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Deciphering macrophage
differentiation and cell death
dynamics in heart failure: a
single-cell sequencing odyssey
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Xin-xin Duan1,2,3,4,5†, Li-hong Yan1,2,3,4,5†, Wei An1,2,3,4,5†,
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Aims: We hypothesize that specific macrophage differentiation trajectories in

heart failure (HF) are coupled with subtype-specific and context-dependent

engagement of programmed cell death (PCD) pathways, particularly

ferroptosis and anoikis, which in turn influence disease progression and

remodeling. HF is a progressive and heterogeneous clinical syndrome

characterized by adverse immune remodeling, yet the precise contributions of

macrophage heterogeneity, lineage dynamics, and PCD programs to its

pathogenesis remain unclear. This study aimed to delineate, at single-cell

resolution, the cellular and molecular landscape of cardiac macrophage

subpopulations and their engagement with immunogenic cell death programs.

Methods: We profiled human cardiac tissues from HF and non-failing donors using

scRNA-seq from the SCP1303 dataset, initially comprising ~600,000 cells and

reduced to ~120,000 high-quality cells from 18 samples after stringent quality

control to retain biologically valid but metabolically distinct populations.

Standardized cell-type annotation and pseudotime trajectory reconstruction were

applied. Pathway activity was quantified using AUCell (primary) and GSVA

(complementary) for cell death–related signatures. Integrated differential expression

analysis, protein–protein interaction network mapping, and multi-algorithm feature

selection (LASSO, SVM-RFE, Random Forest) were performed, and candidate

biomarkers were validated using an independent bulk RNA-seq dataset (GSE57345).

Results: Thirteen major cardiac cell types were identified, with macrophages

showing the highest transcriptional heterogeneity. We resolved four macrophage

subtypes and mapped bifurcating disease-associated differentiation trajectories,

revealing distinct activation patterns of ferroptosis- and anoikis-related pathways.

Ferroptosis-associated genes and anoikis-associated genes displayed subtype-
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specific enrichment and significant differential activation in HF. Pseudotime analysis

demonstrated that suppression of ferroptosis and anoikis was linked to late-stage,

HF-enriched macrophage states. Key biomarkers—including CD163, FPR1, and

VSIG4—achieved robust diagnostic performance (AUC > 0.80) in discriminating

HF phenotypes.

Conclusions: This is the first study to integrate scRNA-seq, differentiation trajectory

inference, and PCD pathway scoring to define the context-dependent engagement

of ferroptosis and anoikis in macrophage subtypes in HF. The identification of

subtype-specific biomarkers and functional states provides novel mechanistic

insight and potential diagnostic and therapeutic targets, underscoring the value of

high-resolution immuneprofiling for precision immunology in cardiovascular disease.
KEYWORDS

macrophages, cardiomyopathy, single-cell RNA sequencing, anoikis, ferroptosis,
cell death
Introduction

Heart failure (HF), resulting from diverse cardiac structural or

functional aberrations, is a complex syndrome that disrupts

ventricular filling and/or ejection. It is characterized by

pulmonary and/or systemic congestion and insufficient blood

perfusion to organs and tissues. HF is recognized as a major

culprit for global morbidity and mortality, impacting more than

26 million people worldwide (1). Despite advancements in

pharmacological interventions and device-based therapies, the

prognosis of HF remains unpromising, with a 5-year survival rate

of less than 50% (2). Therefore, understanding the cellular and

molecular mechanisms underlying HF and identifying novel

therapeutic targets and biomarkers remain urgent priorities.

In recent years, bulk RNA sequencing (bulk RNA-seq)

numerous studies have utilized has been widely used to

investigate transcriptomic changes in cardiac tissue under various

disease conditions. However, bulk RNA-seq has intrinsic

limitations, as it cannot resolve cell type-specific alterations or

capture the functional diversity within a given lineage. Single-cell

RNA sequencing (scRNA-seq) overcomes these limitations by

enabling high -resolution and unbiased dissection of

transcriptomic profiles at the individual cell level. This technology

not only reveals the gene expression landscapes and functional

states of distinct cell types, but also uncovers their dynamic

transitions and interactions within the tissue microenvironment

(3). scRNA-seq has been successfully applied to characterize cellular

heterogeneity in cardiovascular diseases, including atherosclerosis,

myocardial infarction, and cardiomyopathies, offering new

mechanistic insights (4–6). However, despite the increasing

recognition of macrophages as central players in HF pathogenesis,

no study has systematically mapped their differentiation trajectories

and programmed cell death (PCD) dynamics—particularly

ferroptosis and anoikis—at single-cell resolution in human HF.
02
Ferroptosis and anoikis have been implicated in adverse cardiac

remodeling and HF progression in preclinical and bulk-tissue

studies (7, 8), but their cell type–specific regulation, temporal

engagement along differentiation continua, and relationship to

macrophage functional states remain undefined. This knowledge

gap limits our ability to identify precise intervention points that

could modulate maladaptive immune responses without impairing

reparative processes.

