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Programmed death-ligand 1 (PD-L1) carried by tumor-derived exosomes has 
emerged as a critical mediator of immune evasion and resistance to immune 
checkpoint blockade therapy. Unlike membrane-bound PD-L1, exosomal PD-L1 
is systemically distributed and capable of suppressing T cell activity at distant 
sites. This review summarizes the current understanding of exosomal PD-L1 
biogenesis, its immunosuppressive mechanisms, and its clinical relevance across 
multiple cancer types. We highlight its potential as a non-invasive biomarker for 
predicting therapeutic response and monitoring disease progression. Compared 
with tissue-based PD-L1 assessment, exosomal PD-L1 offers advantages in 
accessibility and dynamic reflection of tumor immune status. However, 
challenges remain regarding standardization of detection methods and clinical 
interpretation. Future directions include the integration of exosomal PD-L1 
profiling into immunotherapy decision-making and the development of 
therapeutic strategies targeting exosome secretion. These insights may 
contribute to overcoming resistance in immunologically inert tumors and 
advancing precision oncology. 
KEYWORDS 

exosomal PD-L1, cancer biomarkers, early detection, liquid biopsy, immune 
checkpoint blockade 
1 Introduction 

Immune checkpoint blockade (ICB) therapies, particularly those targeting the 
programmed cell death protein 1 (PD-1) and its ligand PD-L1, have revolutionized 
cancer treatment by restoring anti-tumor immunity in a subset of patients (1). Despite 
their success, less than 30% of patients can achieve durable clinical benefit, and both 
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primary and acquired resistance remain major obstacles to broader 
efficacy (2–5). This underscores a critical need for reliable, 
minimally invasive biomarkers that can  predict therapeutic

response and guide personalized immunotherapy strategies. 
To date, biomarkers such as PD-L1 expression in tumor tissues, 

tumor mutational burden (TMB), and microsatellite instability 
(MSI) have been investigated with varying predictive value. 
However, the clinical application of these markers is limited by 
tumor heterogeneity, dynamic expression, sampling bias, and the 
invasive nature of tissue biopsies (6–8). Furthermore, pan-cancer 
analyses have demonstrated wide variability in response rates to 
anti-PD-1/PD-L1 therapies—even within the same tumor type— 
suggesting that existing tissue-based indicators do not fully capture 
systemic immune escape mechanisms (9). 

Exosomal PD-L1 (exo-PD-L1), a membrane-bound form of PD
L1 secreted via tumor-derived exosomes, has emerged as a promising 
biomarker with distinct advantages (9). Exosomes are small 
extracellular vesicles that facilitate intercellular communication by 
transporting bioactive molecules, including PD-L1, to immune cells 
(10, 11). Unlike static tumor PD-L1 measurements, exo-PD-L1 levels 
in peripheral blood provide a dynamic and systemic snapshot of 
tumor-mediated immune suppression (12). Elevated circulating exo
PD-L1 has been associated with poor prognosis, resistance to ICB, 
and increased tumor burden across various cancers (9, 13–15). 

In this review, we explore the biological mechanisms underlying 
exo-PD-L1 secretion and its immunosuppressive role in the tumor 
microenvironment. We summarize current detection strategies and 
assess the clinical significance of exo-PD-L1 as a predictive 
biomarker across cancer types. Finally, we highlight future 
research directions and potential applications of exo-PD-L1 in 
enhancing ICB precision, overcoming resistance, and advancing 
personalized cancer immunotherapy. 
 

2 Biogenesis and immune regulation 
of exosomal PD-L1 

2.1 Biogenesis and secretion of exo-PD-L1 

Exosomes are biologically active, lipid bilayer nano-vesicles. 
Current evidence suggests that exo-PD-L1 originates from the 
plasma membrane. Consequently, it is widely believed that early 
endosomes formed via cellular membrane endocytosis serve as the 
source of exo-PD-L1. 

The process begins with the inward invagination of the parent 
cell’s plasma membrane, leading to the closure and formation of 
early endosomes. Within these early endosomes, intraluminal 
vesicles (ILVs) are generated through multiple inward budding 
events, ultimately resulting in the formation of mature 
multivesicular bodies (MVBs) containing ILVs. During MVB 
formation, certain endosomal proteins and  other cellular

components, not destined for lysosomal degradation, are 
selectively sorted into ILVs. Upon maturation, MVBs fuse with 
the cellular membrane, releasing the vesicles as exosomes, which 
typically range in size from 30 to 150 nm (10, 11). They are secreted 
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by all active cells and are found in various bodily fluids (16). 
Exosomes’ cargo typically includes a diverse array of RNA, DNA, 
proteins, miRNA, metabolites, and other bioactive molecules 
(17).These cargoes mediate intercellular signaling, information 
exchange, and immune modulation by transporting their contents 
to recipient cells (10, 18–22). 

Importantly, during the formation of intraluminal vesicles 
(ILVs), membrane proteins such as PD-L1 are incorporated with 
preserved topological orientation. This means that transmembrane 
proteins located on the plasma membrane of the parent cell are 
embedded into the ILV membrane such that their extracellular 
domains face the lumen of the ILV. Upon exosome release, the ILV 
becomes an exosome, and its membrane orientation flips relative to 
the cytoplasm, thereby exposing PD-L1 on the outer surface of the 
exosome. This membrane topology conservation ensures that exo
PD-L1 retains its ability to engage PD-1 receptors on recipient T 
cells, thereby mediating immunosuppressive interactions post-
secretion (9, 23, 24). 
2.2 Function of exo-PD-L1 

