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Multi-omics analysis untangles
the crosstalk between intratumor
microbiome, lactic acid
metabolism and immune status
in lung squamous cell carcinoma
Xun Qiu and Dan Li*

Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China
Introduction: Cancer development is intricately linked with metabolic

dysregulation, including lactic acid metabolism (LM), which plays a pivotal role

in tumor progression and immune evasion. However, its specific implications in

lung squamous cell carcinoma (LUSC) remain unclear.

Methods: We used numerous datasets encompassing bulk and single-cell

transcriptome, genome, intratumor microbiome, and digital pathome to

systematically investigate the LM patterns in LUSC. Multiple machine learning

algorithms were used to generate the LUSC classification. Histopathology

image-based deep learning model was used to predict the classification.

Casual mediation analysis was conducted to uncover the association among

intratumor microbiota, LM, and immunity.

Results: Two LM-based subtypes were discovered endowed with distinct clinical

outcomes and biological peculiarities, such as overall survival, somatic

mutations, and intratumor microbiota structure. Moreover, the histopathology

image-based deep learning model accurately predicted our LM-based LUSC

taxonomy, significantly improving its clinical utility. Machine learning models

based on seven LM-related genes (CHEK2, LIPT1, TUFM, NDUFA10, AGK,

PNPLA2, and GFM1) accurately predicted immunotherapy outcomes for

multiple cancer types, including LUSC, and outperformed other currently

known biomarkers. Furthermore, mediation analysis identified potential

association pathways involving tumor-resident microbes, LM-related gene

signatures, and antitumor immune cells.

Discussion: Overall, this study advanced the understanding of the relationship

between LM patterns and LUSC tumor biology, as well as its potential clinical

implications, which might advance the tailored management of LUSC.
KEYWORDS
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Introduction

Lung cancer is the leading cause of cancer-related deaths, with

an estimated 1.0 million fatalities in both the USA and China in

2022 (1). Among non-small cell lung cancers (NSCLC), lung

squamous cell carcinoma (LUSC), the second most common

subtype, accounts for approximately 30% of all cases (2, 3).

Patients with LUSC have limited treatment options beyond

chemotherapy, primarily due to the absence of approved genetic

alterations that can be targeted with specific therapies (4, 5).

Immune checkpoint inhibitor (ICI) therapy, which targets PD-1/

PD-L1 and/or CTLA-4, has significantly enhanced the survival rates

of patients with LUSC (6, 7). The importance of stratifying patients

who are responsive to ICI therapy is highlighted by the bottlenecks

encountered in clinical practice, including a low response rate,

immune-related adverse events, both primary and acquired

resistance, as well as the economic burden associated with this

treatment (8).

Lactate secretion is widely recognized as a hallmark metabolic

feature of cancer, often termed the Warburg effect (9), which

describes cancer cells’ propensity to derive energy through

glycolysis even in aerobic conditions, leading to increased lactate

production. In the context of LUSC, lactic acid metabolism (LM)

and the resulting lactic acidosis within the TME play crucial roles in

shaping the tumor ecosystem. Lactate influences intracellular and

extracellular signaling pathways within tumor cells (10), enhancing

lactate shuttling, bolstering resistance to oxidative stress, and

promoting lactylation (11), a post-translational modification that

bridges metabolism and epigenetics. Moreover, lactate interacts

with various immune cell populations within the TME,

modulating processes such as cell differentiation, immune

responses, immune surveillance, and therapeutic efficacy (12–15).

The lactate shuttle, facilitating the exchange of lactate between

hypoxic and aerobic regions of the tumor, is pivotal for tumor

monitoring and adaptation to changing metabolic conditions (10).

The complex interplay between lactate and immune cells, as well as

stromal/endothelial cells, supports basement membrane

remodeling, epithelial-mesenchymal transition (EMT), metabolic

reprogramming, angiogenesis, and drug resistance, further

complicating the therapeutic landscape of LUSC (16, 17).

However, in LUSC, the regulatory role of LM on the TME,

particularly its immune components, remains poorly understood.

Growing evidence suggests that microbes can reside in tumor

cells and immune cells and influence the state of the TME (18, 19).

Lactic acid bacteria in the TME can alter tumor metabolism and

lactate signaling pathways, leading to therapeutic resistance, which

is expected to be a therapeutic target for various cancers (20).

Besides, one study discovered two subtypes based on lung-resident

microbial score endowed with distinct glycolysis-lactate patterns

and clinical outcomes (21). Gu at al., reported that in colorectal

cancer liver metastasis, enhanced lactate production by E. coli

promotes M2 macrophage polarization by inhibiting NF-kB
signaling, a process mediated through RIG-I lactylation (22).

However, considering the heterogeneity of LUSC and the

complex interaction between intratumor microbiome and host,
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the biological links among tumor-resident microbes, LM, and

tumor immunity have not been fully elucidated.

In this study, we hypothesized that tumor-resident microbes

regulate the expression pattern of LM-related genes, which further

affect tumor immunity. Thus, we aimed to investigate the potential

role of LM-related genes in biological peculiarities and clinical

outcomes of LUSC and to unravel the crosstalk pattern among

intratumor microbes, LM-related genes, and immunity.
Methods

Construction of the LM signature

First, 228 LM-related genes were collected from published

literature (23). Univariate Cox analysis was performed based on

the 228 LM-related genes to identify the overall survival (OS)-

related genes in TCGA-LUSC. Then, least absolute shrinkage and

selection operator (LASSO) regression was conducted to further

screen genes. Subsequently, Friends and random survival forest

(RSF) algorithms were employed to identify the top 10 genes of

importance, respectively. Last, an intersection was conducted to

obtain the final genes, called LM.Sig.
Data acquisition

In survival analysis, the transcriptome and clinical information

of LUSC samples from The Cancer Genome Atlas (TCGA) (https://

portal.gdc.cancer.gov/) were used to develop the prognostic model.

GSE73403 and GSE37745 from the Gene Expression Omnibus

(GEO) database (http://www.ncbi.nlm.nih.gov/geo/) were used to

independently validate the performance of the prognostic model.

GSE33479 was used to validate the expression of LM.Sig in tumor

and normal tissues.

In immune analysis, GSE126044, GSE135222, and GSE166449

were used to validate the association between the expression of

LM.Sig and immunotherapy efficacy. These three datasets were

combined and processed with batch correction with Combat

algorithm with the R package “sva”. To develop and rigorously

assess a robust LM.Sig-based classifier for predicting the response to

immunotherapy, we comprehensively collected 11 cohort datasets

consisting of pre-treatment samples treated with immune

checkpoint inhibitors (ICIs). The 11 cohorts included a total of

870 patients (308 responders, 729 non-responders) with 6 cancer

types, including glioblastoma (GBM, n = 1), renal cell carcinoma

(RCC, n = 1), non-small cell lung cancer (NSCLC, n = 3), skin

cutaneous melanoma (SKCM, n = 3), gastric adenocarcinoma

(STAD, n = 1), bladder urothelial carcinoma (BLCA, n = 3).

Regarding the treatment of ICIs, all cohorts were anti-PD-1

except one melanoma cohort was anti-CTLA4. The Combat

algorithm, implemented through the R package “sva”, was used to

remove the batch effects . Five of 11 cohorts , named

Hugo_SKCM_aPD1 (n=28), Kim_LUSC_aPD1 (n=27),

IMvigor210_BLCA_aPD1 (n=298), Zhao_GBM_aPD1 (n=34) and
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Kim_STAD_aPD1 (n=78), were utilized as the independent testing

dataset (n = 465). The others (n = 572) were randomly split into two

datasets, used as the training dataset (70%, n = 400) and validation

dataset (30%, n = 172). Supplementary Table 1 summarized the

detailed information on these ICI cohorts. Besides, GSE148071, a

single-cell RNA-sequencing (scRNA-seq) cohort consisting of

18 patients with lung adenocarcinoma (LUAD), 18 patients with

LUSC, and six patients with NSCLC, was used to investigate the

expression pattern of LM.Sig at the resolution of single-cell level.
Molecular subtyping, construction and
validation of the prognostic model

Multivariate Cox regression analysis was conducted based on

the expression of seven LM.Sig and OS for samples in TCGA-LUSC.

The formula for calculating the sample risk score was: risk score =

PNPLA2*0.0092-CHEK2*0.0239-LIPT1*0.1272-TUFM*0.0029-

NDUFA10*0.0152-AGK*0.0322-GFM1*0.0137. GSE73403 and

GSE37745 were utilized to independently validate the

performance of model. Samples were divided into two groups

(high- and low-risk) based on the median of risk score.

