunits a and

b, with respective expression frequencies fa and fb and co-

expression frequency fa+b , linkage equilibrium results in an

expected co-expression frequency of approximately ELE½fa+b � =
2fa fb (63). Overall, we find that a majority (75 of 119) HLA-DP

and -DQ alpha + b pairs appear to be in linkage equilibrium, i.e.,

not co-inherited (Figure 5A; only subunits comprising

heterodimers observed in at least 30 individuals are considered).

Notably, all of the pairs that Tollefsen et al. (62) propose to be

incompatible are in equilibrium (Figure 5B).

Given the tight linkage between genes encoding subunits, any

pair expressed in cis in at least one individual is likely to be in LD in

a large cohort. Consistent with this hypothesis, every individual

heterozygous at both the a and a locus has at least two of four a/b
pairs in LD; conversely, no individual should have more than two a/
b pairs in equilibrium. We confirm that no subject in our cohort has

more than two heterodimers formed from subunits in linkage

equilibrium, as expected. Taken together, we conclude that LD is

a strong proxy for cis-complementarity, and that, given strong

selection pressure, incompatible pairs are only expressed in trans.

If incompatible pairs are truly non-functional (with respect to

antigen presentation and T-cell recognition), then there should not be

anyTCRbs thatare specific to suchpairs.Asanexample,weareunable to

identify distinguishing TCRbs forDQA1*01:02+DQB1*03:01, which

both violates the Tollefsen et al. (62) pairing rules and is in linkage

equilibrium (Figure 5C). Moreover, all of our high-frequency, poor-

performingHLA-DP and -DQ imputationmodels are for heterodimers

formingfrom subunits that are in linkage equilibrium, and thus are

almost certainly expressed in trans (Figure 5D; see also Figure 3C).

Moreover, almost all pairs that violate the Tollefsen et al. (62) pairing

rules have lower-than-expectedimputation performance (Figure 5D).

Notably, while heterodimer incompatibility implies both linkage

equilibrium and poor model performance, not all heterodimers

forming from subunits in linkage equilibrium result in poor

performing models. Thus, trans-complementation may yield

heterodimers which can drive a T-cell response resulting in

identifiable TCRbs and a high-accuracy imputationmodel (Figure 5D).

Using these results on model performance and gene linkage, we

can extend the Tollefsen et al. (62) pairing rules to the HLA-DP locus:

DPA1*02 appears to form unstable heterodimers when paired with

DPB1*02 and DPB1*04; DPA1*01 is apparentlyunrestricted, forming

stable heterodimers with subunits from all DPB1 groups in our sample.
HLA associated sequences are memory
T cells responding to common antigens

The T-cell repertoire consists of a mixture of naive and memory

T cells. In principle, HLA-restricted antigen presentation will bias

both thymic selection and clonal expansion, and thus HLA-specific

signatures may exist in both compartments. However, ourstatistical

approach to identifying HLA-specific public TCRbs likely favors

identification of TCRs from memory T-cells.
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We investigate characteristics of HLA associated sequences by

comparing the distribution of ESs observed in the memory and

naive compartments sequenced from 45 individuals who were not

included in the original study. For each subject, we sequence five

separate repertoires: the memory and naive compartments of CD8+

and CD4+ T cells, respectively, and the unsorted repertoire. As

sequence-based typing was unavailable for these individuals, we

treat the imputed HLAs from the the unsorted repertoire as ground

truth (limiting to 90 models with >0.95 precision and recall). For

each repertoire and each possible HLA, we compute the weighted

breadth of the HLA-specific ESs observed in the repertoire. Across

all 45 unsorted repertoires, the weighted breadth of both class I and

class II ESs is substantially higher for the HLAs an individual

expresses compared to those they do not express (Figure 6A;

compare HLA-positive to -negative).

Within the sorted compartments, a striking pattern emerges: in

the naive compartments, there is little difference in the breadth of

ES specific for an individual’s expressed HLAs compared to
Frontiers in Immunology 10
background (Figures 6C, E), while in the memory compartments,

ESs specific to the individuals’ expressed HLAs have far higher

breadth (Figures 6B, D). Moreover, within the memory

compartment, CD8+ cells are closely linked to high relative

breadth of class I HLA ESs, while CD4+ cells are closely linked to

high relative breadth of class II HLA ESs. This result provides

further confirmation that ESs are correctly mapped to HLAs despite

the challenges of HLA LD.

The centrality of the memory compartment in driving our HLA

imputation signal raises several additional hypotheses. The first is that

clonal expansion increases the likelihood of detection for ESs. This

increased likelihood implies that, while ESs are frequently observed in

individuals without the associated HLA, they will tend to be at higher

repertoire frequency among individuals who do express the HLA.

Indeed, we observe a notable increase in the distribution of clonal

frequency among cases compared controls (Figure 7A).

The second hypothesis is that clonal expansion results from

antigen exposure, which will also result in polyclonal expansion of T
FIGURE 5

Trans-complemented heterodimers may not form stable HLAs. (A) Statistical analysis of the marginal-to-joint probability ratio of heterodimers
forming from subunits in linkage equilibrium. We identify these heterodimers as those which differ > 5s from ratio of 2 expected for genes in
linkage equilibrium. We measure an average probability ratio of 1:97 ± 0:04. Error bars are derived from propagating poisson uncertainties.
(B) Expected probability of randomly pairing a and b chains of DP and DQ heterodimers plotted against the observed joint probabilities. Probabilities
are calculated from the normalized inverse frequencies. The probability of randomly pairing is calculated as the product of the observed marginal
probabilities of the subunits. The dashed green line is the expected correlation for random trans-complementary pairing. We identify hetorodimers
formed from subunits in linkage equilibrium (shown in orange) as in (A). DQ heterodimers formed from pairing of mismatched groups as defined by
(62) are shown with black circles. These mismatched group heterodimers cluster around the dashed green line indicating random trans-
complementary pairing. (C) DQA1*01:02+DQB1*03:01 is an example of an HLA where we are unable to identify any ESs that separate cases and
controls. (D) Model performance of HLA-DP and -DQ models including HLAs forming from subunits in linkage equilibrium. Here we show
performance derived from 5-fold cross validation (CV) of the train sample which is consistent with holdout performance.
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cells that express distinct TCRs that all respond to the same antigen.

