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Generation of Chimeric Antigen Receptors (CARs) presented a significant

advance in the field of immunotherapy, allowing the targeting of cell-surface

expressed molecules in an MHC-independent manner. Arming NK cells with

CARs merges their innate natural cytotoxicity with the refined precision of

targeted antigen recognition. The success of these therapies hinges on

selecting the right tumor-specific targets to ensure effective activation and

avoid self-reactivity. Optimization of CAR design and targeting is based on NK

cell intrinsic properties (CAR modules and sources of NK cells), as well as on NK-

tumor cell interactions (multi-antigen, multi-step, multi-switch). Additionally, the

dynamics of tumor infiltration and adaptation to the tumor microenvironment

play a critical role in CAR-NK cell efficacy. Combining CAR-NK cell therapies with

chemotherapy, radiotherapy, checkpoint inhibitors, and emerging approaches

like epigenetic modulators and oncolytic viruses, may address some of these

challenges. The development of CAR-NK cell strategies for metastatic disease is

especially promising, though the complexities of metastasis require refined

targeted designs. As immunomics and multi-omics continue to evolve, the

potential for designing more effective CAR-NK cell therapies expands. As

results from preclinical and clinical trials unfold, a multidisciplinary approach

integrating all those aspects will be key to unlock the full potential of CAR-NK

cell-based adoptive transfers.
KEYWORDS

CAR-NK cells, CAR (chimeric antigen receptor), adoptive cell immunotherapy, clinical
trials, experimental models, metastasis, epigenetics, NK cells
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1 Introduction

Chimeric Antigen Receptor (CAR) immunotherapy has

emerged as a promising approach for cancer treatment. In fact,

having demonstrated substantial efficacy in pre-clinical and clinical

studies, the U.S. Food and Drug Administration (FDA) has

approved, to date, seven CAR-T cell therapies for the treatment

of various hematologic cancers (1, 2). Despite this encouraging

progress, CAR-T cell-based therapies face several challenges,

including risk of severe side effects, such as cytokine release

syndrome (CRS), neurotoxicity, and graft-versus-host disease

(GvHD) (3–5). By combining CAR specificity with NK cell

natural cytotoxicity, CAR-NK cells may tackle some of the

challenges faced by CAR-T cell therapies. As part of the innate

immune system, NK cells have the ability to target tumor cells in an

antigen-independent manner, rapidly eliminating target cells

through the release of perforins and granzymes. NK cell activity

is regulated by the integrated balance of activating and inhibitory

receptors that interact with specific ligands on the surface of tumor,

virus-infected or transformed cells (6–8). This capacity allows for

CAR-NK cells to combine CAR-dependent and -independent

killing of tumor cells, particularly important to target tumor

heterogeneity. Moreover, unlike CAR-T cells, CAR-NK cells can

be derived from allogeneic donors, as they do not require Human

Leukocyte Antigen (HLA) matching or prior antigen presentation,

making them suitable for “off-the-shelf” use, substantially reducing

production time and costs, and increasing scalability and

accessibility (3, 5, 9–11). Early clinical data indicate that the

safety profile of CAR-NK cell therapy holds an additional

advantage, as the risk of CRS, GvHD and other severe adverse

effects is lower and better manageable compared with CAR-T cells

(5, 9). Comprehensive comparisons between CAR-NK and CAR-T

cell therapies have been extensively described elsewhere previously

(12, 13).

As the field evolves, CAR-NK cell-based therapies stand as

promising approaches for the treatment of several cancer types,

including solid tumors. However, employing CAR-NK cells to

target solid tumors presents several obstacles inherent to their

complexity. Solid malignancies exhibit physical barriers, such as

dense extracellular matrix (ECM) and abnormal vasculature,

restricting NK cell access (10, 13, 14). Strategies to increase CAR-

NK cell infiltration are under development, including genetic

engineering of chemokine receptors, such as CXCR1/2 and

CXCR4, to enhance chemokine-guided migration (15, 16).

Moreover, the tumor microenvironment (TME) can create immune

hostile conditions through hypoxia, low pH, nutrient deprivation,

and inhibitory factors like PD-L1, TGF-b, and adenosine, which can

lead to NK cell impaired cytotoxicity and persistence. Approaches

being explored include pharmacological inhibition of TGF-b and

cytokine support (e.g. IL-15) to increase NK persistence and

activation (13, 17). In addition, besides developing strategies to

evade NK cell immune surveillance, such as downregulation of NK

cell ligands, solid tumors typically display complex clonal

heterogeneity and shared antigen expression between tumor and

healthy tissues, increasing the complexity of applying CAR-NK cell
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therapies to target these malignancies (10). Nevertheless, several NK-

CAR strategies are being developed and combined with other

therapeutic approaches to overcome these hurdles, with multiple

clinical trials on solid tumor currently underway.

In this review, we discuss methods for CAR-NK cell production,

explore various preclinical tumor models, and provide an update on

the current status of CAR-NK clinical trials. In addition, we delve

into the promise of combining CAR-NK therapies with different

therapeutic approaches, the relevance of this adoptive therapy to

tackle metastatic disease, and the need of integrating the usage of

computational biology to further potentiate CAR-NK cell

therapy efficacy.
2 CAR-NK generation: sources and
methodologies

2.1 Advances in CAR-NK cell constructs

Recent advances in CAR-NK cell constructs are driven by an

increased understanding of NK cell biology and the desire to

harness their unique activation mechanisms for cancer

immunotherapy. The CAR construct itself typically comprises an

extracellular antigen recognition domain, usually consisting of a

single-chain variable fragment (scFv), a transmembrane domain,

and intracellular signaling domains (4, 18). Different CAR

generations are emerging, with increasing complexity on the

composition of their intracellular signaling domains. While first-

generation CARs contained only one signaling domain, second and

third-generation CARs have been designed to further incorporate

one or multiple co-stimulatory signaling endodomains, respectively

(4, 10). These co-stimulatory signaling domains can include CD28,

4-1BB (CD137), OX40 (CD134) (11), 2B4 (CD244) and DNAX

Accessory Molecule-1 (DNAM-1)/CD226 domains (19). Besides

the conventional CD3z signaling domain, CAR-NK cells often

incorporate intracellular signaling domains downstream of

activating NK receptors, such as DNAX-activation protein 12

(DAP12) and DAP10 (20, 21). These signaling modifications aim

to better align CAR-NK functionality with the innate cytotoxic

pathways of NK cells.

To further improve the precision and efficacy of CAR-NK cell

therapy, innovative “current-generation” CAR constructs have been

designed (11). Bi-specific CARs are engineered to recognize two

distinct tumor antigens simultaneously, reducing the risk of tumor

escape due to antigen loss or inter- and intra-patient heterogeneity.

For B-cell malignancies, bi-specific CARs targeting both CD19 and

CD22 have shown promise in increasing tumor targeting and

improving treatment outcomes in a murine lymphoma model

(22). Moreover, advances in genetic engineering have enabled the

development of cytokine armoring, intending to enhance CAR-NK

cell persistence and function by providing autocrine cytokine

support. This can be achieved through the release of soluble

cytokines into the TME, such as IL-15, or by engineering

cytokines in membrane-bound form, thus inducing immune

responses upon cell-to-cell contact (11).
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Another notable advancement is the development of logic-gated

CARs that require multiple signals for activation. These CARs can

reduce off-tumor toxicity by ensuring full NK cell activation only in

the presence of a specific combination of tumor antigens. For

instance, AND-gate CARs are activated only when two target

antigens are present, while OR-gate CARs are triggered by either

of two antigens (23). A notable example is the development of

SENTI-202, an off-the-shelf CAR-NK cell therapy incorporating

both “OR” and “NOT” logic gates. This construct enables CAR-NK

cells to target acute myeloid leukemia (AML) cells expressing either

FLT3 or CD33 (OR gate), while sparing healthy hematopoietic stem

cells which express the endomucin (EMCN) (NOT gate). The

FLT3-CD33 OR-gate CAR construct outperformed significantly

single target CARs against FLT3 or CD33, both in vitro and in

vivo. The FLT3-EMCN NOT-gate mediated a preferential killing of

FLT3+ EMCN- (AML-like), while preserving the double positive

population (hematopoietic stem cell (HSC)-like) (24). SynNotch

receptors represent an even more sophisticated approach, enabling

multi-step tumor recognition. SynNotch receptors respond to an

antigen by inducing expression of a CAR for another antigen, thus

creating a sequential activation process that significantly enhances

specificity (25). Finally, CAR-NK cells engineered to express CD19-

CAR, IL-15 and inducible caspase 9, as a safety switch, have been

administered to patients with relapsed or refractory CD19-positive

cancers (17). The safety switch, which can be activated by

rimiducid, was introduced to serve as a control measure to

mitigate the potential adverse events in patients. Nevertheless, the

safety switch was not activated in this study. Collectively, these

advanced CAR designs aim to improve the safety, precision, and

therapeutic potential of CAR-NK cell therapies (Figure 1).

