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Aims: We hypothesize that specific macrophage differentiation trajectories in
heart failure (HF) are coupled with subtype-specific and context-dependent
engagement of programmed cell death (PCD) pathways, particularly
ferroptosis and anoikis, which in turn influence disease progression and
remodeling. HF is a progressive and heterogeneous clinical syndrome
characterized by adverse immune remodeling, yet the precise contributions of
macrophage heterogeneity, lineage dynamics, and PCD programs to its
pathogenesis remain unclear. This study aimed to delineate, at single-cell
resolution, the cellular and molecular landscape of cardiac macrophage
subpopulations and their engagement with immunogenic cell death programs.
Methods: We profiled human cardiac tissues from HF and non-failing donors using
scRNA-seq from the SCP1303 dataset, initially comprising ~600,000 cells and
reduced to ~120,000 high-quality cells from 18 samples after stringent quality
control to retain biologically valid but metabolically distinct populations.
Standardized cell-type annotation and pseudotime trajectory reconstruction were
applied. Pathway activity was quantified using AUCell (primary) and GSVA
(complementary) for cell death—related signatures. Integrated differential expression
analysis, protein—protein interaction network mapping, and multi-algorithm feature
selection (LASSO, SVM-RFE, Random Forest) were performed, and candidate
biomarkers were validated using an independent bulk RNA-seq dataset (GSE57345).
Results: Thirteen major cardiac cell types were identified, with macrophages
showing the highest transcriptional heterogeneity. We resolved four macrophage
subtypes and mapped bifurcating disease-associated differentiation trajectories,
revealing distinct activation patterns of ferroptosis- and anoikis-related pathways.
Ferroptosis-associated genes and anoikis-associated genes displayed subtype-
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specific enrichment and significant differential activation in HF. Pseudotime analysis
demonstrated that suppression of ferroptosis and anoikis was linked to late-stage,
HF-enriched macrophage states. Key biomarkers—including CD163, FPR1, and
VSIG4—achieved robust diagnostic performance (AUC > 0.80) in discriminating
HF phenotypes.

Conclusions: This is the first study to integrate scRNA-seq, differentiation trajectory
inference, and PCD pathway scoring to define the context-dependent engagement
of ferroptosis and anoikis in macrophage subtypes in HF. The identification of
subtype-specific biomarkers and functional states provides novel mechanistic
insight and potential diagnostic and therapeutic targets, underscoring the value of
high-resolution immune profiling for precision immunology in cardiovascular disease.

macrophages, cardiomyopathy, single-cell RNA sequencing, anoikis, ferroptosis,

cell death

Introduction

Heart failure (HF), resulting from diverse cardiac structural or
functional aberrations, is a complex syndrome that disrupts
ventricular filling and/or ejection. It is characterized by
pulmonary and/or systemic congestion and insufficient blood
perfusion to organs and tissues. HF is recognized as a major
culprit for global morbidity and mortality, impacting more than
26 million people worldwide (1). Despite advancements in
pharmacological interventions and device-based therapies, the
prognosis of HF remains unpromising, with a 5-year survival rate
of less than 50% (2). Therefore, understanding the cellular and
molecular mechanisms underlying HF and identifying novel
therapeutic targets and biomarkers remain urgent priorities.

In recent years, bulk RNA sequencing (bulk RNA-seq)
numerous studies have utilized has been widely used to
investigate transcriptomic changes in cardiac tissue under various
disease conditions. However, bulk RNA-seq has intrinsic
limitations, as it cannot resolve cell type-specific alterations or
capture the functional diversity within a given lineage. Single-cell
RNA sequencing (scRNA-seq) overcomes these limitations by
enabling high -resolution and unbiased dissection of
transcriptomic profiles at the individual cell level. This technology
not only reveals the gene expression landscapes and functional
states of distinct cell types, but also uncovers their dynamic
transitions and interactions within the tissue microenvironment
(3). scRNA-seq has been successfully applied to characterize cellular
heterogeneity in cardiovascular diseases, including atherosclerosis,
myocardial infarction, and cardiomyopathies, offering new
mechanistic insights (4-6). However, despite the increasing
recognition of macrophages as central players in HF pathogenesis,
no study has systematically mapped their differentiation trajectories
and programmed cell death (PCD) dynamics—particularly
ferroptosis and anoikis—at single-cell resolution in human HF.
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Ferroptosis and anoikis have been implicated in adverse cardiac
remodeling and HF progression in preclinical and bulk-tissue
studies (7, 8), but their cell type-specific regulation, temporal
engagement along differentiation continua, and relationship to
macrophage functional states remain undefined. This knowledge
gap limits our ability to identify precise intervention points that
could modulate maladaptive immune responses without impairing
reparative processes.

