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Background: While cellular senescence in colorectal cancer (CRC) exhibits

strong correlations with immunotherapy response and clinical prognosis, its

mechanistic basis remains elusive, and validated predictive biomarkers are

currently unavailable.

Methods: In this study, we integrated single-cell and bulk transcriptomic data to

establish a cancer-specific senescence signature (CSS). Systematic biological

characterization revealed that the CSS remodels the tumor microenvironment

(TME), primarily through perturbed immune cell infiltration and CD8+ T-cell

dysfunction. Functional validation via shRNA-mediated CD24 knockdown in

HCT116 cells was corroborated by Western blot and flow cytometry. CD24

ablation’s effects on malignant phenotypes were assessed using colony

formation, Transwell invasion, wound healing, and proliferation/apoptosis

assays (Ki67/Annexin V/TUNEL). CSS-mediated CD8+ T-cell regulation was

investigated using palbociclib-induced senescence models (HCT116/SW480).

Potential senescence-targeting compounds were identified via the Cancer

Therapeutics Response Portal (CTRP) and PRISM databases.

Results: Our analyses validated the CSS as both a prognostic biomarker and

immunotherapy predictor in CRC. CSS-high tumors displayed diminished

cytotoxic T-cell infiltration and impaired CD8+ effector functions (reduced

IFN-g/granzyme B production), while CSS-low tumors showed enhanced T-

cel l act iv i ty . Mechanist ic invest igat ions revealed CSS-mediated

immunosuppression via MHC class I dysregulation, compromising tumor

antigen recognition. Genetic CD24 inhibition suppressed proliferation,

migration/invasion and triggered apoptosis. Computational screening identified

afatinib as a potent CSS-targeting agent, with in vitro studies confirming selective

senescent cell growth inhibition through proliferation blockage and apoptosis

induction. Notably, CSS-high status predicted immunotherapy resistance.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1603787/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1603787/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1603787/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1603787/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1603787&domain=pdf&date_stamp=2025-07-24
mailto:duanbixia1987@163.com
https://doi.org/10.3389/fimmu.2025.1603787
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1603787
https://www.frontiersin.org/journals/immunology


Wang et al. 10.3389/fimmu.2025.1603787

Frontiers in Immunology
Conclusion: Collectively, CSS drives tumor aggressiveness and independently

predicts unfavorable survival outcomes and immunotherapy resistance in CRC.

Notably, afatinib targeting of CSS selectively eliminated senescent cells via

apoptosis while inhibiting tumor growth, highlighting its therapeutic potential

for CSS-high malignancies.
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Introduction

Colorectal cancer (CRC) is among the most common

malignancies worldwide and a major cause of cancer-related

mortality. Despite recent progress in surgical resection and

adjuvant therapies, which have enhanced clinical outcomes,

overall survival rates remain unsatisfactory, as many patients still

develop tumor recurrence and distant metastases. Immunotherapy

has emerged as a promising treatment strategy for CRC; however,

its effectiveness is often limited by tumor heterogeneity and the lack

of reliable predictive biomarkers to identify patients likely to

respond (1, 2).

Cellular senescence in neoplastic cells, characterized by

irreversible cell-cycle arrest and the development of a distinct

senescence-associated secretory phenotype (SASP), has emerged

as a critical regulator of tumorigenesis and cancer progression.

Senescent tumor cells secrete diverse pro-inflammatory cytokines,

chemokines, and growth factors, collectively known as the SASP.

These factors contribute to tumor microenvironment (TME)

remodeling, promote sustained angiogenesis, and facilitate

immune evasion mechanisms (3–5). Emerging evidence

underscores a critical association between tumor cell senescence

and immunotherapeutic response, while also revealing its

prognostic influence on overall survival (OS) and progression-free

survival (PFS) across multiple malignancies, including CRC (6–8).

However, the precise molecular mechanisms governing this

relationship remain incompletely understood, and no clinically

validated biomarker signature currently exists to reliably predict

patient outcomes or therapeutic responses. Given this unmet need,

the development of a colorectal cancer-specific senescence signature

(CSS) capable of prognostication and immunotherapy response

prediction holds substantial translational value. Such a signature

would enable risk stratification of patients into clinically relevant

subgroups, thereby facilitating personalized therapeutic decision-

making and optimized treatment allocation (9–11). Moreover, a

deeper mechanistic understanding of how the CSS influences

immunotherapeutic efficacy may provide novel conceptual

frameworks for developing next-generation immunotherapies.

Recent technological breakthroughs, particularly advancements in

single-cell RNA sequencing (scRNA-seq) and bulk transcriptomic

profiling, have revolutionized our ability to decipher tumor
02
heterogeneity and characterize bidirectional tumor-immune

interactions within the TME (12, 13). Machine learning-based

prognostic models have also shown great potential in predicting

patient outcomes and treatment responses in various cancers (14,

15). These technologies and approaches could be instrumental in

identifying a CSS and elucidating its role in CRC progression and

immune therapy response.