As the field continues to evolve, ongoing research into CAR

structure optimization and clinical testing is essential to ensure the

development of highly effective next-generation CAR-NK cell

therapies for cancer treatment.
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2.2 CAR-NK cell transduction methods

Classical CAR-T cell generation approaches typically rely on

viral-vector delivery of CAR constructs to ensure high transduction

efficiency and stable long-term expression. The most widely used

vectors for this purpose are lentivirus, retrovirus, and adeno-

associated virus (AAV) vectors. NK cells are notoriously difficult

to transduce due to their inherent resistance to genetic

modifications, particularly through traditional viral vectors (26).

However, significant progress has been made in recent years,

improving both the efficiency and safety of transduction methods.

These advances include the development of optimized viral vectors

and non-viral methods.

2.2.1 Viral vectors
Lentiviral vectors are a primary tool for CAR-NK engineering

(27). However, lentiviral envelope pseudotyping plays a crucial role

in optimizing transduction efficiency in primary NK cells.

Traditionally, CAR-T cell lentiviruses are pseudotyped with

vesicular stomatitis virus G (VSV-G). VSV-G lentiviruses bind to

the low-density lipoprotein receptor (LDL-R) on the surface of T

cells (28). However, NK cells exhibit a very low LDL-R expression,

rendering the transduction with such vectors poorly efficient (29).

Alternatively, the baboon envelope (BaEV) has been shown to

induce higher transduction efficiency both in freshly-isolated and

cultured NK cells (30). Retroviral vectors have also been explored as

a transgene delivery method. For instance, alpharetroviral vectors

have been shown to induce more than 60% transduction efficiency

and a stable CAR expression for several weeks (31, 32). Finally,

adenoviral vectors offer high transduction efficiency without

genomic integration, making them an attractive option for

transient CAR expression, though this may require repeated

administration to maintain therapeutic efficacy. Altogether, the

viral vectors are well established transgene transfer platforms.
FIGURE 1

CAR-NK cell generations. The structural components of CARs comprise an extracellular antigen binding domain consisting of a single-chain variable
fragment, a transmembrane domain and intracellular signaling domains. First CAR generations are composed of only one intracellular signaling
domain, while second and third generations have additional co-stimulatory domains which potentiate the CAR-NK cell anti-tumor cytotoxicity.
Current generation CAR designs allow for cytokine secretion, targeting of multiple antigens, and selective cell antigen targeting (logic-gated) to
further improve the therapeutic activity of CAR-based immunotherapies. aCAR, activating chimeric antigen receptor; EMCN, endomucin; iCAR,
inhibitory chimeric antigen receptor; scFV, single-chain variable fragment. Created in https://BioRender.com.
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However, viral systems come with several drawbacks, including

increased immunogenicity, potential insertional mutagenesis,

limited insert size, high costs for good manufacturing practice

(GMP)-grade viral production, and complex regulatory hurdles.

These challenges associated with viral vectors encouraged the

exploration of new transgene transfer venues.

2.2.2 Non-viral transduction methods
Non-viral methods enable cell transduction without the risk of

insertional mutagenesis or other genomic alterations. The Sleeping

Beauty (SB) system is a synthetic transposon platform consisting of

two components: a transposon, which carries the CAR gene and

selectable marker flanked by inverted repeat sequences for genome

insertion, and a transposase enzyme that mediates “cut-and-paste”

integration at TA dinucleotide sites. Unlike viral vectors, it avoids

hotspot integration, reducing the risk of insertional mutagenesis

(32). The PiggyBac transposon system is another non-viral gene

delivery platform increasingly used for stable integration of genetic

material, such as CAR constructs, into NK cells. Originally derived

from the cabbage looper moth, PiggyBac has gained significant

attention in CAR-NK cell therapy due to its high transposition

efficiency and the ability to carry large genetic payloads. Similarly to

the SB, the PiggyBac operates by a cut-and-paste mechanism, but

integrates at a TTAA site, thus enabling the system to carry large

payloads (33). A potential application of the larger capacity of the

PiggyBac would be the delivery of multiple CARs, logic-gated CARs

and the manipulation of the balance of specific genes responsible for

sustaining and potentiating CAR-NK cells (34). The use of lipid

nanoparticles in various contexts has been a hot topic for the last

couple of years given their low immunogenicity, the efficiency of

mRNA transfer and protein expression in often exceeding 80% of

positive cells (35). However, this strategy is transient, and scalability

could be challenging. Electroporation is another widely used

approach to produce CAR-NK cells, which is compatible with

both freshly-isolated and cultured NK cells. Given the relatively

low costs and transient expression of the transgene, it could

potentially be useful in studies involving multiple dosing.

Recently, CAR-NK cells against ROR1 have been generated by

electroporation for the treatment of neuroblastoma. The product

has shown efficacy in killing target cells in vitro and significantly

prolonging survival in preclinical settings (36).

In sum, given the advances in CAR-NK construct design and

transduction methods, we can expect the development of more

effective CAR-NK strategies that will enhance scalability, safety, and

clinical efficacy.
2.3 CAR-NK cell sources

The complex biology of NK cells, characterized by the lack of

major histocompatibility complex (MHC) restriction and the

complex balance of activating and inhibitory cues required for cell

activation, prevent them from inducing GvHD (37). Therefore, most

NK cell-based therapies prioritize allogeneic sources to circumvent

the biological, logistical and economic burdens associated with
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autologous approaches (38). NK cells can be obtained from several

sources, including peripheral blood, cord blood, immortalized cell

lines and induced pluripotent stem cells (iPSCs). Each of these

sources can produce clinically relevant cell doses, can be engineered

to express CARs, and have shown efficacy both in preclinical models

and in in-human studies. However, they present distinct advantages

and challenges, and may exhibit differential transcriptional,

phenotypic, and functional characteristics.

2.3.1 NK-92 cells
NK-92 is an immortalized NK cell line derived from a patient

with non-Hodgkin lymphoma (NHL) in 1992 (39). CAR-NK-92 cells

were the first NK cell-based immunotherapy to receive

Investigational New Drug approval by the FDA for clinical testing

(40). Unlike primary NK cells, NK-92 cells exhibit a homogeneous

phenotype, allowing for consistent and large-scale expansion in vitro,

which is advantageous for adoptive cell therapy (41). Moreover, due

to the low expression of Killer-Cell Immunoglobulin-Like Receptors

(KIRs) on the cell surface, the cell line displays high cytotoxic activity

which can be further enhanced by CARs (42). However, the cell line

lacks the expression of CD16 on its surface, thus cannot execute

antibody-dependent cell cytotoxicity (43). Finally, given the

cancerous origin of the NK-92 cell line, the derived products are

required to undergo irradiation, which limits both the persistence in

vivo and long-term efficacy.

2.3.2 Induced pluripotent stem cells (iPSCs)
iPSCs have garnered growing interest as a source for CAR-NK

cells due to their self-renewal capacity and ability to differentiate

into functional NK cells. Large-scale production of CAR-NK cells

from iPSCs offers standardized manufacturing and batch-to-batch

consistency, making them a promising option for off-the-shelf

immunotherapies. However, the use of iPSCs comes with both

technical and economic challenges. Differentiating iPSCs into fully

functional NK cells is a time-consuming and complex process.

Additionally, iPSCs may retain epigenetic memory from their tissue

of origin, which can potentially influence their terminal function

(44). While the manufacturing costs of iPSC-derived CAR-NK cells

are substantially lower than those of autologous CAR-T cells, they

remain significant (4).

2.3.3 Primary NK cells
Allogeneic CAR-NK cell therapy can be achieved by harvesting

primary NK cells from either cord blood (CB-NK) or peripheral

blood (PB-NK). CB-NK cells offer advantage by containing a rich

population of naïve NK cells, and are readily available through cord

blood biobanks. CB-derived CAR-NK cells have been utilized in

several clinical trials, most notably for treating CD19-positive

lymphoid malignancies. However, some concerns have been

raised regarding the lower cytotoxic potential of CB-derived NK

cells, as well as limited persistence and overall phenotypical and

functional immaturity (18, 29, 45). Alternatively, peripheral blood

serves as another important source for CAR-NK cells. Peripheral

blood is easily accessible in most clinical settings, and NK cell

isolation is well established and minimally invasive. Compared with
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complex manufacturing processes like iPSC-derived CAR-NK cells,

using primary NK cells significantly reduces costs. However, their

scalability remains limited, making it challenging to obtain

clinically relevant doses for large-scale treatments, and the natural

inter-donor variability leads to heterogeneity of the final

product (29).
3 CAR-NK cells and clinical trials

A growing number of CAR-NK clinical trials are being

registered and conducted for various tumor types and patient

populations. These trials are predominantly in early phases

(Phase I and Phase I/II), focusing on evaluating the safety and

efficacy of CAR-NK cells. Most trials target relapsed or refractory

(R/R) hematological cancers, such as acute lymphoblastic leukemia

(ALL), NHL, and AML, with CD19 and CD33 being the most

common target antigens. A notable portion of these trials use NK

cells derived from cord blood, reflecting the ease of genetic

modification and scalability of this source. Several institutions are

at the forefront of CAR-NK research. The M.D. Anderson Cancer

Center, for instance, is leading multiple trials using CB-derived

CAR-NK cells to target CD5, CD19, CD70, and TROP2 in R/R

hematological cancers and solid tumors, such as ovarian and

pancreatic cancer. Chinese institutions, including Zhejiang

University and PersonGen BioTherapeutics, are actively testing

CAR-NK therapies for various cancers, with a particular focus on

AML and solid tumors. Trials using NK-92 cell lines and iPSCs are

also in progress, highlighting a growing interest in off-the-shelf NK

cell products for broader clinical application. In addition to

hematological cancers, CAR-NK trials targeting solid tumors,

such as colorectal cancer (CRC), ovarian and pancreatic cancers,

are gaining traction. These trials include targeting of TROP2, CD70,

MUC1, Claudin 18.2, as well as NKG2D ligands.
3.1 CAR-NK cell clinical trials: where do we
stand?