Given the conserved membrane orientation of PD-L1 on 
exosomal surfaces, exo-PD-L1 is functionally positioned to 
interact with PD-1 on T cells and other immune populations. 
Interaction of exo-PD-L1 with PD-1 on immune cells triggers 
PD-1-mediated intracellular signaling, inhibiting PI3K-AKT and 
MAPK pathways, thereby restricting T cell proliferation, activation, 
and survival (6–8). Prolonged exposure to elevated levels of exo
PD-L1 leads to T cell exhaustion, impacting long-term immune 
responses and reducing responsiveness to tumors, thereby 
facilitating immune escape. The interaction between TCR and 
MHC molecules is essential for the first signal required to induce 
T cell activation. On the exosome surface, the presence of MHC-I 
can enhance PD-L1-induced T cell dysfunction. Therefore, exo-PD
L1 can more effectively induce T cell dysfunction (8, 14, 25). 
Removing exosomal PD-L1 can effectively enhance the sensitivity 
of mouse tumor models to anti-PD-L1 immune checkpoint therapy 
(4, 9, 13). This finding suggests potential therapeutic strategies, 
which will be discussed in the next section regarding the 
mechanisms of immune suppression induced by exosomal PD-L1. 

Furthermore, extensive experiments demonstrate that 
interferon-gamma significantly increases exo-PD-L1 release. Exo
PD-L1 release is considered as an immune evasion mechanism in 
response to interferon-gamma secreted by CD8+ T cells, 
macrophages, and natural killer cells. In vitro studies show that 
exo-PD-L1 also reduces secretion of interferon-gamma, tumor 
necrosis factor-alpha, granzyme B, and perforin from T cells (4, 
13–15). This suggests that tumor cells can counteract CD8+ T cell 
function during their effector phase by exo-PD-L1, inhibiting 
cytokine production and cytotoxic granule exocytosis without 
requiring direct cell-to-cell interactions (Figure 1). Recent studies 
have revealed that tumor-derived exosomes carrying PD-L1 can 
promote  T  cel l  senescence  through  l ipid  metabolism  
reprogramming (26). This process involves metabolic shifts in T 
frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1603855
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kansha et al. 10.3389/fimmu.2025.1603855 
cells that accelerate their aging process, impairing their ability to 
produce cytokines and perform cytotoxic functions. These changes 
contribute to long-term immune suppression, further enhancing 
tumor immune evasion (26–28).The lipid metabolism alterations 
induced by exo-PD-L1 result in T cell dysfunction and senescence, 
diminishing their effectiveness in combating tumors. By promoting 
T cell aging, exo-PD-L1 not only suppresses immediate immune 
responses but also impairs the ability of T cells to mount sustained 
anti-tumor immunity (26, 29). This new mechanism of T cell 
senescence adds to the understanding of how tumors exploit 
exosomal PD-L1 to evade immune surveillance, underscoring the 
potential of targeting this pathway for therapeutic intervention. 

In summary, exo-PD-L1 mediates multifaceted immunosuppressive 
effects, including the inhibition of T cell activation, the promotion of 
exhaustion and senescence, and the suppression of cytokine secretion 
and cytotoxic granule release. Emerging evidence also suggests that exo
PD-L1 may influence the function of antigen-presenting cells and 
regulatory T cells, warranting further investigation. 
2.3 Factor regulating exo-PD-L1 

Tumor heterogeneity is a major factor influencing the 
effectiveness of exo-PD-L1 as a reliable biomarker for predicting 
immunotherapy outcomes. This heterogeneity can manifest at 
various levels, including tumor type, immune cell infiltration, 
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genetic mutations, and even the tumor microenvironment (TME), 
all of which can affect exo-PD-L1 expression. The levels of exo-PD
L1 in circulation may vary significantly due to these factors, limiting 
its predictive value across different cancer types and patients (30). 

For example, ovarian cancer, often referred to as a ‘cold tumor’, 
is characterized by low immune cell infiltration, particularly T cells. 
As a result, exo-PD-L1 levels in ovarian cancer patients may be 
lower than in cancers with higher immune infiltration, such as 
melanoma or non-small cell lung cancer (NSCLC). Similarly, in 
tumors with significant genetic mutations or TME dysregulation, 
the regulation of PD-L1 expression on both tumor cells and 
exosomes may vary, leading to inconsistent levels of exo-PD-L1 
in the blood. 

Additionally, the tumor’s immune microenvironment plays a 
crucial role in modulating exo-PD-L1 secretion (31). In cancers 
with an immunosuppressive TME, such as pancreatic cancer, high 
levels of cytokines and other immune modulators might promote 
the secretion of exo-PD-L1 by tumor cells and immune cells. 
Conversely, tumors with a more pro-inflammatory TME might 
show a different pattern of exo-PD-L1 expression. 

Moreover, patient-specific factors, including genetic 
predispositions, prior treatments, and the overall immune status 
of the individual, can contribute to differences in exo-PD-L1 levels 
(9). For instance, patients with a history of autoimmune diseases or 
those who are immunosuppressed might exhibit altered exo-PD-L1 
dynamics, further complicating the biomarker’s predictive value. 
FIGURE 1 

Exosomal PD-L1 release mechanism and its impact on T cell function: tumor cell-mediated immune evasion. This figure provides a detailed 
depiction of the exo-PD-L1 release mechanism from tumor cells and its impact on T cell function. It depicts exosome biogenesis, starting from 
plasma membrane invagination, progressing to the formation of multivesicular bodies, and culminating in the release of PD-L1-containing 
exosomes. Additionally, it shows how cytokines—IFN-a, IFN-g, and TNF-a—stimulate exosome release and enhance PD-L1 expression on tumor 
cells. Two key interactions are highlighted (1): the direct binding of PD-L1 on tumor cells to T cells, resulting in T cell inhibition, and (2) the 
interaction of T cells with PD-L1 on exosomes, leading to immune suppression over longer distances. This figure demonstrates how exo-PD-L1 
contributes to immune evasion and how cytokine stimulation affects its release and expression. 
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2.4 Exo-PD-L1 in tumor progression and 
immunotherapy monitoring 

The cargo of extracellular vesicles (EVs) provides a holistic 
snapshot of the patient’s immune status (8, 13, 32). exo-PD-L1 
correlates with tumor progression in various cancers such as 
melanoma, breast cancer, head and neck squamous cell 
carcinoma, and glioblastoma (9, 13, 24, 33). Notably, elevated 
exo-PD-L1 expression is significantly associated with advanced 
tumor stages, highlighting its pivotal role in fueling tumor growth 
and metastasis. Previous studies utilizing various murine models 
have consistently shown that the introduction of tumor-derived 
EVs amplifies the metastatic propensity of primary tumors and 
exacerbates overall tumor burden (34–36). 