In this study, we employed scRNA-seq analysis, transcriptomic

profiling, and machine learning-based prognostic modeling to

identify a colorectal CSS in CRC. Furthermore, we systematically

investigated the influence of CSS on T-cell infiltration and CD8+ T

cell functionality within the TME, as well as the underlying

molecular mechanisms governing CSS-mediated regulation

of CD8+ T cell activation and effector functions. Finally,

through computational drug screening, we aimed to identify

potential therapeutic agents capable of targeting and suppressing

CSS, which may offer novel treatment avenues for CRC

patients (Figure 1).
Methods

Cell culture

SW480 and HCT116 human colorectal cancer cells were

cultured in DMEM medium supplemented with 10% fetal bovine

serum (FBS) and 1% penicillin-streptomycin. Cells were maintained

in a humidified incubator at 37°C with 5% CO2. For experiments,

cells were passaged at 70-80% confluence using 0.25% trypsin-

EDTA. Stable cell lines were generated by transducing cells with

lentivirus particles containing shRNA targeting CD24 or non-

targeting control shRNA. Puromycin (2 mg/mL) was used

for selection.
Lentiviral-mediated shRNA knockdown

To achieve stable CD24 knockdown in HCT116 cells, a short

hairpin RNA (shRNA)-mediated lentiviral approach was employed. A

65-base pair (bp) DNA oligomer harboring a 19-bp CD24-targeting

sequence (5’-AGGCCAAGAAACGTCTTCT-3’) was cloned into the
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pLVX-Puro vector (GeneCreate, Wuhan, China). Potential off-target

effects were assessed using NCBI BLAST, confirming the absence of

unintended homologous sequences. As a negative control, a

recombinant vector encoding a shRNA targeting firefly luciferase

was transduced into parallel cells. Lentiviral particles were generated

by transient co-transfection of HEK-293T packaging cells with the

pLVX-shRNA1 plasmid, the second-generation packaging plasmid

psPAX2, and the phCMV-VSV-G envelope plasmid encoding the

vesicular stomatitis virus glycoprotein (VSV-G). Cell-free viral

supernatants were harvested 24 h post-transfection, filtered through

a 0.45 mm membrane, and cryopreserved at −80°C. For transduction,

HCT116 cells were seeded at a density of 5 × 104 cells per well in 0.5

mL culture medium within 6-well plates. Following viral supernatant

addition, the medium was replaced after 24 h, and puromycin

selection (1 mg/mL) was initiated 48 h post-transduction. Antibiotic

selection was maintained for ≥7 days to establish stable knockdown

populations. Knockdown efficiency was validated by Western blot

analysis, demonstrating significant reduction in CD24

protein expression.
Frontiers in Immunology 03
Western blotting

Protein lysates were prepared using RIPA buffer supplemented

with protease inhibitor cocktail. Protein concentrations were quantified

by the bicinchoninic acid (BCA) assay following the manufacturer’s

protocol. Equal amounts of protein (30 mg per lane) were resolved by

10-12% SDS-PAGE and subsequently transferred to polyvinylidene

difluoride (PVDF) membranes. Membranes were blocked with 5%

non-fat dry milk in Tris-buffered saline containing 0.1% Tween-20

(TBST) for 1 hour at room temperature, followed by overnight

incubation at 4°C with the following primary antibodies: anti-CD24

(1:1000 dilution) and anti-b-Actin (1:2000 dilution). After extensive

washing with TBST, membranes were incubated with appropriate

horseradish peroxidase (HRP)-conjugated secondary antibodies

(1:5000 dilution) for 1 hour at room temperature. Protein bands

were visualized using enhanced chemiluminescence (ECL) detection

reagents. Band intensities were quantified by densitometric analysis

using ImageJ software (National Institutes of Health, Bethesda, MD,

USA), with b-Actin serving as the loading control for normalization.
FIGURE 1

Flow diagram in this study. This study aims to explore the CSS in colorectal cancer through a comprehensive multi-faceted approach. Initially,
bioinformatics analysis is conducted, which encompasses identifying senescent tumor cells, constructing a Senescence-Associated Gene Network
using hdWGCNA, developing a machine learning-based prognostic model, analyzing the immunosuppressive TME with NMF, conducting signaling
pathway analysis via GSEA and KEGG, and investigating immunoevasion mechanisms using CellChat analysis. Subsequently, experimental validation is
performed, including WB analysis, assessing CD24 function, evaluating clone information, migration, invasion, and wound healing capabilities,
analyzing apoptosis through FACS and TUNEL assays, and utilizing CSS inhibitors for drug prediction, establishing senescent cell models, and
conducting proliferation and apoptosis analyses with CCK8 and FCAS. Finally, clinical analysis is carried out, focusing on immunotherapy response,
submap analysis, TIDE analysis, and survival analysis in ICB-treated cancer patients. The study provides a detailed workflow to uncover the
senescence signature in colorectal cancer, offering insights into potential therapeutic targets and prognostic markers. The image was created by
biorender.com (Agreement number: OO28IFS3KR).
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Colony formation assay

Colony formation was assessed to evaluate clonogenic potential.

Cells (500 per well) were seeded in 6-well plates and cultured for 14

days. Medium was refreshed every 3 days. Cells were fixed with 4%

paraformaldehyde and stained with 0.1% crystal violet. Colonies

(>50 cells) were counted manually. Each experiment was performed

in triplicate.
Transwell migration assay

Cell migration was evaluated using Transwell inserts (8 mm
pores). Serum-starved cells (5×10^4/mL) were added to the upper

chamber, and 10% FBS was placed in the lower chamber. After 24

hours, migrated cells were fixed, stained, and counted in five

random fields. Experiments were performed in triplicate.
Transwell invasion assay

Invasion was assessed using Matrigel-coated Transwell inserts

(8 mm). Serum-starved cells (1×105) were seeded in the upper

chamber in se rum- f r ee med ium, wi th 10% FBS as

chemoattractant in the lower chamber. After 48 h, non-invading

cells were removed, and invaded cells were fixed (4% PFA), stained

(0.1% crystal violet), and counted in five random fields per insert.