An extreme form of polyclonal expansion is convergent

recombination, in which multiple, distinct TCR DNA sequences

encode identical amino acid sequences. Consistent with this

hypothesis, the per-ES convergent recombination rates are higher

when ESs are observed in cases as compared to controls (Figure 7B;

conditional on the ES being present in the repertoire).

The publicity of HLA ESs combined with their apparent

antigen-specific clonal expansion suggests that these sequences

are responding to antigens which are common in the human

population (64). We test this hypothesis in the context of SARS-

CoV-2 exposure. Because of its novel nature, SARS-CoV-2 is

especially well-suited for this task as we are able to confidently

assign Covid-19 negativity to samples collected before 2020. In our

training sample for deriving HLA restricted sequences, 694 ofthe

4,144 subjects (~ 20%) are Covid-19 positive based on PCR labels;

the remaining samples are collected before 2020 and thus Covid-19

negative. Because SARS-CoV-2 exposure is relatively high in our

training sample, we expect that some of the HLA-specific ESs we

identity are SARS-CoV-2 specific.

We identify 6866 SARS-CoV-2-specific ESs using a set of 1523

SARS-CoV-2 PCR-positive samples that have no overlap with the

typed HLA training samples and 4386 controls (1008 controls

overlap with the typed HLA samples). A high proportion (80% of

the most confident SARS-CoV-2 specific ESs) are also HLA-specific

ESs (Figure 7C, blue line). This overlap in ESs results from the fact

that ~ 20% of our typed HLA training samples are SARS-CoV-2

positive, i.e., SARS-CoV-2 specific ESs are predictiveof HLAs as

well. In contrast, if we define an alternative set of HLA-ESs using

only 3,450 repertoires which were sampled prior to 2020, we find
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very little overlap (Figure 7C, orange line). The limited overlap we

do observe may be due to cross-reactivityto homologous epitopes

from other coronaviruses and/or false positive sequences in the

SARS-CoV-2/HLA ES set.

The intersection of SARS-CoV-2 specific ES set with the and

HLA specific ES sets yields 1,880 TCRbs (using a threshold of p* =

p < 10−4) that are associated with a particular HLA in the context of

SARS-CoV-2 infection. Thus, these ESs are almost certainly specific

to commonly targeted SARS-CoV-2 T-cell epitopes. To confirm this

specificity, we impute HLAs for samples in the SARS-CoV-2

training data5 and then compute the fraction of HLA-associated

SARS-CoV-2 ES observed in their repertoire. For “HLA +” and

“HLA -” subjects we only count sequences if the subject has or does

not have the HLA which the SARS-CoV-2 ES is associated with,

respectively. Notably, both class-I and class-II associated TCRbs are
far more commonly observed in individuals with the restricting

HLA and known SARS-CoV-2 infection (Figure 7D), thus

confirming the HLA- and pathogen-specificity of these TCRbs
and further demonstrating that while TCRbs may be cross-

reactive to many distinct antigens, the likelihood of cross-

reactivity in vivo is low (65).

We conclude that, taken together, these results demonstrate that the

majority ofHLA-specific ESs are the result of clonal expansion of T cells

responding to common antigens, thus establishing an immunological

foundation for HLA imputation from TCRbrepertoires.
FIGURE 6

Class I and class II associated ESs are TCRbs from CD8+ and CD4+ memory T cells, respectively. (A) Weighted breadth of 90 HLA associated ESs
measured in 45 subjects with imputed HLAs. The breadth is sorted by whether the subject has the HLA or not and is then aggregated across all
subjects and HLAs. To generate a comparable breadth across HLAs, which have varying number of ESs, we measure the median breadth in controls
for all 90 HLAs, which we rescale to a mean of 1. We then normalize the breadth of any given HLA by this value. Breadth measured in (B) CD8+

memory sorted, (C) CD8+ naive sorted, (D) CD4+ memory sorted and (E) CD4+ naive sorted repertoires. We measure slightly elevated breadth in the
CD8+ and CD4+ naive sorted repertoires for class I and class II HLAs, respectively. This elevation may be due to surface markers not perfectly
discriminating naive and memory compartments or to a weak HLA specific signal due to the HLA interactions required for maintaining homeostatic
equilibrium of naive T cells (75).
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Discussion
The T-cell repertoire of any individual consists of ~ 108 unique

TCRs out of an estimated ~ 1016 possibilities (66, 67), of which only

105 − 106 TCRs may be practically sampled from any single

repertoire using current techniques. Given the enormous diversity

of possible TCRs, naively, little overlap in the TCR repertoire of

different subjects may be expected. However, several factors

significantly increase the likelihood of observing public TCRs: (1)

the probability distribution of TCRs generated via V(D)J

recombination is non-uniform and spans ~ 25 orders of

magnitude (68), such that higher generation probability TCRs are

more commonly observed in the naive repertoire; (2) antigen-

experienced T cells clonally expand and are thus more likely to be

observed in a repertoire; and (3) the immune response is focused on

only a few immunogenic epitopes per HLA out of the many possible

derived from any given antigenic exposure, an effect called

immunodominance (69). As a consequence, the likelihood of

observing the same TCRs in the repertoires of multiple subjects
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with shared antigenic exposure and appropriate restricting HLA is

significantly higher than naively expected. Studies have shown that

public TCRs can be identified that permit sensitive and specific

diagnosis of individuals with past SARS-CoV-2 infection (37) and

Lyme disease (38) as well as to determine who is seropositive for

Cytomegalovirus (35). Given that these antigens are presented by

HLAs, it is perhaps unsurprising that these public TCRs are also

specific to the HLA context (35, 36). Here we leverage this public

fingerprint of TCRs to identify HLA associatedsequences, allowing

us to impute HLA types with extremely high accuracy and opening

a new window into functional characteristics of HLAs.