Therefore, targeting exogenous exosomes may provide a novel 
strategy to overcome tumor resistance to anti-PD-L1 therapies (37). 
Monitoring circulating exo-PD-L1 levels serves as a biomarker for 
tumor response to immunotherapy. The dynamic changes in exo
PD-L1 levels during treatment could be used to predict the 
likelihood of a sustained immune response and inform 
adjustments to therapy, ultimately optimizing individualized 
treatment regimens (38). 
3 Exo-PD-L1 in the tumor immune 
suppression 

The tumor microenvironment (TME) is a complex ecosystem 
composed of various immune cells, stromal components, and 
signaling molecules that collectively influence tumor progression 
and immune escape (31, 39). Exosomal PD-L1 (exo-PD-L1) has 
become a key player in mediating immune suppression within the 
TME (9, 40). Secreted by both tumor cells and infiltrating immune 
cells, exo-PD-L1 can modulate the immune response by 
transferring immune checkpoint molecules to surrounding 
immune cells, primarily T cells. This process contributes to 
immune evasion and aids tumor progression by inhibiting T cell 
activation and function (9, 14). 
3.1 Exo-PD-L1 and immune suppression 

Exo-PD-L1, primarily released by tumor cells and tumor-

associated macrophages (TAMs), plays a pivotal role in shaping the 
immune landscape of the TME. Tumor-derived exosomes carry PD
L1 to the surface of immune cells, such as T cells and dendritic cells, 
and bind to  the  PD-1  receptor,  effectively inhibiting their activity. By 
doing so, exo-PD-L1 fosters a suppressive immune microenvironment 
that prevents T cells from recognizing and attacking tumor cells. This 
immune evasion mechanism is crucial for tumor survival, particularly 
in the context of immunotherapy resistance (39). 

In addition to its effects on T cells, exo-PD-L1 can also influence 
the activity of other immune modulators within the TME. For 
example, tumor-derived exosomal PD-L1 has been shown to 
promote the polarization of macrophages toward the M2 
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(immunosuppressive) phenotype, thereby contributing to a more 
suppressive tumor immune microenvironment and facilitating 
immune escape (41, 42). This reprogramming is linked to the 
secretion of cytokines such as TGF-b, which suppresses T cell 
activity and promotes tumor growth (43, 44). TAM-derived 
exosomes, containing miR-21 and other microRNAs, can further 
exacerbate immune suppression by inhibiting T cell proliferation 
and inducing the recruitment of regulatory T cells (Tregs) to the 
tumor site (45, 46). 
3.2 Exo-PD-L1 and resistance to 
immunotherapy 

The ability of tumors to evade immune surveillance by secreting 
exo-PD-L1 is a significant factor in the development of resistance to 
immune checkpoint inhibitors (ICIs), such as anti-PD-1/PD-L1 
therapies. While ICIs are designed to block the PD-1/PD-L1 
interaction and restore T cell function, the presence of exo-PD-L1 
in the TME can counteract these therapies by maintaining an 
inhibitory signaling axis that diminishes T cell responses. Exo
PD-L1 thus represents a critical mechanism of “immune checkpoint 
resistance” in the context of ICI treatment. Additionally, exo-PD-L1 
can act as a decoy by competitively binding anti-PD-L1 antibodies, 
thereby reducing their availability to block membrane-bound PD
L1 on tumor cells. This mechanism contributes to the limited 
efficacy of checkpoint inhibitors in some patients (14, 47). 

Moreover, exosomes from tumor cells can also promote 
immune suppression by facilitating the transfer of other immune 
checkpoint molecules such as VISTA (V-domain Ig-containing 
suppressor of T cell activation), which can act synergistically with 
PD-L1 to inhibit T cell function (48, 49). This underscores the 
complexity of the immune evasion mechanisms in the TME, where 
multiple immune checkpoints are concurrently regulated, often 
rendering ICI therapy less effective. 
3.3 Advantages of exo PD-L1 as a 
predictive biomarker for ICB response 

While section 2.5 presented clinical evidence supporting exo
PD-L1 as a biomarker for tumor progression and immunotherapy 
response, this section highlights the comparative advantages of exo
PD-L1 over other circulating and tissue-based biomarkers, such as 
IHC-PD-L1, ctDNA, and soluble PD-L1. 

The limited efficacy of current biomarkers in predicting 
immune checkpoint blockade (ICB) response reflects the 
complexity of tumor-immune interactions, encompassing 
genomic, spatial, and immunologic heterogeneity. Conventional 
markers—such as PD-L1 immunohistochemistry (IHC), tumor 
mutational burden (TMB), and microsatellite instability (MSI)— 
offer static, region-specific snapshots that often fail to represent 
dynamic immune status or therapeutic adaptation (33–36) 

Liquid biopsy approaches have sought to overcome these 
limitations. While circulating tumor DNA (ctDNA) provides 
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mutational insights, it does not reflect real-time immune 
suppression and is affected by tumor shedding kinetics (37). 
Soluble PD-L1 (sPD-L1), though easily detectable in plasma, lacks 
stability and functional specificity due to its unbound, cleaved 
nature (38, 39). 