Here, we address this gap by integrating scRNA-seq analysis,
pseudotime trajectory inference, and cell death pathway activity
scoring to test the central hypothesis that macrophage
differentiation in HF involves subtype-specific and context-
dependent engagement of ferroptosis and anoikis programs. We
further hypothesize that these pathways converge with distinct
transcriptional and functional phenotypes that can be exploited
for diagnostic and therapeutic purposes. Our study is the first to
(i) resolve HF-enriched macrophage subtypes and their
bifurcating differentiation trajectories, (ii) link reduced
ferroptosis and anoikis activity to late-stage, maladaptive
macrophage states, and (iii) identify and validate high-
performing biomarkers (e.g., CD163, FPR1, VSIG4) in
independent cohorts, providing both mechanistic insight and
translational potential.

In this study, we performed single-cell transcriptomic profiling
of cardiac tissue from patients with dilated cardiomyopathy (DCM)
or hypertrophic cardiomyopathy (HCM), —two major etiologies of
HF—and from healthy donors. We compared cell composition and
gene expression across conditions, with special focus on
macrophages due to their key roles in HF pathogenesis and
progression (9, 10). By linking differentiation trajectory analysis
with immunogenic cell death pathway mapping, we offer a
comprehensive framework to understand macrophage functional
plasticity in HF and to inform the development of precision
immunomodulatory strategies.
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Materials and methods
Data sources and processing

scRNA-seq data were obtained from the publicly available
SCP1303 dataset via the Single Cell Portal (https://
singlecell.broadinstitute.org/single_cell), which originally
comprised approximately 600,000 cells from all available samples.
This dataset included 11 samples from DCM, 15 from HCM, and 16
from NF heart tissues. Following rigorous quality control (QC)
filtering—removing cells with fewer than 200 detected genes, genes
expressed in fewer than 50 cells, potential doublets, and cells with
>10% mitochondrial gene content—we retained ~120,000 high-
quality cells from 18 selected samples for downstream analysis. This
filtering approach, which yielded roughly 20% of the original cells, is
consistent with established best practices in scRNA-seq studies to
ensure biological reliability and minimize technical artifacts. These
samples maintained a balanced sex distribution, comprising 6 NF
samples (3 males: P1702, P1549, P1678; 3 females: P1582, P1600,
P1515), 6 HCM samples (3 males: P1422, P1462, P1722; 3 females:
P1508, P1447, P1726), and 6 DCM samples (3 males: P1358, P1472,
P1617; 3 females: P1437, P1304, P1300).

We downloaded bulk RNA sequencing data from the GSE57345
dataset, which was publicly available from the Gene Expression
Omnibus (https://www.ncbi.nlm.nih.gov/geo/). This dataset
contained 136 NF and 177 HF samples, with phenotypes
including disease type (idiopathic DCM/ischemic/non-failing),
sex, and age. It was subsequently used for validation of our
scRNA-seq findings.

Single-cell RNA sequencing and data
analysis

The scRNA-seq data was subjected to a series of analytical steps
on Seurat (v5.0.1), comprising data integration, normalization,
scaling, dimensionality reduction, clustering, and differential
expression analysis. Specifically, SCTransform method was used
to normalize the data, and the Harmony algorithm was applied to
integrate the data across various samples. For dimensionality
reduction, we leveraged principal component analysis (PCA),
while cell clusting was facilitated by the Louvain algorithm. To
identify cluster-specific and disease-specific marker genes, we
utilized the FindAllMarkers and the FindConservedMarkers
functions respectively. Subsequently, we employed the
‘FindClusters” function from the Seurat R package to perform cell
clustering, and then proceeded to simplify the data using the
‘RunUMAP’ function. Visualization was achieved through t-SNE
and UMAP. Cell type annotation was carried out using the SingleR
package (version 1.4.1) based on the Human Primary Cell Atlas
reference. For the identification of cell subpopulations, we
implemented unsupervised graph-based clustering using Leiden
algorithm. t—SNE was used to visualize the distribution of major
cell types, highlighting relative abundances across cardiomyocytes,
fibroblasts, endothelial cells, and other populations (see Results).
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Cell death analysis

Pathway activity was assessed using AUCell (primary) and
ssGSEA (complementary) methods. AUCell (version 1.20.2) was
selected as the primary approach because its rank-based algorithm
is well suited for single-cell RNA-seq data with high sparsity,
enabling robust detection of per-cell pathway activity even when
total gene counts vary substantially. ssGSEA, implemented via the
GSEABase (v 1.58.0) and GSVA (v 1.44.5) packages, was applied in
parallel to provide a complementary, gene set-based perspective
and to cross-validate AUCell-derived findings. Alternative methods
such as GSVA (bulk transcriptome-oriented, potentially biased by
variable detection rates at the single-cell level) and PROGENy
(restricted to predefined downstream targets, potentially omitting
relevant upstream regulators and context-specific genes) were
considered but not used as primary tools given the characteristics
of our dataset.

Based on curated gene sets from the Cell Death Signaling
Database, enrichment scores for 12 programmed cell death
pathways were calculated for each cell using the ssGSEA function.
For targeted analysis of anoikis and ferroptosis in macrophages,
activity scores were computed using AUCell on the basis of the
corresponding gene sets from the Molecular Signatures Database
(MSigDB). The ssGSEA- and AUCell-derived pathway activity
scores were subsequently compared across cell types and disease
groups using the Wilcoxon rank-sum test and the Kruskal-Wallis
test, as appropriate.