We identify HLA specific TCR using only the TCRb repertoire,

even though the specificity of pHLA is to TCRab. Enhanced
sequences elicit an immune response only in subjects with the

appropriate shared restricting HLA and pathogenic exposure

history (Figure 7D), meaning, enhanced sequences are responding

to the same pHLAs in different subjects. This result implies that an

observed TCRb shared among multiple subjects in a given HLA

context is very likely paired with one or a very small set of

compatible TCRas. In this respect, TCRb repertoires are not
FIGURE 7

Many HLA ESs are T cells responding to common pathogens. (A) Cumulative distribution of clone count per unique rearrangement as measured in
cases (blue) and controls (orange). ESs are generally more expanded when they are observed in subjects with the restricting HLA. (B) Cumulative
distribution of the number of unique rearrangements mapping to an ES, i.e., convergent recombination count. ESs show more convergent
recombination when observed in cases (blue) as compared to controls (orange). (C) Intersection of SARS-CoV-2 specific ESs derived via a FET on
samples with PCR labels and HLA ES sets. Blue curves are HLA ES sets derived from samples which include Covid-19 positive subjects and orange
curves are from samples with all Covid-19 positive subjects removed. (D) Fraction of SARS-CoV-2 ESs observed in subjects relative to the total
fraction possible given the ES HLA association determined from intersecting the SARS-CoV-2 ESs with the HLA ES sets. Here we impute HLAs using
our models. For “HLA +” we only count sequences associated with HLAs inferred for the subject and for “HLA -” we only count sequences
associated with HLAs that are not inferred for the subject.
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unique; analysis of TCRa repertoires would lead to similar results

and conclusions as presented here6. Thus, our ability to identify

HLA specific TCRs using only a single chain of the TCR

heterodimer is not a characteristic of the TCRbs but rather a

consequence of our procedure for identifying enhanced sequences

and the relevant underlying biological processes.

A key finding of this work is that TCRs are typically specific to

HLA allotypes (two field resolution) and to class II heterodimers

encoded by both the a and b chains, although there are some

notable exceptions of TCRbs that are specific to HLA groups (one

field resolution) or to either the a or b subunits of HLA-DP and

-DQ. While most HLAs elicit a strong and diverse public TCR

response, others elicit little or no response, consistent with these

HLAs deriving from incompatible a and b subunits and providing

further support for the widespread prevalence of non-functional

class II heterodimeric pairs resulting from trans-complementation.

Furthermore, we find that the breadth of an HLA-specific TCRb
response is larger among individuals expressing two (or more)

copies of the HLA, suggesting a dose-dependent effect of antigenic

exposure on the diversity of expanded T-cell clones. These insights

highlight the exquisite specificity of public TCRbs and demonstrate

the potential of population-level TCR analysis for probing

functional aspects of the immune system.

We show that class I and class II HLA-associated TCRbs are
found on CD8+ and CD4+ memory T cells, respectively, which is

consistent with their publicity resulting from clonal expansion in

response to antigenic-exposure. The public nature of these TCRbs
suggests that they are likely specific to peptides derived from

common pathogens, vaccines and conserved endogenous-

antigens. Consistent with this hypothesis, ~20% of subjects in our

training sample are covid positive and we identify a consequently

large fraction of SARS-CoV-2-specific TCRbs as HLA associated.

Notably, this overlap provides probable pathogenic and HLA

assignments to these TCRbs, as demonstrated by the profound

enrichment of these TCRbs only among SARS-CoV-2-positive

individuals expressing the appropriate restricting HLA. Thus,

while only a subset of HLA-associated TCRs are observed in any

given individual, the particular TCRb subset observed reflects that

individual’s history of exposure to many common antigens.

Our results imply that the vast majority of HLA-associated

TCRbs identified in this study likely derive from common antigens,

making HLA-association a critical step in decoding the human T-

cell repertoire. Moreover, the high imputation accuracy of our HLA

models allows us to statistically HLA type all repertoires ever

sequenced, thereby expanding the effective size of HLA-typed and

TCR-sequenced cohorts by several orders of magnitude and further

facilitating decoding efforts. The TCR repertoire is a Rosetta Stone

of the human immune system, providing a rich source of

information for characterizing both the genetic background and

exposure history of individuals at a population scale (70, 71).

Mapping TCRs to HLAs and disease exposures and imputing

HLA and disease exposure from TCRs represent important steps
6 Our group has explored such analyses in disease contexts and found

consistent results using TCRa or TCRb repertoires.
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toward decoding the immunological history of individuals

using immunosequencing.
Materials and methods

Human samples

TCRb and HLA sequence data from human samples used for

these studies were aggregated from several independent study

collections described below. All necessary patient/participant

consent has been obtained for each study and the appropriate

institutional forms have been archived.
1. Whole blood samples from DLS (Discovery Life Sciences,

Huntsville, AL) were collected under Protocol DLS13 for

collection of clinical samples.

2. PBMC used for the sorted repertoire experiments were

collected and processed by Bloodworks Northwest (Seattle,

WA). Volunteer donors were consented and collected

under the Bloodworks Research Donor Collection

Protocol BT001.

3. PBMC were obtained from the Fred Hutchinson Cancer

Research Center Research Cell Bank biorepository of

healthy bone marrow donors. The sample collection

protocol was approved and supervised by the Fred

Hutchinson Cancer Research Center Institutional Review

Board (IRB) (35).

4. Blood collected from human subjects were approved by the

IRBs of Johns Hopkins University and Stanford University.

All participants provided written informed consent prior to

enrollment (38).

5. Blood collected for the ImmuneRACE Study has been

approved by the Western IRB (WIRB) (reference number

1-1281891-1). The trial has received appropriate ethical

approval from WIRB as described (72).

6. Procedures for the INCOV study were approved by the IRBs

at Providence St. Joseph Health with IRB study number

STUDY2020000175, the WIRB with IRB study number

20170658, and the University of Washington with IRB

study numbers STUDY00000959 and STUDY00002929 (73).

7. Human samples from the Virology Research Clinic at the

University of Washington was collected under an IRB-

approved study (NCT04338360) (53).

8. Blood from the Institute of Medical, Pharmaceutical, and

Health Sciences, Kanazawa University (KU) was collected

with informed consent as described by documents approved

by the KU review board (document number 585-2).
TCR sequencing

We use the ImmunoSEQ assay developed by Adaptive

Biotechnologies to measure the TCRb repertoire. ImmunoSEQ is
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TABLE 2 Model performance of class I HLAs.