All experiments were performed in triplicate.
Wound healing assay

Wound healing was used to evaluate migration. Cells were

seeded in 6-well plates and grown to 90% confluence. A pipette tip

created a straight wound, and cells were cultured in serum-free

medium. Images were captured at 0 and 24 h, and the migration

ratio was calculated using ImageJ.
Annexin V/PI apoptosis assay

Apoptosis was analyzed using Annexin V-FITC/PI staining.

Cells were harvested, washed, and resuspended in binding buffer.

Annexin V-FITC (5 mL) and PI (5 mL) were added, and cells were

analyzed by flow cytometry. Data were gated to exclude debris, and

apoptotic cells were quantified.
TUNEL assay

Apoptotic cells were detected using the TUNEL assay. Cells were

fixed, permeabilized, and incubated with TUNEL reaction mixture

for 1 h. Nuclei were stained with DAPI. Fluorescent images were

captured, and TUNEL-positive cells were quantified by counting

≥200 cells per field. Experiments were performed in triplicate.
Frontiers in Immunology 04
Flow cytometry analysis

Cells were washed with PBS, stained with fluorochrome-

conjugated antibodies targeting CD3, CD8, and CD45, then

stimulated with PMA (50 ng/mL) and ionomycin (1 mg/mL) for 4

hours prior to flow cytometry. Detection of surface markers and

intracellular cytokines enabled quantitative lymphocyte subset

analysis, proliferation assessment (via ki67), and apoptosis

measurement (Annexin V/PI) (16).
CCK8 assay

Colorectal cancer cells (HCT116, SW480) were maintained in

RPMI-1640 with 10% FBS and 1% penicillin-streptomycin. After

48-hour afatinib treatment, cell viability was assessed using CCK-8:

10 µL reagent was added per well, incubated at 37°C for 1 hr, and

absorbance at 450 nm was measured.
Single-cell sequencing analysis

Single-cell RNA sequencing (scRNA-seq) data were analyzed

using Seurat (v4.0) in R. Cells were retained after stringent quality

control with filtering thresholds of nFeature_RNA > 200 &

nFeature_RNA < 5000 and percent.mt < 15. Dimensionality

reduction was performed following normalization (LogNormalize)

and selection of highly variable genes (FindVariableFeatures,

selection.method = “vst”, nfeatures = 2000). Data scaling,

principal component analysis (PCA, npcs = 30), and batch

correction (Harmony, group.by.vars = “orig.ident”) were applied

to improve cluster resolution. Uniform Manifold Approximation

and Projection (UMAP) was then used for visualization after cell

clustering (FindNeighbors, FindClusters, resolution = 0.3).

Differential gene expression analysis was performed to identify

cluster-specific markers, followed by functional enrichment

analysis (Gene Ontology, KEGG) of significant genes to explore

biological pathways in CRC (17, 18).
hdWGCNA analysis

hdWGCNA, an enhanced version of weighted gene co-

expression network analysis, was applied to investigate the

scRNA-seq data of CRC, enabling the identification of gene

expression modules across single-cell populations. This method

integrates spatial information to identify gene co-expression

modules in the tumor microenvironment (19, 20). We extracted

the gene expression matrix and spatial coordinates from the Seurat

object and subsequently constructed a weighted gene co-expression

network using the createNetwork function in the hdWGCNA

package. Gene co-expression modules were then identified via the

identifyModules function to detect functionally related gene

groups in CRC. Module eigengenes were calculated using

getModuleEigengenes and their spatial patterns were visualized
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with ggplot2. Pearson correlations between module eigengenes and

phenotypic features (e.g., cell type annotations) were computed

using the cor function. Finally, we performed functional enrichment

analysis (Gene Ontology and KEGG pathways) for each module

using clusterProfiler to elucidate their biological relevance.
Transcriptome analysis

Bulk RNA-seq data from COAD and adjacent normal tissues

were obtained from the Cancer Genome Atlas (TCGA) database.

The raw sequencing data were processed using the “STAR aligner”

to map the reads to the human reference genome. Subsequently,

gene expression levels were quantified using the “featureCounts”

package, providing a precise measurement of transcript abundance

for downstream analysis (21). Differentially expressed genes (DEGs)

between tumor and normal tissues were identified using the DESeq2

package in R. The genes with adjusted p-values less than 0.05 and

log2 fold-change greater than 1 were considered as DEGs.

Functional enrichment analysis, encompassing GO and KEGG

pathway analysis, was conducted using the “clusterProfiler”

package in R. This analysis aimed to uncover the biological

functions and pathways associated with DEGs, providing insights

into their potential roles in the studied biological context.
Construction of prognostic model by
machine learning

The DEGs derived from transcriptomic analysis were utilized as

input features for constructing a prognostic model through

machine learning approaches. Feature selection was performed

using LASSO regression to identify the most prognostically

relevant genes , optimizing both model accuracy and

interpretability for clinical outcome prediction. The final model

was established via Cox proportional hazards regression, trained on

a designated cohort, and subsequently validated in an independent

dataset (22, 23). We evaluated the prognostic model’s performance

using the concordance index (C-index) and time-dependent

receiver operating characteristic (ROC) curves to quantify its

predictive accuracy and temporal discriminative ability. Risk

scores were calculated for each patient by combining expression

levels of prognostic genes with their Cox regression-derived

coefficients, providing a quantitative risk estimate. Using the

median risk score as the cutoff, we stratified patients into high-

risk and low-risk groups for subsequent survival analysis.
Cell-cell communication analysis

The gene expression data of different cell populations were

extracted from the scRNA-seq data. The ligand-receptor pairs

between different cell populations were identified based on the

gene expression data and the known ligand-receptor interactions in

the literature (24, 25). The potential communication pathways were
Frontiers in Immunology 05
inferred based on the expression levels of ligands and receptors, and

the pathways with significant communication were visualized using

network diagrams.
Drug prediction by CTRP and PRISM

Gene expression profiles of CSS were obtained from TCGA-

COAD transcriptomic data, while pharmacological response

datasets were extracted from CTRP and PRISM databases.