Threshold calibration for AUCell scoring was performed to
distinguish active versus inactive pathway states, and activation
state mapping was visualized in UMAP space (see Results).

Cell trajectory and pseudotime analysis

Cell trajectory and pseudotime analysis were conducted using the
Monocle 3 package (version 1.3.4). The preprocess_cds function was
adopted to filter out low-quality cells and genes, while the
reduce_dimension function was applied to perform nonlinear
dimensionality through the UMAP method. We used the
cluster_cells function to group the cells according to their UMAP
coordinates and utilized the learn_graph function to deduce the cell
trajectory based on the minimum spanning tree algorithm. After that,
the order_cells function was used to assign pseudotime values to each
cell in accordance with their respect trajectories and the
differentialGeneTest function was then engaged to identify genes
that were differentially expressed along the pseudotime axis.
Furthermore, the BEAM function was used to identify genes that
were differentially expressed between branches of the trajectory. We
performed functional enrichment and network analysis of the
pseudotime-related genes using the clusterProfiler package (version
3.18.0) and the STRINGdAb package (version 2.0.2). Lastly, regression
analysis was executed on the pseudotime values and gene expression
levels using the fit_models function in Monocle 3.

RNA velocity analysis was performed to infer the direction and
magnitude of transcriptomic change across macrophage subtypes,
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and latent time mapping was integrated with pseudotime
trajectories to identify early— and late—stage populations. AUCell
scores were calculated along pseudotime to assess dynamic changes
in cell death pathway activity.

Differential analysis among macrophage
subtypes

Gene differential expression analysis was conducted using
edgeR (v_4.0.16). Low-expression genes and miRNAs were
filtered out in more than 10% of the samples with counts per
million less than or equal to 1 (cpm < 1). The threshold for
differential expression was set at an FDR less than 0.05 (FDR <
0.05) and a fold change greater than 1.5 (fold change> 1.5).

Subtype-specific marker genes were identified based on
differential expression patterns and functional annotations,
followed by functional enrichment and network analysis to
characterize biological roles.

Bulk RNA sequencing and data analysis

The bulk RNA sequencing data went through quality control,
normalization, and differential expression analysis, facilitated by the
DESeq?2 package (version 1.42.1). We employed the limma package
(version 3.58.1), coupled with the ComBat method, to perform
batch effect correction. Furthermore, we used the edgeR package
(version 4.0.16), along with the camera method, to perform gene set
enrichment analysis. To distinguish key genes between HF and
non-HF conditions, we utilized the ROC curve, principal
component analysis, and Random Forest analysis within the
MetaboAnalyst online tool (https://www.metaboanalyst.ca/).

Differentially expressed genes related to ferroptosis and anoikis
were visualized in heatmaps and network diagrams, with subtype
—specific distributions provided in Supplementary Figures
(see Results).

PPl networks and functional enrichment
analysis

A Protein-Protein Interaction Network was constructed for the
differentially expressed genes. Relevant genes were selected and used to
develop the Protein-Protein Interaction Network with the assistance of
the interaction gene retrieval tool, STRING (https://cn.string-db.org/
cgi/input?sessionld=bgCn09IWJHNWX&input_page_show_
search=on), and Cytoscape (v_3.8.2). Additionally, we conducted
Kyoto Encyclopedia of Genes and Genomes pathway analysis
within the KOBAS database. The significance of the Kyoto
Encyclopedia of Genes and Genomes analysis results was
evaluated using the p-value obtained from the hypergeometric test.
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Ethics statement

Ethical approval was not required for this study since it involves
the analysis of publicly available datasets. These datasets—SCP1303
(Single Cell Portal) and GSE57345 (Gene Expression Omnibus)—
had been previously collected and anonymized in accordance with
ethical guidelines of the 1975 Declaration of Helsinki, as revised in
2000. All data utilized in this study comply with the ethical
standards of the repository source and institutional guidelines.

Results

Single-cell sequencing reveals cellular
diversity in the failing heart

We integrated and clustered scRNA-seq data from the SCP1303
dataset, retaining ~120,000 high-quality cells after QC filtering (see
Methods), and identifying 13 major cell types using marker gene
expression and the Human Primary Cell Atlas. These cell types are
annotated in Figure 1A. t-distributed Stochastic Neighbor
Embedding (t-SNE) visualization showed cardiomyocytes as the
most abundant cell type, followed by fibroblasts and endothelial
cells (Figures 1A, B). Cell-type proportions across NF, HCM, and
DCM are shown in Figure 1C. Non-failing (NF) samples had a
higher proportion of cardiomyocytes and pericytes, whereas DCM
samples showed more ventricle fibroblasts (Supplementary Figure
S1, Figure 1D).