Subsequently, survival analysis was performed on these two

groups. In addition, the protein expression levels of LM.Sig in

lung tumor tissues and normal tissues were validated using

immunohistochemistry (IHC) staining images, which were

obtained from the human protein atlas (HPA) database (https://

www.proteinatlas.org/).
Immune landscape analysis

ESTIMATE algorithm was conducted to calculate the stromal

score, immune score, and tumor purity (24). The Tumor Immune

Dysfunction and Exclusion (TIDE) score, dysfunction, exclusion

and other immune-related indicators were calculated online (http://

tide.dfci.harvard.edu/) (25). 98 immune contexture signatures, 1314

immune-related genes, and gene signatures involving in seven steps

of antitumor immune cell were obtained from published literature

(26). Besides, TIMER (27), CIBERSORT (28), quanTIseq (29),

MCP-counter (30), xCell (31), and EPIC (32) were used to

estimate the abundance of various immune cells based on the

gene expression matrix. Besdies, the Gene Set Variation Analysis

(GSVA) score of LM-related genes was calculated with R

package “GSVA”.
Characterization of somatic mutations and
drug sensitivity analysis

To describe the somatic mutations in patients belonging to

various subtypes, MAF files of patients were obtained from the

TCGA database and subsequently analyzed and visualized utilizing

the R package “maftools” (33). The predicted half maximal

inhibitory concentrations (IC50) for 198 commonly used
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antitumor drugs in LUSC were computed using the R package

“oncoPredict” (34).
WSI-based deep-learning model: CLAM

Multiple-instance learning (MIL) represents a paradigm of

weakly supervised learning where data is organized into bags of

instances. Given the whole slide image (WSI)-level label (along with

annotated tumor regions of interest in the experiments), MIL

models possess the capability to predict labels for unseen WSIs by

considering the most predictive patches. Clustering-constrained-

attention multiple-instance learning (CLAM) is a recently

introduced, advanced MIL approach tailored specifically for

digital pathology, with its code accessible at https://github.com/

mahmoodlab/CLAM (35). Its attention mechanism enables the

model to automatically concentrate on representative patches.

The initial stage entails extracting features utilizing a ResNet50

model, which has been modified and pre-trained on the ImageNet

dataset. The first fully connected (FC) layer reduced the features

down to 512 dimensions, and the subsequent FC layer served as a

classifier, generating 2-class scores for each patch. A max-pooling

function was then employed on the “Cluster High” class to select the

top-1 patch. Subsequently, the scores of this patch were normalized

to WSI-level probabilities using the softmax function. For the

models investigated, training was performed using a five-fold

cross-validation strategy. For each fold, the dataset was randomly

partitioned into training (80% of cases) sets and validation (20%)

sets. Model performance was further evaluated using the area under

the ROC curve (AUC).

CLAM generates interpretable heatmaps, which provide users

with a clear visualization of how each tissue area within a WSI

contributes to the model’s predictions (35). By examining these

heatmaps, pathologists can discern which histological and

cytological features carry a high predictive weight. Additionally,

we used a previous pipeline to extract the texture features of each

WSI of TCGA-LUSC dataset, as detailed in the original article (36).
Construction and validation of the
machine-learning model for predicting the
ICI response

To evaluate the predictive accuracy of LM.Sig in predicting ICI

response, nine machine-learning techniques were utilized: Naive

Bayes (NB), AdaBoost Classification Tree (AdaBoost), Random

Forest (RF), extreme gradient boosting (xgbTree), recursive

partitioning (Rpart), k-Nearest neighbors (KNN), support vector

machine (SVM) model utilizing three kernel functions-linear

(svmLinear), polynomial (svmPoly), and radial basis function

(svmRadial). Nested cross-validation (CV) was employed as the

benchmarking strategy for these methods. The trained models’

performance was assessed using a validation dataset, with the

model exhibiting the highest AUC being chosen as the optimal

LM.Sig model for predicting ICI response. Subsequently,
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independent test datasets were employed to further evaluate the

performance of this optimal model.

Additionally, we compared the predictive capabilities of the

LM.Sig model against 10 previously established ICI response

models (Supplementary Table 2). This comparison encompassed

the validation set, the consolidated testing set, the KIM_STAD set,

the KIM_LUSC set, the Zhao_GBM set, the IMvigor210 cohort, and

the Hugo_SKCM set.
Single-cell RNA sequencing data
processing and analysis

scRNA-seq data analysis was carried out using the R package

“Seurat” (v5.1.0) (37). Cells with more than 5,000 genes or fewer

than 200 genes, or more than 20% of mitochondrial genes were

removed. The remaining cells were utilized for downstream

analysis. The FindVariableGenes function was employed to

identify 2,000 genes with high variability. For dimensionality

reduction and clustering, the RunPCA and RunUMAP functions

were utilized. The optimal number of principal components (PCs),

determined by the inflection point observed in the ElbowPlot

function, was set to 20. Based on the clustering results, cell types

were annotated using a combination of the CellMarker database

(http://bio-bigdata.hrbmu.edu.cn/CellMarker/) and previously

reported gene markers. The FindAllMarkers function was used to

investigate the key genes of each cell subpopulation (min.pct=0.25,

logfc.threshold=0.25). The uniform manifold approximation and

projection (UMAP) analysis was conducted using Seurat’s built-in

RunUMAP function. To calculate the metabolic scores for diverse

clusters of cell subtypes, the R package “scMetabolism” was

employed, utilizing the single-sample gene set enrichment

analysis (ssGSEA) method based on the Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway.
Mediation analysis

Mediation analysis seeks to assess the process by which an

exposure influences an outcome, via a mediator, thereby facilitating

the exploration of potential mechanisms underlying the effect of

exposure on the outcome. In this study, the mediation analysis

focused on the LM-related intratumor microbiota, LM.Sig, and

immune cell populations. We first checked whether the intratumor

microbial features were associated with the LM.Sig using Spearman

correlation (P < 0.05). Next, mediation analysis was carried out with

interactions between mediator and outcome using the mediate

function from R package “mediation” to infer the mediation effect of

LM.Sig and the intratumor microbiota on tumor immune infiltration.
Intratumor microbiome analysis

The intratumor microbiome abundance data was obtained at

https://github.com/knightlab-analyses/mycobiome provided by
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Narunsky-Haziza et al. (38). Narunsky-Haziza et al. systematically

analyzed tissue and other samples from tens of thousands of

patients with 35 types of cancer, revealing the composition and

distribution of microbes in different tumor types. The authors

included data from four cohorts: the WIS cohort of the

Weizmann Institute of Science, TCGA, Hopkins cohort, and

UCSD cohort. In order to control the pollution caused by

environment and operation process, for the WIS data, the authors

selected 104 paraffin samples and 191 negative controls. For the

TCGA data, the authors used computational software to filter the

data in various ways, such as comparing the results with those of

WIS, the HMP project, and more than 100 other literatures. In our

study, we used the intratumor microbiome abundance of samples in

TCGA-LUSC.
Statistical analysis

All tasks related to data processing, statistical analysis, and

plotting were performed using R software version 4.4.1. The

Kaplan-Meier (K-M) method was used to estimate the OS among

subtypes, and the log-rank test was applied to compare these

estimates. Mantel test and Procrustes test were performed to

examine the correlation between antitumor immune cycles-

related genes and LM-related genes. Wilcoxon test was conducted

to compare the difference of continuous variables between the two

groups. Fisher exact test was utilized to perform statistical analysis

on categorical variables. False discovery rate (FDR) test was

employed to adjust the p-values, and Spearman correlation

analysis was used to determine the correlation. All statistical

p‐values were two‐sided. Statistical significance was set at P < 0.05.
Results

Construction of molecular subtypes based
on the LM-related genes

First, 228 LM-related genes were obtained from previous

literature (23). Functional enrichment showed that these genes

were mainly involved in various metabolism- and energy

synthesis-related pathways, such as citric acid cycle (TCA cycle),

adenosine triphosphate (ATP) biosynthetic process and pyruvate

metabolism (Supplementary Figure 1). We performed univariate

Cox regression analysis based on the expression of LM-related

genes and OS of patients in TCGA-LUSC (Figure 1a). Results

showed that a total of 43 genes (43/228, 18.86%) were

significantly associated with OS. Subsequently, lasso regression

was used to further screen the genes, and 15 genes were retained

(Figures 1b, c; Supplementary Figure 2). To further identify key

genes, RSF was conducted on the 15 LM-related genes, and

identified the top 10 characteristic genes, including TRMT5,

CHEK2, LIPT1, SLC16A3, TUFM, NDUFA10, AGK, PNPLA2,

SLC5A8 and GFM1 (Figures 1d, e). Additionally, the Friends

algorithm selected 10 critical genes: GFM1, PDHX, RRM2B, AGK,
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LIPT1, CHEK2, HTRA2, TUFM, PNPLA2 and NDUFA10

(Figure 1f). The intersection results from these two algorithms

highlighted seven core genes (LM.Sig): GFM1, AGK, LIPT1,

CHEK2, TUFM, PNPLA2 and NDUFA10 (Figure 1g).