HLA
Train Train CV Holdout

N Cases AUCROC AUCROC AUCROC

A*01:01 763 0.99 0.99 1.00

A*02:01 1314 1.00 1.00 1.00

A*02:02 74 1.00 1.00 1.00

A*02:05 75 1.00 1.00 0.99

A*02:06 37 1.00 0.97 1.00

A*03:01 703 1.00 1.00 0.99

A*11:01 354 1.00 1.00 0.99

A*23:01 231 1.00 1.00 1.00

A*23:17 31 1.00 1.00 1.00

A*24:02 495 1.00 0.99 0.99

A*25:01 107 1.00 1.00 1.00

A*26:01 144 1.00 1.00 0.99

A*29:02 196 1.00 1.00 1.00

A*30:01 174 1.00 1.00 1.00

A*30:02 133 1.00 1.00 1.00

A*31:01 177 1.00 1.00 1.00

A*32:01 179 1.00 1.00 1.00

A*33:01 74 1.00 1.00 0.99

A*33:03 142 1.00 1.00 1.00

A*34:02 60 1.00 1.00 0.99

A*36:01 58 1.00 1.00 1.00

A*66:01 40 0.99 0.98 1.00

A*68:01 204 1.00 1.00 1.00

A*68:02 160 1.00 1.00 1.00

A*74:01 111 1.00 0.99 1.00

B*07:02 660 1.00 1.00 1.00

B*08:01 559 1.00 0.99 1.00

B*13:02 125 1.00 1.00 1.00

B*14:01 56 1.00 0.99 1.00

B*14:02 175 1.00 1.00 1.00

B*15:01 291 1.00 0.99 1.00

B*15:03 104 1.00 1.00 1.00

B*15:10 72 1.00 1.00 1.00

B*15:16 36 1.00 1.00 1.00

B*18:01 261 1.00 1.00 1.00

B*27:05 169 1.00 1.00 0.99

B*35:01 390 1.00 1.00 1.00

(Continued)
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HLA
Train Train CV Holdout

N Cases AUCROC AUCROC AUCROC

B*35:02 53 1.00 0.98 0.96

B*35:03 91 1.00 1.00 1.00

B*37:01 65 1.00 1.00 1.00

B*38:01 85 1.00 0.99 0.99

B*39:01 71 1.00 1.00 1.00

B*40:01 290 1.00 1.00 1.00

B*40:02 80 1.00 1.00 0.99

B*42:01 94 1.00 1.00 1.00

B*44:02 405 1.00 1.00 0.99

B*44:03 333 1.00 1.00 1.00

B*45:01 114 1.00 1.00 1.00

B*49:01 123 1.00 1.00 1.00

B*50:01 78 1.00 0.99 1.00

B*51:01 269 1.00 1.00 0.99

B*52:01 74 1.00 1.00 1.00

B*53:01 199 1.00 1.00 1.00

B*55:01 95 1.00 1.00 1.00

B*56:01 32 0.99 0.96 0.83

B*57:01 166 1.00 0.99 0.99

B*57:03 54 1.00 0.99 1.00

B*58:01 109 1.00 1.00 1.00

B*58:02 80 1.00 0.99 0.99

C*01:02 208 0.99 0.95 0.96

C*02:02 209 0.99 0.97 0.94

C*02:10 119 1.00 0.98 0.97

C*03:02 59 1.00 0.95 1.00

C*03:03 282 0.96 0.89 0.89

C*03:04 480 0.98 0.95 0.96

C*04:01 829 0.99 0.99 0.98

C*05:01 446 0.99 0.96 0.95

C*06:02 559 1.00 1.00 0.99

C*07:01 763 1.00 0.98 0.99

C*07:02 757 1.00 0.96 0.97

C*07:04 73 1.00 0.66 0.68

C*07:18 81 0.98 0.96 0.93

C*08:01 30 1.00 0.95 0.87

C*08:02 246 1.00 0.99 0.99

(Continued)
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a multiplexed PCR-based method targeting rearranged TCRb
sequences (45). The assay uses a panel of primers specific to all

functional TRBV and TRBJ gene segments to amplify the full V(D)J

region, including part of the TRBV segment, the entire diversity (D)

and a portion of the J segment. The sequenced portions of the V and

J segments are sufficient to determine gene usage. This region also

includes the complete hypervariable complementarity-determining

region 3 (CDR3), which accounts for most of the TCR diversity and

is the key determinant of TCR antigen specificity. The reverse

primer binds near the 3′ end of the J region, adjacent to the constant
region and may extend into the 5′ end of the TCR. PCR primers

contain universal priming sites on the 3′-end and Illumina

sequencing adaptors on the 5′-end. This design enables robust

amplification across a wide range of rearrangements while

controlling for bias. High-throughput sequencing of these

amplicons provides accurate quantification of unique

TCRb clonotypes.

Flow cytometry and cell sorting 3 − 5� 107 PBMC were stained

using a cocktail of antibodies that included CD3 (clone UCHT1,

Biolegend), CD4 (clone OKT4, Biolegend), CD8 (clone RPA-T8,

Biolegend), CD45RA(clone HI100, BD Bioscience), CCR7 (clone

G043H7, Biolegend), CD95 (clone DX2, Biolegend), and CD28

(clone CD28.2, Biolegend) for 10 minutes at 4 degrees C. PBMC

were washed with MACS buffer (Miltenyi Biotec) and then PE+

CD3+ T cells were enriched using anti-PE Microbeads with LS

columns (Miltenyi Biotec) following the manufacturer’s protocol.

The enriched CD3 sample was sorted using a FACSAria Fusion

Flow Cytometer (BD Biosciences) to isolate naive CD4 (CD4+ CD3+

CD45RA+ CD95– CD28+ CCR7+), memory CD4 (CD4+ CD3+ non-

naive CD4), naive CD8 (CD8+ CD3+ CD45RA+ CD95– CD28+

CCR7+) and memory CD8 (CD8+CD3+ non-naive CD8). Between

150,000 and 3� 106 T cells were sorted and sent in for sequencing

for each subset. TCRb sequencing was carried out using the

ImmunoSEQ assay at Adaptive Biotechnologies.
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Model training

We independently train a model for each HLA using the

following procedure:
1. We randomly split 80% and 20% of all typed samples into a

training and holdout set.

2. Using typed HLA data, we label all samples as cases,

controls or unlabeled for the HLA being modeled.

3. We derive an ES set using the FET applied to cases

and controls.