Here, we address this gap by integrating scRNA-seq analysis,

pseudotime trajectory inference, and cell death pathway activity

scoring to test the central hypothesis that macrophage

differentiation in HF involves subtype-specific and context-

dependent engagement of ferroptosis and anoikis programs. We

further hypothesize that these pathways converge with distinct

transcriptional and functional phenotypes that can be exploited

for diagnostic and therapeutic purposes. Our study is the first to

(i) resolve HF-enriched macrophage subtypes and their

bifurcating differentiation trajectories, (ii) link reduced

ferroptosis and anoikis activity to late-stage, maladaptive

macrophage states, and (iii) identify and validate high-

performing biomarkers (e.g., CD163, FPR1, VSIG4) in

independent cohorts, providing both mechanistic insight and

translational potential.

In this study, we performed single-cell transcriptomic profiling

of cardiac tissue from patients with dilated cardiomyopathy (DCM)

or hypertrophic cardiomyopathy (HCM),—two major etiologies of

HF—and from healthy donors. We compared cell composition and

gene expression across conditions, with special focus on

macrophages due to their key roles in HF pathogenesis and

progression (9, 10). By linking differentiation trajectory analysis

with immunogenic cell death pathway mapping, we offer a

comprehensive framework to understand macrophage functional

plasticity in HF and to inform the development of precision

immunomodulatory strategies.
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Materials and methods

Data sources and processing

scRNA-seq data were obtained from the publicly available

SCP1303 dataset via the Single Cel l Portal (ht tps : //

singlecell.broadinstitute.org/single_cell), which originally

comprised approximately 600,000 cells from all available samples.

This dataset included 11 samples from DCM, 15 from HCM, and 16

from NF heart tissues. Following rigorous quality control (QC)

filtering—removing cells with fewer than 200 detected genes, genes

expressed in fewer than 50 cells, potential doublets, and cells with

>10% mitochondrial gene content—we retained ~120,000 high-

quality cells from 18 selected samples for downstream analysis. This

filtering approach, which yielded roughly 20% of the original cells, is

consistent with established best practices in scRNA-seq studies to

ensure biological reliability and minimize technical artifacts. These

samples maintained a balanced sex distribution, comprising 6 NF

samples (3 males: P1702, P1549, P1678; 3 females: P1582, P1600,

P1515), 6 HCM samples (3 males: P1422, P1462, P1722; 3 females:

P1508, P1447, P1726), and 6 DCM samples (3 males: P1358, P1472,

P1617; 3 females: P1437, P1304, P1300).

We downloaded bulk RNA sequencing data from the GSE57345

dataset, which was publicly available from the Gene Expression

Omnibus (https://www.ncbi.nlm.nih.gov/geo/). This dataset

contained 136 NF and 177 HF samples, with phenotypes

including disease type (idiopathic DCM/ischemic/non-failing),

sex, and age. It was subsequently used for validation of our

scRNA-seq findings.
Single-cell RNA sequencing and data
analysis

The scRNA-seq data was subjected to a series of analytical steps

on Seurat (v5.0.1), comprising data integration, normalization,

scaling, dimensionality reduction, clustering, and differential

expression analysis. Specifically, SCTransform method was used

to normalize the data, and the Harmony algorithm was applied to

integrate the data across various samples. For dimensionality

reduction, we leveraged principal component analysis (PCA),

while cell clusting was facilitated by the Louvain algorithm. To

identify cluster-specific and disease-specific marker genes, we

utilized the FindAllMarkers and the FindConservedMarkers

functions respectively. Subsequently, we employed the

‘FindClusters’ function from the Seurat R package to perform cell

clustering, and then proceeded to simplify the data using the

‘RunUMAP’ function. Visualization was achieved through t-SNE

and UMAP. Cell type annotation was carried out using the SingleR

package (version 1.4.1) based on the Human Primary Cell Atlas

reference. For the identification of cell subpopulations, we

implemented unsupervised graph-based clustering using Leiden

algorithm. t−SNE was used to visualize the distribution of major

cell types, highlighting relative abundances across cardiomyocytes,

fibroblasts, endothelial cells, and other populations (see Results).
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Cell death analysis

Pathway activity was assessed using AUCell (primary) and

ssGSEA (complementary) methods. AUCell (version 1.20.2) was

selected as the primary approach because its rank-based algorithm

is well suited for single-cell RNA-seq data with high sparsity,

enabling robust detection of per-cell pathway activity even when

total gene counts vary substantially. ssGSEA, implemented via the

GSEABase (v 1.58.0) and GSVA (v 1.44.5) packages, was applied in

parallel to provide a complementary, gene set–based perspective

and to cross-validate AUCell-derived findings. Alternative methods

such as GSVA (bulk transcriptome–oriented, potentially biased by

variable detection rates at the single-cell level) and PROGENy

(restricted to predefined downstream targets, potentially omitting

relevant upstream regulators and context-specific genes) were

considered but not used as primary tools given the characteristics

of our dataset.

Based on curated gene sets from the Cell Death Signaling

Database, enrichment scores for 12 programmed cell death

pathways were calculated for each cell using the ssGSEA function.