Then, we carried out multivariate Cox regression analysis based

on the expression of the LM.Sig and OS in TCGA-LUSC. The risk

score of each patient was calculated (the computational formula is

provided in the methods) and patients were stratified into two

groups based on the median of risk score showing significant

difference in OS (Figure 1h). Furthermore, GSE73403 and

GSE37745 were used to independently validate the performance
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of our prognostic model (Figures 1i, j). We also investigated the

association of the LM.Sig with clinical information, and the results

showed that gene PNPLA2 correlated with advanced tumor

progression and adverse prognosis, while the other six genes

exhibited the opposite trend (Figure 1k). The risk score was

significantly associated with the vital status and N stage

(Supplementary Figure 3). Moreover, PNPLA2 showed an

overexpression in normal tissues than that in tumor tissues,

whereas all the other genes, except LIPT1, were up-regulated in

the tumor tissues (Figure 1l). An external validation also verified

these results (Supplementary Figure 4). Correlation analysis showed
FIGURE 1

Development of prognostic model based on the LM-related genes. (a) The pie chart showing the number and proportion of LM-related genes
significantly associated with OS performed by univariate Cox regression in TCGA-LUSC. (b, c) Lasso further screening the prognostic genes.
(d, e) RSF identifying the top 10 most important genes based on the result of lasso. (f) Friends analysis identifying the top 10 most important genes
based on the result of lasso. (g) The intersection of the results of RSF and Friends analysis. K-M curves of OS stratified by risk score in (h) TCGA-
LUSC, (i) GSE73403, and (j) GSE37745. Log-rank test was used to generate the p values. (k) Heatmap showing the association between the
expression of genes in LM.Sig and risk score, as well as some clinical indicators in TCGA-LUSC. (l) Boxplot showing the differences in the expression
of genes in LM.Sig between tumor and normal tissues. Wilcoxon test was conducted to generate the p values. (m) Spearman correlation between
genes in LM.Sig. (n) Representative IHC staining images of CHEK2 and GFM1 in lung tumors and normal tissues. *P < 0.05, **P < 0.01, ***P < 0.001.
NS, not significant.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1603822
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qiu and Li 10.3389/fimmu.2025.1603822
that the expression of PNPLA2 was negatively correlated with other

genes, while other genes were positively correlated (Figure 1m).

Besides, we also validated the expression levels of LM.Sig using IHC

staining, and the results indicated that the expression levels of

CHEK2 and GFM1 were downregulated in normal lung tissues

compared to tumor tissues (Figure 1n). Validation of other genes

were shown in Supplementary Figure 5.

Collectively, we successfully develop a robust machine-learning

model for predicting LUSC prognosis based on the LM.Sig, which

can facilitate the stratified management of patients with LUSC.
Immune landscape of the different
molecular subtypes

Considering the link between LM and the tumor immune

microenvironment (TIME) (39, 40), we further investigated the

relationship between the LM.Sig and immune landscape in LUSC.

Procrustes analysis demonstrated significant association of the

expression of LM-related genes with antitumor immune cycle

(Supplementary Figure 6a; R2 = 0.48, P = 0.001). Meanwhile,

substantial correlations were detected between the risk score and

all steps of antitumor immune cycle (Supplementary Figure 6b). We

also observed that the risk score was significantly positively

correlated with the stromal and immune score, and was

significantly negatively correlated with the tumor purity

(Figures 2a–c). Besides, we calculated various immune escape-

related scores, including T cell dysfunction score, T cell exclusion

score, TIDE, and so on (Figure 2d). The risk score was positively

correlated with the immune escape capacity of tumors and

negatively correlated with the abundance of cell types that limit

T cell infiltration in tumors, suggesting that ICI efficacy may be poor

in the high-risk group. Using six computational algorithms,

including CIBERSORT, EPIC, MCP-counter, TIMER, quanTIseq,

and xCell, we comprehensively analyzed immune cell composition

(Figure 2e). Consistent with previous results, the high-risk group

exhibited elevated tumor immune infiltration compared to the low-

risk group. However, we also observed significantly higher

abundance of M2 macrophages and regulatory T cells (Tregs) in

the high-risk group, which could underlie the gloomy prognosis in

this group (41, 42). Moreover, when considering 98 immunity

contexture signatures, we observed that the majority of the genes

were significantly associated with the risk score (Figure 2f). A

similar trend was observed for the 1,314 immune-related genes

and 228 LM-related genes.

We also explored the relationship between the LM.Sig and

TIME characteristics. All the genes in LM.Sig were strongly

correlated with stromal and immune score, and tumor purity

(Figure 2g; Supplementary Table 3). Interestingly, PNPLA2 was

positively correlated with stromal and immune score, and was

negatively correlated with tumor purity. The other six genes

showed the opposite correlation trends. Additionally, we also

observed the close relationship between the LM.Sig and immune

escape-related indicators, chemokines, antitumor immune cycle,

immune checkpoint genes (ICGs), immune contexture signatures,
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and immune infiltration (Figure 2h). Consistently, the association

of PNPLA2 with these immune parameters and the association of

other genes with these parameters were opposite.

Additionally, we evaluated the relationship between LM.Sig and

ICI outcomes. Three ICI cohorts of lung cancer, GSE126044,

GSE135222 and GSE166449, were combined, including 20

responders (R) and 45 non-responders (NR). First, we observed

significant divergence in the expression of LM-related genes

between R and NR (Figure 2i; PERMANOVA test, P = 0.001).

The risk score in the NR subgroup was significantly higher than that

in the R subgroup (Figure 2j; Wilcoxon test, P < 0.001). In the low-

risk group, the proportion of R was significantly higher compared to

the high-risk group (Figure 2k; Fisher’s exact test, P = 0.00269). The

expression of LM.Sig was significantly different between R and NR

(Figure 2l). Additionally, these results were further validated using

TCGA-LUSC cohort, where TIDE scores greater than 0 were

treated as NR and less than 0 as R (Figures 2m–p). To further

validate the potential of our prognostic indicators in pan-cancer

immunotherapy, we used seven independent ICI cohorts covering

BLCA, SKCM and other cancer types to assess the association

between risk scores and treatment outcomes. The results showed

that risk scores in the R subgroup were significantly lower than

those in the NR subgroup in all cohorts (Supplementary

Figures 7a–g).

Consequently, our results offer compelling evidence for a highly

negative correlation between LM.Sig and the effectiveness of tumor

ICI therapy. Specifically, higher LM.Sig-based scores are associated

with an decreased likelihood of ICI efficacy.
scRNA-seq analysis to assess the LM.Sig

We further verified our LM.Sig on the single-cell level using the

LUSC scRNA-seq data (GSE148071). The histological and molecular

phenotypes, as well as the treatment history were provided in

Supplementary Table 4. After undergoing multiple quality control

and filtering procedures, a total of 56,343 cells were assessed for their

transcriptomes. Thirteen major cell types, characterized by their

canonical cell markers, were identified and categorized as

proliferating cell types, epithelial cells (ciliated cells, basal cells and

alveolar cells), immune cell types (T cells, B cells, mast cells,

macrophages, natural killer (NK) cells and monocytes) and stromal

cell types (fibroblasts and endothelial cells) (Figure 3a). We observed

that multiple cell types showed significant heterogeneity and patient-

specific expression signatures (Figure 3b). For each cell type, five

marker genes were selected, and except epithelial cells, these marker

genes were detected to be widely expressed and prevalent within their

respective cell types (Figure 3c). We further characterized the functions

of different cell types by comparing pathway activities (Figure 3d).

Consistent with previous study (43), macrophages and monocytes

exhibited upregulation of various common pathways, such as pathways

involved in apoptosis and inflammatory response, as well as multiple

cell proliferation- and immune-related pathways.We also evaluated the

activity of multiple metabolism pathways in various cell types,

including glycolysis, pyruvate metabolism, glutathione metabolism
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FIGURE 2

Close relationship between LM.Sig and immune landscape in LUSC. Associations between the risk score and (a) stromal score, (b) immune score, as
well as (c) tumor purity. (d) The graph on the left showing the correlation between the risk score and immune-related indicators, and the heatmap
on the right showing the differences in these indicators between the high- and low-risk group. (e) Heatmap showing the differences in the
abundance of various immune cells between the high- and low-risk group. The row annotations indicate the method of calculating immune cell
abundance and the significance level of the difference in immune cell abundance between the two groups, respectively. The column annotations
represent the grouping and risk score of the sample, respectively. (f) Pie charts showing the proportions of signatures exhibiting significant difference
between the two groups in 98 immune contexture signatures, 1,314 immune-related genes, and 228 LM-related genes, respectively. (g) The
correlation between the expression of seven genes in LM.Sig and stromal score, immune score, as well as tumor purity. (h) Heatmap showing the
Spearman correlation between the 7-genes and multiple immune-related measurements, including immune escape-related indicators, chemokines,
GSVA score of 7-steps of antitumor immune cycle, immune checkpoint genes (ICGs), immune contexture signatures, and immune infiltration
profiles. (i–l) The correlations between the ICI response and the LM-related genes, as well as risk score in combined cohorts of GSE126044,
GSE135222, and GSE166449. (m–p) The correlations between the ICI response (estimated by TIDE) and the LM-related genes, as well as risk score in
TCGA-LUSC. * P < 0.05, ** P < 0.01, *** P < 0.001.
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and oxidative phosphorylation. Elevated ssGSEA enrichment scores of

these metabolism pathways were detected in proliferating cells and

epithelial cells (Supplementary Figures 8a–e).