By contrast, exosomal PD-L1 (exo-PD-L1) represents a 
membrane-bound, functionally active form of PD-L1, selectively 
packaged via Rab27a and ESCRT-dependent pathways (9). Exosomes 
preserve PD-L1 integrity and extend its immunosuppressive reach 
beyond the tumor, notably trafficking to lymph nodes and modulating 
systemic immunity. 

Clinically, high baseline exo-PD-L1 levels correlate with poor 
prognosis and early resistance to ICB in NSCLC and melanoma, 
while dynamic increases post-treatment predict durable responses 
—even before imaging confirmation (9). Unlike static biomarkers, 
exo-PD-L1 integrates upstream oncogenic signals (e.g., IFN-g/JAK
STAT), microenvironmental factors (e.g., hypoxia), and 
downstream immune suppression, serving as both a functional 
and temporal indicator of tumor immune escape (40). 
Frontiers in Immunology 05 
In sum, exo-PD-L1 is a mechanistically distinct biomarker with 
potential for real-time monitoring and stratification in precision 
immunotherapy (40). 
4 Clinical implications of exosomal 
PD-L1 across cancer types 

In recent years, immune checkpoint blockade (ICB) therapies 
targeting CTLA-4, PD-1, and PD-L1 have shown promising efficacy 
in various cancers, including melanoma, NSCLC, and renal cell 
carcinoma (50–53). However, sustained responses are observed in 
fewer than 30% of patients, with minimal benefit in malignancies 
like ovarian and prostate cancer (54, 55) (Table 1). 

Circulating exo-PD-L1 reflects the immunosuppressive tumor 
microenvironment and may serve as an indicator of ICB 
responsiveness (8, 9, 32). Nonetheless, its predictive value varies 
across cancer types due to tumor heterogeneity and individual 
TABLE 1 The relationship between exo-PD-L1 and prognosis in different tumors. 

Cancer type n Conclusion Method Reference 

Melanoma 44 
Metastatic melanoma’s exoPD-L1 > healthy donors, post-treat 

rise exo-PD-L1 levels show anti-PD-1’s response. 
ELISA (9) 

Osteosarcoma 67 
Higher initial exoPD-L1 levels, poorer disease-free survival and 

worse overall survival. 
Immunogold 

labeling and ELISA 
(56) 

NSCLC,GC, HNSCC, CC, RCC,HCC, 
CHC,EC,DC and Melanoma 

23,2,1,3,2,1,1,2,5,1,1 Pre/Post-treat ExoPD-L1 varies in responders & non-responder. ELISA (32) 

Melanoma 100 Treat-change, but not baseline ExoPD-L1, affect tumor response. ELISA and IHC (38) 

NSCLC 24 Number of PD-L1+ exosomes ties to tumor tissue’s PD-L1. FCM (14) 

NSCLC 85 
exo-PD-L1 levels are positively correlated with tumor size and 

higher metastasis. 
ELISA and IHC (58) 

NSCLC 51 exo-PD-L1 fold change predicts NSCLC treatment effect. 
Simoa™ PD-L1 
Reagent Kit 

(59) 

HNSCC 22 exo-PD-L1 varies in HNSCC by stage, nodal, cell type. ELISA (60) 

NSCLC 109 exo-PD-L1 level, impact on metastasis & survival. FCM (61) 

PC 17 PD-L1+ PDAC: shorter post-op survival. FCM (62) 

Melanoma, NSCLC 18,8 
Pre-treat exo-PD-L1 level correlates with 

immunotherapy response; 
ddPCR (108) 

PC 77 exo-PD-L1 is higher in metastatic and links to worse survival. ELISA (66) 

GC 69 High exoPD-L1, lower survival rate. ELISA (8) 

GC 80 higher PD-L1 expression have a significantly better prognosis ELISA (109) 

CC 40 
exo-PD-L1 is higher than in NED patients and varies with 

disease stage. 
FCM (33) 

Glioblastoma 21 
Circulating exo-PD-L1 DNA correlates with tumor size and 

tissue PD-L1 levels in blood. 
ddPCR (24) 

CRC 192 ExoPD-L1 was almost undetectable FCM (70) 
NSCLC, non-small cell lung cancer; SCLC, Small Cell Lung Cancer.
 
HNSCC, Head and neck squamous cell carcinoma; RCC, Renal Cell Carcinoma; HCC, hepatocellular-cancer; CHC, combined hepatocellular cholangiocarcinoma.
 
EC, endometrial cancer; CC, cervical carcinoma.
 
PC, Pancreatic Carcinoma; GC, gastric cancer; BC, breast cancer.
 
CRC, colorectal cancer.
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immune differences. These challenges are elaborated in 
subsequent sections. 

Research on exo-PD-L1 is most advanced in melanoma, where 
early increases in circulating exo-PD-L1 during PD-1 blockade have 
been shown to distinguish responders from non-responders, 
reflecting T cell reactivation. In metastatic melanoma, a 2.43-fold 
increase in exo-PD-L1 correlates with favorable outcomes, despite 
the lack of consistent association with tumor PD-L1 expression (9). 
Additionally, metastatic melanoma patients exhibit higher exo-PD
L1 levels than healthy donors. Similar patterns have been observed 
in NSCLC, supporting its cross-tumor relevance as a treatment 
response biomarker. 