Following normalization and batch correction of the expression

data, processed drug response information was used to construct a

drug-gene interaction matrix. Spearman correlation analysis was

performed to assess associations between CSS gene expression

patterns and drug response profiles. Compounds demonstrating

statistically significant correlations (P < 0.05) were identified as

potential CSS-targeting therapeutic candidates.
Results

Identification of senescence-associated
tumor cell subpopulations by scRNA-seq
analysis

Following stringent quality control measures applied to a

colorectal cancer scRNA-seq dataset (n = 53,696 cells) obtained

from the GEO database, we excluded low-quality cells and retained

high-confidence transcriptomes for subsequent analysis

(Supplementary Figures S1A, B). Using cell-specific marker

molecules, we classified the cells into eight major clusters: T

lymphocytes, neoplastic cells, neutrophils, myeloid lineage cells,

fibroblasts, B lymphocytes, epithelial cells, and plasma cells

(Figures 2A, B). Subsequently, a senescence-associated gene set was

extracted from the MSigDB. Utilizing this gene set, senescence scores

were computed for the malignant cell cluster across various tumor

samples. The samples were then stratified into high-senescence and

low-senescence score groups, with the median senescence score

serving as the threshold for categorization (Figure 2C). Among

malignant subpopulations, we identified tumor cell clusters with

significantly elevated senescence scores in the high-senescence score

group as senescent tumor cell subpopulations. Notably, cluster 0

exhibited a marked increase in the high-senescence score group and

was designated as the senescent tumor cell subpopulation

(Figures 2D, E). To elucidate signaling pathways associated with

the malignant cell subpopulation, we performed differential gene

expression analysis between high- and low-senescence score groups,

identifying 2,151 significantly differentially expressed genes (P < 0.05,

|logFC| > 1) (Figure 2F). Gene Set Enrichment Analysis (GSEA)

revealed prominent activation of pathways related to positive

regulation of cell migration and canonical Wnt signaling in the

high-senescence score subpopulation (Figure 2G). Subsequent

pathway enrichment analysis using the GseaVis R package

demonstrated significant heterogeneity among tumor cell

subpopulations, including enrichment in endoplasmic reticulum
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FIGURE 2

The scRNA-seq analysis to identify the secernent cell subsets. (A) UMAP plot showing the distribution of different cell types, including T_cell,
Malignant, Neutrophil, Myeloid, Fibroblast, B_cell, Epithelial, and Plasma, in the dataset. (B) Violin plots displaying the Log2-Fold Change of gene
expression across various cell types, highlighting differential expression patterns. (C) Violin plots illustrating the senescence score distribution in
malignant cells across different samples. (D) Heatmap showing the ratio of different clusters (C0 to C8) in samples with high and low senescence
scores. (E) UMAP plot showing the distribution of different cell types. (F) Volcano plots showing the differentially expressed genes in the malignant
cell cluster of samples with low and high senescence scores. (G) GSEA plots for the enriched signaling pathways in the sample with high senescence
scores, in comparison to low senescence scores. (H) Heatmap showing the expression of genes related to different clusters and their associated
biological processes.
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unfolded protein response, heterophilic cell-cell adhesion, antigen

processing and presentation, luteinizing hormone secretion, response

to misfolded protein, embryonic digestive tract morphogenesis, and

positive regulation of plasma membrane-bounded processes

(Figure 2H). These results suggest that senescent tumor cell

subpopulations in the colorectal cancer microenvironment

contribute to diverse biological processes.
Identification of genes associated with
senescent tumor cell subpopulations using
hdWGCNA

To identify genes significantly associated with senescent tumor

cell subpopulations, we applied hdWGCNA to tumor cell clusters

identified through scRNA-seq analysis. After evaluating scale-free

topology model fit and median connectivity, we established the

optimal soft power threshold as 9 (Figure 3A). Using this

threshold, we constructed a dendrogram of senescent tumor cell

clusters and mapped the interactive gene networks across cell types

(Figures 3B, C). We identified five modules-SENE3, SENE5, SENE7,

SENE8, and SENE9-most strongly associated with senescent tumor

cell clusters (Figure 3D). To characterize these modules, we

performed hierarchical module eigengene (hME) analysis. The

hME, which represents the first principal component of gene

expression within a module, summarizes the module’s expression

profile. This measure quantifies overall expression patterns and

enables assessment of module-module correlations as well as

associations with clinical traits (Figures 3E, F). Significant inter-

module correlations were further illustrated in a pie chart.

Strikingly, senescent tumor cell subpopulations displayed elevated

module eigengene (kME) values relative to other tumor cell subsets

(Figures 3G, H). To determine the biological relevance of these

modules, we conducted network interaction analysis of module

genes followed by Gene Ontology (GO) enrichment analysis, which

identified key biological processes associated with each module

(Figures 3I, J). Collectively, hdWGCNA provided a systematic

framework to identify senescence-associated modules and genes

across tumor cell subpopulations, establishing a basis for

subsequent functional and mechanistic studies.
Construction of a prognostic model using
machine learning to identify colorectal
cancer-specific signatures

Using hdWGCNA analysis, we identified a robust gene set

comprising 38 genes strongly associated with tumor cell senescence.