Furthermore, we applied our prognostic model to this single-

cell dataset, dividing patients into two groups. Analysis of single-cell

resolution further validated our previous results that the two groups

of patients exhibited substantial differences at the level of immune

infiltration (Figure 3e; Chi-square test, P < 2.2e-16). Patients in the

high-risk group harbored lower proportion of epithelial cells and

higher proportion of macrophages compared with the low-risk

group. Additionally, we characterized the expression of the

LM.Sig in various cell types (Figures 3f–l). Interestingly, we did

not observe a clear bias in the expression of these genes in specific

cell types, and similarly, a homogeneous risk score across all cell

types was also observed (Figure 3m).
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Distinct driver genes and activated
biological pathways of LM-based subtypes

Next, we sought to investigate the related biological processing

of LM.Sig using TCGA-LUSC cohort. Among all mutations present

in the LM.Sig, missense mutations were the most prevalent type

(Supplementary Figure 9). Elevated proportion of patents in the

low-risk group had alterations on the driver genes TP53 (88%) and

TTN (78%) compared with the high-risk group (Figures 4a, b). We

detected a significantly higher tumor mutational burden (TMB) in

the low-risk group than that in the high-risk group (Figure 4c;

Wilcoxon test, P < 0.001), confirming that patients in the low-risk

group were more likely to benefit from immunotherapy. Distinct

patterns of gene alteration co-occurrence and mutual exclusivity

were observed between the two groups (Figure 4d). There were
FIGURE 3

Evaluation of the LM.Sig at the single-cell resolution. (a) UMAP plot of all cells, colored by their 13 major cell types. (b) UMAP plot of 56,343 cells
from 42 patients, colored by patients. (c) Heatmap showing the expression of five marker genes in each cell type. The top three significant marker
genes of each cell type were labeled on the heatmap. (d) Differences in pathway activities scored in each cell type by GSVA. The scores of pathways
are normalized. (e) The difference in the proportion of the 13 cell types between in the high- and low-risk groups. The chi-square test was used to
generate the P value. (f–l) UMAP plot of the identified cells colored by the expression of LM.Sig. (m) UMAP plot of the identified cells colored by the
risk score.
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cooperative relationships between the high frequency mutated

genes in the two groups. Of these, significant co-alterations of

TP53 and RYR2, TP53 and CSMD3, as well as TP53 and TTN were

observed only in the high-risk group. SPTA1 alterations co-
Frontiers in Immunology 09
occurred at a significant frequency with MUC16 and RYR2 only

in the low-risk group. Additionally, we observed that TP53, TTN,

RYR2, HCN1, BAI3, and CNTN4 mutation combined with the

LM.Sig-based risk score exhibited distinct risk layers (Figures 4e–j).
FIGURE 4

Different driver genes and biological pathways in LM.Sig-based subgroups. Top 15 mutated genes in the (a) high- and (b) low-risk groups based on
TCGA-LUSC cohort. (c) Boxplot showing the difference in the TMB value between the two groups. Wilcoxon test was used to generate the P value.
***P < 0.001. (d) Co-occurrence and mutual exclusivity of top 15 mutated genes in the two groups. *P < 0.05. (e) Survival curve showing different
risk layers based on risk score and TP53 mutation status. (f) Survival curve showing different risk layers based on risk score and TTN mutation status.
(g) Survival curve showing different risk layers based on risk score and RYR2 mutation status. (h) Survival curve showing different risk layers based on
risk score and HCN1 mutation status. (i) Survival curve showing different risk layers based on risk score and BAI3 mutation status. (j) Survival curve
showing different risk layers based on risk score and CNTN4 mutation status. (k) Barplot showing the enrichment results of 50 cancer hallmarkers.
(l) GSEA showing the up- and down-regulated pathways in the two groups.
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Then, we analyzed the cancer-related patterns in LM.Sig groups.

GSEA analysis indicated that the two groups showed remarkable

difference in the activated cancer pathways (Figure 4k), such as cell

cycle-related pathways including E2F targets, G2M checkpoint and

mitot ic sp indle pathways . Meanwhi le , ac t iva t ion of

immunomodulatory-related pathways also differed between the

two groups, including interferon-gamma response and IL6-JAK-

STAT3 signaling. Specifically, compared to the low-risk group, the

high-risk group had the suppressed cell cycle pathways and

activated EMT, which may explain the poor prognosis of this

group (Figure 4l; Supplementary Figure 10).
Drug sensitivity of LUSC subtypes

The aforementioned results have deciphered two subtypes with

distinct characters, providing directions to subtype‐specific targeted

inventions. To better enhance clinical treatment, drug prediction

was incorporated for the identification of promising therapeutic

agents in two subtypes. Using the “oncoPredict” package, the

predicted IC50 values for nearly two hundred FDA-approved

anti-cancer drugs were computed. The high- and low-risk groups

showed significant difference in the IC50 values of these drugs

(Supplementary Figure 11a). Moreover, the IC50 values of more

than half of the drugs were significantly different between the two

groups (Supplementary Figure 11b). Then, we identified the top 30

drugs with the most significant differences between the two groups

and correlated them with the LM.Sig (Supplementary Figure 11c).

First, all the expression of genes in LM.Sig were strongly associated

with the drug sensitivity. Second, PNPLA2 was positively correlated

with most of these drugs while the other genes were the opposite.

Third, the association between the drugs and LM.Sig was consistent

with the susceptibility of the drugs in the two groups. Additionally,

we identified five drugs that patients with LUSC are most likely to

benefit from, including staurosporine, vinblastine, daporinad,

dactinomycin, and bortezomib (Supplementary Figure 11d).

Among the five potential drugs, patients in the high-risk group

were more sensitive to staurosporine, while the other four drugs are

more appropriate for patients in the low-risk group (Supplementary

Figures 11e–i).
Digital pathology predicts LM-based
subtypes

Because clinical implementation of omics analyses is challenged

by high costs, long turnaround times, and complex technical

processes, there is a need for cost-effective, fast, and convenient

methods to extrapolate the subtypes of this study to improve clinical

applicability. First, we extracted the texture features of H&E images

of all samples in TCGA-LUSC cohort. We observed significant

differences in various texture features between the high- and low-

risk groups, including Small Gray-level and Small Detail Advantage

(SGSDA), Small Gray-level and Big Detail Advantage (SGBDA),

Gray Level Average (GLA), Regulation, Contrast and Inverse
Frontiers in Immunology 10
Different Moment (IDM) (Figure 5a; Wilcoxon test, P < 0.05),

suggesting profound heterogeneity in digital pathological images of

the two LUSC subtypes. Thus, we employed a previous interpretable

weakly supervised deep-learning method, called CLAMmodel (35),

to accurately classify whole slides. On the TCGA-LUSC dataset, the

model achieved a five-fold mean AUC of o.76 for the LUSC

subtyping of high- and low-risk groups (Figure 5b). A trained

weakly supervised deep-learning classifier offers human-readable

interpretability, enabling verification that its predictive foundation

aligns with established morphological criteria used by pathologists.

This interpretability also aids in analyzing cases where the model

fails. Furthermore, whole-slide-level heatmaps enhance clinical

diagnoses through artificial intelligence, facilitating human

involvement. The CLAM model determines slide-level predictions

by pinpointing and amalgamating diagnostically significant regions

(with high attention scores) in the WSI, while disregarding less

relevant areas (with low attention scores). To visually represent and

interpret the importance of each region within the WSI, we created

an attention heatmap by converting the model’s attention scores for

the predicted class into percentiles and matching these normalized

scores to their spatial positions on the original slide. We found that,

by utilizing only slide-level labels in weakly supervised learning, the

trained CLAM models were generally adept at distinguishing the

boundary between tumour and normal tissue (Figures 5c, d). Our

results demonstrate that the deep-learning model based on digital

pathology images performs excellently in distinguishing LUSC

subtypes and has good interpretability.
Development and comparable evaluation
of the predictive model for ICI response
based on the LM.Sig

Given the striking correlation between the LM.Sig and the ICI

response, we aimed to investigate the potential predictive utility of

the LM.Sig for ICI. We collected 11 bulk-level transcriptomic

cohorts treated with ICI. As mentioned previously in the methods

section, we employed nine machine-learning algorithms to train

models, yielding a total of nine trained models. We subsequently

evaluated and compared the AUC of these models in the validation

dataset (Figure 6a). The AUC ranged from 0.864 (Rpart) to 0.964

(RF) (Figure 6b). The model trained with the RF algorithm, with the

highest AUC, was selected as the predictive model for ICI response

(Figures 6b, c). Additionally, in the validation dataset, the model

trained with the RF algorithm obtained the highest sensitivity,

accuracy, recall, and negative predictive value compared with

other models (Figure 6d), highlighting its powerful predictive

performance. To assess the performance of the optimal model, we

tested it in the testing dataset, with AUC value of 0.773 (Figure 6e).

Furthermore, we assessed the robustness of the predictive

model using independent testing cohorts, with the AUC ranging

from 0.627 to 0.949 (Figure 6f). Particularly, the predictive model

achieved excellent performance in LUSC, with AUC value of 0.928.

We conducted a comparison of the performance of the optimally

predictive model against ten previously published signatures,
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revealing that the model based on LM.Sig demonstrated exceptional

superiority and maintained consistently high predictive efficacy

across a majority of the cohorts (Figure 6g). To explore the

performance of the predictive model for OS in cohorts treated

with ICI, based on the prediction results of the optimal model,

patients were divided into two groups representing predicted NR

and predicted R, respectively. We subsequently performed a log-

rank test and significant differences in the OS were detected in the

GSE37745_LUSC (P = 0.037), IMvigor_BLCA (P = 0.048), and

GBM dataset (P = 0.046) (Figures 6h–j).