Macrophage diversity and distinct cell
death pathways in HF

We focused on macrophages, key immune cells in HF.
Reclustering identified four macrophage subtypes (macrophage-1
to -4) based on expression patterns and functional annotations
(Figures 2A, B). Single-sample Gene Set Enrichment Analysis
(ssGSEA) revealed distinct expression patterns in autophagy,
anoikis, ferroptosis, and necrosis between HF and NF
macrophages (Figures 2C, D, Supplementary Figure S2). AUCell
scores revealed diminished anoikis and ferroptosis in HF samples
(Figure 3A), with threshold calibration in Supplementary Figure S3
and activation state mapping in Figure 3B. Active anoikis- and
ferroptosis-positive macrophages were predominantly
macrophage-1 and -2, while inactive ones were macrophage-3
and -4.

Our analysis revealed distinct distribution patterns of
macrophage subtypes across myocardial samples: macrophage-1
and macrophage-2 were enriched in NF, whereas macrophage-3
and macrophage-4 were more abundant in HCM and DCM
(Figure 3C). Consistently, macrophages active in anoikis and
ferroptosis were mainly found in macrophage-1 and macrophage-
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FIGURE 1

Single-cell analysis in 18 cardiomyopathy samples. (A) t—SNE plot showing 13 major cardiac cell types. Each color represents a distinct cell type as
annotated in the legend; colors are categorical and do not indicate quantitative values. (B) t—SNE plot of cells from NF, HCM, and DCM patients.
Each color corresponds to a disease group (NF = non—failing, HCM = hypertrophic cardiomyopathy, DCM = dilated cardiomyopathy); colors are
categorical. (C) Proportions of each cell type in NF, HCM, and DCM samples. Colors denote distinct cell types, consistent with the scheme in
Figure 1A. (D) Distribution of 12 major cell types across NF, HCM, and DCM samples.

2, whereas inactive macrophages localized to macrophage-3 and
macrophage-4 (Figure 3D). Furthermore, AUCell scoring
demonstrated that anoikis and ferroptosis activity levels were
normal in NF but significantly diminished in HF (Figure 3E).

Macrophage differentiation trajectory and
pseudotime-related gene expression in HF

Trajectory analysis (Monocle 3) revealed a bifurcated path
from macrophage-1 to macrophage-4 (Figures 4A, B). RNA
velocity indicated greater vectior magnitudes in macrophage-3
and macrophage-4 (Figure 4C, bottom left). The latent time map
(Figure 4C, top) and integration with pseudotime analysis placed
M3 and M4 at later stages of differentiation originating from M1.
Reduced anoikis and ferroptosis in these late-stage subsets
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suggests an adaptive survival advantage in the pro-
inflammatory, stress-rich failing myocardium. Key pseudotime-
correlated genes (e.g., FRMD4A, CD163, NEATI) are shown in
Supplementary Figure S4. AUCell scores along the trajectory
confirmed reduced cell death pathways activation in
differentiated macrophages (Figures 4D, E). As pseudotime
progressed, increases in cell counts, gene counts, and label
diversity signified rising complexity within differentiated
macrophages (Supplementary Figure S5). Pseudotime-gene
regression and functional enrichment summaries are provided
in Supplementary Figures S6A, B. Gene interaction network
(PTPRC, STABI, CDI163, MERTK) are shown in Figure 4F,
progressive increases in MERTK, PTPRC, CDI163, STABI
expression with advancing HF are shown in Figures 4G, H. The
expression and distribution of significantly downregulated key
genes in diseased tissues are shown in Supplementary Figure S7.
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FIGURE 2

Macrophage analysis and cell death scoring. (A) t—SNE plot with macrophages in green. (B) UMAP plots of macrophage subpopulations across NF,
HCM, and DCM samples. Each color represents a distinct macrophage subtype; colors are categorical. (C) ssGSEA scores for six cell death pathways
in macrophages (P<0.05: *, P<0.01: **). (D) UMAP plot of ssGSEA—derived activity scores for 10 cell death pathways. Color gradient from dark blue
(low activity) to bright yellow (high activity) represents relative pathway activity per cell.

Functional ana[ysis of macrophage biological roles: macrophage—-1 (metabolic pathways),

subtypes macrophage-2 (immune responses, PI3K-Akt signaling),

macrophage-3 (endocytosis), macrophage—4 (chemokine

We identified key marker genes for each macrophage subtype ~ signaling) (Figures 5A-E). In HF, PI3K-Akt activation in

from differential expression patterns and functional annotations. ~ Macrophage-2 may support reparative processes but could also
Functional enrichment and network analysis revealed distinct ~ promote fibrosis under persistent inflammation.
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Distribution and cell death states of macrophages. (A) UMAP plot showing AUCell scores for ferroptosis and anoikis, lighter colors indicate higher
scores. (B) UMAP plots showing activation states for anoikis (top) and ferroptosis (bottom). Cells are colored by activation status derived from per
—cell AUCell AUC values: black = active (AUC > threshold), gray = inactive (AUC < threshold). The overlaid red (“cardiomyopathy”) and blue ("normal’)
labels denote disease—associated regions and do not indicate cell-level color coding. (C) Proportions of four macrophage subpopulations across 18
patients, NF, HCM, and DCM samples. (D) AUCell scores for ferroptosis and anoikis in macrophage subpopulations. Bar height indicates median
pathway activity score. (E) AUCell scores for ferroptosis and anoikis in NF, HCM, DCM, and combined CM samples. Bar height indicates median

pathway activity score.