To construct a prognostic model, we evaluated multiple machine

learning algorithms and determined that StepCox+RSF exhibited

the optimal predictive performance based on AUC values

(Figure 4A). Using Random Survival Forest (RSF) analysis with

importance scoring, we identified seven key prognostic genes

(CD24, SLC25A5, HSPB1, CD9, SPIMK1, LGALS4, and

CEACAM5; Figures 4B–D), which were subsequently designated
Frontiers in Immunology 07
as the Colorectal cancer Survival Signature (CSS). In the TCGA-

COAD cohort, the CSS effectively stratified patients by survival

outcomes, demonstrating that higher CSS scores were significantly

associated with worse prognosis. Time-dependent ROC analysis

reinforced the predictive capacity of CSS, showing AUC values of

0.872 (1-year), 0.872 (3-year), and 0.907 (5-year) (Figure 4E).

External validation using independent GEO datasets confirmed

the consistent prognostic performance of CSS across different

cohorts (Figures 3F–H). These results establish CSS as a robust

prognostic indicator for identifying high-risk colorectal cancer

patients, with potential clinical applications for risk stratification

and personalized treatment decisions.
Heterogeneity of senescent tumor cells
and their association with
immunosuppressive tumor
microenvironment

To characterize the role of senescent tumor cells, we employed

Non-negative Matrix Factorization (NMF) on scRNA-seq data,

uncovering substantial heterogeneity across senescent tumor cell

subpopulations (Figure 5A). GO enrichment analysis of

metaprogram 2 (MP2) highlighted biological processes such as

common bile duct development and activation of store-operated

calcium channel activity, both of which exhibited significant positive

correlations with senescent cell heterogeneity (Figure 5B). Leveraging

the CSS, we applied NMF to stratify patients from the TCGA-COAD

cohort into three distinct clusters (Figure 5C). Comparative analysis

revealed significant prognostic differences, with cluster 1 patients

exhibiting significantly worse survival outcomes than cluster 3

(Figure 5D). The poor prognosis in cluster 1 was associated with a

less immunogenic tumor microenvironment, characterized by lower

TME scores, increased infiltration of immunosuppressive M0

macrophages, and downregulation of key antigen-presenting

molecules including HLA-G (Figures 5E–G). To further delineate

the functional implications of CSS, we divided COAD patients into

high- and low-CSS groups based on median expression. Differential

gene interaction network analysis identified CSS as significantly

enriched in pathways including steroid hormone biosynthesis,

calcium signaling pathway, cAMP signaling pathway, and cGMP-

PKG signaling pathways (Figures 5H, I). Collectively, these findings

underscore the heterogeneity of senescent tumor cells and association

with poor prognosis and an immunosuppressive TME, providing

insights into the mechanistic underpinnings of CSS in colorectal

cancer progression.
CSS expression is negatively correlated
with low T cell infiltration and antitumor
function

To investigate the influence of CSS on the TME, we conducted

an analysis of scRNA-seq data from colorectal cancer. Our analysis

revealed a markedly higher proportion of T cells in CSS-low tumors
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FIGURE 3

The identification of senescence related genes by hdWGCNA analysis. (A) Scale-free topology model selection aligns with minimal soft power
threshold, ensuring network adherence to scale-free characteristics. (B) Co-expression network construction via optimal soft thresholding, followed
by gene module clustering and module identification. (C) Metacell signatures and module-trait co-expression patterns derived using hdWGCNA.
(D) Depiction of module activities across various macrophage clusters. (E) Gene scores calculated via UCell algorithm to quantify module gene
expression levels. (F) kME calculations in co-expression network analysis to identify hub genes within modules. (G) Pearson correlation analysis
assesses module intercorrelations. (H) Illustration of module activity across seven distinct clusters. (I) Identification of core genes within each
module. (J) Highlighting enriched biological processes within individual modules.
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compared to CSS-high tumors (Figures 6A, B). Following the

isolation of T cell populations, we employed dimensionality

reduction and clustering techniques to comprehensively annotate

T cell clusters according to canonical marker expression. Within the

T cell compartment, we identified 10 distinct subpopulations,

including central memory T cells (Tcm), effector T cells (Teff),
Frontiers in Immunology 09
exhausted T cells (T_exha), regulatory T cells (Treg), naïve T cells

(Naïve_T), senescent T cells (T_sene), stem-like T cells (T_stem),

natural killer T cells (NKT), adipose-resident T cells (adip_T), and

proliferating T cells (T_proli). Notably, CSS-low tumors exhibited a

significant enrichment of Teff cells (Figures 6C–E). To characterize

the functional activation of Teff cells, we analyzed their effector
FIGURE 4

Machine learning approaches to discern prognostic senescence-associated gene signatures. (A) Ensemble machine learning algorithms employed
for optimal prognostic model determination. (B–D) RSF analysis utilized to pinpoint critical genes associated with prognosis. (E) TCGA training
dataset assesses the prognostic and predictive capabilities of the identified senescence gene set. (F–H) Validation of the senescence gene set’s
prognostic and predictive performance on colon cancer sequencing data from the GEO database.
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FIGURE 5