In summary, the predictive model utilizing LM.Sig for ICI

response exhibited significant robustness and superiority when

compared to previously reported signatures across diverse

cancer types.
Frontiers in Immunology 11
Crosstalk among the intratumor
microbiome, LM, and tumor immunity

Previous study has shown that tumor-resident bacteria can alter

tumor metabolism and lactate signaling pathways and cause drug

resistance (20). Next, we sought to explore the linkages between

intratumor microbiota, LM, and immunity in LUSC. We obtained

intratumor microbiome abundance data of LUSC from TCGA

samples that were subjected to stringent decontamination and

quality control provided by other literature (38). The high- and

low-risk groups showed significant difference in the microbiota

structure (Figure 7a; PERMANOVA test, P = 0.001). Subsequently,

we carried out three approaches to identify the differential microbes

between the two groups, including the Wilcoxon test, linear
frontiersin.or
FIGURE 5

Performance and interpretability of deep-learning model distinguishing the LUSC subtypes. (a) Boxplot showing the difference in texture features
between the two groups. Wilcoxon test was used to generate the P values. (b) Performance of the CLAM model in terms of five-fold mean AUC for
LUSC subtyping. (c, d) Heatmap of whole-slide attention, which corresponds to each slide, was produced by calculating the attention scores for the
model’s predicted class across overlapping patches. (c) High-risk group. (d) Low-risk group.
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FIGURE 6

Construction and evaluation of the ICI response predictive model. (a) The workflow of development of the predictive model based on the LM.Sig
with 9 machine-learning algorithms. The fundamental stages encompass training, validation, and testing of the model. Comparison of the AUC of
the multiple models constructed by nine machine-learning algorithms in (b) validation and (c) testing dataset. (d) Heatmap showing the performance
of the multiple models developed by nine machine-learning algorithms in validation dataset. (e) ROC plots and confusion matrix showing the
performance of the optimal LM.Sig model in validation and testing dataset. (f) ROC plots showing the performance of the optimal LM.Sig model in
individual testing dataset, the AUC in which was range from 0.627 to 0.949. (g) Heatmap comparing the performance of the optimal LM.Sig with
other 10 immunotherapy response models across multiple cohorts. (h-j) K-M curves showing the difference in the OS between the predicted “NR”
and predicted “R” by the optimal LM.Sig model.
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discriminant analysis effect size (LEfSe), and DeSeq2 (Figures 7b–d).

The cross-referencing results from these three approaches highlighted

nine core genera, including Streptococcus, Terrabacter, Flammeovirga,

Cyanothece, Acidibacillus, Lachnoclostridium, Gallibacterium,

Paraburkholderia and Gemmata (Figure 7e). Particularly, of these

genera, we observed that the abundance of genus Lachnoclostridium

was significantly correlated with the GSVA score of LM (Figure 7f; P =

3.1e-06). Moreover, significant associations were detected between
Frontiers in Immunology 13
genus Lachnoclostridium and immunotherapy-related indicators,

LM.Sig, as well as tumor immune characteristics (Figure 7g).

Consequently, we applied a bidirectional mediation analysis to

evaluate whether the effect of the genus Lachnoclostridium on

tumor immunity is mediated via LM.Sig. This approach

established 15 mediation linkages for the impact of the genus

Lachnoclostridium on immune cells through the LM.Sig

(Figure 7h; Supplementary Table 5). We observed that the effect
FIGURE 7

Linkages between the intratumor microbiota, LM.Sig and immunity. (a) Principal coordinate analysis (PCoA) showing the divergence in the intratumor
microbiota structure between the high- and low-risk groups. PERMANOVA was used to generate the P value. (b) Heatmap showing the differential
microbes between the two groups identified by the Wilcoxon test (adjust P value < 0.05). (c) LEfSe analysis showing the microbial biomarkers in the
two groups with an LDA score > 2. (d) Volcano plot showing the differential microbes between the two groups by DeSeq2 with a P value < 0.05 and
log2(fold change) > 0.5. (e) Venn diagram showing the nine key genera identified at the intersection of all three approaches. (f) Association between
the abundance of genus Lachnoclostridium and the GSVA score of LM. (g) Correlation between the abundance of Lachnoclostridium and immune-
related indicators, as well as LM.Sig. The color and size of the circles indicate the statistical significance of the correlation and the correlation
coefficient, respectively. (h) Parallel coordinates chart showing the 15 mediation effects of LM.Sig that were significant at P < 0.05. Shown are genus
Lachnoclostridium (left), LM.Sig (middle) and immune cells (right). (i) Analysis of the effect of the genus Lachnoclostridium on immunity as meditated
by the LM.Sig. ** P < 0.01, *** P < 0.001.
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of genus Lachnoclostridium on CD8+ T cells was mediated via

TUFM, GFM1, CHEK2, NDUFA10 and AGK (Figures 7h, i). We

also observed that the effect of genus Lachnoclostridium on CD4+

T cells was mediated via TUFM, PNPLA2, GFM1 and CHEK2

(Figures 7h, i). In addition, the effect of genus Lachnoclostridium on

NK cells was mediated via GFM1 (Figures 7h, i). Overall, these

results demonstrated that specific intratumor microbes can

influence the LM of host and further shape the immune

landscapes in LUSC tumors.
Discussion

LUSC comprises approximately 30% of lung cancers and

typically exhibits poor responsiveness to various adjuvant

therapies, including molecularly targeted treatments (44).

Nonetheless, ICI therapies have yielded promising outcomes in

treating LUSC, leading to the approval of several drugs by the FDA

for immunotherapeutic applications in LUSC (45, 46). The

complexity of the composition in the TME and the heterogeneity

of the interactions of its internal factors contribute to drug

resistance in LUSC patients (47, 48), where lactic acid metabolic

reprogramming and tumor-resident microbes are also two non-

negligible constituents (49, 50). The lactate generated through

aerobic glycolysis in tumors exerts a widespread influence on

both the energy metabolism of the tumors themselves and the

composition as well as the functionality of immune cells within the

TME (51), while intratumor microbes can alter tumor metabolism

and lactic acid signaling pathways through metabolites, causing

therapeutic resistance of cancer (20). Therefore, there is a

fundamental requirement for cross-talk analysis of LM,

intratumor microbes, and immune environment to discern the

heterogeneity of LUSC, evaluate patient prognosis, and predict

the efficacy of ICIs.

Our study focused on the LM-related modifications of seven key

genes (LM.Sig)—GFM1, AGK, LIPT1, CHEK2, TUFM, PNPLA2

and NDUFA10—each of which plays a crucial role in LUSC

progression. The expression of GFM1 was reported to be

significantly elevated in LUSC tumor compared with normal

tissues (52). AGK is involved in the regulation of various

signaling pathways and transcription factors, and its increased

expression in tumor cells is associated with poor prognosis in

multiple cancers (53, 54). LIPT1, a cuproptosis-related gene, is a

prognostic indicator in NSCLC (55). CHEK2, a classic cancer

susceptibility gene, whose harmful mutations are associated with

multiple types of cancer (56). Downregulation of TUFM promotes

epithelial-mesenchymal transition (EMT) and invasion in lung

cancer cells through a mechanism that involves AMPK-GSK3b
signaling (57). Low expression of PNPLA2, the gene encoding

adipose triglyceride lipase (ATGL), was associated with

significantly reduced survival in patients with NSCLC (58).

NDUFA10, a core gene in prognostic models for multiple cancers,

can predict OS of patients (59, 60).

Our LM.Sig-based prognostic model achieved excellent

performance in differentiating patient’s OS, and was validated in
Frontiers in Immunology 14
multiple independent LUSC cohorts. Furthermore, we found two

subtypes of LUSC with different levels of prognosis and immune

infiltration. Interestingly, we observed that patients in the high-risk

group exhibited more abundant immune cell populations in tumor,

which could be explained by higher abundance of M2 macrophages

and Tregs in this subtype. Extensive studies have shown that M2

macrophages and Tregs are associated with poor prognosis (42, 61,

62). Using TCGA-LUSC and multiple independent cohorts, we

demonstrated that patients in the high-risk group had a lower

response rate to ICI therapy. Moreover, the expression of LM.Sig

was strongly correlated with the outcome of ICI therapy in multiple

cohorts. Further research on these seven genes will advance the

development of ICI therapy. In summary, our study proposed a

robust LM.Sig-based LUSC classification in which the high-risk

group presented characteristics of high tumor immune invasion,

gloomy prognosis, and poor immunotherapy response.

Additionally, our study discovered two heterogeneous subtypes

endowed with distinct intratumor microbiota structure. Using

multiple microbial abundance differential analysis methods, we

identified the genus Lachnoclostridium and found prominent

associations with LM and tumor immunity. Consistent with

previous studies, Zhang et al. reported that tumors with distinct

relative abundances of Lachnoclostridium exhibited variations in

their response to immunotherapy and sensitivity to potential drug

candidates (63). Another study elucidated that tumor-resident

Lachnoclostridium could indirectly influence bladder tumor

immune infiltration by influencing chemokine expression (64).