Although most CAR-NK cell clinical trials are still ongoing,

there are already published papers showing evidence of clinical

success. In 2018, Tang and colleagues reported for the first time the

results of the clinical administration of CAR-NK cells, testing the

safety of CD33-CAR-NK-92 cells in three R/R AML patients

(NCT02944162, Table 1). The authors demonstrated that this

therapy could be safely applied in a series of three increasing

doses without substantial adverse effects. However, no obvious

clinical efficacy was observed. These results were associated with

low in vivo survival of irradiated NK-92 cells upon infusion, thus

requiring further optimization (46).

In a study conducted at the M.D. Anderson Cancer Center, CB-

derived NK cells engineered with a CD19-CAR, IL-15, and

inducible caspase 9 (iCasp9), were administrated to CD19+ R/R

NHL and chronic lymphocytic leukemia (CLL) patients

(NCT03056339, Table 1). An interim analysis of the first 11
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patients revealed promising results, considering the complete

remission rate of 64%, without reporting any CRS, GvHD, or

neurotoxicity events. Additionally, the infused CAR-NK cells

showed long-term persistence for at least 12 months, suggested to

be associated with the inclusion of IL-15 in the construct (17). This

clinical trial has since then been completed, and the final results

were published in 2024. Treatment responses were rapid at all dose

levels. For the 37 patients who received lymphodepletion and CAR-

NK cell infusion, the 1-year complete response rate was 29.7%. For

patients with NHL, CLL and diffuse large B-cell lymphoma

(DLBCL), the 1-year cumulative complete response rates were

83%, 50% and 29%, respectively (47). Most recently, the results of

a terminated phase 1 clinical trial exploring FT596, an iPSC-derived

CD19-CARNK cell therapy for B-cell lymphoma patients, have also

shown durable responses upon treatment (NCT04245722,

Table 1) (48).

Focusing on solid tumors, NKG2DL-CAR NK cell treatment

has been administrated to three metastatic CRC patients

(NCT03415100, Table 1) without serious adverse effects. Upon

receiving intraperitoneal CAR-NK cell infusion, two patients with

malignant ascites experienced a decrease in tumor cells. The third

patient was injected directly at the site of metastasis and showed

complete metabolic response, highlighting the potential of CAR-NK

cells for the treatment of solid tumors (49). Additionally, a case

report evaluating treatment using ROBO1-CAR NK cells in a liver

metastatic pancreatic ductal adenocarcinoma patient revealed safe

administration with no substantial side effects (NCT03941457,

Table 1). Moreover, the pancreatic lesion and liver metastasis

were controlled within 5 months. Unfortunately, the patient

passed away 3 months later due to multiple organ failure related

to tumor progression (50). Lastly, the phase 1 CAR2BRAIN clinical

trial (NCT03383978, Table 1) aimed to determine the safety and

feasibility of HER2-CAR NK cells in glioblastoma patients. Out of

the 9 patients treated at the time of publication, 5 experienced stable

disease from 7 to 37 weeks, and 4 showed disease progression. Of

note, in agreement with the results from the previous studies, the

safety profile was favourable, with neither neurotoxic nor systemic

side effects (51). Overall, these early findings demonstrate the

potential of CAR-NK cell therapy for the treatment of several

cancer types, expanding beyond the traditionally targeted

hematological malignancies, thus offering promising therapeutic

potential for hard-to-treat solid tumors. As the field progresses,

results from these early-phase trials will be crucial in determining

the viability of CAR-NK therapies as a treatment option.
4 CAR-NK cells and pre-clinical
models

The choice of pre-clinical models to test CAR-bearing cellular

therapeutics depends on different factors, such as target antigen and

tumor type, but also availability, scalability and price. A combination

of both in vitro and in vivomodels to comprehensively evaluate CAR-

NK cell efficacy and safety beforemoving to clinical trials is frequently

applied (Figure 2).
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TABLE 1 CAR-NK cell clinical trials.

Target
antigen

Study Start Cancer type
NK

cell source
Sponsor Phase Status Trial ID Location

CD5 2024

R/R
hematological
malignancies

Cord blood
M.D. Anderson
Cancer Center

Phase I/II Recruiting NCT05110742 USA

R/R NK and T-
cell malignancies

Not disclosed
GC
Cell Corporation

Phase I
Not
yet recruiting

NCT06699771 Korea

CD19

2024

R/R B-NHL

Cord blood

Second Affiliated
Hospital, School of
Medicine,
Zhejiang University

Phase I
Not
yet recruiting

NCT06707259 China

R/R B-
cell malignancies

Second Affiliated
Hospital, School of
Medicine,
Zhejiang University

Phase I
Not
yet recruiting

NCT06464861 Unknown

R/R NHL
NK-92

ImmunityBio Phase I Recruiting NCT06334991 South Africa

R/R NHL ImmunityBio Phase I Recruiting NCT05618925 USA

R/R ALL

Not disclosed

Shahid Beheshti
University of
Medical Sciences

Phase I/II
Not
yet recruiting

NCT06631040 Iran

B-cell malignancies

The Second
Hospital of
Shandong
University

Early Phase I
Not
yet recruiting

NCT06596057 China

R/R NHL
Shanghai
Simnova
Biotechnology

Phase I Recruiting NCT06206902 China

2023

R/R B-NHL

Allogeneic (NS)

Changhai Hospital Early Phase I Unknown NCT05673447 China

ALL, CLL, B-
cell lymphoma

Xuzhou
Medical University

Early Phase I Recruiting NCT05739227 China

2022

R/R B-NHL Cord Blood

Second Affiliated
Hospital, School of
Medicine,
Zhejiang University

Phase I
Enrolling
by invitation

NCT05472558 China

B-cell malignancies

Allogeneic (NS)

920th Hospital of
Joint Logistics
Support Force of
People’s Liberation
Army of China

Phase I/II Unknown NCT05654038 China

R/R B-
cell malignancies

Affiliated Hospital
to Academy of
Military
Medical Sciences

Phase I Unknown NCT05645601 China

R/R ALL

Not disclosed

Shanghai Simnova
Biotechnology
Co.,Ltd.

Phase I Completed NCT05563545 China

B cell malignancies
Beijing
Boren Hospital

Phase I Unknown NCT05410041 China

2021

R/R
hematological
malignancies Cord blood

Wuhan
Union Hospital

Phase I Unknown NCT04796675 China

R/R NHL Takeda Phase II
Active,
Not recruiting

NCT05020015 USA

R/R NHL, CLL or
B-ALL

Allogeneic (NS) Nkarta, Inc. Phase I
Active,
Not recruiting

NCT05020678
USA,
Australia
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TABLE 1 Continued