For targeted analysis of anoikis and ferroptosis in macrophages,

activity scores were computed using AUCell on the basis of the

corresponding gene sets from the Molecular Signatures Database

(MSigDB). The ssGSEA- and AUCell-derived pathway activity

scores were subsequently compared across cell types and disease

groups using the Wilcoxon rank-sum test and the Kruskal–Wallis

test, as appropriate.

Threshold calibration for AUCell scoring was performed to

distinguish active versus inactive pathway states, and activation

state mapping was visualized in UMAP space (see Results).
Cell trajectory and pseudotime analysis

Cell trajectory and pseudotime analysis were conducted using the

Monocle 3 package (version 1.3.4). The preprocess_cds function was

adopted to filter out low-quality cells and genes, while the

reduce_dimension function was applied to perform nonlinear

dimensionality through the UMAP method. We used the

cluster_cells function to group the cells according to their UMAP

coordinates and utilized the learn_graph function to deduce the cell

trajectory based on the minimum spanning tree algorithm. After that,

the order_cells function was used to assign pseudotime values to each

cell in accordance with their respect trajectories and the

differentialGeneTest function was then engaged to identify genes

that were differentially expressed along the pseudotime axis.

Furthermore, the BEAM function was used to identify genes that

were differentially expressed between branches of the trajectory. We

performed functional enrichment and network analysis of the

pseudotime-related genes using the clusterProfiler package (version

3.18.0) and the STRINGdb package (version 2.0.2). Lastly, regression

analysis was executed on the pseudotime values and gene expression

levels using the fit_models function in Monocle 3.

RNA velocity analysis was performed to infer the direction and

magnitude of transcriptomic change across macrophage subtypes,
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https://singlecell.broadinstitute.org/single_cell
https://singlecell.broadinstitute.org/single_cell
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fimmu.2025.1604226
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wei et al. 10.3389/fimmu.2025.1604226
and latent time mapping was integrated with pseudotime

trajectories to identify early− and late−stage populations. AUCell

scores were calculated along pseudotime to assess dynamic changes

in cell death pathway activity.
Differential analysis among macrophage
subtypes

Gene differential expression analysis was conducted using

edgeR (v_4.0.16). Low-expression genes and miRNAs were

filtered out in more than 10% of the samples with counts per

million less than or equal to 1 (cpm ≤ 1). The threshold for

differential expression was set at an FDR less than 0.05 (FDR <

0.05) and a fold change greater than 1.5 (fold change> 1.5).

Subtype−specific marker genes were identified based on

differential expression patterns and functional annotations,

followed by functional enrichment and network analysis to

characterize biological roles.
Bulk RNA sequencing and data analysis

The bulk RNA sequencing data went through quality control,

normalization, and differential expression analysis, facilitated by the

DESeq2 package (version 1.42.1). We employed the limma package

(version 3.58.1), coupled with the ComBat method, to perform

batch effect correction. Furthermore, we used the edgeR package

(version 4.0.16), along with the camera method, to perform gene set

enrichment analysis. To distinguish key genes between HF and

non-HF conditions, we utilized the ROC curve, principal

component analysis, and Random Forest analysis within the

MetaboAnalyst online tool (https://www.metaboanalyst.ca/).

Differentially expressed genes related to ferroptosis and anoikis

were visualized in heatmaps and network diagrams, with subtype

−specific distributions provided in Supplementary Figures

(see Results).
PPI networks and functional enrichment
analysis

A Protein-Protein Interaction Network was constructed for the

differentially expressed genes. Relevant genes were selected and used to

develop the Protein-Protein Interaction Network with the assistance of

the interaction gene retrieval tool, STRING (https://cn.string-db.org/

cgi/input?sessionId=bgCn09WJHNWX&input_page_show_

search=on), and Cytoscape (v_3.8.2). Additionally, we conducted

Kyoto Encyclopedia of Genes and Genomes pathway analysis

within the KOBAS database. The significance of the Kyoto

Encyclopedia of Genes and Genomes analysis results was

evaluated using the p-value obtained from the hypergeometric test.
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Ethics statement

Ethical approval was not required for this study since it involves

the analysis of publicly available datasets. These datasets—SCP1303

(Single Cell Portal) and GSE57345 (Gene Expression Omnibus)—

had been previously collected and anonymized in accordance with

ethical guidelines of the 1975 Declaration of Helsinki, as revised in

2000. All data utilized in this study comply with the ethical

standards of the repository source and institutional guidelines.
Results

Single-cell sequencing reveals cellular
diversity in the failing heart

We integrated and clustered scRNA-seq data from the SCP1303

dataset, retaining ~120,000 high-quality cells after QC filtering (see

Methods), and identifying 13 major cell types using marker gene

expression and the Human Primary Cell Atlas. These cell types are

annotated in Figure 1A. t-distributed Stochastic Neighbor

Embedding (t-SNE) visualization showed cardiomyocytes as the

most abundant cell type, followed by fibroblasts and endothelial

cells (Figures 1A, B). Cell-type proportions across NF, HCM, and

DCM are shown in Figure 1C. Non-failing (NF) samples had a

higher proportion of cardiomyocytes and pericytes, whereas DCM

samples showed more ventricle fibroblasts (Supplementary Figure

S1, Figure 1D).
Macrophage diversity and distinct cell
death pathways in HF

We focused on macrophages, key immune cells in HF.