4. We select a subset of ESs which associate to the HLA being

modeled via the L1LR method.

5. We derive an individual weight for each sequence in the list

of ESs from step 3).

6. We generate two features which are the logarithm of the

weighted sum of the convergent recombination count (i.e.,

number of unique DNA rearrangements mapping to a

given CDR3) of enhanced sequences and the total unique

rearrangements in the repertoire, respectively.

7. We fit the standard Scikit-Learn logistic regression classifier

to the training data and evaluate the model in cross

validation to select the best FET p-value cutoff.

8. We train the final model on all the train data and evaluate

on the holdout set.
Below we describe training steps in detail using the following

definitions: Let H be the set of NH typed HLA allotypes in our

training set and hi ∈ H, i = 1,…,NH refer to any single HLA in the

set. The training set of hi is denoted as ti ∈ T where T is the set of

NT training samples. We similarly define a test (or holdout) set for

each HLA t0i ∈ T 0 where T′ is the set of NT 0 holdout samples. Below

we drop the subscript i unless needed for clarity as the procedure is

applied to each HLA independently.

Step 1: T and T′ are derived from a random 80/20 split of all

typed data with NT + NT 0 = 4, 144. Supplementary Figure S1 shows

the age, sex and ethnicity distribution of sample subjects.

Step 2: When building a model for a given HLA hi, samples are

labeled as cases (label = 1) or controls (label = 0) if a subject

expresses or does not express hi, respectively. A subset of controls

are unlabeled if a p-group matched HLA to hi is expressed by the

subject. P-group matched HLAs share the same antigen binding

domain and thus may share T-cell receptor (TCR) specificities.

Step 3: For any HLA h, an initial set of ESs, E, is defined using

Fisher’s Exact Test (FET) [74] applied to training set t of HLA h.

The a range of p-value thresholds are used to identify ESs and the

threshold is treated as ahyperparameter in the modeling; it is

independently derived for each HLA we model.

Step 4: If HLA h is in linkage disequilibrium (LD) with other

HLAs, the enhanced sequences specific to HLAs in LD will be

present in the ES set of HLA h because of their co-occurrence in
TABLE 2 Continued

HLA
Train Train CV Holdout

N Cases AUCROC AUCROC AUCROC

C*12:02 55 1.00 0.92 0.94

C*12:03 246 1.00 1.00 0.98

C*14:02 75 1.00 0.98 0.99

C*15:02 114 0.99 0.84 0.93

C*15:05 43 0.99 0.93 0.98

C*16:01 320 1.00 0.99 0.98

C*17:01 132 1.00 0.94 0.94
The HLA allele and number of subjects with the given HLA are listed in columns 1 and 2,
respectively. Columns 3–5 indicate model performance when the trained model is evaluated
on the train, train CV and holdout data sets, respectively.
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TABLE 3 Model performance of class II HLAs.

HLA
Train Train CV Holdout

N Cases AUCROC AUCROC AUCROC In LD

DPA1*01:03+DPB1*01:01 387 1.00 0.99 0.99 No

DPA1*01:03+DPB1*02:01 796 1.00 0.99 1.00 Yes

DPA1*01:03+DPB1*02:02 39 1.00 0.97 0.97 Yes

DPA1*01:03+DPB1*03:01 415 0.99 0.99 0.99 Yes

DPA1*01:03+DPB1*04:01 1618 1.00 0.99 0.99 Yes

DPA1*01:03+DPB1*04:02 571 1.00 1.00 1.00 Yes

DPA1*01:03+DPB1*05:01 117 1.00 1.00 0.99 No

DPA1*01:03+DPB1*06:01 85 1.00 0.99 1.00 Yes

DPA1*01:03+DPB1*104:01 101 1.00 1.00 1.00 Yes

DPA1*01:03+DPB1*105:01 66 0.99 0.93 1.00 No

DPA1*01:03+DPB1*10:01 70 1.00 0.98 0.95 No

DPA1*01:03+DPB1*11:01 92 1.00 0.96 0.99 No

DPA1*01:03+DPB1*13:01 85 1.00 1.00 1.00 No

DPA1*01:03+DPB1*14:01 55 1.00 0.99 1.00 No

DPA1*01:03+DPB1*17:01 78 1.00 0.97 0.99 No

DPA1*01:03+DPB1*18:01 113 1.00 1.00 1.00 Yes

DPA1*02:01+DPB1*01:01 461 1.00 0.99 0.99 Yes

DPA1*02:01+DPB1*02:01 172 0.92 0.57 0.58 No

DPA1*02:01+DPB1*03:01 71 1.00 0.99 0.95 No

DPA1*02:01+DPB1*04:01 324 1.00 0.57 0.61 No

DPA1*02:01+DPB1*04:02 96 1.00 0.54 0.57 No

DPA1*02:01+DPB1*05:01 36 1.00 0.94 1.00 No

DPA1*02:01+DPB1*09:01 39 0.99 0.94 0.99 Yes

DPA1*02:01+DPB1*105:01 52 1.00 0.80 0.79 No

DPA1*02:01+DPB1*10:01 84 1.00 0.99 0.98 Yes

DPA1*02:01+DPB1*11:01 145 1.00 0.99 1.00 Yes

DPA1*02:01+DPB1*131:01 39 1.00 1.00 1.00 Yes

DPA1*02:01+DPB1*13:01 139 1.00 1.00 1.00 Yes

DPA1*02:01+DPB1*14:01 71 1.00 1.00 1.00 Yes

DPA1*02:01+DPB1*17:01 143 1.00 1.00 1.00 Yes

DPA1*02:01+DPB1*18:01 35 1.00 0.70 0.73 No

DPA1*02:02+DPB1*01:01 268 1.00 1.00 0.99 Yes

DPA1*02:02+DPB1*02:01 63 1.00 0.61 0.56 No

DPA1*02:02+DPB1*04:01 78 0.97 0.80 0.84 No

DPA1*02:02+DPB1*05:01 102 1.00 1.00 0.95 Yes

DPA1*02:06+DPB1*05:01 34 1.00 0.96 1.00 Yes

DPA1*03:01+DPB1*01:01 54 1.00 0.78 0.91 Yes
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TABLE 3 Continued