Target
antigen

Study Start Cancer type
NK

cell source
Sponsor Phase Status Trial ID Location

R/R B-NHL

Second Affiliated
Hospital, School of
Medicine,
Zhejiang University

Phase I Unknown NCT04887012 China

R/R ALL Not disclosed Zhejiang University Phase I Unknown NCT05379647 China

2020

R/R B-NHL Not disclosed
Xinqiao Hospital
of Chongqing

Early Phase I Unknown NCT04639739 China

R/R B-cell
lymphoma, CLL

iPSCs Fate Therapeutics Phase I Terminated NCT04245722 USA

2019

Leukemia
NHL

Allogeneic Timmune Biotech Early Phase I Unknown NCT03910842 China

R/R B-
cell lymphoma

Not disclosed
Allife Medical
Science
and Technology

Early Phase I Unknown NCT03690310 Unknown

2017 ALL, CLL, NHL Cord blood
M.D. Anderson
Cancer Center

Phase I/II Completed NCT03056339 USA

2016
Hematological
malignancies

NK-92
PersonGen
BioTherapeutics

Phase I/II Unknown NCT02892695 China

CD19/CD22 2019
R/R B-
cell lymphoma

Not disclosed
Allife Medical
Science
and Technology

Early Phase I Unknown NCT03824964 Unknown

CD19/CD70

2023 R/R B-NHL Cord blood
Tongji University
School of Medicine

Phase I/II Recruiting NCT05842707 China

2022 R/R B-NHL Cord blood
School of
Medicine,
Zhejiang University

Phase I Recruiting NCT05667155 China

CD70

2024 TCL, AML Cord blood
School of
Medicine,
Zhejiang University

Phase I
Not
yet recruiting

NCT06696846 China

2023
Renal cell carcinoma
Mesothelioma
Osteosarcoma

Cord Blood
M.D. Anderson
Cancer Center

Phase I/II Recruiting NCT05703854 USA

2022
R/R
hematological
malignancies

Cord blood
M.D. Anderson
Cancer Center

Phase I/II Recruiting NCT05092451 USA

CLL1
2024 R/R AML

Allogeneic/
Autologous

Shanghai
General Hospital

Phase I Recruiting NCT06307054 China

2023 AML iPSCs Zhejiang University Phase I Recruiting NCT06027853 China

CLL1/CD33

2024 AML iPSCs Zhejiang University Phase I Recruiting NCT06367673 China

2023 R/R AML iPSCs

Institute of
Hematology &
Blood Diseases
Hospital, China

Phase I
Not
yet recruiting

NCT05987696 China

2020 AML Not disclosed
Wuxi
People’s Hospital

Early Phase I Unknown NCT05215015 China

CD33

2021 R/R AML Not disclosed
Xinqiao Hospital
of Chongqing

Phase I Unknown NCT05008575 China

2016 R/R AML NK-92
PersonGen
BioTherapeutics

Phase I/II Unknown NCT02944162 China

CD33/FLT3 2024 AML, MDS Allogeneic Senti Biosciences Phase I Recruiting NCT06325748
USA
Australia
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TABLE 1 Continued

Target
antigen

Study Start Cancer type
NK

cell source
Sponsor Phase Status Trial ID Location

CD123

2024 R/R AML, BPDCN Not disclosed
Chongqing
Precision Biotech
Co., Ltd

Phase I Recruiting NCT06690827 China

2023 RR AML, BPDCN Not disclosed
Chongqing
Precision Biotech

Phase I/II Recruiting NCT06006403 China

2022 R/R AML Allogeneic

Affiliated Hospital
to Academy of
Military
Medical Sciences

Early Phase I Recruiting NCT05574608 China

BCMA

2024 R/R MM Not disclosed
Shahid Beheshti
University of
Medical Sciences

Phase I/II
Not
yet recruiting

NCT06242249 Iran

2023
R/R MM
PCL

Allogeneic
Hrain
Biotechnology

Early Phase I Recruiting NCT06045091 China

2022 R/R MM Allogeneic
Shenzhen
Pregene Biopharma

Early Phase I Unknown NCT05652530 China

2021

R/R MM Cord blood
Xinqiao Hospital
of Chongqing

Early Phase I Unknown NCT05008536 China

MM iPSCs Fate Therapeutics Phase I
Active,
Not recruiting

NCT05182073 USA

2019 R/R MM NK-92 Asclepius Phase I/II Unknown NCT03940833 China

BCMA/
GPRC5D

2024 R/R MM Allogenic RenJi Hospital NA
Not
yet recruiting

NCT06594211 China

TROP2

2024

NSCLC Allogeneic
Henan
Cancer Hospital

Phase I/II
Not
yet recruiting

NCT06454890 China

CRC Cord Blood
M.D. Anderson
Cancer Center

Phase I Recruiting NCT06358430 USA

2023

Ovarian and
pancreatic cancer

Cord blood

M.D. Anderson
Cancer Center

Phase I/II Recruiting NCT05922930 USA

Solid tumors
M.D. Anderson
Cancer Center

Phase I Recruiting NCT06066424 USA

NKG2DL

2024

Pancreatic cancer Not disclosed Zhejiang University Early Phase I Recruiting NCT06478459 China

Pancreatic cancer Not disclosed Zhejiang University Early Phase I Recruiting NCT06503497 China

R/R MM Not disclosed
Changzhou No.2
People’s Hospital

Early Phase I
Not
yet recruiting

NCT06379451 China

2023
Ovarian cancer Not disclosed

Hangzhou Cheetah
Cell Therapeutics

NA Recruiting NCT05776355 China

R/R AML Not disclosed Zhejiang University NA Recruiting NCT05734898 China

2021
Metastatic
colorectal cancer

Not disclosed Zhejiang University Phase I Recruiting NCT05213195 China

2021 R/R AML Cord blood
Hangzhou Cheetah
Cell Therapeutics

NA Terminated NCT05247957 China

2020 R/R AML, MDS Allogeneic Nkarta Phase I
Active,
Not recruiting

NCT04623944 USA

2018
Metastatic
solid tumors

Allogeneic/
Autologous

The Third
Affiliated Hospital
of Guangzhou
Medical University

Phase I Unknown NCT03415100 China

(Continued)
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4.1 In vitro/ex vivo models

Initial testing of CAR-NK cell cytotoxicity against specific

cancer cell lines is performed in vitro using both 2D and 3D

based approaches. 3D models, such as tumor spheroids (52), can

be used for high-throughput efficacy testing. Simple spheroids are

typically derived from immortalized cancer cell lines, and

fibroblasts, endothelial cells, or immune cells can be added to

create more complex models that better replicate the TME.

Within spheroids, tumor cells self-aggregate due to cell-cell
Frontiers in Immunology 09
adhesion and cell-matrix interactions, and frequently form

layered zones of proliferating, quiescent, and necrotic cells.

Although they can mimic topography and metabolic gradients of

solid tumor tissue, they largely lack patient-specific relevance. There

are, however, increasing efforts to utilize novel technologies, such as

3D bioprinting or microfluidic systems (53), to better represent

complex structures of solid tumor tissue. Moreover, there are

emerging spheroid tools based on cancer stem cells or fragmented

tumor tissue, better representing patient heterogeneity and genetic

traits of the original tumor (54). Spheroids are useful tools for
TABLE 1 Continued

Target
antigen

Study Start Cancer type
NK

cell source
Sponsor Phase Status Trial ID Location

MICA/B 2024
Gynecological
cancers

iPSCs
Masonic Cancer
Center, University
of Minnesota

Phase I Recruiting NCT06342986 USA

Claudin 18.2 2024
Gastric cancer,
pancreatic cancer

Cord blood
Zhejiang Provincial
People’s Hospital

Phase I Recruiting NCT06464965 China

MUC1 2016 R/R solid tumors
Placental
HSC-derived

PersonGen
BioTherapeutics

Phase I/II Unknown NCT02839954 China

DLL3 2022 SCLC Not disclosed

Tianjin Medical
University Cancer
Institute
and Hospital

Phase I Unknown NCT05507593 China

PD-L1 2021 GEJ, HNSCC NK-92
National
Cancer Institute

Phase II Recruiting NCT04847466 USA

CD22 2019
R/R B-
cell lymphoma

Not disclosed
Allife Medical
Science
and Technology

Early Phase I Unknown NCT03692767 Unknown

ROBO1

2019 Solid tumors Not disclosed Asclepius Phase I/II Unknown NCT03940820 China

2019 Malignant tumors Not disclosed Asclepius Phase I/II Unknown NCT03931720 China

2019 Pancreatic cancer Not disclosed Asclepius Phase I/II Unknown NCT03941457 China

5T4 2021 Solid tumors Not disclosed
Wuxi
People’s Hospital

Early Phase I Unknown NCT05194709 China

GPC3 2024 HCC Allogeneic

Shanghai General
Hospital, Shanghai
Jiao Tong
University School
of Medicine

Early Phase I Recruiting NCT06652243 China

Mesothelin 2019
Epithelial
Ovarian Cancer

Not disclosed
Allife Medical
Science
and Technology

Early Phase I Unknown NCT03692637 Unknown

PSMA 2018 mCRPC Not disclosed
Allife Medical
Science
and Technology

Early Phase I Unknown NCT03692663 China

CLDN6/
GPC3/
MSLN/AXL

2022
Advanced
solid tumors

PBMCs
Hospital of
Guangzhou
Medical University

Phase I Recruiting NCT05410717 China

HER2 2017 Glioblastoma NK-92
Johann Wolfgang
Goethe
University Hospital

Phase I
Active,
Not recruiting

NCT03383978 Germany
f

ALL, acute lymphoid leukemia; AML, acute myeloid leukemia; BPCDN, blastic plasmacytoid dendritic cell neoplasm; B-NHL, B cell non-Hodgkin lymphoma; CLL, chronic lymphocytic
leukemia; CRC, colorectal cancer; GEJ, gastroesophageal junction cancers; HNSCC, head and neck squamous cell carcinoma; mCRPC, metastatic castration-resistant prostate cancer; MDS,
myelodysplastic syndrome; MM, multiple myeloma; NA, not applicable; NHL, non-Hodgkin lymphoma; NS, not specified; NSCLC, non small cell lung cancer; R/R, relapsed or refractory; SCLC,
small cell lung cancer; TCL, T-cell lymphoma; PCL, plasma cell leukemia; HCC, hepatocellular carcinoma; HSC, hematopoietic stem cells.
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proof-of-principle CAR-NK cell testing, as shown recently in the

context of CAR-NK-92 cells secreting a peptide that blocks TGFb1
signaling, which were tested using multicellular cancer spheroids

and cancer-derived fibroblasts from patients with pancreatic

cancer (55).