Further studies show that melanoma patients with pre
treatment exo-PD-L1 levels below 25.96 pg/mL have better 
survival rates (56). Post-treatment, exo-PD-L1 levels rise more 
significantly in responders than in non-responders (32)., whereas 
total or non-exosomal PD-L1 levels show no such distinction (9, 
57). An early increase in exo-PD-L1 during therapy may serve as a 
dynamic marker for patient stratification (57). Moreover, exo-PD
L1 levels correlate with tumor burden and IFN-g levels, reinforcing 
their value in prognosis and treatment monitoring (9, 38). 
4.1 Exo-PD-L1 in NSCLC 

In NSCLC studies, exo-PD-L1 in patient plasma strongly 
correlates with positive tumor PD-L1 expression (14). Exosomal 
miR-5684 and miR-125b-5p are significantly lower in patients’ 
peripheral blood compared to healthy donors (20). Exo-PD-L1 
levels were significantly higher in NSCLC patients compared to 
healthy donors, especially in those with advanced tumor features, 
while sPD-L1 levels showed no significant difference between the 
two groups (58). In another NSCLC report, a fold change in exo
PD-L1 of ≥ 1.86 was associated with better therapeutic outcomes 
and overall survival (OS) (59). 
4.2 Exo-PD-L1 in cervical cancer 

In cervical cancer patients, non-recurrent individuals had 
higher levels of tumor-enriched CD3- exoPD-L1 before 
treatment, which significantly decreased five weeks post-treatment 
(60, 61). Conversely, recurrent patients showed an increase in 
tumor-enriched exoPD-L1 and a decrease in CD3+ exoPD-L1 
levels at week 5 of treatment (61). 
4.3 Exo-PD-L1 in pancreatic ductal 
adenocarcinoma 

In pancreatic ductal adenocarcinoma, exo-PD-L1 is associated 
with poor prognosis (62). Higher levels are linked to unresectable 
tumors and shorter survival. miRNA-196a, miRNA-1246, miRNA

191, miRNA-21, miR-451a, and miRNA-483-3p are elevated in 
exosomes or liquid biopsies (63–65). In NSCLC, higher extracellular 
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vesicle PD-L1 mRNA levels before treatment are related to better 
responses. In pancreatic cancer, serum exo-PD-L1 is higher in 
metastatic patients, and elevated levels mean worse survival (66). 
4.4 Exo-PD-L1 in gastric cancer 

In gastric cancer, preoperative soluble PD-L1 levels aren’t 
linked to clinical outcomes (8). Higher circulating PD-L1 may 
indicate malignancy, but its correlation with staging and 
prognosis is inconsistent. In advanced cases, tumor tissue PD-L1 
is higher than in healthy tissues and ties to differentiation and 
lymph node metastasis. In adenocarcinoma, high PD-L1 expression 
means better prognosis. Exo-PD-L1 signals mean poor post
treatment outcomes and is an early gastric adenocarcinoma 
prognostic factor related to tumor staging (66). 
4.5 Exo-PD-L1 in head and neck squamous 
cell carcinoma 

In head and neck squamous cell carcinoma studies, exo-PD-L1 
serves as a marker of poor outcomes following surgery or 
chemoradiotherapy (58). The level of exo-PD-L1 correlates with 
disease activity (33). However, studies on glioblastoma indicate that 
exo-PD-L1 levels cannot distinguish glioblastoma patients from 
healthy donors (24, 34, 35). 
4.6 Exo-PD-L1 in “cold tumor” 

Although research on exo-PD-L1 has provided valuable insights 
in many cancer types, its role in cold tumors like ovarian cancer 
remains poorly understood. Ovarian cancer, often described as a 
‘cold tumor’ due to its lack of immune cell infiltration, shows 
minimal response to immune checkpoint blockade (ICB) therapies. 
Preliminary studies on exo-PD-L1 in ovarian cancer suggest that 
low levels of exo-PD-L1 may contribute to this poor response, but 
further research is needed to better understand its potential as a 
biomarker in this setting. Ovarian cancer’s limited immune 
response is thought to be due to the absence of a robust T-cell 
infiltrate, which limits the effectiveness of PD-1/PD-L1 blockade 
therapies. Some preliminary data suggest that ovarian cancer 
patients exhibit relatively low exo-PD-L1 levels, which might 
contribute to the poor response observed in clinical settings (54, 
55). However, further research is needed to understand the role of 
exo-PD-L1 in this and other less-responsive cancers. 

Accurate diagnosis, staging, and prognosis assessment are crucial 
for enhancing immune therapy response. Immunohistochemistry 
(IHC) detection of tumor PD-L1 expression, tumor mutational 
burden (TMB) and microsatellite instability (MSI) are the most 
commonly used biomarkers for predicting immune therapy response 
(67–69). However, methodological differences among studies and the 
dynamic regulation of PD-L1 expression have led to conflicting 
evidence, limiting the use of tumor PD-L1 expression as an 
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exclusionary biomarker (69). Thus, liquid biopsy may reemerge as a 
non-invasive tool for screening candidate factors influencing clinical 
outcomes of immune therapy. Exo-PD-L1 provides a platform to assess 
cancer patients’ immune status non-invasively. However, correlating 
exo-PD-L1 levels with tumor PD-L1 expression remains challenging. 

In conclusion, exo-PD-L1 shows potential in tumor staging, 
detection, and aiding ICB therapy. However, a universal standard 
for evaluation  does not  exist across different  cancers.  Future
research must focus on analyzing the relationship between PD-L1 
and exo-PD-L1 in various cancer tissues, exploring the statistical 
relationships of exoPD-L1 in different tumors, standardizing 
detection techniques, and establishing critical ratio for exoPD-L1 
and tumor PD-L1 values to differentiate patient conditions and 
prognosis (70). Additionally, translating these findings into clinical 
practice requires overcoming significant challenges in standardizing 
exo-PD-L1 measurement and interpretation across different tumor 
types and clinical settings. 
5 Exosomal PD-L1 detection 
technologies 

Peripheral blood is crucial for liquid biopsy, aiding in disease 
subtyping pre - treatment and minimal residual disease monitoring 
post - therapy. Exosomes in peripheral blood have higher 
concentrations and better stability, biocompatibility, low 
immunogenicity, and minimal toxicity than ctDNA and CTCs. As 
lipid bilayer vesicles, they’re less affected by the environment and 
degradation, helping distinguish tumor-derived exosomes from 
normal ones. In cancer patients, exosomes from serum are 
analyzed for immune-suppressive molecules like PD-L1, FasL, 
TRAIL, IL-10, and TGF-b1. In ovarian cancer, ascites and plasma 
can be analyzed for soluble cytokines via ELISA and CBA, and 
exosomes from them examined for immune checkpoint molecules 
like exo-PD-L1 or exo-Gal-9 (12). 
5.1 Exosome isolation methods 