Reclustering identified four macrophage subtypes (macrophage-1

to -4) based on expression patterns and functional annotations

(Figures 2A, B). Single-sample Gene Set Enrichment Analysis

(ssGSEA) revealed distinct expression patterns in autophagy,

anoikis, ferroptosis, and necrosis between HF and NF

macrophages (Figures 2C, D, Supplementary Figure S2). AUCell

scores revealed diminished anoikis and ferroptosis in HF samples

(Figure 3A), with threshold calibration in Supplementary Figure S3

and activation state mapping in Figure 3B. Active anoikis- and

ferroptosis-posit ive macrophages were predominantly

macrophage-1 and -2, while inactive ones were macrophage-3

and -4.

Our analysis revealed distinct distribution patterns of

macrophage subtypes across myocardial samples: macrophage-1

and macrophage-2 were enriched in NF, whereas macrophage-3

and macrophage-4 were more abundant in HCM and DCM

(Figure 3C). Consistently, macrophages active in anoikis and

ferroptosis were mainly found in macrophage-1 and macrophage-
frontiersin.org
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2, whereas inactive macrophages localized to macrophage-3 and

macrophage-4 (Figure 3D). Furthermore, AUCell scoring

demonstrated that anoikis and ferroptosis activity levels were

normal in NF but significantly diminished in HF (Figure 3E).
Macrophage differentiation trajectory and
pseudotime-related gene expression in HF

Trajectory analysis (Monocle 3) revealed a bifurcated path

from macrophage-1 to macrophage-4 (Figures 4A, B). RNA

velocity indicated greater vectior magnitudes in macrophage-3

and macrophage-4 (Figure 4C, bottom left). The latent time map

(Figure 4C, top) and integration with pseudotime analysis placed

M3 and M4 at later stages of differentiation originating from M1.

Reduced anoikis and ferroptosis in these late-stage subsets
Frontiers in Immunology 05
suggests an adapt ive survival advantage in the pro-

inflammatory, stress-rich failing myocardium. Key pseudotime-

correlated genes (e.g., FRMD4A, CD163, NEAT1) are shown in

Supplementary Figure S4. AUCell scores along the trajectory

confirmed reduced cel l death pathways act ivat ion in

differentiated macrophages (Figures 4D, E). As pseudotime

progressed, increases in cell counts, gene counts, and label

diversity signified rising complexity within differentiated

macrophages (Supplementary Figure S5). Pseudotime–gene

regression and functional enrichment summaries are provided

in Supplementary Figures S6A, B. Gene interaction network

(PTPRC, STAB1, CD163, MERTK) are shown in Figure 4F,

progressive increases in MERTK, PTPRC, CD163, STAB1

expression with advancing HF are shown in Figures 4G, H. The

expression and distribution of significantly downregulated key

genes in diseased tissues are shown in Supplementary Figure S7.
FIGURE 1

Single-cell analysis in 18 cardiomyopathy samples. (A) t−SNE plot showing 13 major cardiac cell types. Each color represents a distinct cell type as
annotated in the legend; colors are categorical and do not indicate quantitative values. (B) t−SNE plot of cells from NF, HCM, and DCM patients.
Each color corresponds to a disease group (NF = non−failing, HCM = hypertrophic cardiomyopathy, DCM = dilated cardiomyopathy); colors are
categorical. (C) Proportions of each cell type in NF, HCM, and DCM samples. Colors denote distinct cell types, consistent with the scheme in
Figure 1A. (D) Distribution of 12 major cell types across NF, HCM, and DCM samples.
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Functional analysis of macrophage
subtypes

We identified key marker genes for each macrophage subtype

from differential expression patterns and functional annotations.

Functional enrichment and network analysis revealed distinct
Frontiers in Immunology 06
biological roles: macrophage−1 (metabolic pathways),

macrophage−2 (immune responses, PI3K–Akt signaling),

macrophage−3 (endocytosis), macrophage−4 (chemokine

signaling) (Figures 5A–E). In HF, PI3K–Akt activation in

macrophage-2 may support reparative processes but could also

promote fibrosis under persistent inflammation.
FIGURE 2

Macrophage analysis and cell death scoring. (A) t−SNE plot with macrophages in green. (B) UMAP plots of macrophage subpopulations across NF,
HCM, and DCM samples. Each color represents a distinct macrophage subtype; colors are categorical. (C) ssGSEA scores for six cell death pathways
in macrophages (P<0.05: *, P<0.01: **). (D) UMAP plot of ssGSEA−derived activity scores for 10 cell death pathways. Color gradient from dark blue
(low activity) to bright yellow (high activity) represents relative pathway activity per cell.
frontiersin.org
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Gene expression differences in
macrophages from healthy and
cardiomyopathy patients