Alike spheroids, patient-derived organoids (PDOs) allow

testing of CAR-NK cell migration and infiltration and can enable

the evaluation of on-target/off-tumor effects using normal tissue

organoids as controls. Tumor PDOs are re-constructed by cancer

cells obtained from patient through biopsies, surgical resections, or

from biological fluids (56, 57). They represent self-organizing

cellular aggregates that mimic the architecture and the genomic

landscape of the original tumor. Compared to spheroids, organoids

allow differentiation into multiple cell lineages and therefore can

have a multicellular identity that creates a more physiologically

relevant model. However, as spheroids, they do not fully

recapitulate the TME, as they miss vasculature, various tissue

accessory cells, as well as tumor-infiltrating immune cells. PDOs
Frontiers in Immunology 10
can be used as an in vitro/ex vivo platform to evaluate the efficacy of

CAR products in a personalized manner, as exemplified by

Schnalzger et al. who generated luciferase‐expressing colorectal

cancer organoids to quantify CAR-NK-92-mediated cytotoxicity

(58). Although CAR-NK/NK92 products have been also tested

against several tumor types, such as triple-negative breast cancer

(59), pancreatic adenocarcinoma (60), esophageal cancer (61) and

others, these studies are critically lacking a large number of patient-

derived organoids to represent patient heterogeneity, urging the

generation of biobanks available for testing and stratifying the

patients for the best available treatment.

Patient-derived explants (PDEs) allow for ex vivo culture of

freshly resected human tumor slices (62). Although limited in

scalability, their advantage over PDOs is the retention of the

original tumor architecture, microenvironment, and - importantly

– the native infiltrating immune cell populations, enabling the

evaluation of combination therapies that target other cells in

TME. Due to short viability, PDEs can provide only immediate
FIGURE 2

Immuno-models used for CAR-NK cell pre-clinical studies. CAR-NK cell pre-clinical research has been performed resourcing to several different
models. In vitro/ex-vivo models include tumor cell lines and patient-derived material, in both 2D or 3D settings. 3D models can comprise spheroids,
patient-derived organoids (PDOs) and patient-derived explants (PDEs). In vivo mouse models include immunocompetent mice inoculated with
mouse tumor cells, or mice genetically-modified to generate tumors (GEMM). Immunodeficient mice, including NSG and humanized mice, can both
be inoculated with (1) human tumor cell lines or (2) patient-derived explants. Humanized mice can be generated by inoculating human PBMCs or
human hematopoietic stem cells (HSC). In addition, BLT (Bone Marrow-Liver-Thymus) mouse models are generated by the implantation of human
liver and thymus tissues under the kidney capsule of immunodeficient mice, followed by the delivery of human HSCs, enabling the development of a
functional human immune system. Created in https://BioRender.com.
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patient-proximal data. Unlike organoids, they cannot model tumor

evolution over time or be used for genetic manipulation. However,

they can be applied in combination with other approaches. By using

malignant pleural mesothelioma explants treated with a STING

agonist, Knelson and colleagues (63) identified activation

of chemokine secretion by cancer cells and fibroblasts,

along with differential T and NK cell resistance to treatment-

induced cytotoxicity, which enabled downstream testing of

mesothelin-specific CAR-NK cells in patient-derived organotypic

tumor spheroids.
4.2 In vivo models

Pre-clinical mouse models are crucial tools for developing and

evaluating cancer immunotherapies. They are successfully used to

evaluate the efficacy of treatments, testing combinatorial therapies,

and importantly, to study mechanisms of response and resistance.

Currently, the available toolbox includes immunocompetent,

humanized, and genetically engineered mouse models.

4.2.1 Immunocompetent mice
Immunocompetent mouse models typically use syngeneic

murine cancer cells that can be delivered via several routes of

injection and implanted in various sites. Their main limitation is the

kinetics of growth of the implanted tumor cells, whereby rapid

tumor growth (avg. 2–4 weeks) is overemphasized (64). Mouse

models mainly utilize pre-edited tumor cell lines lacking human-

like immunoediting tumor evolution (elimination → equilibrium

→ escape) (65). In typical experiments, genetically homogeneous,

inbred strains are used, failing to recapitulate human genetic

diversity. While cancer risk increases exponentially with aging

(66), the experiments are rarely performed in aged animals. The

implanted tumors are often not orthotopic (grafted in the original

organ site), and the tumor initiation (cell transformation, immune

surveillance) is not recapitulated. Despite all this, mouse models do

provide a physiologically relevant TME consistent of tumor cells,

stromal cells and immune infiltrate that is shaped by the

microenvironment. In the study of Look et al., murine CAR-NK

cells were generated, and their efficacy was compared to CAR-T

cells and CAR-macrophages in an orthotopic glioma model (67).

The study indicated that all three CAR products succumbed to

TME-mediated re-shaping, and that combination with cytokines

benefited the outcome of the treatment. Mouse models can also be

used to mechanistically address the actions of therapeutic agents in

individual components of TME, e.g by applying targeted gene

deletions (conditional gene knock-out models), and therefore

address the complexity of cellular interactions in the context of

tumor progression and response to therapy.

To more accurately reflect human cancer pathogenesis and

allow for the study of tumor development and progression,

genetically engineered mouse models (GEMMs) have been

developed. Besides the assessment of therapy efficacy, they allow

the exploration of carcinogenesis. In genetically engineered

tumorigenic mouse models, tumors develop de novo in a natural
Frontiers in Immunology 11
immune-proficient microenvironment and closely mimic the

histopathological features and genetic heterogeneity of their

human counterparts. They are superior to cancer cell inoculation

models, as they can recapitulate not only cancer heterogeneity, but

also the metastatic cascade. In this regard, those models are

primarily used to investigate NK cell “natural antitumor roles”

and to highlight the mechanisms of suppression of their functions,

therefore providing a basis for harnessing this knowledge in the

context of immunotherapy.

4.2.2 Immunodeficient and humanized mice
models

Immunocompetent models are fully mouse systems and cannot

be used to test human therapeutic products. Xenograft mouse

models utilize immunodeficient mice co-engrafted with human

tumors and human immune cells. The most commonly used

immunodeficient mouse model is the NSG mouse strain (68–70)

bearing IL-2 receptor gamma chain deficiency (IL2rgnull) on Non-

Obese Diabetic (NOD)/severe combined immunodeficiency (SCID)

background. These mice lack mature T, B, and NK cells, functional

complement system, and display impaired macrophage and

deficient dendritic activity.

The procedure utilizing NSG mice often involves low-grade

irradiation that supports tumor cell engraftment. Frequently, tumor

cells are delivered intravenously and subsequently form metastatic-

like nodules in the lung. Tumor cells are often engineered to express

luciferase, enabling their detection via measurement of

bioluminescence. This allows follow-up measurements and

assessment of therapy efficacy over time. In a recent publication,

Li et al. used a preclinical xenograft model to show that tumor

resistance to CAR-NK therapy is caused by a loss of metabolic

fitness of NK cells after infusion in a lymphoma-bearing host (71).

By applying single-cell transcriptomics, they demonstrated dynamic

co-evolution of adoptively transferred NK cells and the tumor,

whereby metabolically active tumor cells eventually progressed

towards a NK-resistant phenotype. Although limited in

scalability, they could show that in patients participating in a

clinical trial utilizing their CAR-NK product (NCT03056339, see

the Table 1), at single-cell level, NK cells bear similar traits as

observed in preclinical model.

Although xenografts can recapitulate some aspects of the

human immune-tumor interactions, they cannot evaluate the

contribution of other cells to the therapy. Immunodeficient mice

do not express human HLA molecules, lack a human endothelial

barrier, and do not have fully developed lymph nodes with germinal

centers that can participate in the immune reaction. In addition,

adoptively transferred human immune cells into mice rely on

endogenous growth factors, chemokines and cytokines, which

often have low or no cross-reactivity, and cannot support

their functions.

To establish a more human immune system in mice, several

approaches have been developed (72, 73). Human peripheral blood

mononuclear cells (PBMC)-humanized mice are created by

injecting PBMCs into immunodeficient mice. Rapid engraftment

of human immune cells can be achieved, albeit with differential
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efficacy for various immune cell types. However, these models allow

only short-term studies due to GvHD development. Therefore,

various approaches are undertaken to create next-generation

models with reduced GvHD and improved engraftment, such as

knock-out of MHC genes (74, 75). For example, in HUMAMICE,

both murine MHC class I and MHC class II expression were

eliminated, while simultaneously expressing human HLA-A2

(class I) and HLA-DR1 (class II) (76).