However, the association between LM and bacteria other than

lactic acid bacteria (LAB), such as Bifidobacterium and

Lactobacillus, is still unclear, especially in the development of

tumors. We found that intratumor Lachnoclostridium could

modify the LUSC anti-tumor immune landscape by affecting the

expression of LM-related genes. Our study can serve as a precursor

for hypothesis-driven research to better understand the causational

relationship between intratumor microbiota, LM and tumor

immunity in LUSC.

Prognostic models for LUSC based on omics data have recently

proliferated. One study identified a signature based on T-cell

marker genes to predict prognosis of LUSC (65). Zhu et al.

integrated bulk RNA-seq, scRNA-seq and clinical features to

predict the OS of LUSC (66). Yang et al. developed a risk model

based on m6A-related genes to assess prognosis (67). All these

models can effectively stratify the prognosis of patients with

multiple biological attributes. However, the high cost and

complex processing flow of omics data analysis limit the

application of current prognostic models in the clinical

management of LUSC. Notably, our LUSC classification can be

accurately discriminated by a deep-learning model based on

pathological images. Compared with omics sequencing,

histopathology images of patients are readily available, cost-

effective (no pathologists to label), and have a large sample size

for training. As the sample of histopathology images of LUSC

patients continues to expand, the performance of our deep

learning model will continue to improve, and it will have

promising applications in clinical-assisted diagnosis in the future.
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Considering the striking association between the LM.Sig and

tumor immunity, we constructed predictive model for ICI response

based on the LM.Sig. First, we selected the optimal prediction model

through the training set and validation set, and then verified the

optimal model on the independent dataset. More than 10

immunotherapy cohorts comprehensively confirmed the

robustness and generalization ability of our model. Interestingly,

in addition to LUSC, our predictive model also performed well on

other cancer types, such as STAD and GBM. Chen et al. integrated

single-cell sequencing and spatial transcriptome sequencing data at

the pan-cancer level and revealed associations between LM and

immunotherapy for multiple tumors (23). Furthermore, we

compared the performance of our predictive model to ten

previously published signatures on multiple datasets, and our

model was at the leading level.

We acknowledge several limitations in our study. First, all

samples included in this study were collected retrospectively, and

it is necessary to conduct further validation of our LUSC

classification using prospective data. Second, a thorough

investigation into the biological mechanisms that underlie the

association between LM and tumor ICI therapy is imperative.

This should involve experimental validation and functional

analysis of pivotal genes implicated in immune evasion and

treatment resistance, in order to gain deeper insights into the

underlying processes. Third, our intratumor microbiome data

were derived from reanalysis of TCGA data, and in the future,

patient-paired 16s rRNA gene sequencing, transcriptome

sequencing and other omics will be required to systematically

reveal biological associations in LUSC.
Conclusion

In summary, we identified two LUSC subtypes with different

biological peculiarities and clinical outcomes based on seven LM-

related genes (CHEK2, LIPT1, TUFM, NDUFA10, AGK, PNPLA2,

and GFM1). Deep learning models based on histopathology images

can accurately distinguish between the two subtypes, greatly

improving clinical utility. In addition, machine learning models

based on these seven genes performed excellently in predicting the

efficacy of ICI therapy. Multi-omics analysis show that tumor-

resident Lachnoclostridium can modify the tumor immune

landscape by influencing the expression of LM-related genes.

These findings improve our understanding of LUSC heterogeneity

and facilitate clinical tailored management and precise treatment of

LUSC patients.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
Frontiers in Immunology 15
Ethics statement

Ethical approval was not required for the study involving

humans in accordance with the local legislation and institutional

requirements. Written informed consent to participate in this study

was not required from the participants or the participants’ legal

guardians/next of kin in accordance with the national legislation

and the institutional requirements.
Author contributions

XQ: Data curation, Formal analysis, Methodology, Writing –

original draft, Software. DL: Writing – review & editing,

Investigation, Conceptualization, Funding acquisition.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This research was

supported by the Wu Jieping Medical Foundation Clinical

Research Special Support Fund (320.6750.2020-01-34).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2025.1603822/

full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1603822/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1603822/full#supplementary-material
https://doi.org/10.3389/fimmu.2025.1603822
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qiu and Li 10.3389/fimmu.2025.1603822
References
1. Xia C, Dong X, Li H, Cao M, Sun D, He S, et al. Cancer statistics in China and
United States, 2022: profiles, trends, and determinants. Chin Med J (Engl). (2022)
135:584–90. doi: 10.1097/CM9.0000000000002108

2. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-
small cell lung cancer. Nature. (2018) 553:446–54. doi: 10.1038/nature25183

3. Bender E. Epidemiology: The dominant Malignancy. Nature. (2014) 513:S2–3.
doi: 10.1038/513S2a

4. Morgensztern D, Campo MJ, Dahlberg SE, Doebele RC, Garon E, Gerber DE,
et al. Molecularly targeted therapies in non-small-cell lung cancer annual update 2014. J
Thorac Oncol. (2015) 10:S1–63. doi: 10.1097/JTO.0000000000000405

5. Wu L, Cheng B, Sun X, Zhang Z, Kang J, Chen Y, et al. Induction
immunochemotherapy followed by definitive chemoradiotherapy for unresectable
locally advanced non-small cell lung cancer: a multi-institutional retrospective
cohort study. MedComm (2020). (2024) 5:e501. doi: 10.1002/mco2.v5.3

6. Doroshow DB, Sanmamed MF, Hastings K, Politi K, Rimm DL, Chen L, et al.
Immunotherapy in non-small cell lung cancer: facts and hopes. Clin Cancer Res. (2019)
25:4592–602. doi: 10.1158/1078-0432.CCR-18-1538

7. Reck M, Remon J, Hellmann MD. First-line immunotherapy for non-small-cell
lung cancer. J Clin Oncol. (2022) 40:586–97. doi: 10.1200/JCO.21.01497

8. Xia L, Liu Y, Wang Y. PD-1/PD-L1 blockade therapy in advanced non-small-cell
lung cancer: current status and future directions. Oncologist. (2019) 24:S31–41.
doi: 10.1634/theoncologist.2019-IO-S1-s05

9. Spencer NY, Stanton RC. The Warburg effect, lactate, and nearly a century of
trying to cure cancer. Semin Nephrol . (2019) 39:380–93. doi: 10.1016/
j.semnephrol.2019.04.007

10. Chen J, Huang Z, Chen Y, Tian H, Chai P, Shen Y, et al. Lactate and lactylation
in cancer. Signal Transduct Target Ther. (2025) 10:38. doi: 10.1038/s41392-024-02082-
x

11. Zhang Y, Peng Q, Zheng J, Yang Y, Zhang X, Ma A, et al. The function and
mechanism of lactate and lactylation in tumor metabolism and microenvironment.
Genes Dis. (2023) 10:2029–37. doi: 10.1016/j.gendis.2022.10.006

12. Feng Q, Liu Z, Yu X, Huang T, Chen J, Wang J, et al. Lactate increases stemness
of CD8 + T cells to augment anti-tumor immunity. Nat Commun. (2022) 13:4981.
doi: 10.1038/s41467-022-32521-8

13. Liu Y, Wang F, Peng D, Zhang D, Liu L, Wei J, et al. Activation and antitumor
immunity of CD8(+) T cells are supported by the glucose transporter GLUT10 and
disrupted by lactic acid. Sci Transl Med. (2024) 16:eadk7399. doi: 10.1126/
scitranslmed.adk7399

14. Nguyen NTB, Gevers S, Kok RNU, Burgering LM, Neikes H, Akkerman N, et al.
Lactate controls cancer stemness and plasticity through epigenetic regulation. Cell
Metab. (2025). 37(4):903–919.e10. doi: 10.1016/j.cmet.2025.01.002

15. Kumagai S, Koyama S, Itahashi K, Tanegashima T, Lin YT, Togashi Y, et al.
Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor
microenvironments. Cancer Cell. (2022) 40:201–218 e209. doi: 10.1016/
j.ccell.2022.01.001

16. Lee DC, Sohn HA, Park ZY, Oh S, Kang YK, Lee KM, et al. A lactate-induced
response to hypoxia. Cell. (2015) 161:595–609. doi: 10.1016/j.cell.2015.03.011

17. Apicella M, Giannoni E, Fiore S, Ferrari KJ, Fernandez-Perez D, Isella C, et al.
Increased Lactate Secretion by Cancer Cells Sustains Non-cell-autonomous Adaptive
Resistance to MET and EGFR Targeted Therapies. Cell Metab. (2018) 28:848–865.e846.
doi: 10.1016/j.cmet.2018.08.006

18. Ma J, Huang L, Hu D, Zeng S, Han Y, Shen H. The role of the tumor microbe
microenvironment in the tumor immune microenvironment: bystander, activator, or
inhibitor? J Exp Clin Cancer Res. (2021) 40:327. doi: 10.1186/s13046-021-02128-w

19. Cao Y, Xia H, Tan X, Shi C, Ma Y, Meng D, et al. Intratumoural microbiota: a
new frontier in cancer development and therapy. Signal Transduct Target Ther. (2024)
9:15. doi: 10.1038/s41392-023-01693-0