Analysis of cellular senescence heterogeneity and immunophenotyping. (A) Heatmap illustrating the heterogeneity among senescent cells. (B) GO
analysis depicting enriched biological processes in MP2. (C) Typing modules from NMF analysis and determination of the optimal K value.
(D) Prognosis of patients across various clusters. (E) Microenvironment scoring analysis. (F) Expression analysis of immune-related genes. (G) Analysis
of immune cell infiltration. (H) Interaction network of core genes. (I) Enriched signaling pathways or biological processes of differentially expressed
genes. *, P < 0.05, **, P < 0.01, ***, P < 0.001, *****, P < 0.00001.
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molecule profiles, revealing significant upregulation of cytotoxic

mediators (GZMH, GZMB, IFNG, and PRF1) in CSS-low tumors

(Figures 6F–J). GSEA analysis of Teff-specific signatures showed

strong enrichment of T cell-mediated immune response pathways,

particularly those associated with T cell receptor signaling, immune

response activation through surface receptor signaling, antigen

recognition-mediated signaling, and immunomodulatory surface

receptor signaling (Figure 6K). These findings collectively indicate

that reduced CSS expression promotes T cell infiltration and

potentiates their antitumor functionality within the TME,

highlighting its role in shaping immunologically active

tumor microenvironments.
CSS inhibits CD8+ T cell activation by
suppressing tumor antigen presentation
signaling

To uncover the molecular underpinnings through which CSS

modulate T cell-driven antitumor immune responses, we conducted

cell-cell communication analysis utilizing scRNA-seq data derived

from colorectal cancer samples. The analysis revealed that reduced

CSS expression correlates with increased frequency and intensity of

intercellular interactions within the tumor microenvironment

(Figure 7A). Specifically, diminished CSS expression was found to

significantly enhance the interaction between tumor cells and T

cells (Figures 7B, C). Signal flow analysis further demonstrated that

suppression of CSS robustly augments MHC-I signaling, a critical

pathway for CD8+ T cell activation. Enhanced MHC-I signaling in

tumor cells promotes the activation and functional maturation of

CD8+ T cells, thereby facilitating their cytotoxic potential against

tumor cells (Figures 7D–F). In vitro, palbociclib-induced cellular

senescence was modeled in HCT116 cells. Comparative analysis

revealed a significant downregulation of MHC class I expression in

senescent cells relative to control groups (Figure 7G). To identify

the molecular determinants underlying this process, we conducted

ligand-receptor interaction analysis, which revealed that low CSS

expression induces the upregulation of HLA-A/B/C/E ligands in

tumor cells. These ligands engage with CD8A on T cells, driving

their activation and potentiating antitumor responses (Figure 7H).

Moreover, in the CSS-low tumor microenvironment, CD8A

expression on T cells was substantially elevated, and the HLA-A/

B/C-E-CD8A interaction emerged as the most pronounced ligand-

receptor axis (Figures 7I, J). Collectively, these results imply that

reduced CSS expression potentiates antitumor immunity by

upregulating MHC-I signaling in tumor cells, leading to enhanced

activation and functional efficacy of CD8+ T cells.
High CSS expression is negatively
correlated with immunotherapy response
in cancer patients

To evaluate the association between CSS and clinical outcomes

in immunotherapy-treated cancer patients, we conducted
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comprehensive analyses using the IMvigor210 cohort and the

TIDE database. Our findings revealed that elevated CSS

expression correlated markedly with adverse prognosis in the

IMvigor210 cohort (Figure 8A). Our analysis revealed

significantly higher CSS expression levels in immunotherapy non-

responders (SD/PD) compared to responders (Figure 8B).

Integration of TCGA colorectal cancer sequencing data with

TIDE immunotherapy datasets demonstrated significantly lower

response rates among patients with elevated CSS expression.

Notably, colorectal cancer patients receiving anti-PD1 therapy

exhibited superior treatment responses when CSS expression was

low (Figures 8C, D). Validation using melanoma data from TIDE

revealed that key CSS-associated molecules (CD24, HSPB1,

SLC25A5) profoundly influenced immunotherapy outcomes.

Patients demonstrating strong CTL infiltration showed improved

clinical responses when these molecules were downregulated,

whereas their overexpression negated the therapeutic benefit

(Figures 8E–G). These findings collectively suggest that high CSS

expression may attenuate CTL-mediated anti-tumor immunity,

thereby compromising immunotherapy efficacy. Moreover,

melanoma patients receiving immune checkpoint blockade (ICB)

therapy with high expression of CD24, HSPB1, and SLC25A5 also

had a poor prognosis (Figure 8H). In summary, our findings

indicate that elevated expression of CSS is strongly associated

with diminished responsiveness to immunotherapy and a

heightened risk of poor prognosis in patients receiving

ICB treatment.
Blocking CD24 inhibited malignant
phenotypes of tumor cells

In our investigation of senescence-associated signatures in

colorectal cancer, CD24 emerged as the most critically prioritized

gene, exhibiting the highest importance score (Figure 4D). To

dissect its functional contribution to malignant progression, we

engineered CD24-knockdown HCT116 cell lines via shRNA-

mediated silencing, confirmed by significant CD24 protein

reduction through western blot and flow cytometric analyses

(Figures 9A, B). Subsequent functional characterization revealed

multifaceted oncogenic roles of CD24: its depletion markedly

suppressed proliferative capacity, as evidenced by diminished

CCK8 absorbance and reduced KI67-positive subpopulations

(Figures 9C, D), while concurrently impairing clonogenicity

(Figure 9E) and migration/invasion potentials in transwell, wound

healing, and Matrigel assays (Figures 9F–H). Furthermore, CD24

deficiency substantially elevated apoptotic rates, validated by

Annexin V/PI staining and TUNEL assays (Figures 9I, J).