Gene expression differences in
macrophages from healthy and
cardiomyopathy patients

Differential expression analysis revealed distinct patterns for
PTPRC, STABI, CDI163, and MERTK (Figures 6A, B). Functional
enrichment showed ‘Metabolic pathway” predominance in normal
samples (Figure 6C) and ‘PI3K-Akt signaling’ in HF (Figure 6E). In
healthy hearts, CD44 and PTEN were linked to ferroptosis and
anoikis (Figure 6D), while in HF, CSFIR, CD74, and PTEN were
central (Figure 6F). Differentially expressed genes related to
ferroptosis and anoikis in healthy and diseased groups are
detailed in Supplementary Figures S8, S9. Subtype-specific marker
gene distributions for macrophage-1, macrophage-2, and
macrophage-3 are provided in Supplementary Figures S10-S12.

Macrophage terminal differentiation and
key gene identification

We mapped the developmental trajectory of macrophage-4, the
most prevalent subtype, into 10 subclusters (macrophage-4.1 to
-4.10) (Figure 7A). Clusters 1 (DCM) and 2 (HCM) marked
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terminal differentiation stages. RNA velocity supported these
trajectories (Figures 7B, C). Key genes are shown in heatmaps
(Figure 7D), with functional enrichment and network analyses in
Figure 7E, and gene expression trajectories in Figure 7F.

Validation of macrophage marker genes
and prognostic power

Using dataset GSE57345, we validated key marker genes for HF
diagnosis (Figures 8A, B). Upregulated and downregulated genes are
shown in Figures 8C, D. Receiver operating characteristic (ROC)
curves indicated AUC > 0.8. UMAP and RNA velocity confirmed
differentiation pathways and marker gene dynamics (Figures 8E, F).

Multigenic model validation in HF

Random forest algorithm identified the top 20 genetic features
distinguishing HF from non-failure groups; principal component
analysis demonstrated diagnostic efficiency in Supplementary
Figures S13A, B). ROC analysis for a 10-gene model showed
robust predictive value (Supplementary Figures S13C-E).
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Macrophage trajectory analysis and RNA velocity. (A) UMAP plot of pseudotime trajectory for macrophage subtypes using Monocle 3. (B)
Pseudotime sequence analysis with cells colored by pseudotemporal orders. Gradient from dark purple (early) to bright yellow (late). (C) RNA
velocity analysis of macrophage differentiation states visualized in three panels. Arrows indicate the inferred direction and relative speed of
transcriptomic change. Top: Cells colored by latent time inferred from RNA velocity (continuous gradient from early [red] to late [blue] states).
Bottom left: Same embedding colored by macrophage subclusters (categorical; macrophage 1 to macrophage 4). Bottom right: Same embedding
colored by disease status (categorical). (D, E). AUCell scores for anoikis (D) and ferroptosis (E) mapped along the pseudotime trajectory. In both
panels, the color gradient from dark blue (low activity) to bright yellow (high activity) denotes relative pathway activity at the single—cell level.

(F) Interaction network of genes from regression analysis. Node color indicates pathway association: purple = anoikis—related, blue = ferroptosis
—related, red = both; node size reflects degree centrality. Notable interactions include PTPRC and CD163, which co-localize within the network
despite their traditionally opposing functional associations. This co—expression pattern may indicate transitional macrophage states with both
inflammatory signaling potential and reparative capacity. (G) Expression patterns of key genes (MERTK, CD163, PTPRC, STAB1) across the tissue
section. Tiles are colored by normalized expression for the indicated gene: red denotes lower expression, green denotes higher expression. Color
scaling is applied per panel. (H) Time—series regression analysis of key gene expression changes across macrophage clusters.
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FIGURE 5

Functional analysis of key marker genes in macrophage subpopulations. (A) Marker gene identification in four macrophage clusters, darker colors
indicate higher expression. (B—E) For each macrophage subtype (type 1-4): Left panel = functional enrichment bubble plot, where bubble color
encodes statistical significance (-log;o P value, continuous gradient) and bubble size represents the number of input genes associated with each
pathway. Middle panel = gene interaction network (node color indicates pathway association: purple = anoikis—related, blue = ferroptosis—related,
red = both; node size reflects degree centrality). Right panel = UMAP plot of marker gene distribution (color gradient from dark blue = low
expression to bright yellow = high expression).