Exosomes are small extracellular vesicles that play a crucial role 
in intercellular communication, and their detection and analysis are 
essential for various clinical applications. Due to their small size and 
high heterogeneity, ultracentrifugation has long been the 
predominant method for exosome separation. This technique 
involves differential centrifugation to remove cells and debris, 
followed by high-speed centrifugation (up to 100,000 g) to isolate 
microvesicles, ultimately obtaining purified exosomes. However, 
the time-consuming nature of this method in clinical settings has 
led to the development of faster techniques, such as affinity-based 
purification kits. These kits employ antibodies coupled with 
magnetic beads targeting exosome surface markers (e.g., CD63, 
CD9, CD81) or proteins with T-cell immunoglobulin and mucin 
domains (e.g., TIM4) for efficient exosome isolation (71). Recent 
advancements in flow cytometry, such as Nano-FACS, have been 
adapted for exosome analysis, validating the potential clinical 
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applications of these rapid separation methods for exosomes and 
their surface markers, including PD-L1 (71). 
5.2 PD-L1 detection techniques 

Current methods for detecting PD-L1 on tumor-derived 
exosomes primarily involve ultracentrifugation coupled with 
ELISA, though these suffer from low efficiency and sensitivity, 
limiting widespread clinical use (72, 73). Recent advancements 
include the development of HOLMES-exoPD-L1, a homogeneous, 
low-volume, high-efficiency, and high-sensitivity quantitative 
method for exosome PD-L1 detection (74). This technique 
combines PD-L1 aptamers with HOLMES technology, eliminating 
the need for separation and offering significantly higher sensitivity 
and faster detection compared to traditional ELISA methods 
(74, 75). 

In addition, there exist several conventional techniques for the 
detection of exo-PD-L1 (exo-PD-L1). Electron microscopy and 
immunoelectron microscopy can serve as qualitative methods to 
confirm the presence of exoPD-L1. The percentage of exoPD-L1 
can be measured using nanoscale flow cytometry or conventional 
flow cytometry with the aid of magnetic or latex beads. The relative 
quantification of PD-L1 levels is often assessed through relative 
fluorescence intensity. Western blotting is used to evaluate the total 
PD-L1 protein levels within exosomes. Both flow cytometry and 
immunoblotting provide semi-quantitative measurements. 
Absolute quantification can be achieved through enzyme-linked 
immunosorbent assay (ELISA). However, it is important to note 
that Western blotting and ELISA have detection limits and may not 
be suitable for detecting low abundance of exoPD-L1 in the early 
stages of cancer (76). In addition to Western blotting (WB) and 
ELISA, devices such as the Exo-Counter can directly quantify 
exosomes expressing specific membrane molecules using as little 
as 10–50 microliters of plasma or bodily fluid samples without the 
need for exosome isolation. These advancements hold promise for 
meeting the future demands of rapid clinical diagnostics (77, 78). 

To  address  ELISA  l imitations,  the  nano  plasmonic  
extravesicular (nPLEX) assay has been developed, utilizing 
modified surface plasmon resonance (SPR) biosensors and 
compact SPR biosensors (79, 80). This approach enables real-time 
detection of exoPD-L1 in 50 µL serum samples, demonstrating 
enhanced detection sensitivity (80). 

Additionally, a rapid and precise method for detecting exo-PD-L1 
directly from clinical samples has been established using Fe3O4@TiO2 
separation and surface-enhanced Raman scattering (SERS) 
immunoassays. This approach significantly enhances both the 
separation efficiency and detection sensitivity of exosomes (54, 81). 

Despite challenges posed by inconsistent exosome separation 
procedures, quality control, and storage methods, emerging 
microfluidic-based separation technologies (e.g., nanoparticle 
platforms) are being investigated as next-generation solutions for 
effective exosome isolation (82–85). As these technical challenges 
are addressed, the potential of exosomes in cancer therapy is 
expected to be further realized (85) (Figure 2; Table 2). 
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6 Therapeutic applications and 
targeting strategies 

By alleviating the suppression of T cells, reducing exosome 
secretion can potentially restore anti-tumor T cell responses. 
However, therapies specifically targeting exosomal PD-L1 (exo
PD-L1) are still in their nascent stages, with no direct exo-PD-L1
targeting treatments currently available. Current approaches 
predominantly focus on inhibiting exosome production, thereby 
indirectly lowering exo-PD-L1 levels. 
6.1 Inhibition of exosome biogenesis and 
secretion 

Exosome release can be inhibited using antibodies, chemical 
inhibitors, and genetic manipulation, enhancing cancer treatment 
efficacy (86, 87). Exosome formation, cargo sorting, and secretion 
rely on the Endosomal Sorting Complex Required for Transport 
(ESCRT) mechanism. High-throughput screening of 4,580 
compounds identified five effective inhibitors: tipifarnib, naftifine, 
clomipramine, ketoconazole, and miconazole (88). These suppress 
exosome production by downregulating ESCRT-dependent 
proteins (88–90).Dimethyl amiloride (DMA) inhibits exosome 
release by targeting H+/Na+ and Na+/Ca2+ channels, reducing 
exosome-induced immunosuppression and enhancing anti-tumor 
efficacy, making it a promising chemotherapy approach (91). 
GW4869 and spiroepoxide inhibit neutral sphingomyelinase 
(nSMase) via ESCRT-independent mechanisms (92), blocking 
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exosome secretion. As ceramide biosynthesis inhibitors, GW4869 
suppresses exosome secretion in 293T cells and inhibits ovarian 
cancer exosome release and cell invasion (93). 
6.2 Combination with immune checkpoint 
inhibitors 