Furthermore, CD24 knockdown in tumor cells markedly

suppressed the expression of the senescence marker P21

compared with control cells (Figure 9K). Collectively, these

findings identify CD24 as a pivotal regulator within the CRC

senescence network, coordinating tumor progression through

concurrent enhancement of proliferative capacity, metastatic

potential, and apoptosis resistance.
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FIGURE 6

The effect of CCS in the TME of colorectal cancer. (A) UMAP plot showing the cell clusters between CSSlow and CSShigh. (B) Bar graphs showing the
ratio of different cell types in CSSlow and CSShigh clusters. (C) Scatter plot of average expression for cluster markers, with corresponding cell types
indicated. (D) Volcano plot showing the Log2-Fold Change of differentially expressed genes between various T cell subsets. (E) UMAP plot illustrating
the distribution of T cell subsets. (F) Bar graphs showing the ratio of different T cell subsets between CSSlow and CSShigh clusters. (G) Heatmap
displaying the percentage difference in gene expression across various T cell subsets. (H–K) Violin plots depicting the expression levels of GZMH,
GZMB, IFNG, and PRF1 in Teff clusters of samples with CSSlow and CSShigh.
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FIGURE 7

Analysis of cell-cell interactions and signaling pathways in the tumor microenvironment. (A) Bar graph showing the number of interactions and
interaction strength between different cell types. (B) Network diagram illustrating the number of interactions among various cell types. (C) Heatmaps
comparing the number of interactions and communication probabilities between cell types in CSSlow and CSShigh states. (D) Bar graph depicting the
relative information flow of ligand-receptor interactions in CSSlow and CSShigh states. (E) Heatmaps showing MHC-I signaling in CSSlow and CSShigh

states across different cell types and sources. (F) Network diagram of the MHC-I signaling pathway, indicating interactions between various cell types
in CSSlow and CSShigh states. (G) Flow cytometry analysis showing the MHCI expression in HCT116 cells treated with distinct concentration of
palbociclib. (H) Dot plot showing the ligand-receptor interactions. (I) Violin plot depicting the ligand-receptor interactions in distinct cell clusters
between CSSlow and CSShigh states. (J) Bar graph illustrating the contribution of each L-R (ligand-receptor) pair to the overall signaling. **, P < 0.01,
***, P < 0.001.
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Afatinib targeting CSS to promote growth
inhibition of senescent tumor cells

To identify therapeutic agents targeting the CSS in COAD, we

integrated transcriptomic profiles from the TCGA-COAD dataset

with drug sensitivity data from the CTRP and PRISM databases.

This multi-database computational approach prioritized afatinib as

a candidate with potential CSS-targeting activity (Figures 10A–D).
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We validated the effects on senescent tumor cells using palbociclib-

induced senescence models in HCT116 and SW480 colorectal

cancer cell lines. Flow cytometry confirmed efficient senescence

induction, as evidenced by increased P21 expression (senescence

marker) and decreased KI67 levels (proliferation marker)

(Figures 10E–H). While afatinib showed negligible cytotoxicity in

non-senescent cells at 50–100 nM concentrations, it displayed

significant dose-dependent anti-proliferative and pro-apoptotic
FIGURE 8

The correlation between CCS expression and immunotherapy response. (A, B) Analysis of the immunotherapy cohort IMvigor210 to assess the
influence of CSS on patient prognosis and response to immunotherapy. (C) Utilization of the TIDE database to evaluate the effect of CSS on immune
responses in patients with colon cancer. (D) Heatmap demonstrating the correlation between CSS and response to immunotherapy.
(E, F) Examination of the impact of key gene expression within CSS on patient prognosis mediated by CTL (cytotoxic T lymphocytes). (H) Survival of
cancer patients treated with ICB, stratified by gene expression.
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effects selectively in senescent tumor cells (Figures 10I–L). This

selective vulnerability of senescent cells to afatinib underscores the

therapeutic potential of CSS-targeted strategies in modulating the

TME. Collectively, these findings position afatinib as a promising

senolytic agent capable of selectively eliminating therapy-induced

senescent tumor cells, thereby hindering tumor progression.
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Discussion

Colorectal cancer continues to impose a significant global

health burden, with limited effective therapeutic options for many

patients (8, 26). This study identifies CSS, specifically centered on

CD24, as a significant predictor of patient prognosis and response
FIGURE 9

Blockade of CD24 significantly inhibited malignant phenotypes of tumor cells. (A) Western blot analysis representing the CD24 expression. (B) Flow
cytometry analysis showing the CD24+ cells ratio. (C) CCK-8 assay showing the proliferation of HCT116 cells. (D) Flow cytometry analysis illustrating
the Ki67 expression. (E, F) Cell proliferation (E) and migration (F) of HCT116 cells. (G, H) Analysis of invasion (G) and wound healing assay (H).
(I, J) Flow cytometry (I) and TUNEL staining (J) showing the ratio of cell apoptosis. (K) Flow cytometry analysis showing the P21 expression in shNC
and shCD24 HCT116 cells. **, P < 0.01, ***, P < 0.001, ****, P < 0.0001.
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FIGURE 10