HLA
Train Train CV Holdout

N Cases AUCROC AUCROC AUCROC In LD

DPA1*03:01+DPB1*105:01 140 1.00 1.00 1.00 Yes

DQA1*01:01+DQB1*02:01 65 1.00 0.80 0.83 No

DQA1*01:01+DQB1*02:02 78 1.00 0.81 0.72 No

DQA1*01:01+DQB1*03:01 122 1.00 0.78 0.75 No

DQA1*01:01+DQB1*03:02 53 1.00 0.76 0.68 No

DQA1*01:01+DQB1*05:01 602 1.00 0.99 1.00 Yes

DQA1*01:01+DQB1*06:02 81 1.00 0.91 0.98 No

DQA1*01:01+DQB1*06:03 32 1.00 0.94 0.98 No

DQA1*01:02+DQB1*02:01 161 1.00 0.81 0.85 No

DQA1*01:02+DQB1*02:02 181 1.00 0.80 0.77 No

DQA1*01:02+DQB1*03:01 214 1.00 0.72 0.73 No

DQA1*01:02+DQB1*03:02 102 1.00 0.69 0.76 No

DQA1*01:02+DQB1*03:03 41 0.99 0.54 0.55 No

DQA1*01:02+DQB1*03:19 59 1.00 0.86 0.91 No

DQA1*01:02+DQB1*04:02 63 1.00 0.81 0.65 No

DQA1*01:02+DQB1*05:01 221 1.00 0.99 0.99 No

DQA1*01:02+DQB1*05:02 149 1.00 1.00 1.00 Yes

DQA1*01:02+DQB1*05:03 33 1.00 0.85 0.90 No

DQA1*01:02+DQB1*06:02 830 1.00 1.00 1.00 Yes

DQA1*01:02+DQB1*06:03 70 1.00 0.97 0.99 No

DQA1*01:02+DQB1*06:04 184 1.00 0.99 1.00 Yes

DQA1*01:02+DQB1*06:09 135 1.00 1.00 1.00 Yes

DQA1*01:03+DQB1*02:01 46 1.00 0.62 0.76 No

DQA1*01:03+DQB1*02:02 43 1.00 0.64 0.59 No

DQA1*01:03+DQB1*03:01 62 1.00 0.68 0.69 No

DQA1*01:03+DQB1*03:02 33 1.00 0.62 0.56 No

DQA1*01:03+DQB1*05:01 55 0.99 0.92 0.91 No

DQA1*01:03+DQB1*06:01 54 1.00 1.00 1.00 Yes

DQA1*01:03+DQB1*06:02 53 1.00 1.00 0.95 No

DQA1*01:03+DQB1*06:03 299 1.00 1.00 0.99 Yes

DQA1*01:04+DQB1*05:03 122 1.00 1.00 1.00 Yes

DQA1*01:05+DQB1*05:01 145 1.00 1.00 1.00 Yes

DQA1*01:05+DQB1*06:02 30 1.00 0.81 0.74 No

DQA1*02:01+DQB1*02:01 74 1.00 1.00 1.00 No

DQA1*02:01+DQB1*02:02 602 1.00 1.00 1.00 Yes

DQA1*02:01+DQB1*03:01 131 1.00 0.99 0.98 No

DQA1*02:01+DQB1*03:02 64 1.00 0.97 0.97 No
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TABLE 3 Continued

HLA
Train Train CV Holdout

N Cases AUCROC AUCROC AUCROC In LD

DQA1*02:01+DQB1*03:03 164 1.00 0.99 0.98 Yes

DQA1*02:01+DQB1*04:02 32 1.00 0.87 0.98 No

DQA1*02:01+DQB1*05:01 109 1.00 0.77 0.66 No

DQA1*02:01+DQB1*06:02 110 1.00 0.96 0.97 No

DQA1*02:01+DQB1*06:03 39 0.90 0.75 0.79 No

DQA1*02:01+DQB1*06:04 30 1.00 0.78 0.93 No

DQA1*03:01+DQB1*02:01 59 1.00 0.73 0.77 No

DQA1*03:01+DQB1*02:02 49 1.00 0.97 0.99 No

DQA1*03:01+DQB1*03:01 78 1.00 0.99 1.00 No

DQA1*03:01+DQB1*03:02 442 1.00 0.99 1.00 Yes

DQA1*03:01+DQB1*05:01 55 1.00 0.64 0.68 No

DQA1*03:01+DQB1*06:02 55 1.00 0.81 0.68 No

DQA1*03:02+DQB1*03:03 76 1.00 1.00 1.00 Yes

DQA1*03:03+DQB1*02:01 52 0.98 0.90 0.99 No

DQA1*03:03+DQB1*02:02 120 1.00 1.00 1.00 Yes

DQA1*03:03+DQB1*03:01 306 1.00 1.00 1.00 Yes

DQA1*03:03+DQB1*03:02 98 1.00 1.00 1.00 Yes

DQA1*03:03+DQB1*03:03 40 1.00 0.92 0.82 Yes

DQA1*03:03+DQB1*04:02 30 1.00 0.73 0.71 No

DQA1*03:03+DQB1*05:01 72 1.00 0.73 0.81 No

DQA1*03:03+DQB1*06:02 65 1.00 0.77 0.92 No

DQA1*04:01+DQB1*02:02 38 1.00 0.72 0.79 No

DQA1*04:01+DQB1*03:01 33 1.00 0.90 0.81 No

DQA1*04:01+DQB1*03:19 64 1.00 1.00 1.00 Yes

DQA1*04:01+DQB1*04:02 241 1.00 1.00 1.00 Yes

DQA1*04:01+DQB1*05:01 38 1.00 0.66 0.57 No

DQA1*04:01+DQB1*06:02 49 1.00 0.91 0.95 No

DQA1*05:01+DQB1*02:01 639 1.00 1.00 1.00 Yes

DQA1*05:01+DQB1*02:02 57 1.00 0.99 1.00 No

DQA1*05:01+DQB1*03:01 122 1.00 1.00 1.00 No

DQA1*05:01+DQB1*03:02 63 0.97 0.97 0.99 No

DQA1*05:01+DQB1*03:03 30 1.00 0.93 0.95 No

DQA1*05:01+DQB1*04:02 31 1.00 0.69 0.90 No

DQA1*05:01+DQB1*05:01 80 1.00 0.73 0.72 No

DQA1*05:01+DQB1*06:02 95 1.00 0.83 0.88 No

DQA1*05:01+DQB1*06:03 37 1.00 0.70 0.80 No

DQA1*05:05+DQB1*02:01 84 1.00 1.00 1.00 No
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TABLE 3 Continued