Combining exosome inhibition with immune checkpoint 
blockade has emerged as a promising therapeutic strategy to 
enhance antitumor immunity. By reducing circulating exo-PD-L1 
levels, such combinations may enhance the accessibility and efficacy of 
anti-PD-1/PD-L1 antibodies within the tumor microenvironment. In 
breast cancer mouse models, treatment with sulfamethoxazole, 
macitentan, and anti–PD-L1 antibodies significantly decreased 
plasma exo-PD-L1 levels, reactivated cytotoxic T cells, and led to 
reduced tumor growth and metastasis (94–96). These findings suggest 
that exosome-mediated immune suppression may be reversible and 
that targeting exo-PD-L1 could enhance responsiveness to ICIs. 
6.3 Alternative physical approaches 

In addition to pharmacologic inhibition, several physical 
approaches have been investigated for exosome elimination. 
Autophagy induction has been shown to suppress exosome 
biogenesis by promoting degradation of multivesicular bodies. On 
the other hand, extracorporeal removal techniques, such as blood 
purification systems and ultrafiltration, offer non-invasive methods 
FIGURE 2 

Detection process of exo-PD-L1: from sample collection to modern detection techniques. The diagram outlines the process for detecting exo-PD
L1, a biomarker for cancer diagnostics. The workflow begins with the collection of patient samples, which may include peripheral blood, tumor 
tissue fluid, or ascites (in cases such as ovarian cancer) (1). Following sample collection, exosomes are isolated using various methods such as 
ultracentrifugation, affinity-based purification, or advanced techniques like Nano-FACS (2). Once exosomes are purified, the presence of PD-L1 on 
their surface is detected using several techniques. Traditional methods include enzyme-linked immunosorbent assay (ELISA). Recent advancements 
feature high-sensitivity approaches such as HOLMES-exo-PD-L1, nano plasmonic extravesicular (nPLEX) assay, and surface-enhanced Raman 
scattering (SERS) immunoassays (4). These modern techniques offer improved detection sensitivity and efficiency. The figure highlights the steps 
from sample collection through exosome isolation to the detection of exo-PD-L1, reflecting the current state-of-the-art in exosome-based cancer 
diagnostics. 
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to physically eliminate exosomes from circulation. These 
technologies are still in preclinical evaluation but have 
demonstrated potential advantages over drug-based therapies, 
including lower systemic toxicity and broader applicability across 
tumor types (97). Nevertheless, their specificity for exo-PD-L1 
remains to be established (97). 

Regulating exo-PD-L1 expression is complex. Pre-clinical studies 
on exo-PD-L1-targeting strategies are promising, but more research 
is required to solve challenges and explore their combined clinical 
effectiveness (4). Further investigations are necessary to identify 
precise, clinically feasible approaches that can modulate exo-PD-L1 
without disrupting essential exosome functions. 

As these strategies advance toward clinical translation, both 
efficacy and the spectrum of on- and off-target effects must be 
rigorously benchmarked. First-generation chemical blockers of 
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exosome biogenesis—such as the nSMase2 inhibitor GW4869 and 
the RAB27A-JFC1 interaction disruptor Nexinhib-20—display only 
cell-line-restricted activity and fail to curb vesicle release in prostate 
(PC3) and  other cancer  models or to produce  an  in-vivo benefit in the  
MC38 syngeneic tumor (90, 98). Compounds that more globally 
perturb vesicle trafficking, for example dimethyl-amiloride, also 
interfere with lipid metabolism or ion transport and may introduce 
unintended immunotoxicity (99). Notably, small-molecule nSMase2 
blockade with GW4869 has been linked to phosphatidylserine
dependent cytotoxicity in myeloma cells and memory impairment in 
mice, while Nexinhib-20 suppresses b2-integrin activation in 
neutrophils, raising infection or bleeding concerns. Dimethyl

amiloride (100), a classic Na+/H+-exchanger blocker, perturbs 
cardiomyocyte ion homeostasis at micromolar doses (101–103). 
These emerging data underscore the need for structure-guided 
optimization and rigorous toxicology before first-in-human trials. 
Likewise, bulk physical-removal approaches—such as extracorporeal 
plasma exchange—risk indiscriminately depleting exosomes with 
homeostatic roles in immune regulation or tissue repair (104). 
Therefore, future work should aim to improve the specificity, 
tolerability, and context-dependent application of these interventions 
to ensure clinical safety and efficacy. 
7 Future perspectives, challenges, and 
conclusions 

Exosomal PD-L1 (exo-PD-L1) plays a critical role in tumor 
initiation, progression, and immune suppression. Tumor-derived 
exo-PD-L1 binds to PD-1 receptors on T cells, thereby inhibiting 
anti-tumor immune responses both locally and systemically. 
Moreover, exo-PD-L1 may serve as a molecular sink for immune 
checkpoint inhibitors by sequestering anti-PD-L1 antibodies in the 
circulation, limiting their effective concentration within the tumor 
microenvironment. By integrating exosome analysis into 
personalized treatment strategies, clinicians can tailor ICI 
treatment plans based on exo-PD-L1 levels, improving treatment 
efficiency and accurately predicting patient responses. 
7.1 Limitations and challenges 

Despite its emerging clinical value, the use of exosomal PD-L1 
(exo-PD-L1) as a predictive biomarker for immune checkpoint 
blockade (ICB) therapy remains constrained by several critical 
limitations. One major challenge lies in its cellular origin: exo
PD-L1 is not exclusively secreted by tumor cells but may also be 
derived from immune and stromal cells, thereby compromising its 
tumor specificity and interpretative precision (75). Furthermore, 
the relationship between exo-PD-L1 levels and therapeutic response 
has proven inconsistent across different cancer types, undermining 
its reliability as a universal biomarker (76). Technical and practical 
hurdles also present significant barriers to clinical translation. The 
absence of standardized isolation and quantification protocols 
contributes to inter-study variability, while the lack of established 
TABLE 2 Comparison of different detection methods for exo-PD-L1. 