Afatinib promotes apoptosis in senescent tumor cells by targeting CSS. (A) Correlation analysis showing the correlation between CSS and the various
compounds in the CTRP database. (B) Box plots representing the estimated AUC (Area Under Curve) values. (C) Scatter plot depicting the correlation
coefficient between CSS and compounds in the PRISM database. (D) Box plots illustrating the estimated AUC values in response to various
compounds in the PRISM database. (E, F) Flow cytometry histograms comparing the relative MFI (Mean Fluorescence Intensity) of P21 and KI67 in
SW480 and HCT116 cells treated with vehicle or palbociclib. (G) Flow cytometry histograms showing the relative MFI of KI67 in SW480 cells treated
with vehicle or palbociclib. (H) Flow cytometry histograms comparing the relative MFI of KI67 in HCT116 cells treated with vehicle or palbociclib.
(I, J) Bar graphs representing relative OD (Optical Density) values in SW480 (I) and HCT116 (J) cells treated with palbociclib and varying
concentrations of afatinib. (K, L) Flow cytometry histograms showing the proportion of apoptotic cells in SW480 (K) and HCT116 (L) cells treated
with palbociclib and different concentrations of afatinib.
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to immunotherapy in CRC. This finding provides a novel

framework for deciphering the complex mechanisms

underpinning CRC progression and therapeutic resistance. Our

data robustly demonstrate that elevated CSS levels correlate with

diminished T cell infiltration and a functionally impaired CD8+ T

cell compartment within the TME. This association strongly

suggests a pivotal role for CSS in facilitating immune evasion and

driving tumor progression in CRC. Mechanistically, CSS attenuates

the cytotoxic potential of CD8+ T cells by suppressing tumor cell

antigen presentation via the MHC-I signaling pathway. These

observations collectively highlight the therapeutic potential of

targeting CSS to enhance the efficacy of immunotherapeutic

strategies for CRC patients. The identification of CSS as both a

prognostic and predictive biomarker carries considerable clinical

significance. It enables the stratification of CRC patients into

distinct risk categories, thereby informing tailored therapeutic

approaches. For instance, patients exhibiting high CSS expression

may derive benefit from interventions targeting the MHC-I

pathway or modalities designed to augment T cell infiltration and

function within the TME. Furthermore, a prognostic model

incorporating CSS could facilitate the monitoring of disease

progression and prediction of treatment outcomes, paving the

way for more personalized and effective clinical management.

Beyond its established roles in immune modulation, CD24

exhibits multifaceted functions relevant to cancer biology. In the

context of oncogenesis, CD24 is frequently overexpressed and

contributes critically to tumor progression by promoting cancer

cell proliferation, migration, invasion, metastasis, and the

maintenance of stem-like properties (27, 28). Notably, CD24 has

also been implicated in modulating cellular senescence, a state of

stable growth arrest often acting as a tumor-suppressive barrier.

While CD24 expression can be induced in some senescent contexts,

it paradoxically also plays a role in enabling certain cancer cells to

evade senescence or modulate the SASP, thereby influencing the

tumor microenvironment (29). Crucially, our study establishes a

direct link between CD24 and the induction of a senescence-like

phenotype in tumor cells. We demonstrate that elevated CD24

expression correlates with and functionally contributes to cellular

senescence within CRC, a novel finding that expands our

understanding of CD24’s oncogenic mechanisms. Consequently,

CD24 emerges not only as a biomarker but also as a promising

direct therapeutic target.

Our investigation identified afatinib as a pharmacological

agent capable of effectively targeting and inhibiting CSS,

suggesting its potential utility in CRC treatment regimens.

Afatinib’s documented capacity to inhibit senescent cell

proliferation and induce apoptosis provides a compelling

mechanistic rationale for its application in targeting CSS-related

pathways, particularly given our novel finding linking CD24 to

senescence induction in CRC. Future research priorities include

evaluating the efficacy of afatinib and analogous agents in robust

preclinical CRC models, both as monotherapies and in rational

combination strategies with established immunotherapies.
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Furthermore, the interplay between CSS-driven senescence,

immune evasion, and therapeutic response warrants deeper

mechanistic exploration. Despite these promising insights,

limitations of the current study must be acknowledged. The

sample size employed for CSS identification and initial

validation was relatively modest, necessitating confirmation in

larger, independent patient cohorts. Additionally, the precise

mo l e cu l a r mechan i sms by wh i ch CSS orche s t r a t e s

immunotherapy resistance and influences patient prognosis are

likely more intricate than currently delineated, demanding further

comprehensive investigation.

In conclusion, this study establishes CSS as a critical regulator of

immune evasion, tumor progression, and cellular senescence in

CRC, functioning as a valuable prognostic/predictive biomarker

and a viable therapeutic target. The identification of afatinib as a

CSS inhibitor offers a tangible translational avenue. These findings

collectively lay a robust foundation for future research aimed at

developing innovative strategies to improve the management and

outcomes of CRC patients.
Conclusion

In summary, our findings establish CSS as a dual-purpose

prognostic indicator for predicting both clinical outcomes and

immunotherapy resistance in colorectal cancer patients. Mechanistic

investigations reveal that CSS promotes immunosuppression primarily

by impairing CD8+ T-cell infiltration and cytotoxic function, mediated

through downregulation of MHC class I antigen presentation. Notably,

pharmacological intervention using afatinib effectively inhibited CSS

activity, exhibiting robust antitumor effects through targeted

elimination of senescent CRC cells via apoptosis induction and

proliferation blockade, thereby offering a viable therapeutic approach

to overcome senescence-mediated immune escape.
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