Differential expression analysis revealed distinct patterns for

PTPRC, STAB1, CD163, and MERTK (Figures 6A, B). Functional

enrichment showed ‘Metabolic pathway’ predominance in normal

samples (Figure 6C) and ‘PI3K-Akt signaling’ in HF (Figure 6E). In

healthy hearts, CD44 and PTEN were linked to ferroptosis and

anoikis (Figure 6D), while in HF, CSF1R, CD74, and PTEN were

central (Figure 6F). Differentially expressed genes related to

ferroptosis and anoikis in healthy and diseased groups are

detailed in Supplementary Figures S8, S9. Subtype-specific marker

gene distributions for macrophage-1, macrophage-2, and

macrophage-3 are provided in Supplementary Figures S10-S12.
Macrophage terminal differentiation and
key gene identification

We mapped the developmental trajectory of macrophage-4, the

most prevalent subtype, into 10 subclusters (macrophage-4.1 to

-4.10) (Figure 7A). Clusters 1 (DCM) and 2 (HCM) marked
Frontiers in Immunology 07
terminal differentiation stages. RNA velocity supported these

trajectories (Figures 7B, C). Key genes are shown in heatmaps

(Figure 7D), with functional enrichment and network analyses in

Figure 7E, and gene expression trajectories in Figure 7F.
Validation of macrophage marker genes
and prognostic power

Using dataset GSE57345, we validated key marker genes for HF

diagnosis (Figures 8A, B). Upregulated and downregulated genes are

shown in Figures 8C, D. Receiver operating characteristic (ROC)

curves indicated AUC > 0.8. UMAP and RNA velocity confirmed

differentiation pathways and marker gene dynamics (Figures 8E, F).
Multigenic model validation in HF

Random forest algorithm identified the top 20 genetic features

distinguishing HF from non-failure groups; principal component

analysis demonstrated diagnostic efficiency in Supplementary

Figures S13A, B). ROC analysis for a 10-gene model showed

robust predictive value (Supplementary Figures S13C–E).
FIGURE 3

Distribution and cell death states of macrophages. (A) UMAP plot showing AUCell scores for ferroptosis and anoikis, lighter colors indicate higher
scores. (B) UMAP plots showing activation states for anoikis (top) and ferroptosis (bottom). Cells are colored by activation status derived from per
−cell AUCell AUC values: black = active (AUC > threshold), gray = inactive (AUC < threshold). The overlaid red (“cardiomyopathy”) and blue (“normal”)
labels denote disease−associated regions and do not indicate cell−level color coding. (C) Proportions of four macrophage subpopulations across 18
patients, NF, HCM, and DCM samples. (D) AUCell scores for ferroptosis and anoikis in macrophage subpopulations. Bar height indicates median
pathway activity score. (E) AUCell scores for ferroptosis and anoikis in NF, HCM, DCM, and combined CM samples. Bar height indicates median
pathway activity score.
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FIGURE 4

Macrophage trajectory analysis and RNA velocity. (A) UMAP plot of pseudotime trajectory for macrophage subtypes using Monocle 3. (B)
Pseudotime sequence analysis with cells colored by pseudotemporal orders. Gradient from dark purple (early) to bright yellow (late). (C) RNA
velocity analysis of macrophage differentiation states visualized in three panels. Arrows indicate the inferred direction and relative speed of
transcriptomic change. Top: Cells colored by latent time inferred from RNA velocity (continuous gradient from early [red] to late [blue] states).
Bottom left: Same embedding colored by macrophage subclusters (categorical; macrophage 1 to macrophage 4). Bottom right: Same embedding
colored by disease status (categorical). (D, E). AUCell scores for anoikis (D) and ferroptosis (E) mapped along the pseudotime trajectory. In both
panels, the color gradient from dark blue (low activity) to bright yellow (high activity) denotes relative pathway activity at the single−cell level.
(F) Interaction network of genes from regression analysis. Node color indicates pathway association: purple = anoikis−related, blue = ferroptosis
−related, red = both; node size reflects degree centrality. Notable interactions include PTPRC and CD163, which co−localize within the network
despite their traditionally opposing functional associations. This co−expression pattern may indicate transitional macrophage states with both
inflammatory signaling potential and reparative capacity. (G) Expression patterns of key genes (MERTK, CD163, PTPRC, STAB1) across the tissue
section. Tiles are colored by normalized expression for the indicated gene: red denotes lower expression, green denotes higher expression. Color
scaling is applied per panel. (H) Time−series regression analysis of key gene expression changes across macrophage clusters.
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Discussion

Understanding how regulatory changes specific to cell lineages

occur under disease conditions is crucial for effective drug

development. This study used single-cell transcriptomics to
Frontiers in Immunology 09
analyze HF in patients with DCM or HCM. By comparing HF

samples to healthy donors, we aimed to uncover novel disease

insights. Our focus was on macrophages, key immune cells in HF

pathogenesis and progression. We revealed macrophage

evolutionary trajectories and their links to anoikis and ferroptosis,
FIGURE 5

Functional analysis of key marker genes in macrophage subpopulations. (A) Marker gene identification in four macrophage clusters, darker colors
indicate higher expression. (B–E) For each macrophage subtype (type 1–4): Left panel = functional enrichment bubble plot, where bubble color
encodes statistical significance (–log10 P value, continuous gradient) and bubble size represents the number of input genes associated with each
pathway. Middle panel = gene interaction network (node color indicates pathway association: purple = anoikis−related, blue = ferroptosis−related,
red = both; node size reflects degree centrality). Right panel = UMAP plot of marker gene distribution (color gradient from dark blue = low
expression to bright yellow = high expression).
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two modes of programmed cell death. Key genes differentially

expressed in macrophages across HCM, DCM, and non-failing

samples were identified, providing a comprehensive view of HF’s

cellular and transcriptomic landscape. These findings have

significant implications for the diagnosis, prognosis, and

treatment of HF and other cardiovascular diseases.
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Macrophage differentiation and HF
progression