20. Colbert LE, El AlamMB, Wang R, Karpinets T, Lo D, Lynn EJ, et al. Tumor-resident
Lactobacillus iners confer chemoradiation resistance through lactate-induced metabolic
rewiring. Cancer Cell. (2023) 41:1945–1962.e1911. doi: 10.1016/j.ccell.2023.09.012

21. Deng X, Chen X, Luo Y, Que J, Chen L. Intratumor microbiome derived
glycolysis-lactate signatures depicts immune heterogeneity in lung adenocarcinoma
by integration of microbiomic, transcriptomic, proteomic and single-cell data. Front
Microbiol. (2023) 14:1202454. doi: 10.3389/fmicb.2023.1202454

22. Gu J, Xu X, Li X, Yue L, Zhu X, Chen Q, et al. Tumor-resident microbiota
contributes to colorectal cancer liver metastasis by lactylation and immune modulation.
Oncogene. (2024) 43:2389–404. doi: 10.1038/s41388-024-03080-7

23. Chen D, Liu P, Lu X, Li J, Qi D, Zang L, et al. Pan-cancer analysis implicates novel
insights of lactate metabolism into immunotherapy response prediction and survival
prognostication. J Exp Clin Cancer Res. (2024) 43:125. doi: 10.1186/s13046-024-03042-7

24. Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia
W, et al. Inferring tumour purity and stromal and immune cell admixture from
expression data. Nat Commun. (2013) 4:2612. doi: 10.1038/ncomms3612
Frontiers in Immunology 16
25. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunction
and exclusion predict cancer immunotherapy response. Nat Med. (2018) 24:1550–8.
doi: 10.1038/s41591-018-0136-1

26. Zhang W, Zhu Y, Liu H, Zhang Y, Liu H, Adegboro AA, et al. Pan-cancer
evaluation of regulated cell death to predict overall survival and immune checkpoint
inhibitor response. NPJ Precis Oncol. (2024) 8:77. doi: 10.1038/s41698-024-00570-5

27. Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, et al. TIMER: A web server for
comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. (2017) 77:
e108–10. doi: 10.1158/1538-7445.AM2017-108

28. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods. (2015)
12:453–7. doi: 10.1038/nmeth.3337

29. Finotello F, Mayer C, Plattner C, Laschober G, Rieder D, Hackl H, et al.
Molecular and pharmacological modulators of the tumor immune contexture
revealed by deconvolution of RNA-seq data. Genome Med. (2019) 11:34.
doi: 10.1186/s13073-019-0638-6

30. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al.
Estimating the population abundance of tissue-infiltrating immune and stromal cell
populations using gene expression. Genome Biol. (2016) 17:218. doi: 10.1186/s13059-
016-1070-5

31. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular
heterogeneity landscape. Genome Biol. (2017) 18:220. doi: 10.1186/s13059-017-1349-1

32. Racle J, de Jonge K, Baumgaertner P, Speiser DE, Gfeller D. Simultaneous
enumeration of cancer and immune cell types from bulk tumor gene expression data.
Elife. (2017), 6:e26476. doi: 10.7554/eLife.26476

33. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and
comprehensive analysis of somatic variants in cancer. Genome Res. (2018) 28:1747–56.
doi: 10.1101/gr.239244.118

34. Maeser D, Gruener RF, Huang RS. oncoPredict: an R package for predicting in
vivo or cancer patient drug response and biomarkers from cell line screening data. Brief
Bioinform. (2021), 22(6):bbab260. doi: 10.1093/bib/bbab260

35. Lu MY, Williamson DFK, Chen TY, Chen RJ, Barbieri M, Mahmood F. Data-
efficient and weakly supervised computational pathology on whole-slide images. Nat
BioMed Eng. (2021) 5:555–70. doi: 10.1038/s41551-020-00682-w

36. Gao X, Yang H, Chu Y, ZhangW,Wang Z, Ji L. The specific viral composition in
triple-negative breast cancer tissue shapes the specific tumor microenvironment
characterized on pathological images. Microb Pathog. (2023) 184:106385.
doi: 10.1016/j.micpath.2023.106385

37. Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, et al.
Integrated analysis of multimodal single-cell data. Cell. (2021) 184:3573–3587.e3529.
doi: 10.1016/j.cell.2021.04.048

38. Narunsky-Haziza L, Sepich-Poore GD, Livyatan I, Asraf O, Martino C, Nejman
D, et al. Pan-cancer analyses reveal cancer-type-specific fungal ecologies and
bacteriome interactions. Cell. (2022) 185:3789–3806.e3717. doi: 10.1016/
j.cell.2022.09.005

39. Ma J, Tang L, Tan Y, Xiao J, Wei K, Zhang X, et al. Lithium carbonate revitalizes
tumor-reactive CD8(+) T cells by shunting lactic acid into mitochondria.Nat Immunol.
(2024) 25:552–61. doi: 10.1038/s41590-023-01738-0

40. Certo M, Tsai CH, Pucino V, Ho PC, Mauro C. Lactate modulation of immune
responses in inflammatory versus tumour microenvironments. Nat Rev Immunol.
(2021) 21:151–61. doi: 10.1038/s41577-020-0406-2

41. Huang P, Zhou X, Zheng M, Yu Y, Jin G, Zhang S. Regulatory T cells are
associated with the tumor immune microenvironment and immunotherapy response
in triple-negative breast cancer. Front Immunol. (2023) 14:1263537. doi: 10.3389/
fimmu.2023.1263537

42. Wu Z, Lei K, Li H, He J, Shi E. Transcriptome-based network analysis related to
M2-like tumor-associated macrophage infiltration identified VARS1 as a potential
target for improving melanoma immunotherapy efficacy. J Transl Med. (2022) 20:489.
doi: 10.1186/s12967-022-03686-z

43. Chen YP, Yin JH, Li WF, Li HJ, Chen DP, Zhang CJ, et al. Single-cell
transcriptomics reveals regulators underlying immune cell diversity and immune
subtypes associated with prognosis in nasopharyngeal carcinoma. Cell Res. (2020)
30:1024–42. doi: 10.1038/s41422-020-0374-x

44. Bonomi PD, Gandara D, Hirsch FR, Kerr KM, Obasaju C, Paz-Ares L, et al.
Predictive biomarkers for response to EGFR-directed monoclonal antibodies for
advanced squamous cell lung cancer. Ann Oncol. (2018) 29:1701–9. doi: 10.1093/
annonc/mdy196

45. Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, et al.
Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced
non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet.
(2016) 387:1540–50. doi: 10.1016/S0140-6736(15)01281-7

46. Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, et al.
Nivolumab versus docetaxel in advanced squamous-Cell non-Small-Cell lung cancer. N
Engl J Med. (2015) 373:123–35. doi: 10.1056/NEJMoa1504627
frontiersin.org

https://doi.org/10.1097/CM9.0000000000002108
https://doi.org/10.1038/nature25183
https://doi.org/10.1038/513S2a
https://doi.org/10.1097/JTO.0000000000000405
https://doi.org/10.1002/mco2.v5.3
https://doi.org/10.1158/1078-0432.CCR-18-1538
https://doi.org/10.1200/JCO.21.01497
https://doi.org/10.1634/theoncologist.2019-IO-S1-s05
https://doi.org/10.1016/j.semnephrol.2019.04.007
https://doi.org/10.1016/j.semnephrol.2019.04.007
https://doi.org/10.1038/s41392-024-02082-x
https://doi.org/10.1038/s41392-024-02082-x
https://doi.org/10.1016/j.gendis.2022.10.006
https://doi.org/10.1038/s41467-022-32521-8
https://doi.org/10.1126/scitranslmed.adk7399
https://doi.org/10.1126/scitranslmed.adk7399
https://doi.org/10.1016/j.cmet.2025.01.002
https://doi.org/10.1016/j.ccell.2022.01.001
https://doi.org/10.1016/j.ccell.2022.01.001
https://doi.org/10.1016/j.cell.2015.03.011
https://doi.org/10.1016/j.cmet.2018.08.006
https://doi.org/10.1186/s13046-021-02128-w
https://doi.org/10.1038/s41392-023-01693-0
https://doi.org/10.1016/j.ccell.2023.09.012
https://doi.org/10.3389/fmicb.2023.1202454
https://doi.org/10.1038/s41388-024-03080-7
https://doi.org/10.1186/s13046-024-03042-7
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1038/s41698-024-00570-5
https://doi.org/10.1158/1538-7445.AM2017-108
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1186/s13073-019-0638-6
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.7554/eLife.26476
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1093/bib/bbab260
https://doi.org/10.1038/s41551-020-00682-w
https://doi.org/10.1016/j.micpath.2023.106385
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1016/j.cell.2022.09.005
https://doi.org/10.1016/j.cell.2022.09.005
https://doi.org/10.1038/s41590-023-01738-0
https://doi.org/10.1038/s41577-020-0406-2
https://doi.org/10.3389/fimmu.2023.1263537
https://doi.org/10.3389/fimmu.2023.1263537
https://doi.org/10.1186/s12967-022-03686-z
https://doi.org/10.1038/s41422-020-0374-x
https://doi.org/10.1093/annonc/mdy196
https://doi.org/10.1093/annonc/mdy196
https://doi.org/10.1016/S0140-6736(15)01281-7
https://doi.org/10.1056/NEJMoa1504627
https://doi.org/10.3389/fimmu.2025.1603822
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qiu and Li 10.3389/fimmu.2025.1603822
47. Marusyk A, Janiszewska M, Polyak K. Intratumor heterogeneity: the rosetta
stone of therapy resistance. Cancer Cell. (2020) 37:471–84. doi: 10.1016/
j.ccell.2020.03.007