HSC-engrafted mice are created by injecting human CD34+

HSCs into immunodeficient mice (77, 78). They provide long-term

engraftment, enable reconstitution of both innate and adaptive

human immune cell populations and allow long-term studies.

However, several cautionary factors should be considered when

performing experiments in these animals. Donor variability can

affect the engraftment rates and the differentiation of the different

immune cell subpopulations, which in turn may impact the

response to experimental treatments. NPI (NOD/SCID/IL2rgnull
with human cytokine knock-ins) mice are advanced models

engineered to express human cytokines on an NSG background,

and can achieve engraftment with lower doses of human HSCs,

showing improved development and function of human myeloid

cells and NK cells (79, 80). Immune humanized mouse models are

in the meantime commercially available and can be obtained as off-

the-shelf ready-to-use products for immuno-oncology studies.

BLT (bone marrow-liver-thymus) humanized mice are a more

advanced model, created by implanting human fetal liver and

thymus tissue under the kidney capsule of immunodeficient mice,

prior to human HSC injection (81–84). This procedure can be

combined by provision of human cytokines using genetic knock-

ins, as in NPI model. BLT mice develop a nearly complete human

immune system, in which human T cells develop in the human

thymus with proper HLA restriction. However, the procedure and

the requirement of fetal tissues, which face ethical and regulatory

challenges, limits the scalability of using these mice at large

experimental testing.

Humanized mouse models can be used for the injection of

patient cancer cells, or for the engraftment of PDEs, thus generating

patient-derived xenografts (PDXs) (85). PDXs are increasingly used

for drug development and precision oncology, as they provide

personalized medicine approaches for individual patients.

However, although they better reflect complexity of tumor

biology and heterogeneity, and could aid expanding actionable

genetic targets for treatment, they are not routine models used in

academic research. In the context of CAR-NK therapy, humanized

mouse nasopharyngeal carcinoma–patient-derived xenografts were

used to show the efficacy of the combination therapy involving

HSC–derived CAR-NK cells targeting programmed death-ligand 1

(PD-L1) and nivolumab (86). By comparing the PDX engrafted in

NSG mice and humanized mice, this study also demonstrated that a

humanized immune system differentially shaped the TME, more

accurately mimicking the patient context.

Although humanized mouse models represent a significant

breakthrough in immuno-oncology, they still face important

limitations, particularly in recapitulating a fully functional human

immune system due to species-specific differences in cytokine
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signaling, cellular interactions, and TME cues. Neverthless,

although still limited in accurately predicting human immune

responses and clinical outcomes, they remain a promising

platform for pre-clinical evaluation, providing crucial insights that

would be otherwise difficult to obtain in vitro or in human studies.

Optimal utilization of CAR-NK advanced tumor models requires

collaboration across disciplines, including clinicians, researchers, and

bioinformaticians, to standardize protocols, improve reproducibility,

create centralized repositories, facilitate sharing of models and data,

and to comprehensively analyze the data by leveraging advanced

technologies (multi-omics, deep learning). While clinical studies

performed so far show promise, at least for a subset of patients and

some tumor types, a large load of groundwork is still required to

understand complex mechanisms operating withing different tumors

and individuals, and along trajectory of immune cell-tumor co-

evolution, to improve current treatments and pave the road

towards CAR-NK personalized therapy.
5 CAR-NK cell therapies and
metastasis

Metastatic disease is responsible for about 90% of cancer-

related deaths (87, 88). In recent decades, immunotherapy has

emerged as a promising therapeutic strategy, but its success in the

metastatic setting remains limited. Although metastatic spread is

determined by intrinsic characteristics of tumor cells, the immune

microenvironment also plays a crucial role in this process. Several

studies highlight the important role of NK cells in controlling

metastasis, from epithelial-mesenchymal transition (EMT) to the

colonization of distant sites (89, 90). Thus, the anti-metastatic

potential of NK cells has been extensively studied (91–93), and

NK cell-based immunotherapies have been proposed as promising

strategies against metastases. Among these approaches, CAR-NK

cells represent a cutting-edge option due to their highly potentiated

antitumor activity and scarce off-tumor toxicity. In the preclinical

setting, some studies have reported the efficacy of CAR-NK cells as

an encouraging therapy against metastases.
5.1 CAR-NK cells as a strategy against
tumor metastasis

Different groups have studied CAR-NK cells as a putative

strategy against breast cancer metastases. Mice bearing the human

breast cancer cell line MDA-MB-453, treated with HER2-CAR-NK-

92 cells, showed a significant decrease of tumor and lung metastasis

formation compared to those receiving parental NK-92 cells (94). In

another study, zEGFR-CAR-NK cells were implanted in a 3D-

engineered hyaluronic acid (HA)-based niche for cell expansion.

Mice treated with those cells showed a significant reduction in the

number of lung metastases in an incompletely resected orthotopic

breast cancer model (95). In a preclinical study, CAR-NK-92 cells

targeting EGFR exhibited anti-tumor activity against breast cancer

brain metastases, especially in combination with oncolytic herpes
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1603757
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


dos Reis et al. 10.3389/fimmu.2025.1603757
simplex virus 1 (96). Moreover, a biomimetic nanoplatform

consisting of a combination of CAR-NK cell-derived exosomes

(ExoCAR) and a nanobomb, produced a strong antitumor response

in vivo against HER2-expressing breast cancer brain metastases,

increasing mice survival (97). A next-generation CAR targeting

CD44v6, a cell-surface glycoprotein implicated in tumorigenesis,

tumor cell invasion and metastasis, has also been developed.

CD44v6 CAR-NK cells demonstrated cytotoxicity against 3D

spheroid models of triple-negative breast cancer (98).

Regarding lung metastases, CAR-NK-92 cells targeting ERbB2/

HER2 have shown to reduce tumor growth in an experimental

mouse model of lung metastases from renal carcinoma (99).

Melanoma cell adhesion molecule (MCAM) is a relevant target,

expressed on Ewing sarcoma (ES) and associated with metastasis.

MCAM-CAR-NK cells significantly reduced lung metastasis and

prolonged animal survival in an ES orthotopic xenograft mouse

model (100). A different study used the ephrin type-A receptor-2

(EphA2) as a target antigen, showing that EphA2-CAR-NK-92 cells

suppressed local tumor progression and metastatic burden in lungs

in a sarcoma orthotopic mouse model (101).

Glypican-3 (GPC3)-specific CAR-NK-92 cells have been also

explored, demonstrating potent antitumor effects both in vitro and in

vivo against hepatocellular carcinoma (HCC). This CAR-NK product

was also tested in an abdominal metastasis model, presenting better

antitumor efficacy when injected intraperitoneally compared to

intravenous administration (102).

The efficacy of adapter chimeric antigen receptor (AdCAR)-

engineered NK-92 cells against bone metastases has also been

demonstrated in vitro, in a panel of different cell lines derived from

patient bone metastases, including those from mammary, renal cell

and colorectal carcinoma, as well as melanoma (103). In

differentiated thyroid cancer, it was observed that Thyroid-

Stimulating Hormone Receptor (TSHR) is expressed not only in

primary tumor, but also inmetastatic sites. Accordingly, TSHR-CAR-

NK-92 cells exhibited antigen-specific cytotoxic activity both in vitro

and in vivo (104). Another targeted molecule, carcinoembryonic

antigen (CEA), is a glycoprotein overexpressed in various epithelial

tumors, including pancreatic, breast, lung, and colon cancer,

associated with tumor differentiation, invasion, and metastasis. A

next-generation CEA-CAR-NK-92 cells demonstrated effective

cytotoxicity against colorectal cell lines and tumor spheroid

models (105).

Finally, targeting cancer stem cells (CSCs) with CAR-

engineered immune cells, including CAR-NK cells, is another

promising strategy under investigation. CSCs represent a highly

aggressive cell population responsible for metastases, tumor

recurrence and chemoresistance, making them an interesting

target to fight aggressive cancer (106–109).
5.2 CAR-NK cells and metastasis: clinical
trials

In addition to the preclinical studies, some clinical trials have

been conducted to test the efficacy of CAR-NK therapy in metastatic
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disease. In a clinical trial (NCT03941457, Table 1), a patient with

pancreatic ductal adenocarcinoma and liver metastasis was treated

with ROBO1-CAR-NK-92 cells, as described above. ROBO1 is a

protein that plays a pivotal role in tumor angiogenesis and

metastatic processes. The patient received CAR-NK treatment

intravenously and by percutaneous administration to treat liver

metastasis. No substantial treatment-related adverse events were

reported. The patient had an 8-month overall survival, then dying

due to tumor progression (50). Another clinical trial

(NCT03415100, Table 1) explored CAR-NK cell therapy in three

patients with metastatic CRC. In this case, the CAR construct was

developed by fusing the extracellular domain of NKG2D to DAP12.