Discussion analyze HF in patients with DCM or HCM. By comparing HF
samples to healthy donors, we aimed to uncover novel disease

Understanding how regulatory changes specific to cell lineages  insights. Our focus was on macrophages, key immune cells in HF
occur under disease conditions is crucial for effective drug  pathogenesis and progression. We revealed macrophage
development. This study used single-cell transcriptomics to  evolutionary trajectories and their links to anoikis and ferroptosis,
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FIGURE 6

Functional differences and key differentially expressed genes in macrophages. (A, B) Marker gene expression in macrophages from (A) normal vs.
cardiomyopathy samples and (B) NF, DCM, and HCM samples. In both panels, color gradient from light yellow (low value) through red (intermediate
value) to black (high value) represents mean expression in group. (C—F) Functional enrichment and interaction networks of marker genes in normal
(C, D) and cardiomyopathy (E, F) samples. (C, E) Bubble plots of enriched KEGG pathways. Bubble color encodes the —log10(p) value (continuous
scale), and bubble size represents the number of genes associated with each pathway. (D, F) Protein—protein interaction networks of marker genes.
Node color indicates pathway association (purple = anoikis—related, blue = ferroptosis—related, red = both), and node size reflects degree centrality

two modes of programmed cell death. Key genes differentially Macrophage differentiation and HF
expressed in macrophages across HCM, DCM, and non-failing progression

samples were identified, providing a comprehensive view of HF’s

cellular and transcriptomic landscape. These findings have Our scRNA-seq analysis of approximately 120-000 cells identified
significant implications for the diagnosis, prognosis, and 13 distinct cell types, focusing on macrophages due to their critical roles
treatment of HF and other cardiovascular diseases. in inflammation and tissue remodeling. Macrophages, which clear
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FIGURE 7

Trajectory analysis of terminally differentiated Macrophage—4. (A) UMAP re—clustering of Macrophage—4 into 10 subclusters; each color denotes a
distinct subcluster (categorical). (B) RNA velocity analysis of Macrophage—4. Cells are colored by latent time inferred from RNA velocity (continuous
gradient from early to late states), with the start point in red and the endpoint in blue marking the trajectory extremes. Arrows indicate the inferred
direction and relative speed of transcriptomic change. (C) RNA velocity analysis across all 10 subclusters, colored by subcluster identity (categorical)
using a palette different from panel (A). Arrows indicate inferred direction and speed. (D) Differential expression heatmap of the 10 subclusters,
ordered as in panel (A); within the heatmap, yellow indicates higher expression and darker shades indicate lower expression. Black boxes highlight
the regions of interest corresponding to each subcluster’s differentially expressed genes. A dedicated column on the right lists representative marker
genes for these regions. (E) Bubble plots of functional enrichment for clusters 1 and 2; bubble color encodes statistical significance (-log10 P value,
continuous gradient), and bubble size reflects the number of associated genes. (F) Expression and RNA velocity analysis of marker genes in clusters 1
and 2; color gradient from green (high expression) to red (low expression) represents normalized expression level, with arrows indicating inferred

differentiation direction.
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The color scale denotes normalized expression (dark blue = low, red = high); columns are grouped by clinical category (e.g., NF, DCM, HCM).

(C, D) ROC curve validation of selected upregulated (C) and downregulated (D) marker genes from clusters 1 and 2. Each curve represents one
gene, with the corresponding AUC value indicated. (E) UMAP plot of RNA velocity analysis overlaid with disease classification, illustrating overall
differentiation trajectories of the marker genes. Arrows indicate the inferred direction and relative speed of transcriptomic change, with color
denoting expression level (green = high, red = intermediate, black = low). (F) UMAP plots showing expression and RNA velocity of selected marker
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apoptotic cells and modulate inflammation, play diverse roles in
cardiac health (11, 12). Pseudotime and RNA velocity analyses
revealed detailed evolutionary trajectories and functional
specializations of macrophage subtypes in HF. Understanding these
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subtypes helps identify cellular states contributing to HF progression,
offering potential therapeutic targets.

Recent studies highlight the complexity of macrophage
subtypes in cardiovascular diseases. For instance, Liu et al.
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identified eight immune subpopulations, including five macrophage
subtypes, in HCM patients, underscoring altered macrophage
dynamics (13). Another study found ten macrophage subsets
involved in tissue repair and immune regulation (14). Consistent
with these findings, we identified four macrophage subtypes and
further subdivided macrophage-4 into ten subclusters,
demonstrating macrophage specialization in response to different
pathological states.

Our results suggest that macrophage transcriptomic states are
continuous rather than discrete, with a proinflammatory FCN1-high
subpopulation prevalent in diseased conditions. These findings align
with studies (15, 16). Highlighting macrophage heterogeneity’s role in
maintaining tissue homeostasis and responding to physiological changes.

Distinct cell death pathways

Our analysis revealed significant differences in macrophage-
mediated cell death mechanisms between HF and normal heart
samples, particularly in autophagy, anoikis, ferroptosis, and
necrosis. Reduced activities in anoikis and ferroptosis in HF
samples suggest macrophage dysfunction is closely linked to HF
pathophysiology. Macrophages in HF not only modulate immune
responses but also engage in a complex network of cell death
and repair mechanisms (11, 12). Studies indicate that HF
macrophages have reduced autophagy-related gene expression,
leading to waste accumulation and increased apoptosis,
exacerbating cardiac decline (17, 18).