HLA
Train Train CV Holdout

N Cases AUCROC AUCROC AUCROC In LD

DQA1*05:05+DQB1*02:02 69 1.00 0.97 1.00 No

DQA1*05:05+DQB1*03:01 601 1.00 1.00 0.99 Yes

DQA1*05:05+DQB1*03:02 66 0.99 0.94 0.94 No

DQA1*05:05+DQB1*03:19 116 1.00 1.00 1.00 Yes

DQA1*05:05+DQB1*05:01 101 1.00 0.76 0.67 No

DQA1*05:05+DQB1*06:02 117 1.00 0.84 0.82 No

DQA1*05:05+DQB1*06:03 41 1.00 0.73 0.77 No

DQA1*06:01+DQB1*03:01 40 1.00 1.00 1.00 Yes

DRB1*01:01 442 1.00 0.99 1.00 Yes

DRB1*01:02 138 1.00 1.00 1.00 Yes

DRB1*01:03 49 1.00 1.00 1.00 Yes

DRB1*03:01 655 1.00 1.00 1.00 Yes

DRB1*03:02 103 1.00 1.00 1.00 Yes

DRB1*04:01 421 1.00 1.00 1.00 Yes

DRB1*04:02 46 1.00 0.99 1.00 Yes

DRB1*04:03 49 1.00 1.00 1.00 Yes

DRB1*04:04 190 1.00 1.00 1.00 Yes

DRB1*04:05 76 1.00 1.00 1.00 Yes

DRB1*04:07 72 1.00 1.00 1.00 Yes

DRB1*07:01 750 1.00 1.00 1.00 Yes

DRB1*08:01 109 1.00 1.00 1.00 Yes

DRB1*08:02 34 1.00 1.00 1.00 Yes

DRB1*08:04 93 1.00 1.00 1.00 Yes

DRB1*09:01 126 1.00 1.00 1.00 Yes

DRB1*10:01 79 1.00 1.00 1.00 Yes

DRB1*11:01 388 1.00 1.00 1.00 Yes

DRB1*11:02 85 1.00 1.00 1.00 Yes

DRB1*11:04 141 1.00 1.00 0.99 Yes

DRB1*12:01 154 1.00 1.00 0.99 Yes

DRB1*13:01 364 1.00 1.00 0.99 Yes

DRB1*13:02 353 1.00 1.00 1.00 Yes

DRB1*13:03 95 1.00 0.99 1.00 Yes

DRB1*14:54 129 1.00 1.00 1.00 Yes

DRB1*15:01 611 1.00 1.00 1.00 Yes

DRB1*15:02 75 1.00 1.00 1.00 Yes

DRB1*15:03 202 1.00 1.00 1.00 Yes

DRB1*16:01 64 1.00 1.00 1.00 Yes
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subjects (this is how LD is defined). The goal of our procedure is to

identify and remove these sequences from the final set of ESs

associated to h. Thus, a fundamental assumption of the model is

that for a given train set, an ES may be associated with only a

single HLA.

We enforce the assumption that each TCRb is specific to one

HLA by fitting a logistic regression model with L1 regularization

and we refer to this as the L1LR method. We independently

associate each ES in E with a single HLA. Thus, the assumption

that a given TCRb is associated to a single HLA is not globally

enforced, i.e., it is possible that due to variations in training data that

the same TCRb may be associated to multiple HLAs though this is

rare (see Supplementary Figure S2).

When associating individual ESs to HLAs, we model the

presence/absence of any given ES ej ∈ E in the training set t as

a logistic regression classification. Here j denotes the individual

TCRbs in the ES set. For any sample tl ∈ t, where l denotes

individual samples in the training set t, the label for sequence ej is

either 0 or 1 if the sequences is present or absent in tl ,

respectively. The feature vector for associating a given ES ej
includes the indicator vector for the typed set of HLAs, i.e. Ikl =

1 if sample l expresses HLA hk and Ikl = 0 if sample l does not

express HLA hk. Here, k indicates the subset of HLAs in H is in

LD with HLA h (defined by FET p-value < 10−3). Thus, the feature

vector is a binary vector indicating whether a subject has or does

not have a given HLA which is observed to co-occur with the

HLA being modeled. When associating sequences we include the

total number of unique rearrangements in each sample

repertoire, dl as a covariate not subject to L1 regularization.

We model each ES independently and thus drop the subscript j

in the following for clarity. Taken together a single ES e is

modeled such that.

logit(label = 1) =o
k,l

Iklbk +o
l

adl + lo
k

bk + b : (1)
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In Equation 1, a and b are free parameters, b is the bias term

and l is the regularization strength applied to b. We find the best-fit

parameters by minimizing the log-loss and tune l to be the smallest

value that yields precisely one non-zero coefficient in bk. If the non-
zero coefficient is bk=i, then the sequence is associated with the HLA

being modeled and is retained as part of the final ES set. If the non-

zero coefficient is bk≠i. the sequences is excluded from the final ES

set of HLA h which is denoted as ~E. We weight each sample by the

square root of the convergent recombination count when finding

the best-fit parameters and zero count samples are given a weight of

unity. The effectiveness of our procedure to resolve LD is

demonstrated in Supplementary Figure S2.

Step 5: We derive a per-sequence weight, wj for each sequence

ej ∈ ~E by fitting a two feature logistic regression classifier. Here j

refers to individual sequences in ~E. Each sequence is fit

independently. For each sequence the target of the classifier is

whether the sample is a case or control of HLA hi and the features

are the convergent recombination count of the sequence and total

number of unique rearrangements in the given repertoire sample.

Essentially, we build a model to discriminate cases from controls

using the count of a single sequence and take the coefficient as a

weight. In detail, we standardize the features by subtracting the mean

and normalizing to the standard deviation of the features across all

samples. We fit the default logistic regression model in the Scikit-

learn library which includes a fixed amount of L2 regularization

(l = 1). This procedure yields a weight for each sequence in ej ∈ ~E.