Two patients were treated with intraperitoneal injection of low

doses of the CAR-NK cells. These patients presented decreased

ascites generation and a reduction in the number of tumor cells in

ascites samples. The third patient, with liver metastases, was treated

with intraperitoneal infusion of the CAR-NK cells, and achieved a

rapid tumor regression in the liver after treatment (49). Finally, a

phase II clinical trial (NCT04847466, Table 1) is evaluating the

effectiveness of irradiated allogeneic PD-L1 CAR-NK cells in

combination with pembrolizumab (PD-1 inhibitor) and N-803

(IL-15-based immunostimulatory fusion protein complex

(IL15RaFc)), in patients with recurrent or metastatic gastric or

head and neck cancer.

These findings highlight the growing potential of CAR-NK

cells as a therapeutic strategy against metastatic disease, although

further research is needed to fully understand their efficacy in

clinical settings.
6 CAR-NK cells and combination
therapies

Combinatory therapies of CAR-NK cells with conventional

therapeutic strategies, such as chemotherapy, radiotherapy, or

immunotherapy, have emerged as promising strategies (Figure 3).

Those approaches not only aim at overcoming challenges associated

with CAR-NK cell-based therapies, but also to enhance their efficacy.

By addressing key challenges, such as an immunosuppressive TME,

poor tumor trafficking, reduced effector function, and downregulation

of activating NK cell ligands and receptors, these approaches seek to

break through critical barriers to effective treatment.
6.1 Immune checkpoint inhibitors (ICIs)

The programmed-cell death protein 1 (PD-1) immune checkpoint

has been shown to be expressed on both circulating and tumor-

infiltrating NK cells across several cancer types (110–115), being

correlated with poor patient prognosis (116). Recent evidence also

shows that this phenotype is associated with decreased NK cell activity,

as demonstrated by impaired cytotoxicity, proliferation and cytokine

production, which can be partially reverted through mAb-mediated

disruption of PD-1/PD-L1 interactions (112, 113, 115–117). Following

this rationale, combining checkpoint blockade with CAR-NK cell
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therapy could be a promising strategy to promote CAR-NK targeting of

PD-L1-expressing tumors. Indeed, combination of CAR-NK-92

targeting prostate-specific membrane antigen (PSMA) with an anti-

PD-L1 mAb (Atezolizumab) resulted in increased in vitro CAR-NK-92

mediated killing of C4-2 cells (a human castration-resistant prostate

cancer (CRPC) cell line expressing PSMA) and primary tumor cells

from a CRPC patient. Additionally, combination therapy enhanced in

vivo cytotoxicity against C4–2 cells, leading to decreased tumor volume

and longer survival in NOD/SCID mice, by directly blocking the PD-

L1/PD-1 axis in both NK cells and CD8+ T cells (118). In another

study, Liu et al. showed a synergistic antitumor response in vivo, upon

treating a novel humanized nasopharyngeal carcinoma PDX mouse

model with PD-L1 CAR-NK and an anti-PD-1 antibody

(Nivolumab) (86).

The phase II clinical trial NCT04847466 (Table 1), referred above,

is currently recruiting patients with recurrent/metastatic gastric or head

and neck cancer, to test PD-L1 CAR-NK in combination with

Pembrolizumab, together with an IL-15 superagonist. Additionally,

in the CAR2BRAIN Phase I clinical trial (NCT03383978, Table 1),

researchers are evaluating HER2-specific CAR-NK-92/5.28z cells, in

combination with the anti-PD-1 mAb Ezabenlimab, for patients with

recurrent HER2-positive glioblastoma (51, 119).

In addition, targeting NK inhibitory receptors have been reported

to increase CAR-NK potential. A recent study showed that CD33-

CAR-NK cells with CRISPR/Cas9-based disruption of theKLRC1 gene,

which encodes the NKG2A inhibitory receptor, exhibited increased

cytotoxicity against AML cells, both in vitro and in vivo (120).

Targeting other immune checkpoints, such as cytotoxic T-

lymphocyte associated protein 4 (CTLA-4), T cell immunoreceptor

with immunoglobulin and ITIM domains (TIGIT), and T cell

immunoglobulin and mucin-containing domain (Tim-)-3, in a
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CAR-NK combination context could also represent a strategy to

increase CAR-NK cell cytotoxicity, since upon their inhibition,

improved NK cell activity has been observed (121–126).
6.2 Radiotherapy

As a key approach in cancer treatment, radiotherapy directly

causes tumor cell damage, leading to increased expression of

antigens and cytokine release, ultimately impacting the TME (127,

128). Evidence suggests that radiation treatment increases NK cell

infiltration and migration to the tumor site, while also modulating NK

cell activity and tumor cell recognition. This effect is likely mediated by

increased chemokine signaling and upregulation of activating ligands,

such as MICA/B and ULBP-1, resulting in enhanced NK cell

cytotoxicity (128–130). In 2024, a study by Lin et al. showed that

pre-treatment of HCC cells with irradiation increased in vivomigration

and activity of CXCR2-armed GPC3-targeting CAR-NK92 cells,

through MICA/B and ULBP1 upregulation (131).

However, it is relevant to mention that radiation therapy has

also been linked to a direct cytotoxic effect towards immune cells,

including NK cells, leading to a decrease in circulating NK cell

counts (128, 132). Although these findings highlight the potential

synergy between radiotherapy and CAR-NK cells, the schedule

modality of each approach should be taken into consideration.
6.3 Chemotherapy

Besides the standard lymphodepleting chemotherapy used before

CAR-NK infusion, which aims to increase CAR-NK cell persistence

and activity (119), conventional chemotherapymay also be used as an
FIGURE 3

CAR-NK cell combination with other therapeutic approaches. CAR-NK therapies can be combined with other therapies, ranging from conventional
therapeutic approaches (chemotherapy and radiotherapy), to checkpoint inhibition (anti-PD-1, anti-PDL-1 and anti-CTLA-4) and emerging therapies,
such as epigenetic drugs and oncoviruses. Created in https://BioRender.com.
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approach to improve CAR-NK cytotoxicity through direct tumor

destruction, release of cytokines/chemokines and an overall decrease

in immunosuppressive cell populations (133). In a recent study,

treatment of primary ovarian cancer cells, harvested from ascites of

an ovarian cancer patient, simultaneously using CD44-CAR-NK cells

and cisplatin led to increased anti-tumor cytotoxicity, compared with

monotherapies alone (134). Furthermore, combination of EGFR-

CAR-NK-92 with cabozantinib showed a synergistic therapeutic

effect against renal cell carcinoma (RCC) cell lines and in human

RCC xenograft models, highlighting the potential of combining CAR-

NK cells and chemotherapy as a promising strategy for the treatment

of solid tumors (135).
6.4 Oncolytic viruses (OVs)

Oncolytic virotherapy relies on the use of viruses that replicate

within cancer cells, directly leading to their death, while preserving

normal cells and stimulating anti-tumor immune responses (136,

137). Thus, several studies have explored the possibility of

combining OVs with CAR-NK cells. In an in vivo model of breast

cancer brain metastases (BCBMs), intratumoral administration of

oncolytic herpes simplex virus (oHSV) and EGFR-CAR-NK-92

cells resulted in improved killing of cancer cells and longer

survival, when compared to monotherapy (96). Another study

showed that treatment with herpes simplex 1-based OV

expressing human IL-15/IL-15Ra sushi domain fusion protein

(OV-IL15C), and EGFR CAR-NK cells, was able to synergistically

suppress tumor growth in a glioblastoma mouse model, while also

leading to increased survival and enhanced infiltration and

activation of NK and CD8+ T cells (138). Evidence thus suggests

that this combination approach may represent a powerful strategy

to increase CAR-NK therapeutic success.

This approach may also be further extended to other viral-based

platforms, such as virus-like particles (VLPs) and virus-mimicking

nanoparticles (VMNs), which can stimulate the immune system

and delivery of therapeutic cargoes (139), and may thus be

considered to expand the CAR-NK combination toolbox.

Overall, exploiting the combination of CAR-NK cells with ICIs,

radiotherapy, chemotherapy or OVs is an exciting opportunity to,

not only overcome some of the challenges related with CAR-NK cell

therapies, but also to further improve their efficacy by functioning

as complementary strategies.
7 CAR-NK cells and epigenetics: what
is in there?

Epigenetics involves heritable and reversible changes in gene

expression that do not alter the DNA sequence itself. These

changes comprise mechanisms such as DNA methylation,

histone modifications, and microRNA regulation (140). DNA

hypermethylation, driven by DNA methyltransferases (DNMTs)

is known to lead to transcriptional repression. Histone proteins can

undergo post-translational modifications, such as acetylation and
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methylation, which regulate chromatin structure. Histone

acetylation, mediated by histone acetyltransferases (HATs),

promotes gene transcription by creating an open chromatin state.