Macrophages promote myocardial repair by secreting
cytokines, a process impaired in HF patients (19, 20). Altered
macrophage polarization in HF affects functionality, providing
insights into potential therapeutic interventions (21). Ferroptosis,
characterized by excessive iron accumulation, plays a critical role in
cardiac injury (22, 23). Reduced ferroptosis in HF samples, likely
due to abnormal iron metabolism regulation, impacts heart
stability. In the context of DCM and HCM, ferroptosis in
macrophages may amplify local inflammation and oxidative stress
through the release of damage—associated molecular patterns and
pro—inflammatory mediators, thereby exacerbating cardiomyocyte
injury and promoting maladaptive ventricular remodeling (24, 25).
Anoikis, triggered by the loss of cell-matrix interactions, may
impair the retention and reparative capacity of macrophages
within the myocardial interstitium, disrupting extracellular matrix
turnover and favoring pathological fibrosis (25, 26). Together, these
death pathways could shift macrophage populations toward pro
—fibrotic and pro—inflammatory states, creating a feed—forward
loop that accelerates adverse remodeling in both disease
phenotypes. While our study is primarily computational, these
mechanistic links are supported by prior experimental evidence in
cardiovascular disease models and warrant targeted in—vitro and in
—vivo validation in future work (24-26).

The observed heterogeneity in cell death pathways underscores
the necessity for targeted therapeutic strategies addressing specific
macrophage subtypes and their unique roles in disease progression.
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Recent studies have further elucidated the role of macrophage-
mediated cell death in cardiovascular diseases. For instance, a study
highlighted the multiple roles of cardiac macrophages in heart
homeostasis and failure, emphasizing their importance in immune
defense, apoptotic cell clearance, and regulation of electrical
conduction and arterial tone (27). Our findings on distinct cell
death pathways offer a nuanced understanding of macrophage
functions in HF, suggesting targeted therapeutic strategies for
specific macrophage subtypes could improve treatments.

Macrophage metabolic reprogramming
and adaptive responses in HF

To further investigate the role of macrophages in HF, recent
metabolomics studies have identified significant changes in
macrophage metabolic pathways in HF patients, particularly
enhanced glycolytic activity and reduced oxidative phosphorylation
(13, 28). This metabolic shift indicates macrophage dysfunction,
contributing to disease progression. Our study uses pseudotime and
RNA velocity analyses to map the developmental trajectories of
macrophages in HF. We found that macrophage-1 subtypes are
initially enriched in metabolic processes vital for cellular energy
homeostasis. As HF progresses, macrophage differentiation shifts
towards pathways crucial for cell survival and proliferation, especially
the PI3K-Akt signaling pathway. This transition underscores
macrophages’ adaptive response to the failing heart’s demands,
emphasizing their roles in immune responses and tissue remodeling.

The PI3K-Akt pathway is fundamental for protecting cells
against stress-induced apoptosis, promoting cell proliferation, and
enhancing survival under adverse conditions (29). Dysregulation of
this pathway has been implicated in HF due to its role in adverse
cardiac remodeling and apoptosis (13). Our identification of the
PI3K-Akt pathway as central to macrophage differentiation
highlights its crucial role in maintaining cardiovascular function
and its potential as a therapeutic target. In our dataset, both M2
(NF-enriched) and M4 (HF-enriched) macrophage subsets
exhibited PI3K-Akt activation; however, the downstream
consequences appear context-dependent: in M2 cells, activation
supports anti-inflammatory polarization, phagocytosis, and tissue
repair within relatively stable microenvironments, contributing to
the resolution of injury. In contrast, within M4 cells, a pro-
inflammatory cytokine milieu (e.g., TNF-0,, IL-6, IFN-Y) redirects
PI3K-Akt signaling toward metabolic reprogramming, sustained
inflammatory output, and prolonged survival of maladaptive
macrophage phenotypes. While such activation in M2
macrophages may be beneficial in acute injury resolution, its
persistence in M4 subsets could maladaptively drive fibroblast
activation, extracellular matrix deposition, and profibrotic
remodeling. This dual potential underscores both the therapeutic
challenge and opportunity in modulating PI3K-Akt signaling with
cell state- and microenvironment-specific precision.

By engaging alternative survival and proliferation pathways
under stress, these macrophage subsets can maintain their
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presence and functionality within the failing heart, thereby
sustaining immune surveillance and contributing to tissue
remodeling. This adaptive plasticity exemplifies the dynamic
nature of macrophages in HF, and understanding these state
transitions offers strategic entry points for interventions aimed at
reprogramming macrophage functions toward reparative rather
than pathological outcomes.