Our scRNA-seq analysis of approximately 120–000 cells identified

13 distinct cell types, focusing onmacrophages due to their critical roles

in inflammation and tissue remodeling. Macrophages, which clear
FIGURE 6

Functional differences and key differentially expressed genes in macrophages. (A, B) Marker gene expression in macrophages from (A) normal vs.
cardiomyopathy samples and (B) NF, DCM, and HCM samples. In both panels, color gradient from light yellow (low value) through red (intermediate
value) to black (high value) represents mean expression in group. (C–F) Functional enrichment and interaction networks of marker genes in normal
(C, D) and cardiomyopathy (E, F) samples. (C, E) Bubble plots of enriched KEGG pathways. Bubble color encodes the –log10(p) value (continuous
scale), and bubble size represents the number of genes associated with each pathway. (D, F) Protein–protein interaction networks of marker genes.
Node color indicates pathway association (purple = anoikis−related, blue = ferroptosis−related, red = both), and node size reflects degree centrality.
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FIGURE 7

Trajectory analysis of terminally differentiated Macrophage−4. (A) UMAP re−clustering of Macrophage−4 into 10 subclusters; each color denotes a
distinct subcluster (categorical). (B) RNA velocity analysis of Macrophage−4. Cells are colored by latent time inferred from RNA velocity (continuous
gradient from early to late states), with the start point in red and the endpoint in blue marking the trajectory extremes. Arrows indicate the inferred
direction and relative speed of transcriptomic change. (C) RNA velocity analysis across all 10 subclusters, colored by subcluster identity (categorical)
using a palette different from panel (A). Arrows indicate inferred direction and speed. (D) Differential expression heatmap of the 10 subclusters,
ordered as in panel (A); within the heatmap, yellow indicates higher expression and darker shades indicate lower expression. Black boxes highlight
the regions of interest corresponding to each subcluster’s differentially expressed genes. A dedicated column on the right lists representative marker
genes for these regions. (E) Bubble plots of functional enrichment for clusters 1 and 2; bubble color encodes statistical significance (–log10 P value,
continuous gradient), and bubble size reflects the number of associated genes. (F) Expression and RNA velocity analysis of marker genes in clusters 1
and 2; color gradient from green (high expression) to red (low expression) represents normalized expression level, with arrows indicating inferred
differentiation direction.
Frontiers in Immunology frontiersin.org11

https://doi.org/10.3389/fimmu.2025.1604226
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wei et al. 10.3389/fimmu.2025.1604226
apoptotic cells and modulate inflammation, play diverse roles in

cardiac health (11, 12). Pseudotime and RNA velocity analyses

revealed detailed evolutionary trajectories and functional

specializations of macrophage subtypes in HF. Understanding these
Frontiers in Immunology 12
subtypes helps identify cellular states contributing to HF progression,

offering potential therapeutic targets.

Recent studies highlight the complexity of macrophage

subtypes in cardiovascular diseases. For instance, Liu et al.
FIGURE 8

Validation of key genes in the bulk−seq dataset (GSE57345). (A, B) Heatmap validation of marker genes from Macrophage−4 clusters 1 (A) and 2 (B).
The color scale denotes normalized expression (dark blue = low, red = high); columns are grouped by clinical category (e.g., NF, DCM, HCM).
(C, D) ROC curve validation of selected upregulated (C) and downregulated (D) marker genes from clusters 1 and 2. Each curve represents one
gene, with the corresponding AUC value indicated. (E) UMAP plot of RNA velocity analysis overlaid with disease classification, illustrating overall
differentiation trajectories of the marker genes. Arrows indicate the inferred direction and relative speed of transcriptomic change, with color
denoting expression level (green = high, red = intermediate, black = low). (F) UMAP plots showing expression and RNA velocity of selected marker
genes (NR3C1, ATM, NAALADL2, DTNB, AFF3) in clusters 1 and 2. Color gradient from red (low expression) to green (high expression) represents
normalized expression level, with arrows indicating inferred differentiation direction; blue boxes highlight regions of interest.
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identified eight immune subpopulations, including five macrophage

subtypes, in HCM patients, underscoring altered macrophage

dynamics (13). Another study found ten macrophage subsets

involved in tissue repair and immune regulation (14). Consistent

with these findings, we identified four macrophage subtypes and

further subdivided macrophage-4 into ten subclusters,

demonstrating macrophage specialization in response to different

pathological states.