48. Li Z, Li J, Bai X, Huang X, Wang Q. Tumor microenvironment as a complex
milieu driving cancer progression: a mini review. Clin Transl Oncol. (2025) 27:1943–52.
doi: 10.1007/s12094-024-03697-w

49. Arner EN, Rathmell JC. Metabolic programming and immune suppression in
the tumor microenvironment. Cancer Cell. (2023) 41:421–33. doi: 10.1016/
j.ccell.2023.01.009

50. Yang L, Li A, Wang Y, Zhang Y. Intratumoral microbiota: roles in cancer
initiation, development and therapeutic efficacy. Signal Transduct Target Ther. (2023)
8:35. doi: 10.1038/s41392-022-01304-4

51. Faubert B, Li KY, Cai L, Hensley CT, Kim J, Zacharias LG, et al. Lactate
metabolism in human lung tumors. Cell. (2017) 171:358–371.e359. doi: 10.1016/
j.cell.2017.09.019

52. Tang M, Li Y, Luo X, Xiao J, Wang J, Zeng X, et al. Identification of biomarkers
related to CD8(+) T cell infiltration with gene co-expression network in lung squamous
cell carcinoma. Front Cell Dev Biol. (2021) 9:606106. doi: 10.3389/fcell.2021.606106

53. Zhu Q, Zhong AL, Hu H, Zhao JJ, Weng DS, Tang Y, et al. Acylglycerol kinase
promotes tumour growth and metastasis via activating the PI3K/AKT/GSK3beta
signalling pathway in renal cell carcinoma. J Hematol Oncol. (2020) 13:2.
doi: 10.1186/s13045-019-0840-4

54. Hu Z, Qu G, Yu X, Jiang H, Teng XL, Ding L, et al. Acylglycerol Kinase
Maintains Metabolic State and Immune Responses of CD8(+) T Cells. Cell Metab.
(2019) 30:290–302.e295. doi: 10.1016/j.cmet.2019.05.016

55. Deng R, Zhu L, Jiang J, Chen J, Li H. Cuproptosis-related gene LIPT1 as a
prognostic indicator in non-small cell lung cancer: Functional involvement and
regulation of ATOX1 expression. Biomol BioMed. (2024) 24:647–58. doi: 10.17305/
bb.2023.9931

56. Pritchard CC, Mateo J, Walsh MF, De Sarkar N, Abida W, Beltran H, et al.
Inherited DNA-Repair gene mutations in men with metastatic prostate cancer. N Engl J
Med. (2016) 375:443–53. doi: 10.1056/NEJMoa1603144

57. He K, Guo X, Liu Y, Li J, Hu Y, Wang D, et al. TUFM downregulation induces
epithelial-mesenchymal transition and invasion in lung cancer cells via a mechanism
involving AMPK-GSK3beta signaling. Cell Mol Life Sci. (2016) 73:2105–21.
doi: 10.1007/s00018-015-2122-9
Frontiers in Immunology 17
58. Al-Zoughbi W, Pichler M, Gorkiewicz G, Guertl-Lackner B, Haybaeck J, Jahn
SW, et al. Loss of adipose triglyceride lipase is associated with human cancer and
induces mouse pulmonary neoplasia. Oncotarget. (2016) 7:33832–40. doi: 10.18632/
oncotarget.v7i23

59. Tang J, Peng X, Xiao D, Liu S, Tao Y, Shu L. Disulfidptosis-related signature
predicts prognosis and characterizes the immune microenvironment in hepatocellular
carcinoma. Cancer Cell Int. (2024) 24:19. doi: 10.1186/s12935-023-03188-y

60. Zhu Y, Song B, Yang Z, Peng Y, Cui Z, Chen L, et al. Integrative lactylation and
tumor microenvironment signature as prognostic and therapeutic biomarkers in skin
cutaneous melanoma. J Cancer Res Clin Oncol. (2023) 149:17897–919. doi: 10.1007/
s00432-023-05483-7

61. Yu S, Wang Y, Hou J, Li W, Wang X, Xiang L, et al. Tumor-infiltrating immune
cells in hepatocellular carcinoma: Tregs is correlated with poor overall survival. PloS
One. (2020) 15:e0231003. doi: 10.1371/journal.pone.0231003

62. Liu S, Wang S, Guo J, Wang C, Zhang H, Lin D, et al. Crosstalk among
disulfidptosis-related lncRNAs in lung adenocarcinoma reveals a correlation with
immune profile and clinical prognosis. Noncoding RNA Res. (2024) 9:772–81.
doi: 10.1016/j.ncrna.2024.03.006

63. Zhang Y, Wang Y, Yang J, Ji L, Yao Y, Ren D, et al. Landscape of the
intratumoral microbiota acting on the tumor immune microenvironment in LUAD
and LUSC. Physiol Genomics. (2025). 57(4):279–91. doi: 10.1152/physiolgenomics.
00204.2024

64. Chen L, Xu Q, Chen W, Liu J, Xu T, Yang J, et al. Tumor-colonizing
Lachnoclostridium-mediated chemokine expression enhances the immune
infiltration of bladder urothelial carcinoma. Cancer Immunol Immunother. (2025)
74:62. doi: 10.1007/s00262-024-03916-x

65. Shi X, Dong A, Jia X, Zheng G, Wang N, Wang Y, et al. Integrated analysis of
single-cell and bulk RNA-sequencing identifies a signature based on T-cell marker
genes to predict prognosis and therapeutic response in lung squamous cell carcinoma.
Front Immunol. (2022) 13:992990. doi: 10.3389/fimmu.2022.992990

66. Zhu J, Yang J, Chen X, Wang Y, Wang X, Zhao M, et al. Integrated bulk and
single-cell RNA sequencing data constructs and validates a prognostic model for non-
small cell lung cancer. J Cancer. (2024) 15:796–808. doi: 10.7150/jca.90768

67. Yang Y, Qian Z, Feng M, Liao W, Wu Q, Wen F, et al. Study on the prognosis,
immune and drug resistance of m6A-related genes in lung cancer. BMC Bioinf. (2022)
23:437. doi: 10.1186/s12859-022-04984-5
frontiersin.org

https://doi.org/10.1016/j.ccell.2020.03.007
https://doi.org/10.1016/j.ccell.2020.03.007
https://doi.org/10.1007/s12094-024-03697-w
https://doi.org/10.1016/j.ccell.2023.01.009
https://doi.org/10.1016/j.ccell.2023.01.009
https://doi.org/10.1038/s41392-022-01304-4
https://doi.org/10.1016/j.cell.2017.09.019
https://doi.org/10.1016/j.cell.2017.09.019
https://doi.org/10.3389/fcell.2021.606106
https://doi.org/10.1186/s13045-019-0840-4
https://doi.org/10.1016/j.cmet.2019.05.016
https://doi.org/10.17305/bb.2023.9931
https://doi.org/10.17305/bb.2023.9931
https://doi.org/10.1056/NEJMoa1603144
https://doi.org/10.1007/s00018-015-2122-9
https://doi.org/10.18632/oncotarget.v7i23
https://doi.org/10.18632/oncotarget.v7i23
https://doi.org/10.1186/s12935-023-03188-y
https://doi.org/10.1007/s00432-023-05483-7
https://doi.org/10.1007/s00432-023-05483-7
https://doi.org/10.1371/journal.pone.0231003
https://doi.org/10.1016/j.ncrna.2024.03.006
https://doi.org/10.1152/physiolgenomics.00204.2024
https://doi.org/10.1152/physiolgenomics.00204.2024
https://doi.org/10.1007/s00262-024-03916-x
https://doi.org/10.3389/fimmu.2022.992990
https://doi.org/10.7150/jca.90768
https://doi.org/10.1186/s12859-022-04984-5
https://doi.org/10.3389/fimmu.2025.1603822
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Multi-omics analysis untangles the crosstalk between intratumor microbiome, lactic acid metabolism and immune status in lung squamous cell carcinoma
	Introduction
	Methods
	Construction of the LM signature
	Data acquisition
	Molecular subtyping, construction and validation of the prognostic model
	Immune landscape analysis
	Characterization of somatic mutations and drug sensitivity analysis
	WSI-based deep-learning model: CLAM
	Construction and validation of the machine-learning model for predicting the ICI response
	Single-cell RNA sequencing data processing and analysis
	Mediation analysis
	Intratumor microbiome analysis
	Statistical analysis

	Results
	Construction of molecular subtypes based on the LM-related genes
	Immune landscape of the different molecular subtypes
	scRNA-seq analysis to assess the LM.Sig
	Distinct driver genes and activated biological pathways of LM-based subtypes
	Drug sensitivity of LUSC subtypes
	Digital pathology predicts LM-based subtypes
	Development and comparable evaluation of the predictive model for ICI response based on the LM.Sig
	Crosstalk among the intratumor microbiome, LM, and tumor immunity

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