Key genetic markers and macrophage
differentiation in HF

Our pseudotime and RNA velocity analyses mapped the
developmental trajectories of macrophages in HF, identifying key
genes such as PTPRC, STABI, CD163, and MERTK. These genes are
essential for understanding macrophage differentiation and their
roles in HF progression. PTPRC and STABI are involved in
immune regulation, while CD163 and MERTK are associated with
anti-inflammatory and tissue repair processes. Interestingly, co-
expression of PTPRC (a pro-inflammatory pan-leukocyte receptor
tyrosine phosphatase) and CD163 (an anti-inflammatory scavenger
receptor) was observed in a subset of macrophages positioned at
intermediate points along the differentiation trajectory. Literature
and network analysis suggest that such dual-expression states may
confer phenotypic plasticity, enabling macrophages to rapidly
toggle between inflammatory and reparative functions in response
to shifting microenvironmental signals. In HF, this hybrid
phenotype may be critical for navigating the alternating phases of
injury and repair characteristic of the failing myocardium. The
progressive increase in expression levels of these genes across
macrophage subtypes suggests their involvement in the
maturation process and functional specialization in HF.

Recent studies highlight the importance of gene expression
trajectories in understanding macrophage specialization. MERTK
is crucial for efferocytosis, clearing apoptotic cells and preventing
secondary necrosis and inflammation (30). Elevated MERTK
expression in later macrophage subtypes underscores its role in
inflammation resolution. PTPRC (CD45) is significant in
regulating immune cell signaling and is essential for T-cell
receptor signaling and cytokine production, impacting the
immune response during cardiac stress (31, 32). Increased
PTPRC expression across macrophage subtypes indicates its role
in immune response and potential as a biomarker for HF
progression. CD163, a marker of anti-inflammatory
macrophages, is involved in clearing hemoglobin-haptoglobin
complexes (33). Research indicates that CD163 expression is
upregulated in response to inflammatory stimuli, and its soluble
form serves as a biomarker for various inflammatory diseases,
including cardiovascular conditions (34). Our observation of
increased CD163 expression in later macrophage subtypes is
consistent with its role in modulating inflammation,
highlighting its potential as a therapeutic target.

Frontiers in Immunology

10.3389/fimmu.2025.1604226

Prognostic and diagnostic implications of
multigenic models

Validating key marker genes using the GSE57345 dataset
demonstrated robust predictive accuracy for diagnosing HF
phenotypes, specifically HCM and DCM. Integrating macrophage
differentiation clusters into multigenic predictive models enhances
diagnostic efficiency and provides insights into HF’s molecular
mechanisms. ROC curve analysis indicated strong diagnostic
capabilities with AUC values exceeding 0.8, underscoring these
markers’ clinical utility. To reduce the risk of overfitting in ROC
analysis, we applied k-fold cross—validation (k = 10) when
estimating AUC values for individual genes. While this approach
provided more robust performance estimates, we acknowledge that
the absence of validation in an independent external cohort remains
a limitation, and future studies will aim to confirm these findings in
datasets from other centers. Our multigenic model, with genes like
CD44, PTEN, and CSFIR, enhances early diagnosis and patient
stratification in HF.

The high predictive accuracy of these genetic markers suggests
their effective use in clinical settings for diagnosing HCM and
DCM. For example, CD44 is implicated in cell adhesion and
migration, critical in cardiac remodeling and HF (35). PTEN, a
key regulator of the PI3K-Akt signaling pathway, is involved in cell
survival and metabolism, with dysregulation linked to adverse
cardiac remodeling and HF (36). CSFIR, a receptor for
macrophage colony-stimulating factor, plays a crucial role in
macrophage differentiation and inflammation (37). These studies
corroborate our findings, supporting the enhancement of diagnostic
accuracy by incorporating these genes into predictive models.

Integrating macrophage differentiation clusters into multigenic
predictive models enhances robustness and reliability. By
incorporating key genetic markers indicative of specific
macrophage states, we develop more accurate and clinically
relevant diagnostic tools. Upregulation of CD44, PTEN, and
CSFIR in specific macrophage subtypes correlates with increased
disease severity and poorer outcomes in HCM and DCM, serving as
valuable indicators for early diagnosis and targeted
treatment strategies.

Conclusions and future directions

Macrophages play a complex and multifaceted role in HF,
involving cell death, metabolic reprogramming, and cell-cell
interactions. Our study offers a detailed characterization of
macrophage diversity and their molecular mechanisms in HF.
Identifying and validating key genetic markers as diagnostic tools
underscore the clinical potential of these findings. This research
enhances our understanding of macrophage biology in
cardiovascular diseases and opens new avenues for targeted
therapies and personalized medicine.

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1604226
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wei et al.

Future research should validate these findings in larger cohorts
and explore targeting specific macrophage subtypes. Longitudinal
studies could provide insights into dynamic changes in macrophage
populations and their impact on disease progression. Additionally,
focusing on macrophages’ multifaceted roles and regulatory
mechanisms in HF could lead to novel therapeutic strategies, such
as gene editing or pharmacological interventions targeting
macrophage metabolic pathways, to improve HF prognosis.
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