Our results suggest that macrophage transcriptomic states are

continuous rather than discrete, with a proinflammatory FCN1-high

subpopulation prevalent in diseased conditions. These findings align

with studies (15, 16). Highlighting macrophage heterogeneity’s role in

maintaining tissue homeostasis and responding to physiological changes.
Distinct cell death pathways

Our analysis revealed significant differences in macrophage-

mediated cell death mechanisms between HF and normal heart

samples, particularly in autophagy, anoikis, ferroptosis, and

necrosis. Reduced activities in anoikis and ferroptosis in HF

samples suggest macrophage dysfunction is closely linked to HF

pathophysiology. Macrophages in HF not only modulate immune

responses but also engage in a complex network of cell death

and repair mechanisms (11, 12). Studies indicate that HF

macrophages have reduced autophagy-related gene expression,

leading to waste accumulation and increased apoptosis,

exacerbating cardiac decline (17, 18).

Macrophages promote myocardial repair by secreting

cytokines, a process impaired in HF patients (19, 20). Altered

macrophage polarization in HF affects functionality, providing

insights into potential therapeutic interventions (21). Ferroptosis,

characterized by excessive iron accumulation, plays a critical role in

cardiac injury (22, 23). Reduced ferroptosis in HF samples, likely

due to abnormal iron metabolism regulation, impacts heart

stability. In the context of DCM and HCM, ferroptosis in

macrophages may amplify local inflammation and oxidative stress

through the release of damage−associated molecular patterns and

pro−inflammatory mediators, thereby exacerbating cardiomyocyte

injury and promoting maladaptive ventricular remodeling (24, 25).

Anoikis, triggered by the loss of cell–matrix interactions, may

impair the retention and reparative capacity of macrophages

within the myocardial interstitium, disrupting extracellular matrix

turnover and favoring pathological fibrosis (25, 26). Together, these

death pathways could shift macrophage populations toward pro

−fibrotic and pro−inflammatory states, creating a feed−forward

loop that accelerates adverse remodeling in both disease

phenotypes. While our study is primarily computational, these

mechanistic links are supported by prior experimental evidence in

cardiovascular disease models and warrant targeted in−vitro and in

−vivo validation in future work (24–26).

The observed heterogeneity in cell death pathways underscores

the necessity for targeted therapeutic strategies addressing specific

macrophage subtypes and their unique roles in disease progression.
Frontiers in Immunology 13
Recent studies have further elucidated the role of macrophage-

mediated cell death in cardiovascular diseases. For instance, a study

highlighted the multiple roles of cardiac macrophages in heart

homeostasis and failure, emphasizing their importance in immune

defense, apoptotic cell clearance, and regulation of electrical

conduction and arterial tone (27). Our findings on distinct cell

death pathways offer a nuanced understanding of macrophage

functions in HF, suggesting targeted therapeutic strategies for

specific macrophage subtypes could improve treatments.
Macrophage metabolic reprogramming
and adaptive responses in HF

To further investigate the role of macrophages in HF, recent

metabolomics studies have identified significant changes in

macrophage metabolic pathways in HF patients, particularly

enhanced glycolytic activity and reduced oxidative phosphorylation

(13, 28). This metabolic shift indicates macrophage dysfunction,

contributing to disease progression. Our study uses pseudotime and

RNA velocity analyses to map the developmental trajectories of

macrophages in HF. We found that macrophage-1 subtypes are

initially enriched in metabolic processes vital for cellular energy

homeostasis. As HF progresses, macrophage differentiation shifts

towards pathways crucial for cell survival and proliferation, especially

the PI3K-Akt signaling pathway. This transition underscores

macrophages’ adaptive response to the failing heart’s demands,

emphasizing their roles in immune responses and tissue remodeling.

The PI3K-Akt pathway is fundamental for protecting cells

against stress-induced apoptosis, promoting cell proliferation, and

enhancing survival under adverse conditions (29). Dysregulation of

this pathway has been implicated in HF due to its role in adverse

cardiac remodeling and apoptosis (13). Our identification of the

PI3K-Akt pathway as central to macrophage differentiation

highlights its crucial role in maintaining cardiovascular function

and its potential as a therapeutic target. In our dataset, both M2

(NF-enriched) and M4 (HF-enriched) macrophage subsets

exhibited PI3K–Akt activation; however, the downstream

consequences appear context-dependent: in M2 cells, activation

supports anti-inflammatory polarization, phagocytosis, and tissue

repair within relatively stable microenvironments, contributing to

the resolution of injury. In contrast, within M4 cells, a pro-

inflammatory cytokine milieu (e.g., TNF-a, IL-6, IFN-g) redirects
PI3K–Akt signaling toward metabolic reprogramming, sustained

inflammatory output, and prolonged survival of maladaptive

macrophage phenotypes. While such activation in M2

macrophages may be beneficial in acute injury resolution, its

persistence in M4 subsets could maladaptively drive fibroblast

activation, extracellular matrix deposition, and profibrotic

remodeling. This dual potential underscores both the therapeutic

challenge and opportunity in modulating PI3K–Akt signaling with

cell state– and microenvironment–specific precision.