Step 6: The final classifier model is a two feature model where

the features F for subject l are.

Fl = log(1 +o
j
wjclj),  log(1 + Nl)

" #
: (2)

In Equation 2 clj is the convergent recombination count of ej in

sample l. These features, Fl , are used in a the standard Scikit-learn
TABLE 3 Continued

HLA
Train Train CV Holdout

N Cases AUCROC AUCROC AUCROC In LD

DRB1*16:02 54 1.00 1.00 1.00 Yes

DRB3*01:01 654 1.00 0.99 0.99 Yes

DRB3*01:62 91 1.00 0.99 1.00 Yes

DRB3*02:02 1005 1.00 1.00 1.00 Yes

DRB3*03:01 374 1.00 1.00 1.00 Yes

DRB4*01:01 361 1.00 1.00 1.00 Yes

DRB4*01:03 1014 0.99 0.98 0.98 Yes

DRB5*01:01 677 1.00 1.00 1.00 Yes

DRB5*01:02 41 1.00 1.00 1.00 Yes

DRB5*02:02 75 1.00 1.00 1.00 Yes
The HLA allele and number of subjects with the given HLA are listed in columns 1 and 2, respectively. Columns 3–5 indicate model performance when the trained model is evaluated on the train,
train CV and holdout data sets, respectively. Column 6 indicates whether the heterodimer is observed to be in linkage disequilibrium. HLAs in linkage equilibrium likely result from trans-
complementation of the subunits (see main text).
frontiersin.org

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://doi.org/10.3389/fimmu.2025.1603730
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zahid et al. 10.3389/fimmu.2025.1603730
logistic regression to predict the presence/absence of an HLA for a

given sample.

Step 7: To model any given HLA, we fit the standard Scikit-

Learn logistic regression classifier using features generated in Step

6). We treat the p-value cutoff for identifying ESs via the FET as

described in Step 3) as a hyperparameter of each HLA model. We

train and evaluate a model using a five-fold cross validation strategy

for p-value cutoffs = ½10−3, 10−4,  10−5, 10−6, 10−7, 10−8�. We adopt p-

value cutoff of the highest performing cross-validation model.

Step 8: We generate our final model by adopting the p-value

threshold determined in step 7) and train on the full set of training

data. We evaluate the final model on the holdout set

(Supplementary Figure S3–S8).
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SUPPLEMENTARY FIGURE 1

Demographic distribution of sample population. (A) Age, (B) sex and (C) self-
reported ethnicity distribution of sample subjects.

SUPPLEMENTARY FIGURE 2

Effectiveness of L1LR method to resolve LD. Heatmap showing the amount of

TCRb sharing before (left) and after (right) applying L1LR method to resolve
LD. The color indicates the fractional sharing of TCRbs amongst pairs of HLAs

relative to the total number of TCRbs associated with the HLA indicated on
the vertical axis. After accounting for LD, we observe significantly less sharing

of TCRbs amongst HLA allotypes. The remaining shared TCRbs may be the
result of LD that is too strong to resolve using our method or true sharing of

TCRbs between multiple HLAs (e.g., as shown in the main text).

SUPPLEMENTARY FIGURE 3

HLA-A models. Left column shows the precision-recall curve for the trained
model evaluated on the train sample (middle left), train sample in cross-

validation (middle right) and on the holdout sample (right) for HLA-A. The

green line indicates the calibration threshold.

SUPPLEMENTARY FIGURE 4

HLA-B models. Left column shows the precision-recall curve for the trained

model evaluated on the train sample (middle left), train sample in cross-
validation (middle right) and on the holdout sample (right) for HLA-B. The

green line indicates the calibration threshold.

SUPPLEMENTARY FIGURE 5

HLA-C models. Left column shows the precision-recall curve for the trained

model evaluated on the train sample (middle left), train sample in cross-
validation (middle right) and on the holdout sample (right) for HLA-C. The

green line indicates the calibration threshold.

SUPPLEMENTARY FIGURE 6

HLA-DPmodels. Left column shows the precision-recall curve for the trained
model evaluated on the train sample (middle left), train sample in cross-

validation (middle right) and on the holdout sample (right) for HLA-DP. The
green line indicates the calibration threshold.
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SUPPLEMENTARY FIGURE 7

HLA-DQ models. Left column shows the precision-recall curve for the
trained model evaluated on the train sample (middle left), train sample in

cross-validation (middle right) and on the holdout sample (right) for HLA-DQ.
The green line indicates the calibration threshold.

SUPPLEMENTARY FIGURE 8

HLA-DRmodels. Left column shows the precision-recall curve for the trained

model evaluated on the train sample (middle left), train sample in cross-
validation (middle right) and on the holdout sample (right) for HLA-DR. The

green line indicates the calibration threshold.

SUPPLEMENTARY FIGURE 9

TCRs specificity apparently independent of synonymous mutations in coding
regions of HLAs. Number of TCRbs overlapping in two ES sets of HLAs differing

only in their third field designation as a function of the FET p-value threshold used
to identify ESs. The solid line shows the overlap in two sets of ESs identified using

the three field designation to divide samples into two groups. Error bars are
poisson uncertainties. Even if the TCR specificity is identical for HLAs differing only

in their third field designation, we expect differences in the ES sets due to

statistical fluctuations resulting from sampling. To account for this effect, we
compare the observed overlap fraction when segregating samples by third field

designation to a null distribution of overlap fractions derived from 100 realizations
of two samples which are randomly divided irrespective of the third field

designation. The two randomly divided samples in each realization are selected
such that the relative size of the two samples matches the size of two samples

split by the three field designation. Shaded regions indicate the distribution of the

overlap fraction from these 100 realizations. Consistency between the overlap
fraction of ESs derived from samples differing in their three field resolution and

ones based on random permutation demonstrates that TCR specificity is
independent of three field resolution for the two HLA allotypes tested.

SUPPLEMENTARY FIGURE 10

We test the hypothesis that homozygosity at one loci increases breadth at another

class matched loci. The distribution of zscores across class matched loci from a
pairwise loci comparison.We calculate the zscore of the breadth at one loci in the

case where another class matched loci is heterozygous or homozygous. We
aggregate all pairwise comparisons for class I and class II separately.
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