In contrast, histone deacetylases (HDACs) remove acetyl groups,

condensing chromatin and suppressing gene transcription. Histone

methylation, catalyzed by histone methyltransferases (HMTs),

involves the transfer of a methyl group to a lysine residue on a

histone protein, either activating or repressing transcription,

depending on the specific lysine residue and number of methyl

groups added (140, 141).

Beyond regulating tumor development, recent research has

highlighted the pivotal role of epigenetic mechanisms in shaping

immune cell function and tumor cell recognition. Different studies

have shown that treatment with epigenetic modulating drugs (epi-

drugs), including DNMT, HDAC and HMT inhibitors, has led to

increased expression of activating NK cell ligands, such as MICA/B,

ULBP1-6, PVR and Nectin-2 (142–152). Additionally, NK cell

function has also been shown to be modulated by epi-drug

treatment. However, while some studies show increased expression

of Perforin, CD107a, Granzyme-B/K, IFN-g and TNF-a by NK cells

(148, 153–157), leading to enhanced tumor cell killing, others report

impaired degranulation and cytotoxic ability (152, 158–161). Thus,

although promising, further studies are still necessary to fully depict

the potential of epi-drugs as modulators of NK cell function.

Recently, combination of CEA-CAR-NK-92 cells with the HDAC

inhibitor sodium butyrate (NaB) led to CEA upregulation in CRC

cells, increasing CEA-CAR-NK-92 cell-mediated killing in an in vivo

model, leading to reduced tumor volumes (162). Moreover, in 2025,

Tan et al. evaluated the combination of CEA-CAR-NK cells with

STM2457, an inhibitor of METTL3, in an in situ CRC tumor

immunocompetent mouse model (163). METTL3 is a writer of the

epitranscriptomic m6A modification, which regulates splicing,

stability and mRNA translation. Combination treatment showed

significant tumor growth suppression, reduced CRC recurrence and

increased NK cell infiltration within the TME (163). Notably, a multi-

center Phase I clinical trial (NCT04623944, Table 1) is currently

assessing allogeneic CAR-NK cells targeting NKG2D ligands, in the

presence or absence of the DNMT inhibitor Decitabine, in patients

with R/R AML and myelodysplastic syndrome (MDS).

Overall, these emerging findings highlight the potential of

harnessing epigenetic mechanisms to potentiate CAR-NK

cell therapies.
8 CAR-NK cell therapies: what can we
learn from bioinformatics?

Nowadays, the analysis of omics data using bioinformatic

techniques is becoming a standard practice in biomedical

sciences. This approach enables a comprehensive understanding

of the cell state, as it goes beyond the examination of a single gene,

incorporating a broad spectrum of molecular data. Bioinformatics

is a vast field. There exists a more specialized area called

immunogenomics, consisting of the study of the immune system

and the tumor-immune cells interactions. This bioinformatics
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approach can delve into the mechanisms of action of CAR-NK cells

in two key areas: (i) the design of new CAR-NK cells, and (ii) the

analysis of omics data derived from experiments involving CAR-

NK cells.

As an example of CAR-NK design, Lee and colleagues used a

data-driven bioinformatics approach to predict optimal antigen

combinations of AML and healthy tissue target antigens to

incorporate into CAR gene circuits based on OR or NOT logic

gated CAR gene circuits. By using this pipeline, they designed the

first-in-class CD33 OR FLT3 NOT EMCN gene circuit, as

described above (24, 164). Peng et al. also used bioinformatic

tools to address the expression and the prognostic role of c-Met as

a target prior to developing c-Met-CAR-NK-92 cells specific for

lung adenocarcinoma (165).

To understand CAR-NK mechanisms of action using

immunogenomics, not only bioinformatics, but also artificial

intelligence (AI) tools can process vast amounts of genomic

and multi-omics data to identify biomarkers associated with

immunotherapy responses (166). AI can assist in providing

insights into the intricate molecular networks between the

immune and the cancer cells. Several studies utilize omics data

analysis, to evaluate functionality of CAR NK cells, particularly in

preclinical studies. A common approach in these studies is the use

of sequencing protein-coding transcriptome (RNAseq) (47, 167–

169). For example, Silvestre et al. used RNAseq to evaluate

transcriptomic profiles of CD19-CAR-NK-92 cells after coculture

with target B cell lines. Their study revealed that fourth generation

CAR.19-IL15/IL15Ra had improved proliferation and effectiveness

compared with other NK-92 cell-based tumor therapies (169). Biggi

and colleagues used RNAseq to assess differences between CAR.19

and CAR.19-IL-27 cells, and digital droplet PCR to study

persistence of CAR NK cells in mouse blood during treatment

(170). In the last years, single-cell sequencing is also being

implemented to study CAR-NK cells in the preclinical settings

(71, 171, 172). Namely, Li et al. conducted single-cell RNAseq to

analyze the evolution of CAR-NK cells after adoptive transfer using

an in vivo preclinical model and samples from patients responding

and non-responding to CAR/IL15 NK cells (71).

Although immunomics approaches strongly supports

personalized treatments with CAR-NK, some challenges remain,

such as data quality, model interpretability, integration of multi-

modal data, and privacy protection.
9 CAR-NK cells: where can we go?

CAR-NK cell knowledge is emerging, with a growing amount of

translational research and early clinical trials substantiating their

therapeutic potential. While several clinical trials are currently

underway, only very few have been completed or have published

results. Thus, the coming years will provide crucial insights

demonstrating the true potential of CAR-NK strategies, and guide

more refined and effective designs. CARs are designed to recognize

tumor-specific surface molecules, a process that provides cell

activation while ensuring no reactivity to self. Therefore, selecting
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the right target is vital. The CAR construct is comprised of modules

that are designed for optimal cell activation by delivering co-

stimulatory and pro-survival signals. In this regard, the design of

optimal constructs for each CAR-NK cell product should take into

consideration their origin, differentiation or haplotype, requiring

further groundwork. Moreover, the spatiotemporal component is

often underestimated in most of preclinical tests. CAR-NK cells

need to reach and infiltrate tumor tissue, adapt to TME, and co-

evolve with the tumor. These dynamics can affect CARs directly (eg.

recognition, signaling), but also other regulatory hubs of NK cells,

such as transcription, epigenome or protein synthesis. The

combination of CAR-NK immunotherapy with other strategies,

such as chemotherapy, radiotherapy, or checkpoint inhibitors, aims

to address and overcome some of these issues. Moreover, emerging

approaches, such as epigenetic modulating drugs and oncolytic

viruses, hold promise and should be further explored. As NK cells

are key effectors in controlling metastases, the development of

CAR-NK strategies to tackle metastatic disease assumes particular

relevance. However, the metastatic cascade is complex, and

outgrowing metastases often show phenotypes and targets distinct

from the primary tumor, which should further guide the design of

CAR-NK strategies against metastatic disease. With the rising

standing of immunomics for designing novel targets and

innovative strategies, alongside the growing field of multi-omics

that allows spatiotemporal mapping and identification of novel

mechanisms operating at immune-tumor axis, the doors of

opportunities to better design CAR-NK-based therapies, are wide

open. Thus, it is crucial to pursue multidisciplinary approaches and

to integrate computational biology into the study framework and

in-depth analysis of pre-clinical and clinical results. NK-CAR

therapies offer several advantages over CAR-T cells, including the

possibility to use them “off-the-shelf”, a lower risk of GvHD and of

severe CRS, and intrinsic anti-tumor activity that can target cancer

cells through both CAR-dependent and CAR-independent

mechanisms. Nevertheless, NK cells tend to persist for a shorter

period, showing limited proliferation post-infusion, often requiring

multiple administrations. Moreover, they are harder to genetically

modify, displaying lower transduction/transfection efficiencies and

lack classical memory (although they can exhibit ‘trained

immunity’), which may make them less effective for long-term

tumor control. Although several efforts have been made to

overcome these hurdles, such as more effective transduction

strategies and CAR designs incorporating cytokines to enhance

their persistence, further refinement of NK-CAR strategies will be

crucial to maximize their therapeutic potential. Moreover, recent

findings showed that combination of CAR-T cells with a small

number of CB-derived CAR-NK cells could significantly enhance

therapy efficacy, particularly in the early phases of treatment.

Bachiller and colleagues showed that CAR-T/CAR-NK co-

administration appears to support early activation and migration

of CAR-T cells toward multiple myeloma (MM) targets, improving

cytotoxicity and decreasing T cell exhaustion, without increasing

the risk of CRS. These results highlight a novel synergistic

immunotherapeutic approach that may overcome some of the

current limitations of each therapy (173).
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CAR-NK cells represent a revolutionary advancement in cancer

therapy. As basic, translational, and clinical research advances,

the near future will provide clearer guidance on the trajectory of

CAR-NK therapies toward their development as standard

treatment strategies.
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