By engaging alternative survival and proliferation pathways

under stress, these macrophage subsets can maintain their
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presence and functionality within the failing heart, thereby

sustaining immune surveillance and contributing to tissue

remodeling. This adaptive plasticity exemplifies the dynamic

nature of macrophages in HF, and understanding these state

transitions offers strategic entry points for interventions aimed at

reprogramming macrophage functions toward reparative rather

than pathological outcomes.
Key genetic markers and macrophage
differentiation in HF

Our pseudotime and RNA velocity analyses mapped the

developmental trajectories of macrophages in HF, identifying key

genes such as PTPRC, STAB1, CD163, andMERTK. These genes are

essential for understanding macrophage differentiation and their

roles in HF progression. PTPRC and STAB1 are involved in

immune regulation, while CD163 and MERTK are associated with

anti-inflammatory and tissue repair processes. Interestingly, co-

expression of PTPRC (a pro-inflammatory pan-leukocyte receptor

tyrosine phosphatase) and CD163 (an anti-inflammatory scavenger

receptor) was observed in a subset of macrophages positioned at

intermediate points along the differentiation trajectory. Literature

and network analysis suggest that such dual-expression states may

confer phenotypic plasticity, enabling macrophages to rapidly

toggle between inflammatory and reparative functions in response

to shifting microenvironmental signals. In HF, this hybrid

phenotype may be critical for navigating the alternating phases of

injury and repair characteristic of the failing myocardium. The

progressive increase in expression levels of these genes across

macrophage subtypes suggests their involvement in the

maturation process and functional specialization in HF.

Recent studies highlight the importance of gene expression

trajectories in understanding macrophage specialization. MERTK

is crucial for efferocytosis, clearing apoptotic cells and preventing

secondary necrosis and inflammation (30). Elevated MERTK

expression in later macrophage subtypes underscores its role in

inflammation resolution. PTPRC (CD45) is significant in

regulating immune cell signaling and is essential for T-cell

receptor signaling and cytokine production, impacting the

immune response during cardiac stress (31, 32). Increased

PTPRC expression across macrophage subtypes indicates its role

in immune response and potential as a biomarker for HF

progress ion . CD163, a marker of ant i - inflammatory

macrophages, is involved in clearing hemoglobin-haptoglobin

complexes (33). Research indicates that CD163 expression is

upregulated in response to inflammatory stimuli, and its soluble

form serves as a biomarker for various inflammatory diseases,

including cardiovascular conditions (34). Our observation of

increased CD163 expression in later macrophage subtypes is

consistent with its role in modulating inflammation,

highlighting its potential as a therapeutic target.
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Prognostic and diagnostic implications of
multigenic models

Validating key marker genes using the GSE57345 dataset

demonstrated robust predictive accuracy for diagnosing HF

phenotypes, specifically HCM and DCM. Integrating macrophage

differentiation clusters into multigenic predictive models enhances

diagnostic efficiency and provides insights into HF’s molecular

mechanisms. ROC curve analysis indicated strong diagnostic

capabilities with AUC values exceeding 0.8, underscoring these

markers’ clinical utility. To reduce the risk of overfitting in ROC

analysis, we applied k−fold cross−validation (k = 10) when

estimating AUC values for individual genes. While this approach

provided more robust performance estimates, we acknowledge that

the absence of validation in an independent external cohort remains

a limitation, and future studies will aim to confirm these findings in

datasets from other centers. Our multigenic model, with genes like

CD44, PTEN, and CSF1R, enhances early diagnosis and patient

stratification in HF.

The high predictive accuracy of these genetic markers suggests

their effective use in clinical settings for diagnosing HCM and

DCM. For example, CD44 is implicated in cell adhesion and

migration, critical in cardiac remodeling and HF (35). PTEN, a

key regulator of the PI3K-Akt signaling pathway, is involved in cell

survival and metabolism, with dysregulation linked to adverse

cardiac remodeling and HF (36). CSF1R, a receptor for

macrophage colony-stimulating factor, plays a crucial role in

macrophage differentiation and inflammation (37). These studies

corroborate our findings, supporting the enhancement of diagnostic

accuracy by incorporating these genes into predictive models.

Integrating macrophage differentiation clusters into multigenic

predictive models enhances robustness and reliability. By

incorporating key genetic markers indicative of specific

macrophage states, we develop more accurate and clinically

relevant diagnostic tools. Upregulation of CD44, PTEN, and

CSF1R in specific macrophage subtypes correlates with increased

disease severity and poorer outcomes in HCM and DCM, serving as

valuable indicators for ear ly diagnosis and targeted

treatment strategies.
Conclusions and future directions

Macrophages play a complex and multifaceted role in HF,

involving cell death, metabolic reprogramming, and cell-cell

interactions. Our study offers a detailed characterization of

macrophage diversity and their molecular mechanisms in HF.

Identifying and validating key genetic markers as diagnostic tools

underscore the clinical potential of these findings. This research

enhances our understanding of macrophage biology in

cardiovascular diseases and opens new avenues for targeted

therapies and personalized medicine.
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Future research should validate these findings in larger cohorts

and explore targeting specific macrophage subtypes. Longitudinal

studies could provide insights into dynamic changes in macrophage

populations and their impact on disease progression. Additionally,

focusing on macrophages’ multifaceted roles and regulatory

mechanisms in HF could lead to novel therapeutic strategies, such

as gene editing or pharmacological interventions targeting

macrophage metabolic pathways, to improve HF prognosis.
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