Method Strengths Limitations 

Enzyme-Linked ✔ Widely used and ✔ low sensitivity 
Immunosorbent standardized ✔ lengthy reaction time 
Assay (ELISA) ✔ suitable for 

various sample 
types 
✔ high specificity 
✔ 
quantitative 
analysis. 

✔ requires larger sample volumes 

HOLMES-exo-PD ✔ high sensitivity ✔ new technology with limited 
L1 Method and recognition 

efficiency 
✔ rapid, non
invasive detection; 
✔ requires minimal 
sample volume 
✔ easy to operate. 

clinical application experience 
✔ rely on the availability 
of aptamers 

Flow 
Cytometry (FCM) 

✔ High-throughput 
✔ multiparameter 
detection of 
multiple markers 

✔ Requires equipment and is 
costly; 
✔ need labeling 
✔ not suited for real-time 
monitoring 
✔ Instrument acquisition and 
maintenance entail substantial 
financial investment 

Surface Plasmon ✔ Real-time ✔ High-cost equipment and 
Resonance (SPR) ✔ label-free 

detection 
✔ high sensitivity 
✔ suited for 
analyzing 
biomolecular 
interactions 

complex operation 
✔ Not suited for large-scale 
applications due to size and 
expense constraints 
✔ High operational costs restrict 
applicability in 
routine diagnostics 

Fe3O4@TiO2 ✔ Extremely high ✔ Requires specialized 
isolation and sensitivity nanoparticles and high-cost 
SERS immunoassay ✔ allowing for 

single exosome-level 
detection 
✔ rapid detection 
with minimal 
sample volume 
✔ non
destructive 
monitoring 

spectroscopic equipment 
✔ data analysis is complex, 
technically demanding 
✔ High cost and complex data 
interpretation hinder 
clinical implementation 
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clinical thresholds impedes its integration into routine diagnostic 
workflows (56, 77, 78). In addition, many of the most sensitive and 
specific detection methods—such as surface plasmon resonance 
(SPR) biosensing, SERS-based assays, and nanoparticle-enhanced 
platforms—require sophisticated instrumentation, specialized 
reagents, and high operational costs, which substantially limit 
their accessibility in standard clinical settings (Table 2). Together, 
these issues highlight the need for methodological harmonization, 
cost reduction, and further clinical validation before exo-PD-L1 can 
be reliably adopted in precision oncology. 
7.2 Exo-PD-L1/IHC-PD-L1 ratio as a 
predictive model for immunotherapy 

An important avenue for future research is to explore the 
prognostic and predictive potential of the exosomal PD-L1 to 
tumor PD-L1 ratio (exo-PD-L1/IHC-PD-L1) in the context of 
immune checkpoint inhibitor (ICI) therapy. While exosomal PD
L1 and tumor PD-L1 have each been individually investigated as 
biomarkers, this ratio may offer enhanced discriminatory power by 
integrating both systemic and tumor-localized immunosuppressive 
cues. Incorporating this dynamic ratio into future stratification 
models could improve patient selection and inform more 
personalized  immunotherapeutic  strategies.  (Figure  3) 
Additionally, a comprehensive evaluation of tissue PD-L1, exo
PD-L1, and soluble PD-L1 is essential for companion diagnostics. 
Emerging studies suggest that tumor metabolic regulation and 
nanotechnology-based strategies could influence PD-L1 
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expression and secretion, offering potential tools to indirectly 
modulate exo-PD-L1 levels (36, 105–107). 
7.3 Applications of exo-PD-L1 in precision 
oncology 

A fascinating avenue is the potential of exo-PD-L1 as an early 
warning system for predicting organ-specific metastasis. By analyzing 
exo-PD-L1 levels from body fluids, researchers could potentially infer 
which organ may be the next site of metastatic spread. However, this 
approach still requires extensive validation, as identifying definitive 
biomarkers for organ-specific metastasis remains challenging. 
Additionally, monitoring exo-PD-L1 dynamics could support 
combination therapies that reprogram cold tumors into responsive 
ones, improving ICB therapy outcomes in resistant cancers (36). 
7.4 Conclusion 

In advancing anti-PD-1/PD-L1 immune checkpoint blockade 
therapies, it is essential to consider both PD-L1 on tumor cell 
surfaces and exo-PD-L1 levels for a comprehensive evaluation of 
patient conditions. In conclusion, exo-PD-L1 shows great promise 
as a multifaceted biomarker in immune checkpoint blockade 
therapy. By integrating exo-PD-L1 levels into clinical decision-
making, we can potentially refine personalized treatment 
regimens, enhance the precision of immunotherapies, and 
ultimately improve patient outcomes. 
FIGURE 3 

Exo-PD-L1/IHC-PD-L1 ratio as a potential biomarker for predicting immune checkpoint blockade therapy response. This figure illustrates the 
proposed utility of the ratio between circulating exosomal PD-L1 and tumor PD-L1 expression (exo-PD-L1/IHC-PD-L1) as a dynamic and potentially 
more informative biomarker for predicting clinical response to ICB therapy. Unlike static, single-site measurements, this ratio may better capture the 
interplay between localized immune escape and systemic immunomodulation. In responders, a low baseline ratio followed by a marked post
treatment increase in exosomal PD-L1 reflects enhanced immune activation and treatment efficacy. In contrast, non-responders tend to display a 
high baseline ratio with minimal change after therapy, indicating persistent immune suppression. This ratio-based model may enable early patient 
stratification and guide the design of personalized immunotherapeutic strategies, though further validation is needed. 
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